
TSVWG M. Saito
Internet-Draft M. Matsumoto
Intended status: Standards Track Hiroshima University
Expires: December 19, 2019 V. Roca (Ed.)
 E. Baccelli
 INRIA
 June 17, 2019

TinyMT32 Pseudo Random Number Generator (PRNG)
draft-ietf-tsvwg-tinymt32-05

Abstract

 This document describes the TinyMT32 Pseudo Random Number Generator
 (PRNG) that produces 32-bit pseudo-random unsigned integers and aims
 at having a simple-to-use and deterministic solution. This PRNG is a
 small-sized variant of Mersenne Twister (MT) PRNG. The main
 advantage of TinyMT32 over MT is the use of a small internal state,
 compatible with most target platforms that include embedded devices,
 while keeping a reasonably good randomness that represents a
 sigificant improvement compared to the Park-Miller Linear
 Congruential PRNG. However, neither the TinyMT nor MT PRNG are meant
 to be used for cryptographic applications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 19, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Saito, et al. Expires December 19, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft TinyMT32 PRNG June 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Definitions . 3
3. TinyMT32 PRNG Specification 3
3.1. TinyMT32 Source Code 3
3.2. TinyMT32 Usage . 7

 3.3. Specific Implementation Validation and Deterministic
 Behavior . 8

4. Security Considerations 9
5. IANA Considerations . 9
6. Acknowledgments . 9
7. References . 9
7.1. Normative References 10
7.2. Informative References 10

 Authors' Addresses . 11

1. Introduction

 This document specifies the TinyMT32 PRNG, as a specialization of the
 reference implementation version 1.1 (2015/04/24) by Mutsuo Saito and
 Makoto Matsumoto, from Hiroshima University, that can be found at
 [TinyMT-web] (TinyMT web site) and [TinyMT-dev] (Github site). This
 specialisation aims at having a simple-to-use and deterministic PRNG,
 as explained below. However, the TinyMT32 PRNG is not meant to be
 used for cryptographic applications.

 TinyMT is a new small-sized variant introduced in 2011 of the
 Mersenne Twister (MT) PRNG [MT98]. This document focusses on the
 TinyMT32 variant (rather than TinyMT64) of the TinyMT PRNG, which
 outputs 32-bit unsigned integers.

 The purpose of TinyMT is not to replace Mersenne Twister: TinyMT has
 a far shorter period (2^^127 - 1) than MT. The merit of TinyMT is in
 the small size of the internal state of 127 bits, far smaller than
 the 19937 bits of MT. The outputs of TinyMT satisfy several
 statistical tests for non-cryptographic randomness, including
 BigCrush in TestU01 [TestU01] and AdaptiveCrush [AdaptiveCrush],

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Saito, et al. Expires December 19, 2019 [Page 2]

Internet-Draft TinyMT32 PRNG June 2019

 leaving it well-placed for non-cryptographic usage, especially given
 the small size of its internal state (see [TinyMT-web]). From this
 point of view, TinyMT32 represents a major improvement with respect
 to the Park-Miller Linear Congruential PRNG (e.g., as specified in
 [RFC5170]) that suffers several known limitations (see for instance
 [PTVF92], section 7.1, p. 279, and [RLC-ID], Appendix B).

 The TinyMT32 PRNG initialization depends, among other things, on a
 parameter set, namely (mat1, mat2, tmat). In order to facilitate the
 use of this PRNG and make the sequence of pseudo-random numbers
 depend only on the seed value, this specification requires the use of
 a specific parameter set (see Section 3.1). This is a major
 difference with respect to the implementation version 1.1
 (2015/04/24) that leaves this parameter set unspecified.

 Finally, the determinism of this PRNG, for a given seed, has been
 carefully checked (see Section 3.3). It means that the same sequence
 of pseudo-random numbers should be generated, no matter the target
 execution platform and compiler, for a given initial seed value.
 This determinism can be a key requirement as it the case with
 [RLC-ID] that normatively depends on this specification.

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. TinyMT32 PRNG Specification

3.1. TinyMT32 Source Code

 The TinyMT32 PRNG requires to be initialized with a parameter set
 that needs to be well chosen. In this specification, for the sake of
 simplicity, the following parameter set MUST be used:

 o mat1 = 0x8f7011ee = 2406486510
 o mat2 = 0xfc78ff1f = 4235788063
 o tmat = 0x3793fdff = 932445695

 This parameter set is the first entry of the precalculated parameter
 sets in file tinymt32dc/tinymt32dc.0.1048576.txt, by Kenji Rikitake,
 and available at [TinyMT-params]. This is also the parameter set
 used in [KR12].

https://datatracker.ietf.org/doc/html/rfc5170
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Saito, et al. Expires December 19, 2019 [Page 3]

Internet-Draft TinyMT32 PRNG June 2019

 The TinyMT32 PRNG reference implementation is reproduced in Figure 1.
 This is a C language implementation, written for C99 [C99]. This
 reference implementation differs from the original source code as
 follows:

 o the original copyright and license have been removed by the
 original authors who are now authors of this document, in
 accordance with BCP 78 and the IETF Trust's Legal Provisions
 Relating to IETF Documents (http://trustee.ietf.org/license-info);
 o the source code initially spread over the tinymt32.h and
 tinymt32.c files has been merged;
 o the unused parts of the original source code have been removed.
 This is the case of the tinymt32_init_by_array() alternative
 initialisation function. This is also the case of the
 period_certification() function after having checked it is not
 required with the chosen parameter set;
 o the unused constants TINYMT32_MEXP and TINYMT32_MUL have been
 removed;
 o the appropriate parameter set has been added to the initialization
 function;
 o the function order has been changed;
 o certain internal variables have been renamed for compactness
 purposes;
 o the const qualifier has been added to the constant definitions;
 o the code that was dependant on the representation of negative
 integers by 2's complements has been replaced by a more portable
 version;

 <CODE BEGINS>
 /**
 * Tiny Mersenne Twister only 127 bit internal state.
 * Derived from the reference implementation version 1.1 (2015/04/24)
 * by Mutsuo Saito (Hiroshima University) and Makoto Matsumoto
 * (Hiroshima University).
 */
 #include <stdint.h>

 /**
 * tinymt32 internal state vector and parameters
 */
 typedef struct {
 uint32_t status[4];
 uint32_t mat1;
 uint32_t mat2;
 uint32_t tmat;
 } tinymt32_t;

 static void tinymt32_next_state (tinymt32_t* s);

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Saito, et al. Expires December 19, 2019 [Page 4]

Internet-Draft TinyMT32 PRNG June 2019

 static uint32_t tinymt32_temper (tinymt32_t* s);

 /**
 * Parameter set to use for this IETF specification. Don't change.
 * This parameter set is the first entry of the precalculated
 * parameter sets in file tinymt32dc/tinymt32dc.0.1048576.txt, by
 * Kenji Rikitake, available at:
 * https://github.com/jj1bdx/tinymtdc-longbatch/
 * It is also the parameter set used:
 * Rikitake, K., "TinyMT Pseudo Random Number Generator for
 * Erlang", ACM 11th SIGPLAN Erlang Workshop (Erlang'12),
 * September, 2012.
 */
 const uint32_t TINYMT32_MAT1_PARAM = UINT32_C(0x8f7011ee);
 const uint32_t TINYMT32_MAT2_PARAM = UINT32_C(0xfc78ff1f);
 const uint32_t TINYMT32_TMAT_PARAM = UINT32_C(0x3793fdff);

 /**
 * This function initializes the internal state array with a
 * 32-bit unsigned integer seed.
 * @param s pointer to tinymt internal state.
 * @param seed a 32-bit unsigned integer used as a seed.
 */
 void tinymt32_init (tinymt32_t* s, uint32_t seed)
 {
 const uint32_t MIN_LOOP = 8;
 const uint32_t PRE_LOOP = 8;
 s->status[0] = seed;
 s->status[1] = s->mat1 = TINYMT32_MAT1_PARAM;
 s->status[2] = s->mat2 = TINYMT32_MAT2_PARAM;
 s->status[3] = s->tmat = TINYMT32_TMAT_PARAM;
 for (int i = 1; i < MIN_LOOP; i++) {
 s->status[i & 3] ^= i + UINT32_C(1812433253)
 * (s->status[(i - 1) & 3]
 ^ (s->status[(i - 1) & 3] >> 30));
 }
 /*
 * NB: the parameter set of this specification warrants
 * that none of the possible 2^^32 seeds leads to an
 * all-zero 127-bit internal state. Therefore, the
 * period_certification() function of the original
 * TinyMT32 source code has been safely removed. If
 * another parameter set is used, this function will
 * have to be re-introduced here.
 */
 for (int i = 0; i < PRE_LOOP; i++) {
 tinymt32_next_state(s);
 }

https://github.com/jj1bdx/tinymtdc-longbatch/

Saito, et al. Expires December 19, 2019 [Page 5]

Internet-Draft TinyMT32 PRNG June 2019

 }

 /**
 * This function outputs a 32-bit unsigned integer from
 * the internal state.
 * @param s pointer to tinymt internal state.
 * @return 32-bit unsigned integer r (0 <= r < 2^32).
 */
 uint32_t tinymt32_generate_uint32 (tinymt32_t* s)
 {
 tinymt32_next_state(s);
 return tinymt32_temper(s);
 }

 /**
 * Internal tinymt32 constants and functions.
 * Users should not call these functions directly.
 */
 const uint32_t TINYMT32_SH0 = 1;
 const uint32_t TINYMT32_SH1 = 10;
 const uint32_t TINYMT32_SH8 = 8;
 const uint32_t TINYMT32_MASK = UINT32_C(0x7fffffff);

 /**
 * This function changes the internal state of tinymt32.
 * @param s pointer to tinymt internal state.
 */
 static void tinymt32_next_state (tinymt32_t* s)
 {
 uint32_t x;
 uint32_t y;

 y = s->status[3];
 x = (s->status[0] & TINYMT32_MASK)
 ^ s->status[1]
 ^ s->status[2];
 x ^= (x << TINYMT32_SH0);
 y ^= (y >> TINYMT32_SH0) ^ x;
 s->status[0] = s->status[1];
 s->status[1] = s->status[2];
 s->status[2] = x ^ (y << TINYMT32_SH1);
 s->status[3] = y;
 /*
 * The if (y & 1) {...} block below replaces:
 * s->status[1] ^= -((int32_t)(y & 1)) & s->mat1;
 * s->status[2] ^= -((int32_t)(y & 1)) & s->mat2;
 * The adopted code is equivalent to the original code
 * but does not depend on the representation of negative

Saito, et al. Expires December 19, 2019 [Page 6]

Internet-Draft TinyMT32 PRNG June 2019

 * integers by 2's complements. It is therefore more
 * portable, but includes an if-branch which may slow
 * down the generation speed.
 */
 if (y & 1) {
 s->status[1] ^= s->mat1;
 s->status[2] ^= s->mat2;
 }
 }

 /**
 * This function outputs a 32-bit unsigned integer from
 * the internal state.
 * @param s pointer to tinymt internal state.
 * @return 32-bit unsigned pseudo-random number.
 */
 static uint32_t tinymt32_temper (tinymt32_t* s)
 {
 uint32_t t0, t1;
 t0 = s->status[3];
 t1 = s->status[0] + (s->status[2] >> TINYMT32_SH8);
 t0 ^= t1;
 /*
 * The if (t1 & 1) {...} block below replaces:
 * t0 ^= -((int32_t)(t1 & 1)) & s->tmat;
 * The adopted code is equivalent to the original code
 * but does not depend on the representation of negative
 * integers by 2's complements. It is therefore more
 * portable, but includes an if-branch which may slow
 * down the generation speed.
 */
 if (t1 & 1) {
 t0 ^= s->tmat;
 }
 return t0;
 }
 <CODE ENDS>

 Figure 1: TinyMT32 Reference Implementation

3.2. TinyMT32 Usage

 This PRNG MUST first be initialized with the following function:

 void tinymt32_init (tinymt32_t* s, uint32_t seed);

 It takes as input a 32-bit unsigned integer used as a seed (note that
 value 0 is permitted by TinyMT32). This function also takes as input

Saito, et al. Expires December 19, 2019 [Page 7]

Internet-Draft TinyMT32 PRNG June 2019

 a pointer to an instance of a tinymt32_t structure that needs to be
 allocated by the caller but left uninitialized. This structure will
 then be updated by the various TinyMT32 functions in order to keep
 the internal state of the PRNG. The use of this structure admits
 several instances of this PRNG to be used in parallel, each of them
 having its own instance of the structure.

 Then, each time a new 32-bit pseudo-random unsigned integer between 0
 and 2^32 - 1 inclusive is needed, the following function is used:

 uint32_t tinymt32_generate_uint32 (tinymt32_t * s);

 Of course, the tinymt32_t structure must be left unchanged by the
 caller between successive calls to this function.

3.3. Specific Implementation Validation and Deterministic Behavior

 PRNG determinism, for a given seed, can be a requirement (e.g., with
 [RLC-ID]). Consequently, any implementation of the TinyMT32 PRNG in
 line with this specification MUST have the same output as that
 provided by the reference implementation of Figure 1. In order to
 increase the compliancy confidence, this document proposes the
 following criteria. Using a seed value of 1, the first 50 values
 returned by tinymt32_generate_uint32(s) as 32-bit unsigned integers
 are equal to values provided in Figure 2, to be read line by line.
 Note that these values come from the tinymt/check32.out.txt file
 provided by the PRNG authors to validate implementations of TinyMT32,
 as part of the MersenneTwister-Lab/TinyMT Github repository.

 2545341989 981918433 3715302833 2387538352 3591001365
 3820442102 2114400566 2196103051 2783359912 764534509
 643179475 1822416315 881558334 4207026366 3690273640
 3240535687 2921447122 3984931427 4092394160 44209675
 2188315343 2908663843 1834519336 3774670961 3019990707
 4065554902 1239765502 4035716197 3412127188 552822483
 161364450 353727785 140085994 149132008 2547770827
 4064042525 4078297538 2057335507 622384752 2041665899
 2193913817 1080849512 33160901 662956935 642999063
 3384709977 1723175122 3866752252 521822317 2292524454

 Figure 2: First 50 decimal values (to be read per line) returned by
 tinymt32_generate_uint32(s) as 32-bit unsigned integers, with a seed
 value of 1.

 In particular, the deterministic behavior of the Figure 1 source code
 has been checked across several platforms: high-end laptops running
 64-bits Mac OSX and Linux/Ubuntu; a board featuring a 32-bits ARM
 Cortex-A15 and running 32-bit Linux/Ubuntu; several embedded cards

Saito, et al. Expires December 19, 2019 [Page 8]

Internet-Draft TinyMT32 PRNG June 2019

 featuring either an ARM Cortex-M0+, a Cortex-M3 or a Cortex-M4 32-bit
 microcontroller, all of them running RIOT [Baccelli18]; two low-end
 embedded cards featuring either a 16-bit microcontroller (TI MSP430)
 or a 8-bit microcontroller (Arduino ATMEGA2560), both of them running
 RIOT.

 This specification only outputs 32-bit unsigned pseudo-random numbers
 and does not try to map this output to a smaller integer range (e.g.,
 between 10 and 49 inclusive). If a specific use-case needs such a
 mapping, it will have to provide its own function. In that case, if
 PRNG determinism is also required, the use of floating point (single
 or double precision) to perform this mapping should probably be
 avoided, these calculations leading potentially to different rounding
 errors across different target platforms. Great care should also be
 put on not introducing biases in the randomness of the mapped output
 (it may be the case with some mapping algorithms) incompatible with
 the use-case requirements. The details of how to perform such a
 mapping are out-of-scope of this document.

4. Security Considerations

 The authors do not believe the present specification generates
 specific security risks per se. However, neither the TinyMT nor MT
 PRNG are meant to be used for cryptographic applications.

5. IANA Considerations

 This document does not require any IANA action.

6. Acknowledgments

 The authors would like to thank Belkacem Teibi with whom we explored
 TinyMT32 specificities when looking to an alternative to the Park-
 Miller Linear Congruential PRNG. The authors would like to thank
 Carl Wallace, Stewart Bryant, Greg Skinner, Mike Heard, the three
 TSVWG chairs, Wesley Eddy, our shepherd, David Black and Gorry
 Fairhurst, as well as Spencer Dawkins and Mirja Kuhlewind. Last but
 not least, the authors are really grateful to the IESG members, in
 particular Benjamin Kaduk, Eric Rescorla, Adam Roach, Roman Danyliw,
 Barry Leiba, Martin Vigoureux, Eric Vyncke for their highly valuable
 feedbacks that greatly contributed to improve this specification.

7. References

Saito, et al. Expires December 19, 2019 [Page 9]

Internet-Draft TinyMT32 PRNG June 2019

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [AdaptiveCrush]
 Haramoto, H., "Automation of statistical tests on
 randomness to obtain clearer conclusion", Monte Carlo and
 Quasi-Monte Carlo Methods 2008,
 DOI:10.1007/978-3-642-04107-5_26, November 2009,
 <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/

ADAPTIVE/>.

 [Baccelli18]
 Baccelli, E., Gundogan, C., Hahm, O., Kietzmann, P.,
 Lenders, M., Petersen, H., Schleiser, K., Schmidt, T., and
 M. Wahlisch, "RIOT: An Open Source Operating System for
 Low-End Embedded Devices in the IoT", IEEE Internet of
 Things Journal (Volume 5, Issue 6), DOI:
 10.1109/JIOT.2018.2815038, December 2018.

 [C99] "Programming languages - C: C99, correction 3:2007",
 International Organization for Standardization, ISO/IEC
 9899:1999/Cor 3:2007, November 2007.

 [KR12] Rikitake, K., "TinyMT Pseudo Random Number Generator for
 Erlang", ACM 11th SIGPLAN Erlang Workshop (Erlang'12),
 September 14, 2012, Copenhagen, Denmark, DOI:

http://dx.doi.org/10.1145/2364489.2364504, September 2012.

 [MT98] Matsumoto, M. and T. Nishimura, "Mersenne Twister: A
 623-dimensionally equidistributed uniform pseudorandom
 number generator", ACM Transactions on Modeling and
 Computer Simulation (TOMACS), Volume 8 Issue 1, Jan. 1998,
 pp.3-30, January 1998, DOI:10.1145/272991.272995, January
 1998.

 [PTVF92] Press, W., Teukolsky, S., Vetterling, W., and B. Flannery,
 "Numerical Recipies in C; Second Edition", Cambridge
 University Press, ISBN: 0-521-43108-5, 1992.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ADAPTIVE/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ADAPTIVE/
http://dx.doi.org/10.1145/2364489.2364504

Saito, et al. Expires December 19, 2019 [Page 10]

Internet-Draft TinyMT32 PRNG June 2019

 [RFC5170] Roca, V., Neumann, C., and D. Furodet, "Low Density Parity
 Check (LDPC) Staircase and Triangle Forward Error
 Correction (FEC) Schemes", RFC 5170, DOI 10.17487/RFC5170,
 June 2008, <https://www.rfc-editor.org/info/rfc5170>.

 [RLC-ID] Roca, V. and B. Teibi, "Sliding Window Random Linear Code
 (RLC) Forward Erasure Correction (FEC) Scheme for
 FECFRAME", Work in Progress, Transport Area Working Group
 (TSVWG) draft-ietf-tsvwg-rlc-fec-scheme (Work in
 Progress), February 2019, <https://tools.ietf.org/html/

draft-ietf-tsvwg-rlc-fec-scheme>.

 [TestU01] L'Ecuyer, P. and R. Simard, "TestU01: A C Library for
 Empirical Testing of Random Number Generators", ACM
 Transactions on Mathematical Software, Vol. 33, article
 22, 2007, 2007,
 <http://simul.iro.umontreal.ca/testu01/tu01.html>.

 [TinyMT-dev]
 Saito, M. and M. Matsumoto, "Tiny Mersenne Twister
 (TinyMT) github site",
 <https://github.com/MersenneTwister-Lab/TinyMT>.

 [TinyMT-params]
 Rikitake, K., "TinyMT pre-calculated parameter list github
 site", <https://github.com/jj1bdx/tinymtdc-longbatch/>.

 [TinyMT-web]
 Saito, M. and M. Matsumoto, "Tiny Mersenne Twister
 (TinyMT) web site",
 <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/>.

Authors' Addresses

 Mutsuo Saito
 Hiroshima University
 Japan

 EMail: saito@math.sci.hiroshima-u.ac.jp

 Makoto Matsumoto
 Hiroshima University
 Japan

 EMail: m-mat@math.sci.hiroshima-u.ac.jp

https://datatracker.ietf.org/doc/html/rfc5170
https://www.rfc-editor.org/info/rfc5170
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rlc-fec-scheme
https://tools.ietf.org/html/draft-ietf-tsvwg-rlc-fec-scheme
https://tools.ietf.org/html/draft-ietf-tsvwg-rlc-fec-scheme
http://simul.iro.umontreal.ca/testu01/tu01.html
https://github.com/MersenneTwister-Lab/TinyMT
https://github.com/jj1bdx/tinymtdc-longbatch/
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/

Saito, et al. Expires December 19, 2019 [Page 11]

Internet-Draft TinyMT32 PRNG June 2019

 Vincent Roca
 INRIA
 Univ. Grenoble Alpes
 France

 EMail: vincent.roca@inria.fr

 Emmanuel Baccelli
 INRIA
 France

 EMail: emmanuel.baccelli@inria.fr

Saito, et al. Expires December 19, 2019 [Page 12]

