
Transport Area Working Group S. Bailey (Sandburst)
Internet-draft J. Chase (Duke)
Expires: May 2002 J. Pinkerton (Microsoft)
 A. Romanow (Cisco)
 C. Sapuntzakis (Cisco)
 J. Wendt (HP)
 J. Williams (Emulex)

 TCP ULP Framing Protocol (TUF)
draft-ietf-tsvwg-tcp-ulp-frame-01

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 The TCP ULP Framing (TUF) protocol defines a shim layer protocol
 between an Upper Layer Protocol (ULP) and TCP. TUF also depends on
 a specified TCP segmentation convention between TUF endpoints.
 Together, the shim and segmentation conventions enable a TUF/TCP
 receiver to recognize ULP data units within a TCP segment
 independently of other TCP segments. This capability simplifies

Bailey and others Expires May 2002 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-ulp-frame-01
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TUF 15 Nov 2001

 the design of enhanced network interfaces implementing direct data
 placement for ULPs using TCP. Direct data placement is a key step
 to making IP networking competitive with high-end interconnect
 solutions in data centers and other high-performance application
 domains.

Table Of Contents

1. Definitions . 3
2. Overview . 4
2.1. Motivation . 4
2.2. Approach . 5
3. Rational For TUF . 6
3.1. Direct Data Placement 7
3.2. Direct Data Placement with TCP 8
3.2.1. The Simple Case: ULP-unaware Placement 9
3.2.2. The Complex Case: ULP-aware Placement 9
3.2.3. The Problem of ULP-aware Placement with TCP 10
3.2.4. Finding ULPDUs In Out-of-order Segments 11
3.2.5. The TUF Solution . 12
3.2.6. TUF's ULP Assumptions 12
4. The Protocol . 13
4.1. The Framing Protocol Data Unit (FPDU) 13
4.1.1. FPDU Format . 13
4.1.2. FPDU Size Selection 14
4.2. TUF-conforming TCP Sender Segmentation 15
4.3. Negotiating TUF . 15
4.4. TUF Receiver ULPDU Containment Property Testing 16
5. Protocol Characteristics 17
5.1. Properties Of TUF-conforming TCP Senders 17
5.2. Exception Cases . 18
5.2.1. Resegmenting Intermediaries 18
5.2.2. PMTU Reduction . 19
5.2.3. PMTU Increase . 20
5.2.4. Receive Window < EMSS 21
5.2.5. Size of ULPDU + 8 > EMSS 21
6. Security Considerations 22
6.1. Protocol-specific Security Considerations 22
6.2. Using IPSec With TUF 22
6.3. Using TLS With TUF 22
7. IANA Considerations 25

 References . 25
 Authors' Addresses 26

A. Sample Sockets Support For TUF 27
A.1 Basic Principles . 28
A.2 Enabling TUF . 28
A.3 Sending Data . 29

Bailey and others Expires May 2002 [Page 2]

Internet-Draft TUF 15 Nov 2001

A.4 Retrieving The Current EMSS or MULPDU 29
A.5 Disabling ULPDU Packing 29
A.6 Disabling The Report of Oversized ULPDUs 30

 Full Copyright Statement 30

1. Definitions

 The following terms and abbreviations are used in this document.

 data delivery - the delivery of received ULP payloads to the
 ULP application, i.e, notifying the application of data
 arrival by completing a receive operation or generating an
 event.

 data placement - the storage of received ULP payloads to host
 memory, pending delivery to the ULP application.

 direct data placement - the storage of received ULP payloads
 directly to application-specified buffers without intermediate
 buffering or copying.

 EMSS - the effective maximum segment size. EMSS is the TCP
 maximum segment size (MSS) defined in RFC 793 [TCP] and
 exchanged during TCP connection establishment, adjusted by the
 current path maximum transfer unit (MTU) [PathMTU].

 FPDU - framing protocol data unit. The protocol data unit
 defined by TUF.

 MULPDU - maximum upper layer protocol data unit size. The
 size of the largest ULPDU that fits in an EMSS-sized FPDU.

 NIC - network interface controller. The device that provides
 a host's access to a physical network link.

 PDU - protocol data unit. A self-contained block of control
 and data defined by a particular protocol.

 RDMA - Remote Direct Memory Access protocol. A data transfer
 protocol which uses memory access-style transfer mode(s) to
 provide generic direct data placement capabilities for
 arbitrary ULPs.

 TUF - TCP ULP Framing protocol. The protocol defined in this
 document.

https://datatracker.ietf.org/doc/html/rfc793

Bailey and others Expires May 2002 [Page 3]

Internet-Draft TUF 15 Nov 2001

 ULP - upper layer protocol. The client protocol using the
 services of the transport layer, or TUF.

 ULPDU - upper layer protocol data unit.

 ULPDU containment property - the property that a TCP segment
 contains exactly an integral number of ULPDUs.

2. Overview

 This section summarizes the motivation for the TCP ULP Framing
 (TUF) protocol and explains its operation in brief. Section 3
 (`Rational for TUF') develops the rationale for TUF in detail.

Section 4 (`The Protocol') defines the protocol itself. Section 5
 (`Protocol Characteristics') examines various properties of the
 protocol's operation. Implementors may wish to refer directly to
 sections 4 and 5.

2.1. Motivation

 The IP protocols are not usually used for high-performance high
 speed data transfers due to overhead in TCP processing. Instead, a
 number of special purpose protocols have been used. The domain of
 application for such high speed buffer transfer includes storage,
 video delivery and processing, and various applications of cluster
 computing, such as scalable database or application service. For
 reasons discussed below, today, there is great industry interest in
 developing an IP standard for low overhead high bandwidth data
 transfer, which would decrease the costs of high speed
 interconnects and supplant special purpose protocols.

 The approach typically used for low overhead transfers is called
 direct data placement, in which the network interface places data
 directly in application buffers, avoiding the latency and memory
 bandwidth costs associated with copying. Direct data placement can
 in principal be done with either of IP's reliable transports--SCTP
 or TCP. This document considers what is needed to do direct data
 placement with TCP.

 In order to place data directly in application buffers, the network
 interface needs to use information in the Upper Layer Protocol Data
 Units (ULPDUs) contained in the TCP stream. This can be
 accomplished routinely except when TCP segments arrive out of
 order. If TCP segments arrive out of order, the location of the
 ULPDUs in the TCP segment cannot be found. The TUF protocol
 addresses this problem of finding ULPDU headers in the TCP stream,
 even when TCP segments arrive out of order.

Bailey and others Expires May 2002 [Page 4]

Internet-Draft TUF 15 Nov 2001

2.2. Approach

 TUF is implemented as a shim layer between an ULP and TCP. The
 end-to-end data flow is:

 0. Use of TUF is negotiated end-to-end by the ULP.

 1. The ULP delivers a data stream with ULPDUs delimited to TUF.

 2. TUF inserts a header and delivers the shimmed ULPDUs to TCP.

 3. The TUF-aware TCP sender preserves boundaries of shimmed
 ULPDUs (TUF FPDUs) as much as possible when delivering
 segments to the IP layer.

 4. The receiving TCP delivers shimmed ULPDUs to the receiving TUF
 layer.

 5. TUF removes the shim and delivers the ULPDUs to the ULP.

 In other words, the layering of TUF is:

 ULP client
 ^
 |
 | ULPDUs (in octet stream)
 |
 v
 TUF
 ^
 |
 | FPDUs (containing ULPDUs)
 |
 v
 TUF-conforming TCP
 ^
 |
 | TCP Segments (each containing an FPDU)
 |
 v
 . . .

 Note that while the semantics of this protocol layering must be
 maintained, the receiving network interface may use the information
 in the framed ULPDUs to place the data in memory on the host.
 Whatever the case, the data is only delivered to the ULP when all
 preceding TCP data has arrived.

Bailey and others Expires May 2002 [Page 5]

Internet-Draft TUF 15 Nov 2001

3. Rational For TUF

 This document defines the TUF protocol as a shim layer between an
 Upper Layer Protocol (ULP) and TCP. TUF also depends on a TCP
 segmentation convention between TUF/TCP endpoints specified in this
 document. Taken together they provide the capability for a TUF/TCP
 receiver to recognize ULPDUs by processing each TCP segment
 independently, without requiring state from previous segments.

 The purpose of TUF is to enable practical designs for enhanced
 network interfaces (NICs) implementing direct data placement for
 TCP-based ULPs. The purpose of direct data placement is to
 eliminate the need for a host to copy received data after it
 arrives in host memory. This copying incurs CPU, memory and bus
 costs that are substantial and are not masked by advancing hardware
 technology.

 A general and practical solution to the receive copy problem has
 eluded the IP networking community for almost two decades. There
 is a long history of research and experimental schemes to reduce or
 eliminate receiver copying overhead for IP networking in general,
 and for TCP/IP communication in particular. While these systems
 have convincingly demonstrated the potential performance benefits
 of reducing copy costs, all such schemes suffer from one or more of
 the following limitations: they require a significant restructuring
 of operating system buffering and/or APIs; they are limited to
 specific modes of communication (e.g., bulk data transfer) or
 specific application ULPs; they do not scale on multiprocessor
 hosts; their benefits depend on specific properties of the network
 (e.g., large MTUs) or host buffer size and alignment. Moreover,
 all such schemes require some degree of support from NICs to
 separate payloads from headers and/or ensure that their placement
 in host memory meets specific requirements (e.g., for page
 placement and alignment).

 Inherent copying costs for IP communication are one motivation to
 use alternative non-IP technologies for high-speed networking. A
 number of specialized technologies have been developed for high
 speed data transfers in which network interfaces transfer data from
 application buffer to application buffer without software touching
 the data. Some examples include the VAXCluster Interconnect in
 1983, Fibre Channel (FC) in 1994, and today InfiniBand (IB) and
 Virtual Interface Architecture (VIA). These alternatives have
 eroded the popularity of IP technologies in application domains
 including network storage, video processing and delivery, and
 cluster computing for scientific applications and scalable
 database-related services.

Bailey and others Expires May 2002 [Page 6]

Internet-Draft TUF 15 Nov 2001

 Until recently, several factors have limited interest in promoting
 IP networking as a solution in these application domains. First,
 the competing network technologies offered significantly higher
 link speeds than the network hardware available for use with IP.
 Second, these application domains were a relatively small segment
 of the network market. Recently, however, Ethernet networks have
 closed the bandwidth gap and even exceeded the bandwidth of
 alternatives such as FibreChannel, at much lower cost. At the same
 time, an increasing number of applications are server-hosted in
 data centers to enable sharing and access from a growing number of
 IP-connected client devices and locations. With the growth in
 importance and number of data centers, high-speed interconnection
 within the data center is now central to the everyday operation of
 Internet services.

 Thus, technology changes have created an opportunity and demand to
 extend the benefits of IP technologies to high-performance
 application domains, while simultaneously increasing the importance
 of those domains. The ubiquity of IP offers economies of scale
 heavily favoring IP in these domains. For example, reliance on
 specialized non-IP technologies for high-performance domains
 creates a need to support multiple protocols and redundant network
 infrastructure in data centers, and it compromises portability and
 interoperability of data center solutions. Moreover, comprehensive
 support for network management and security is developing rapidly
 in the IP space. Use of IP technologies would allow data centers
 to benefit from these enhancements.

3.1. Direct Data Placement

 Direct data placement is a key step toward making IP networking
 competitive in data centers and other high-performance domains.
 Direct data placement refers to the ability of a NIC to place data
 directly from the network into designated application buffers,
 without intermediate copying. Direct data placement is attractive
 relative to other solutions to the receive copy problem. It is the
 only solution that can be implemented in a way that is compatible
 with existing operating systems, since the receiving NIC takes over
 most of the responsibility to avoid receive copying. Also, direct
 data placement generalizes easily to a range of ULPs. In
 particular, the establishment of an IETF standard for an IP
 transport-based direct data placement protocol, which would allow
 NICs to directly place data independent of the application ULP
 using it.

 The TUF protocol is necessary to permit easily deployable enhanced
 NICs supporting direct data placement. Such NICs already exist and
 their usage is growing rapidly, but their development is impeded by

Bailey and others Expires May 2002 [Page 7]

Internet-Draft TUF 15 Nov 2001

 the lack of standards. Direct data placement is unnecessarily
 difficult and expensive to design and implement for existing TCP-
 based ULPs; the key objective of TUF is to define transport
 conventions to simplify the design of these NICs. A related
 impediment is that in the absence of a general direct data
 placement protocol these products are limited to specific ULPs such
 as iSCSI. TUF, and possibly additional, higher layer protocol
 definitions outside the scope of this document, would encourage the
 market by ensuring interoperability of product offerings from
 different vendors.

 This document defines a framing protocol (TUF) and TCP segmentation
 conventions that enable simple support of direct data placement for
 a class of TCP-based ULPs. It does not propose a generic direct
 placement ULP, such as an RDMA protocol, or any facility for direct
 data placement, but only the foundations for building such a
 facility on TCP. A key objective of TUF is to do this in a way
 that is compatible with existing standards and with the spirit of
 TCP's stream communication model. TUF can simplify support for
 direct data placement for ULPs such as iSCSI, and it can serve as a
 basis for a future RDMA proposal.

 The key limitation of TUF as a solution to the receive copy problem
 is that it works only if the ULP standard and the sending and
 receiving implementations all support it. Impact on the sender and
 ULPs is minimal, but ULPs must be adapted to allow use of TUF at
 the ULP/transport boundary. The necessary modifications may be
 quite small. Use of TUF is a negotiated option between the sender
 and receiver for each ULP session, preserving interoperability
 among senders and receivers that do not support TUF.

3.2. Direct Data Placement with TCP

 Direct data placement is widely used to accomplish high-performance
 data transfer in non-IP technologies such as block storage channels
 (SCSI, Fibre Channel, etc.), and other specialized high performance
 networks like InfiniBand. This section considers how direct
 placement can be done with TCP.

 The Internet Protocol suite provides two transports that are prime
 candidates for use with direct data placement -- SCTP and TCP. The
 framing features of the SCTP Stream Control Transmission Protocol
 [SCTP] make it more directly adaptable for direct data placement
 for future ULPs using SCTP. However, the maturity and ubiquity of
 TCP make it desirable to define a flexible method for direct data
 placement for TCP-based ULPs as well.

 There has been a great deal of `moral confusion' concerning the

Bailey and others Expires May 2002 [Page 8]

Internet-Draft TUF 15 Nov 2001

 interaction of direct data placement with TCP's ordering
 guarantees. These ordering guarantees do not prohibit direct data
 placement, even if data is placed as it arrives out of order.

 TCP guarantees data delivery to the application ULP as an ordered,
 sequential stream [RFC793]. Data is delivered only when TCP has
 notified the application of its arrival and transferred ownership
 of the receive data buffer. TCP does not specify how received data
 is stored prior to its delivery, and it does not preclude placement
 of data in application buffers out of order, as long as no data is
 delivered until all preceding data has also been delivered. Out-
 of-order placement greatly simplifies direct data placement NICs
 because it streamlines data paths and eliminates the need for a TCP
 reassembly buffer on the NIC.

 An implementation performing direct data placement must still
 respect all TCP delivery semantics. For example, if a checksum
 integrity check fails, the data must not be placed in ULP-supplied
 buffers, because, for example, the TCP ports and the TCP sequence
 number are not trustworthy.

3.2.1. The Simple Case: ULP-unaware Placement

 Direct data placement into a ULP client-supplied buffer designated
 to hold the next data delivered to the ULP, regardless of the
 contents of the received data, is one of the simplest possible
 forms of direct data placement. This form of direct data placement
 is already fully supported by existing TCP mechanisms. New NIC
 products currently, or soon to be available, which claim to offer
 `full zero copy operation' typical provide only this ULP-unaware
 form of direct data placement.

 While ULP-unaware direct data placement works well for ULPs like
 FTP where the entire contents of a TCP connection are known to be
 nothing but a single stream of bulk client data, most widely used
 ULPs, e.g. HTTP [HTTP], BEEP [BEEP] and storage protocols,
 multiplex control and data, and possibly even interleave data from
 different requests on the same TCP connection. The simple ULP-
 unaware direct data placement is inadequate to avoid data copies
 for these ULPs.

3.2.2. The Complex Case: ULP-aware Placement

 An explicit goal of this proposal is to support out-of-order direct
 data placement for ULPs that provide additional transport-like
 features such as control and data multiplexing, layered above TCP
 (e.g., iSCSI or a generic direct data placement protocol such as
 RDMA). In many ULPs, such as storage protocols, control

https://datatracker.ietf.org/doc/html/rfc793

Bailey and others Expires May 2002 [Page 9]

Internet-Draft TUF 15 Nov 2001

 information contained in the ULP uniquely identifies the
 destination application buffer of each particular piece of data.

 For example, suppose a client requests a read operation using a
 network storage ULP, specifying the destination buffer for the
 requested data. The requesting ULP includes control information in
 the request (e.g., in the ULPDU header) uniquely identifying that
 buffer, and the responder includes that information in the read
 response. For some protocols, the identifier is a unique request
 ID, allowing the client ULP to identify the buffer indirectly
 through a table of pending requests. If the storage protocol uses
 RDMA, the response may specify the buffer directly by means of a
 region identifier.

 A network interface that understands the relevant ULP control
 information can use it to place the incoming data (e.g., read
 response payload) directly in the correct buffer. In this case,
 data placement is guided by ULPDU headers embedded in the TCP data
 stream. The NIC accesses these headers as hints for placement of
 the ULP payloads--a form of integrated layer processing for each
 TCP segment as it arrives. This is compatible with TCP's ordering
 properties if completion of ULP header processing and delivery of
 the payload data to the application are strictly in order.

3.2.3. The Problem of ULP-aware Placement with TCP

 The problem with performing direct data placement as a function of
 ULP control information in TCP is that it may be difficult to
 locate the ULP control information (ULPDU headers) within a TCP
 segment.

 If all TCP segments are received in sequence order, ULP control
 information can be unambiguously located by the rules that permit
 any ULP implementation to do so. For example, each ULPDU may
 contain a length field that implicitly specifies the location of
 the beginning of the subsequent ULPDU.

 If TCP segments are not received in sequence order, without taking
 additional measures, it may not be possible to unambiguously locate
 ULP control information needed for direct data placement. For
 example, if ULPDU length information is in a TCP segment that is
 delayed or lost in transmission, assuming the ULPDU length is the
 only means of locating the beginning of the subsequent ULPDU, it is
 impossible to locate ULP control information for ULPDUs in
 subsequent TCP segments until the lost or delayed TCP segment is
 received. ULP control information, and the data whose placement
 depends on it may even be in different TCP segments. If the ULP
 control information is in a TCP segment that is delayed or lost, it

Bailey and others Expires May 2002 [Page 10]

Internet-Draft TUF 15 Nov 2001

 is impossible to directly place the data until the ULP control
 information is received.

3.2.4. Finding ULPDUs In Out-of-order Segments

 Early attempts at ULP-aware direct data placement in TCP took the
 approach of only directly placing data for TCP segments received
 in-order. Otherwise, data was copied through a reassembly buffer
 as in a traditional implementation. Unfortunately packet loss, and
 attendant out-of-order reception is a frequent, continuous
 characteristic of both wide-area, and switched local area networks
 of almost any size, as TCP adjusts to varying congestion
 conditions. Under these conditions, a large portion of the data
 transferred ends up being copied, rather than being directly
 placed.

 Another solution to this problem is to build a reassembly buffer
 into the network interface. Data received out-of-order can be held
 in the network interface reassembly buffer until all preceding data
 is received, and then direct placement can be performed on the
 reassembled data. Within certain implementation assumptions, this
 is reasonable approach, but, unfortunately there are a number of
 issues including very large memory requirements, limited
 scalability, and increased latency, that make the reassembly
 approach undesirable.

 The size of reassembly buffer needed in the network interface is a
 direct function of the bandwidth * delay product of all active TCP
 connections. Reasonable assumptions on the active bandwidth *
 delay product can imply a large amount of reassembly memory.
 Furthermore, this large reassembly memory must run at high
 speed---more than two times the link speed, to maintain full link
 bandwidth.

 Finally, performing reassembly in the network interface requires
 that the bandwidth from the network interface to host memory be not
 just equal, but substantially greater than the maximum bandwidth of
 the network link, to ensure that the reassembly buffer is drained
 when reassembly is complete. System bus and interconnect bandwidth
 are particularly scarce and expensive resources in most systems.

 What is needed to permit ULP-aware direct data placement without
 reassembly buffering is a way to ensure that the ULP control
 information and the data associated with it is highly likely to be
 contained completely within a single TCP segment, and a way for a
 receiver to validate this containment property on TCP segments it
 receives. If the receiver can determine that a ULPDU starts at the
 beginning of a TCP segment, the receiver can perform ULP-aware

Bailey and others Expires May 2002 [Page 11]

Internet-Draft TUF 15 Nov 2001

 direct placement for that ULPDU, and subsequent ULPDUs contained in
 that TCP segment. The property that a ULPDU is completely
 contained within a TCP segment is called the `ULPDU containment
 property'.

3.2.5. The TUF Solution

 The TUF protocol defines a shim layer above TCP and below the ULP
 that allows the receiver to validate the ULPDU containment property
 for each TCP segment received, independently of any other TCP
 segment. The TUF protocol also defines a segmentation behavior for
 the TCP sender that ensures the ULPDU containment property holds as
 often as possible while still respecting the protocol requirements
 for TCP senders.

 The TUF-specified TCP segmentation behavior ensures that the ULPDU
 containment property is maintained as long as the receiver window
 size is at least equal to the effective MSS (EMSS), the path MTU
 (PMTU) does not change, and the TCP stream is not resegmented by an
 intermediary. In conditions where the TCP receiver window size is
 smaller than EMSS, or the PMTU changes, the segmentation behavior
 further ensures that once the relevant condition is restored, the
 ULPDU containment property will be satisfied again.

 For the high-performance applications that this protocol targets,
 small receiver window sizes, and PMTU changes are rare transients.
 Thus, the specified protocol ensures that ULP control information
 and its associated data are virtually always together in a single
 TCP segment.

3.2.6. TUF's ULP Assumptions

 A key assumption of TUF is that ULPs running on TUF can adjust
 ULPDU sizes to fit completely within an EMSS-sized TCP segment.
 Clearly, if a ULPDU does not fit within an EMSS-sized TCP segment,
 the ULPDU containment property can not be satisfied. Most storage
 protocols (e.g. iSCSI), and other performance-targeted protocols
 (e.g. RDMA protocols) support this capability. ULPs that can not
 adjust ULPDU sizes to fit within an EMSS-sized TCP segment, but
 still want the performance advantages of direct data placement, can
 be mapped on top of an intermediate protocol (e.g. an RDMA
 protocol) that does support this data `chunking'.

 TUF does not change the stream delivery semantics of TCP to the
 ULP, through the TUF implementation. It merely inserts a shim
 header that can be used by direct placement network interfaces to
 verify the ULPDU containment property. The shim header is inserted
 by the sending TUF implementation and removed by the receiving TUF

Bailey and others Expires May 2002 [Page 12]

Internet-Draft TUF 15 Nov 2001

 implementation, leaving a stream to be delivered to the ULP.

4. The Protocol

 This section defines the TUF protocol itself. The first two
 sections are the core of the protocol defining:

 o the shim layer PDUs, called FPDUs,

 o a TCP-conforming segmentation behavior which ensures the ULPDU
 containment property holds under most conditions.

 The remaining sections cover other aspects of the protocol which
 are primarily implications of the core protocol:

 o what ULP-specified negotiations to enable TUF must accomplish,

 o how receivers can process received TCP segments to establish
 whether the ULPDU containment property holds.

4.1. The Framing Protocol Data Unit (FPDU)

 TUF sends groups of one or more complete ULPDUs in a framing
 protocol data unit (FPDU).

4.1.1. FPDU Format

 The format of an FPDU is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Key |
 +-+
 | Key |
 +-+
 | |
 | |
 ~ ~
 ~ ULPDUs ~
 | |
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | ULPDUs |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Length: 16 bits (unsigned integer)

Bailey and others Expires May 2002 [Page 13]

Internet-Draft TUF 15 Nov 2001

 This is the length in octets of the set of framed ULPDUs. It
 does not include the length of the FPDU header itself.

 Key: 48 bits (unsigned integer)

 This is used by the receiver to validate the ULPDU containment
 property. It is selected at random by the sender, and
 initially signaled to the receiver in a ULP-specified way,
 before the receiver attempts to test the ULPDU containment
 property. All FPDUs sent on the same connection in the same
 direction must use the same key value. A good quality random
 number generator MUST be used to generate the initial key.

RFC 1750 discusses relevant characteristics and provides
 references for good quality random number generation
 [RFC1750].

 The length of an FPDU is 8 + L octets, where L is the length of the
 set of framed ULPDUs. The 16-bit length field is sufficient to
 permit a TCP segment with an FPDU to completely fill a maximum-size
 IPv4 or IPv6 datagram.

4.1.2. FPDU Size Selection

 Each FPDU SHOULD contain as many contiguous, complete ULPDUs as
 will fit within the current EMSS, unless ULPDU packing is disabled.
 If ULPDU packing is disabled each FPDU SHALL contain a single
 ULPDU. ULPDU packing mode may be negotiated, or specified a priori
 by a ULP. Disabling ULPDU packing is analogous to disabling the
 Nagle algorithm in TCP.

 TUF SHALL present the size of the largest ULPDU size fitting in an
 EMSS-sized FPDU (MULPDU) to the ULP. MULPDU is EMSS - the FPDU
 header size (8 octets). ULPs SHOULD submit as large ULPDUs as
 possible to TUF, up to MULPDU, subject to limits imposed by
 specific ULP properties. The ULP MAY also chose to pack several
 ULPDUs into an EMSS-sized unit before submitting them as one ULPDU
 to TUF. Depending upon the ULP, ULP packing may improve data
 transfer efficiency, and is unlikely to have any detrimental
 effect.

 A TUF implementation probing for PMTU increase SHOULD present an
 increased MULPDU value to the ULP until a large enough FPDU to
 perform the probe results.

 Under exceptional circumstances, the EMSS can become too small to
 accommodate even a single ULPDU. For example, a ULP may define
 fixed-sized PDUs that are incompressible, or variable size PDUs
 with some absolute minimum size, such as the size of a data PDU

https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1750

Bailey and others Expires May 2002 [Page 14]

Internet-Draft TUF 15 Nov 2001

 containing a minimum amount of data. It is possible for the EMSS
 to shrink to as small as 8 octets [PathMTU]. If the EMSS is too
 small to accommodate an incompressible ULPDU, the FPDU MUST contain
 only that ULPDU. ULPs using TUF SHOULD NOT define ULPDUs with a
 minimum size greater than 128 octets.

4.2. TUF-conforming TCP Sender Segmentation

 TCP senders are allowed substantial freedom in the choice of how to
 segment an outgoing TCP stream. Within the confines of the
 receiver-advertised receive window, and the sender computed
 congestion window, any segmentation is permitted. Virtually all
 TCP implementations do attempt to segment outgoing TCP streams into
 EMSS-sized segments where possible because it improves performance.

 TUF-conforming TCP sender behavior ensures that the ULPDU
 containment property holds most of the time. To do this, a TUF-
 conforming TCP sender MUST respect a single additional rule in
 performing segmentation:

 A TUF-conforming TCP sender MUST segment the outgoing TCP
 stream such that the first octet of every FPDU is sent at the
 beginning of a TCP segment

4.3. Negotiating TUF

 Negotiating the use of TUF is the responsibility of the ULP. The
 use of TUF MAY be negotiated separately for each direction on a
 connection. The negotiation procedure MUST ensure that when TUF is
 enabled or disabled, the remote peer will not transmit its first
 TCP segment in the new mode until it is certain that the local peer
 has actually enabled or disabled TUF.

 TUF operation is characteristically requested by the receiver and
 offered by the sender. Before enabling TUF, the relevant
 parameters:

 1. the sender's 48-bit key

 2. ULPDU packing mode

 MUST be established at each peer.

 A natural way to enable the use of TUF is a ULP-defined negotiation
 exchange of the TUF parameters culminating in enabling TUF, if
 requested, for each transfer direction. A three-way handshake
 protocol can be used to ensure that the point at which TUF is
 enabled is unambiguous and each end has time to perform local state

Bailey and others Expires May 2002 [Page 15]

Internet-Draft TUF 15 Nov 2001

 changes. A connection on which TUF is enabled is likely to be the
 same connection on which the negotiation occurs, but this is not
 required. A new connection could also use TUF from its initial
 establishment, if the TUF parameters and modes are known through
 some out-of-band mechanism.

 Use of TUF could be disabled during a connection using a similar
 ULP-defined three-way handshake.

 Other alternatives to parameter exchange include stipulating some
 parameters a priori. For example, a ULP could specify that TUF
 with ULPDU packing enabled is always used in both directions. In
 this case, only the 48-bit keys need to be exchanged before TUF is
 enabled. Or, a ULP could determine TUF characteristics on the
 basis of the TCP port number.

4.4. TUF Receiver ULPDU Containment Property Testing

 A TUF receiver that wishes to use ULP control information to
 perform direct data placement must first verify the ULPDU
 containment property. To do this, the receiver MUST establish that
 the TCP segment contains exactly one FPDU. Abstractly, this can be
 done by assuming the TCP segment payload begins with an FPDU, and
 verifying the following properties of that putative FPDU:

 o The received TCP segment payload length equals the FPDU length
 plus the length of the FPDU header (8 octets).

 o The 48-bit key equals the value signaled to the receiver when
 TUF was enabled for the connection.

 If these conditions are true, the TUF receiver MAY assume that the
 ULPDU containment property holds, and use ULP control information
 to directly place data in the contained ULPDUs.

 TUF DOES NOT provide any information that a TUF receiver can use to
 locate ULP control information beyond the ULPDU containment
 property. In particular, a TUF receiver MUST NOT scan TCP segments
 in an attempt to locate FPDUs that do not begin at the beginning of
 a TCP segment. However, even if the ULPDU containment property
 does not hold, a TUF receiver may still be able to reliably locate
 and use ULP control information. For example, if a received TCP
 segment contains the next unreceived data in the TCP stream, the
 location of ULPDUs in that segment are unambiguous. The behavior
 of a TUF receiver acting on ULP control information located with
 properties other than the ULPDU containment property is not
 specified here.

Bailey and others Expires May 2002 [Page 16]

Internet-Draft TUF 15 Nov 2001

5. Protocol Characteristics

 This section discusses some characteristics and behavior which are
 implications of the TUF protocol.

5.1. Properties Of TUF-conforming TCP Senders

 The general practice of TCP senders to send as much data as
 possible within a TCP segment (up to EMSS) implies that an FPDU
 whose size is less than or equal to EMSS, and whose first octet
 begins a TCP segment will be sent entirely within a single TCP
 segment. This ensures the ULPDU containment property for that TCP
 segment.

 A TUF-conforming TCP sender still obeys all requirements of TCP.
 While the segmentation of a TUF-conforming TCP sender will have
 distinctive characteristics when viewed from the network wire, the
 same segmentation behavior could also result from a stock TCP
 sender.

 The one property of a TUF-conforming TCP sender which arguably
 departs from traditional expectations is that a TUF-conforming TCP
 sender may not produce TCP segments which are as close in size to
 EMSS as a stock TCP sender. The need to ensure the ULPDU
 containment property may result in TCP segments which are not as
 full as if the property did not need to hold. While this is
 abstractly true, in practice, several characteristics combine to
 minimize this effect. Specifically:

 o Packing ULPDUs into FPDUs gives behavior similar to that of
 stock TCP segmentation, albeit with coarser granularity.

 o ULPs which benefit from data-dependent direct data placement
 (candidates for TUF) usually transfer large amounts of data in
 bulk. This means that most ULPDUs are data-carrying, and will
 be EMSS-sized. Even when control is interleaved with data,
 the combination of a small number of control ULPDUs with a
 data ULPDU can be packed to fill an EMSS-sized segment.

 Therefore, a TUF-conforming TCP sender seems likely to behave
 similarly to a stock TCP sender under most circumstances. However,
 applications that both send and receive data over the same TCP
 connection, where there might be dependencies between incoming and
 outgoing data, are often subject to excessive delays attributable
 to TCP's Nagle algorithm and/or delayed-ACK algorithm [NagleDAck].
 These algorithms generally perform best when TCP always sends full-
 EMSS segments. Because TUF can generate sub-EMSS segments as a by-
 product of aligning FPDU boundaries with TCP segment boundaries,

Bailey and others Expires May 2002 [Page 17]

Internet-Draft TUF 15 Nov 2001

 TUF might be especially vulnerable to the known problems with the
 Nagle and/or delayed-ACK algorithms.

 Further work, including implementation experience with TUF, as well
 as existing and future proposals for improvements to the Nagle
 and/or delayed-ACK algorithms, might be necessary to optimize TUF
 performance while fully preserving the congestion-avoidance
 features of TCP. This work is currently outside the scope of this
 document.

5.2. Exception Cases

 The complete operational specification of TUF is contained in the
 rules for forming FPDUs, and sending those FPDUs in TCP segments.
 However, the operation of TUF will be subject to a variety of
 transient or exceptional conditions. The behavior of TUF under
 those conditions is discussed below to illustrate specifically how
 TUF addresses them.

5.2.1. Resegmenting Intermediaries

 Resegmenting TCP-layer intermediaries (middleboxes) are one of the
 most formidable obstacles to maintaining the ULPDU containment
 property. In the presence of such an intermediary, the
 segmentation chosen by the sender may not be the segmentation at
 the receiver. While such intermediaries may or may not be common
 in particular networks, in many cases the presence or absence of
 such resegmenting behavior is beyond the control or even knowledge
 of the end points using TUF. Therefore, TUF must detect such
 resegmentation by design.

 A primary reason for the presence of a random key in the FPDU
 header is to detect such resegmentation. An alternative to the
 random key which has been proposed, is to use ULP-specific
 validation criteria to determine the ULPDU containment property.
 For example, some ULP PDUs include relatively strong data integrity
 checks such as CRCs, and other ULP control information can often be
 validated against various ULP-specific criteria.

 While such ULP-specific validation criteria may involve checking
 many more bits than the combination of the FPDU's 16-bit length and
 48-bit key, ULP-specific validation criteria may not actually offer
 a strong guarantee of the ULPDU containment property. For certain
 data streams, the probability of a false-positive indication of the
 ULPDU containment property can be extremely high.

 Assume that the intermediary resegments to a granularity of no
 finer than G octets (e.g. 4). Also assume that the TCP data stream

Bailey and others Expires May 2002 [Page 18]

Internet-Draft TUF 15 Nov 2001

 contains predominantly application data. If the ULP is a storage
 protocol, simply transferring a file containing a continuous,
 repeated stream of well-formed ULPDUs which are some multiple of G
 in size increases the probability of a false-positive indication of
 the ULPDU containment property to approximately:

 1 / (sizeof(repeated ULPDU)/G)

 If the well-formed ULPDUs are relatively small (e.g. 32 octets
 where G=4 octets), the probability of a false-positive indication
 of the ULPDU containment property is approximately 1/8, for EACH
 TCP segment which does not actually begin with a ULPDU. Clearly,
 in this case, it would take only a very small number of TCP
 segments which do not begin with an actual ULPDU before the `fake'
 ULPDU in the application data is interpreted as an actual ULPDU.
 The consequences of such a false-positive interpretation could be
 dire, for example executing a destructive operation request.

 The 48-bit random key in the FPDU results in a low probability of a
 false-positive indication of the ULPDU containment property because
 it is effectively secret with respect to the application data
 stream.

 Note that although this analysis may appear to be security-minded,
 prompting the image of a sighted third-party adversary that can
 `sniff' the 48-bit key, it is actually considering a safety, rather
 than a security property. The security properties of TUF are
 discussed in Section 6 (`Security Considerations') below.

 Even though TUF can detect the presence of a resegmenting
 intermediary, such an intermediary will almost certainly
 substantially reduce the chance of the ULPDU containment property
 being satisfied. A TUF implementation which detects a very low
 incidence of the ULPDU containment property for a sustained
 interval (>> RTT) may assume that a resegmenting intermediary is in
 operation and SHOULD discontinue the use of ULP control information
 found using the ULPDU containment property. In such cases, the ULP
 MAY elect to disable the use of TUF altogether, or simply just stop
 exploiting the ULPDU containment property.

5.2.2. PMTU Reduction

 When a PMTU reduction is detected by a TUF-compliant TCP, the TUF-
 compliant TCP sender may send FPDUs already committed to the TCP
 layer in one of two ways:

 o send unsegmented FPDUs in TCP segments of the old EMSS size,
 and rely on IP fragmentation to deliver the segments,

Bailey and others Expires May 2002 [Page 19]

Internet-Draft TUF 15 Nov 2001

 o segment FPDUs to fit in TCP segments which respect the new
 EMSS size.

 Stock TCPs face a similar choice on PMTU change, and both
 alternatives are used in practice.

 In the case that a TUF-compliant TCP chooses to segment FPDUs, it
 SHOULD segment them in such a way that, in the absence of
 resegmentation by an intermediary, the segments are guaranteed not
 to give a false-positive indication of the ULPDU containment
 property. There are various ways to ensure this. For example, no
 matter how the FPDU is segmented, the first segment is guaranteed
 not to give a false-positive indication of the ULPDU containment
 property---the 48-bit key will match, but the length will not. In
 the worst possible case, each subsequent TCP segment could be sent
 with fewer than 8 octets of data, also guaranteed not to give a
 false-positive indication of the ULPDU containment property. More
 efficient approaches are possible, but PMTU reduction is a rare
 event, and reacting to it is only a transient condition.
 Eventually a new MULPDU will be presented to the ULP, and FPDUs
 that fit in the new EMSS will result. During the transient
 condition, performance will suffer temporarily no matter how FPDUs
 are segmented.

 No matter what segmentation is chosen by a TUF-compliant TCP sender
 when segmenting an FPDU, if the segments pass through a
 resegmenting intermediary, the correctness of the ULPDU containment
 property remains strictly a matter of probability.

5.2.3. PMTU Increase

 As described in `FPDU Size Selection' above, a TUF-compliant TCP
 probing for PMTU increase will present an increased MULPDU value to
 the ULP. This should eventually lead to an FPDU large enough to
 actually perform the PMTU increase probe. The MULPDU value should
 not be further adjusted until the probe is actually performed.
 This behavior is similar to when a stock TCP would like to perform
 a PMTU increase, but less data is available than would fill the
 desired segment.

 Also, note that depending on the ULP, the actual distribution of
 FPDU sizes may have a granularity coarser than a single octet. An
 FPDU with an particular, desired TCP segment size may never be
 generated. Therefore when probing for PMTU increase, a TUF-
 compliant TCP must be satisfied with an FPDU that produces a TCP
 segment size that is `close' to the desired size.

 Finally, note that in cases where PMTU grows and shrinks relatively

Bailey and others Expires May 2002 [Page 20]

Internet-Draft TUF 15 Nov 2001

 frequently, better performance may result from not probing for PMTU
 increase at all, or probing very rarely. This is because the
 performance disruption resulting from PMTU decrease can be
 substantial, and in many cases, implementations of TUF will be in
 hardware, so performance may less sensitive to differences in PMTU.

5.2.4. Receive Window < EMSS

 A TUF-compliant TCP sender that is presented with a receive window
 smaller than EMSS may be required to segment FPDUs. The TCP window
 probe is a limiting case of this condition where the advertised
 receive window is 0, and the amount of data typically sent in
 response is a single octet.

 In this case, a TUF-compliant TCP sender will segment in accordance
 to the requirements of TCP, and the rule defined in `TUF-conforming
 TCP Sender Segmentation' above. In addition, as when resegmenting
 in response to PMTU decrease, a TUF-compliant TCP sender SHOULD
 segment in such a way that, in the absence of a resegmenting
 intermediary, segments are guaranteed not to give a false-positive
 indication of the ULPDU containment property. In situations where
 the receive window is smaller than EMSS, data transfer performance
 is likely to be limited independently of any segmentation behavior
 by the TCP sender. Furthermore, ULP implementations that choose to
 use TUF will almost certainly be designed to maintain a receiver
 window larger than EMSS, so a small receiver window should occur
 extremely infrequently.

5.2.5. Size of ULPDU + 8 > EMSS

 In cases where EMSS shrinks below the minimum size of a ULPDU that
 a ULP wants to send, TUF will create FPDUs that are larger than
 EMSS, and a TUF-compliant TCP sender will face the same
 alternatives as during PMTU reduction:

 o send unsegmented FPDUs and rely on IP fragmentation to deliver
 the segments

 o segment FPDUs to fit in TCP segments which respect the EMSS
 size

 A ULP which is presented with an MULPDU value that is too small to
 accommodate PDUs necessary operation SHOULD simply attempt to use
 ULPDUs which are as small as possible

 If the EMSS shrinks to a pathologically small size, then a TUF
 implementation SHOULD discontinue the use of ULP control
 information found using the ULPDU containment property. In such

Bailey and others Expires May 2002 [Page 21]

Internet-Draft TUF 15 Nov 2001

 cases, the ULP MAY elect to disable the use of TUF altogether, or
 simply just stop exploiting the ULPDU containment property.

 A path MTU which results in an EMSS < 128 + 8 octets is an
 extremely unlikely occurrence and when it does occur, poor data
 transfer performance is a likely result, independent of TCP sender
 segmentation behavior.

6. Security Considerations

 This section discusses both protocol-specific considerations and
 the implications of using TUF with existing security mechanisms.

6.1. Protocol-specific Security Considerations

 A third-party that can inject spoofed packets into the network
 which can be delivered to a TUF receiver could launch a variety of
 attacks that exploit TUF-specific behavior. For example a blind
 third-party adversary could inject random packets which appear in
 the valid TCP window and do not begin with valid FPDU headers. A
 barrage of such packets might cause a TUF receiver to conclude that
 a resegmenting intermediary is present and disable the use of TUF
 and direct data placement. This would substantially degrade
 performance. However, it would probably also have more dire
 consequences than performance, such as causing the ULP to interpret
 the bogus data as valid. Furthermore, such a third-party could
 also degrade performance just as effectively in a TUF-independent
 way by injecting spoofed ICMP packets which result in reduction of
 the path MTU to an inefficiently small size.

 Fundamentally, the vulnerabilities of TUF to active third-party
 interference are no more acute than to TCP without TUF. In both
 cases, a communication security mechanism such as IPSec is the only
 way to completely prevent such attacks.

6.2. Using IPSec With TUF

 Since IPSec is designed to secure arbitrary IP packet streams,
 including streams where packets are lost, TUF can run cleanly on
 top of IPSec without any change. IPSec packets may be decrypted in
 the order they are received, and a TUF receiver may test and
 exploit the ULPDU containment property just as if the IP datagram
 were unsecured.

6.3. Using TLS With TUF

 Using TLS [TLS] with TUF, particularly trying to exploit the ULPDU
 containment property to locate ULP control information, is not a

Bailey and others Expires May 2002 [Page 22]

Internet-Draft TUF 15 Nov 2001

 straightforward process. TUF can be directly layered on top of
 TLS, but many of the advantages of TUF are lost. This document
 does not define a way of using TLS with TUF that could offer better
 performance than stock reassembly buffer-based implementations.
 That task is left to a different document, if there is sufficient
 motivation to address the problems. This section does outlines
 some of the known complications of trying to do better than stock
 reassembly buffer-based implementations using TLS with TUF.

 TLS is a record-oriented protocol. TLS records are PDUs with a
 similar structure to ULPDUs defined in application ULPs. As with
 other ULPs, the only way to avoid a complete reassembly buffer is
 to be able to find TLS PDUs in the presence of lost TCP segments.
 The ULPDU containment property could be used to do this, which
 suggests that TLS itself should be layered on top of TUF. In this
 case, the FPDU header will travel in the clear, but this will
 probably not present serious vulnerabilities other than denial of
 service attacks comparable to what is already possible without TUF.

 Once the TLS records are located and processed it still remains to
 locate the ULPDUs. The simplest way to do this would be to have
 the TLS implementation be TUF-compliant, and ensure the ULPDU
 containment property within each TLS record. In this case, the
 protocol layering would look like:

Bailey and others Expires May 2002 [Page 23]

Internet-Draft TUF 15 Nov 2001

 ULP client
 ^
 |
 | ULPDUs (in octet stream)
 |
 v
 TUF-conforming TLS
 ^
 |
 | TLS records (containing ULPDUs)
 |
 v
 TUF
 ^
 |
 | FPDUs (each containing a TLS record)
 |
 v
 TUF-conforming TCP
 ^
 |
 | TCP Segments (each containing an FPDU)
 |
 v
 . . .

 An obvious complications of using TLS with TUF is that ciphers
 defined for use with TLS do not offer independence across TLS
 records. The most common cipher used with TLS is RC4, which is a
 stream cipher. Efficient decryption of an RC4 stream depends upon
 the entire preceding data stream. In other words, it is simply not
 feasible to decrypt TLS records encrypted with RC4 in any order
 other than the TCP stream order. This clearly defeats the purpose
 of TUF.

 TLS is also defined to work with block ciphers such as 3DES in
 Cipher Block Chaining (CBC) mode. In this case, the dependency of
 the decryption operation on data in previous TLS records is less
 severe. To decrypt the current TLS record only requires ciphertext
 from the previous TLS record. While this does not allow complete
 independence of processing TLS records, a lost or delayed TCP
 segment containing a TLS record only prevents decrypting the
 immediately subsequent TLS record, not all TLS records after it.

 TLS compression presents another complication to using TLS with
 TUF. TLS compression algorithms are allowed to increase the
 content length by up to 1024 octets. If the content length does

Bailey and others Expires May 2002 [Page 24]

Internet-Draft TUF 15 Nov 2001

 increase, the TLS record may not fit within an EMSS-sized TCP
 segment, even if the uncompressed ULPDU does. If the risk of
 exceeding an EMSS-sized TCP segment is small, it may be acceptable
 to occasionally send FPDUs containing TLS records that span several
 TCP segments, or use IP fragmentation. Some TLS compression
 algorithms may never increase the content length, or only increase
 it by some small, manageable amount.

7. IANA Considerations

 If framing is enabled a priori for a ULP by connecting to a well-
 known port, this well-known port would be registered for the framed
 ULP with IANA.

8. References

 [BEEP]
 Rose, M., "The Blocks Extensible Exchange Protocol Core", RFC

3080, March 2001.

 [HTTP]
 Fielding, R. and others, "Hypertext Transfer Protocol --
 HTTP/1.1.", RFC 2616, June 1999.

http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-
initwin-00.txt.

 [NagleDAck]
 Minshall G., Mogul, J., Saito, Y., Verghese, B., "Application
 performance pitfalls and TCP's Nagle algorithm", Workshop on
 Internet Server Performance, May 1999.

 [PathMTU]
 Mogul, J., and Deering, S., "Path MTU Discovery", RFC 1191,
 November 1990.

 [RFC1750]
 Eastlake, D., Crocker, S., Schiller., J., "Randomness
 Recommendations for Security.", RFC 1750, December 1994.

 [RFC2581]
 Allman, M., and others, "TCP Congestion Control," RFC 2581,
 April 1999.

 [SCTP]
 Stewart, R.R. and others, "Stream Control Transmission
 Protocol," RFC2960, October 2000.

https://datatracker.ietf.org/doc/html/rfc3080
https://datatracker.ietf.org/doc/html/rfc3080
https://datatracker.ietf.org/doc/html/rfc2616
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-initwin-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-initwin-00.txt
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2960

Bailey and others Expires May 2002 [Page 25]

Internet-Draft TUF 15 Nov 2001

 [Stevens]
 Stevens, W. Richard, "Unix Network Programming Volume 1,"
 Prentice Hall, 1998, ISBN 0-13-490012-X.

 [TCP]
 Postel, J., "Transmission Control Protocol - DARPA Internet
 Program Protocol Specification", RFC 793, September 1981.

 [TLS]
 Dierks, T. and others, "The TLS Protocol, Version 1.0", RFC

2246, January 1999.

Authors' Addresses

 Stephen Bailey
 Sandburst Corporation
 600 Federal Street
 Andover, MA 01810
 USA

 Phone: +1 978 689 1614
 Email: steph@sandburst.com

 Jeff Chase
 Department of Computer Science
 Duke University
 Durham, NC 27708-0129
 USA

 Phone: +1 919 660 6559
 Email: chase@cs.duke.edu

 Jim Pinkerton
 Microsoft, Inc.
 1 Microsoft Way
 Redmond, WA 98052
 USA

 EMail: jpink@microsoft.com

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246

Bailey and others Expires May 2002 [Page 26]

Internet-Draft TUF 15 Nov 2001

 Allyn Romanow
 Cisco Systems
 170 W Tasman Drive
 San Jose, CA 95134
 USA

 Phone: +1 408 525 8836
 Email: allyn@cisco.com

 Constantine Sapuntzakis
 Cisco Systems
 170 W Tasman Drive
 San Jose, CA 95134
 USA

 Phone: +1 408 525 5497
 EMail: csapuntz@cisco.com

 Jim Wendt
 Hewlett Packard Corporation
 8000 Foothills Boulevard MS 5668
 Roseville, CA 95747-5668
 USA

 Phone: +1 916 785 5198
 EMail: jim_wendt@hp.com

 Jim Williams
 Emulex Corporation
 580 Main Street
 Bolton, MA 01740
 USA

 Phone: +1 978 779 7224
 EMail: jim.williams@emulex.com

Appendix A. Sample Sockets Support For TUF

 The sockets support for TUF described below is only a sketch. It
 is provided as an aid to understanding TUF. Implementing this
 interface is not a requirement for a TUF implementation.

 Other software interfaces are possible. The described interface

Bailey and others Expires May 2002 [Page 27]

Internet-Draft TUF 15 Nov 2001

 draws from the sockets interface for UDP. The described interface
 might be natural for applications already designed to support both
 TCP and UCP, or that do network input and output in complete PDU
 units. For applications that perform octet-at-a-time style input
 and output, an alternative interface that draws from the tradition
 of the TCP URG pointer interface (e.g. using a MSG_OOB flag to
 send()) is equally possible. An implementation may even offer
 several different interfaces to TUF.

 That said, the sockets support sketched below might well provide
 the basis for a complete, standard interface to be described
 outside this draft.

A.1 Basic Principles

 The sockets support for TUF takes the form of a set of socket
 options that may be set or requested to enable the appropriate
 behavior.

 A socket may be in one of two TUF-related modes in the send
 direction:

 1. TUF-compliant TCP sender mode. No data (FPDU headers) is
 added to the TCP octet stream, but each data buffer presented
 in a sending operation is to be sent according to the rules of
 TCP and TUF-compliant TCP senders. This mode provides direct
 access to a TUF-compliant TCP sender for purposes such as
 implementing TUF.

 2. TUF sender mode. An FPDU header is added to data presented by
 an integral number of sending operations, and the FPDU is
 passed to a TUF-compliant TCP sender for transmission

 A socket may be in one TUF-related mode in the receive direction:

 1. TUF receiver mode. FPDUs are expected in each TCP segment.

 If a socket receiving operation is used to retrieve received data
 (as opposed to the data being directly placed), FPDU headers are
 removed before the data is returned.

A.2 Enabling TUF

Bailey and others Expires May 2002 [Page 28]

Internet-Draft TUF 15 Nov 2001

 /* Pick a sending mode */
 if (sendMode == TUF_TCP)
 mode = TUF_SEND_TCP
 else
 mode = TUF_SEND;

 mode |= TUF_RECEIVE;

 setsockopt (s, SOL_TCP, TUF_MODE, &mode, sizeof(mode));

A.3 Sending Data

 The standard socket sending operations, including send(), sendto(),
 sendmsg(), writev(), and others are used to send ULPDUs in TUF.
 The EMSGSIZE error should be returned if the buffer passed to the
 sending operation would result in an FPDU that does not fit in an
 EMSS-sized TCP segment, unless oversized ULPDU errors are disabled,
 as described below.

 When the path EMSS increases, the sending operation MAY return
 EMSGSIZE once to inform the client of the change.

A.4 Retrieving The Current EMSS or MULPDU

 getsockopt (s, SOL_TCP, TUF_MULPDU, &emss, sizeof(emss));

 If the socket is in TUF_SEND_TCP mode, this call returns the TCP
 EMSS. If the socket is in TUF_SEND mode, the call returns the
 maximum ULPDU that can be submitted in a sending operation without
 requiring fragmentation of the associated FPDU.

 The number should not count any octets that go towards TCP options.

A.5 Disabling ULPDU Packing

 flag = 0;
 setsockopt (s, SOL_TCP, TUF_PACK_PDUS, &flag, sizeof(flag));

 This call disables TUF from packing more than one ULPDU into an
 FPDU. By default, ULP PDU packing is enabled.

Bailey and others Expires May 2002 [Page 29]

Internet-Draft TUF 15 Nov 2001

A.6 Disabling The Report of Oversized ULPDUs

 flag = 0;
 setsockopt (s, SOL_TCP, TUF_REPORT_OVERSIZED, &flag,
 sizeof(flag));

 This call disables sending operations from returning EMSGSIZE in
 response to oversized ULPDUs. It may be called at any time on a
 socket, whether connected or not. It is used to continue ULP
 operation when MULPDU is already known to be too small to permit
 some ULPDUs to be sent with out segmentation. Oversized ULPDU
 reporting can be enabled again if PMTU is discovered to have
 increased.

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain
 it or assist in its implementation may be prepared, copied,
 published and distributed, in whole or in part, without restriction
 of any kind, provided that the above copyright notice and this
 paragraph are included on all such copies and derivative works.
 However, this document itself may not be modified in any way, such
 as by removing the copyright notice or references to the Internet
 Society or other Internet organizations, except as needed for the
 purpose of developing Internet standards in which case the
 procedures for copyrights defined in the Internet Standards process
 must be followed, or as required to translate it into languages
 other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on
 an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Bailey and others Expires May 2002 [Page 30]

