
TSVWG J. Touch
Internet Draft Independent consultant
Intended status: Standards Track May 2, 2021
Intended updates: 768
Expires: November 2021

Transport Options for UDP
draft-ietf-tsvwg-udp-options-12.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79. This document may not be modified,
 and derivative works of it may not be created, except to format it
 for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on November 2, 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with

Touch Expires November 2, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Transport Options for UDP May 2021

 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 Transport protocols are extended through the use of transport header
 options. This document extends UDP by indicating the location,
 syntax, and semantics for UDP transport layer options.

Table of Contents

1. Introduction...3
2. Conventions used in this document..............................3
3. Background...3
4. The UDP Option Area..4
5. UDP Options..8

5.1. End of Options List (EOL).................................9
5.2. No Operation (NOP).......................................10
5.3. Option Checksum (OCS)....................................10
5.4. Alternate Checksum (ACS).................................12
5.5. Fragmentation (FRAG).....................................13
5.6. Maximum Segment Size (MSS)...............................16
5.7. Maximum Reassembled Segment Size (MRSS)..................17
5.8. Unsafe (UNSAFE)..17
5.9. Timestamps (TIME)..18
5.10. Authentication and Encryption (AE)......................19
5.11. Echo request (REQ) and echo response (RES)..............21
5.12. Experimental (EXP)......................................21

6. Rules for designing new options...............................22
7. Option inclusion and processing...............................23
8. UDP API Extensions..24
9. Whose options are these?......................................25
10. UDP options FRAG option vs. UDP-Lite.........................26
11. Interactions with Legacy Devices.............................26
12. Options in a Stateless, Unreliable Transport Protocol........27
13. UDP Option State Caching.....................................28
14. Updates to RFC 768...28
15. Interactions with other RFCs (and drafts)....................28
16. Multicast Considerations.....................................29
17. Security Considerations......................................30
18. IANA Considerations..31
19. References...31

19.1. Normative References....................................31
19.2. Informative References..................................32

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc768

Touch Expires November 2, 2021 [Page 2]

Internet-Draft Transport Options for UDP May 2021

20. Acknowledgments..34
Appendix A. Implementation Information...........................35

1. Introduction

 Transport protocols use options as a way to extend their
 capabilities. TCP [RFC793], SCTP [RFC4960], and DCCP [RFC4340]
 include space for these options but UDP [RFC768] currently does not.
 This document defines an extension to UDP that provides space for
 transport options including their generic syntax and semantics for
 their use in UDP's stateless, unreliable message protocol.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 In this document, the characters ">>" preceding an indented line(s)
 indicates a statement using the key words listed above. This
 convention aids reviewers in quickly identifying or finding the
 portions of this RFC covered by these key words.

3. Background

 Many protocols include a default, invariant header and an area for
 header options that varies from packet to packet. These options
 enable the protocol to be extended for use in particular
 environments or in ways unforeseen by the original designers.
 Examples include TCP's Maximum Segment Size, Window Scale,
 Timestamp, and Authentication Options [RFC793][RFC5925][RFC7323].

 These options are used both in stateful (connection-oriented, e.g.,
 TCP [RFC793], SCTP [RFC4960], DCCP [RFC4340]) and stateless
 (connectionless, e.g., IPv4 [RFC791], IPv6 [RFC8200]) protocols. In
 stateful protocols they can help extend the way in which state is
 managed. In stateless protocols their effect is often limited to
 individual packets, but they can have an aggregate effect on a
 sequence of packets as well. This document is intended to provide an
 out-of-band option area as an alternative to the in-band mechanism
 currently proposed [Hi15].

 UDP is one of the most popular protocols that lacks space for
 options [RFC768]. The UDP header was intended to be a minimal
 addition to IP, providing only ports and a data checksum for

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc768

Touch Expires November 2, 2021 [Page 3]

Internet-Draft Transport Options for UDP May 2021

 protection. This document extends UDP to provide a trailer area for
 options located after the UDP data payload.

 This extension is possible because UDP includes its own length
 field, separate from that of the IP header. SCTP includes its own
 length field, one for each chunk. TCP and DCCP lack this transport
 length field, inferring it from the IP length. There are a number of
 suggested reasons why UDP includes this field, notably to support
 multiple UDP segments in the same IP packet or to indicate the
 length of the UDP payload as distinct from zero padding required for
 systems that require writes that are not byte-alighed. These
 suggestions are not consistent with earlier versions of UDP or with
 concurrent design of multi-segment multiplexing protocols, however.

4. The UDP Option Area

 The UDP transport header includes demultiplexing and service
 identification (port numbers), a checksum, and a field that
 indicates the UDP datagram length (including UDP header). The UDP
 Length field is typically redundant with the size of the maximum
 space available as a transport protocol payload (see also discussion
 in Section 11).

 For IPv4, IP Total Length field indicates the total IP datagram
 length (including IP header), and the size of the IP options is
 indicated in the IP header (in 4-byte words) as the "Internet Header
 Length" (IHL), as shown in Figure 1 [RFC791]. As a result, the
 typical (and largest valid) value for UDP Length is:

 UDP_Length = IPv4_Total_Length - IPv4_IHL * 4

 For IPv6, the IP Payload Length field indicates the datagram after
 the base IPv6 header, which includes the IPv6 extension headers and
 space available for the transport protocol, as shown in Figure 2
 [RFC8200]. Note that the Next HDR field in IPv6 might not indicate
 UDP (i.e., 17), e.g., when intervening IP extension headers are
 present. For IPv6, the lengths of any additional IP extensions are
 indicated within each extension [RFC8200], so the typical (and
 largest valid) value for UDP Length is:

 UDP_Length = IPv6_Payload_Length - sum(extension header lengths)

 In both cases, the space available for the UDP transport protocol
 data unit is indicated by IP, either completely in the base header
 (for IPv4) or adding information in the extensions (for IPv6). In
 either case, this document will refer to this available space as the
 "IP transport payload".

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8200

Touch Expires November 2, 2021 [Page 4]

Internet-Draft Transport Options for UDP May 2021

 +-+
 |Version| IHL |Type of Service| Total Length |
 +-+
 | Identification |Flags| Fragment Offset |
 +-+
 | Time to Live | Proto=17 (UDP)| Header Checksum |
 +-+
 | Source Address |
 +-+
 | Destination Address |
 +-+
 ... zero or more IP Options (using space as indicated by IHL) ...
 +-+
 | UDP Source Port | UDP Destination Port |
 +-+
 | UDP Length | UDP Checksum |
 +-+

 Figure 1 IPv4 datagram with UDP transport payload

 +-+
 |Version| Traffic Class | Flow Label |
 +-+
 | Payload Length | Next Hdr | Hop Limit |
 +-+
 ...
 | Source Address (128 bits) |
 ...
 +-+
 ...
 | Destination Address (128 bits) |
 ...
 +-+
 ... zero or more IP Extension headers (each indicating size) ...
 +-+
 | UDP Source Port | UDP Destination Port |
 +-+
 | UDP Length | UDP Checksum |
 +-+

 Figure 2 IPv6 datagram with UDP transport payload

 As a result of this redundancy, there is an opportunity to use the
 UDP Length field as a way to break up the IP transport payload into
 two areas - that intended as UDP user data and an additional
 "surplus area" (as shown in Figure 3).

Touch Expires November 2, 2021 [Page 5]

Internet-Draft Transport Options for UDP May 2021

 IP transport payload
 <--->
 +--------+---------+----------------------+------------------+
 | IP Hdr | UDP Hdr | UDP user data | surplus area |
 +--------+---------+----------------------+------------------+
 <------------------------------>
 UDP Length

 Figure 3 IP transport payload vs. UDP Length

 In most cases, the IP transport payload and UDP Length point to the
 same location, indicating that there is no surplus area. It is
 important to note that this is not a requirement of UDP [RFC768]
 (discussed further in Section 11). UDP-Lite used the difference in
 these pointers to indicate the partial coverage of the UDP Checksum,
 such that the UDP user data, UDP header, and UDP pseudoheader (a
 subset of the IP header) are covered by the UDP checksum but
 additional user data in the surplus area is not covered [RFC3828].
 This document uses the surplus area for UDP transport options.

 The UDP option area is thus defined as the location between the end
 of the UDP payload and the end of the IP datagram as a trailing
 options area. This area can occur at any valid byte offset, i.e., it
 need not be 16-bit or 32-bit aligned. In effect, this document
 redefines the UDP "Length" field as a "trailer offset".

 UDP options are defined using a TLV (type, length, and optional
 value) syntax similar to that of TCP [RFC793]. They are typically a
 minimum of two bytes in length as shown in Figure 4, excepting only
 the one byte options "No Operation" (NOP) and "End of Options List"
 (EOL) described below.

 +--------+--------+-------
 | Kind | Length | (remainder of option...)
 +--------+--------+-------

 Figure 4 UDP option default format

 The Kind field is always one byte. The Length field is one byte for
 all lengths below 255 (including the Kind and Length bytes). A
 Length of 255 indicates use of the UDP option extended format shown
 in Figure 5. The Extended Length field is a 16-bit field in network
 standard byte order.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc793

Touch Expires November 2, 2021 [Page 6]

Internet-Draft Transport Options for UDP May 2021

 +--------+--------+--------+--------+
 | Kind | 255 | Extended Length |
 +--------+--------+--------+--------+
 | (remainder of option...)
 +--------+--------+--------+--------+

 Figure 5 UDP option extended default format

 >> UDP options MAY begin at any UDP length offset.

 >> The UDP length MUST be at least as large as the UDP header (8)
 and no larger than the IP transport payload. Datagrams with length
 values outside this range MUST be silently dropped as invalid and
 logged where rate-limiting permits.

 >> Option Lengths (or Extended Lengths, where applicable) smaller
 than the minimum for the corresponding Kind and default format MUST
 be treated as an error. Such errors call into question the remainder
 of the option area and thus MUST result in all UDP options being
 silently discarded.

 >> Any UDP option whose length is only smaller than 255 MUST always
 use the UDP option default format shown in Figure 4, excepting only
 EOL and NOP.

 >> Any UDP option whose length can be larger than 254 MUST always
 use the UDP option extended default format shown in Figure 5,
 including UNSAFE and EXP.

 I.e., a UDP option always uses only the default format or the
 extended default format, depending on whether its length is only
 ever smaller than 255 or not.

 Others have considered using values of the UDP Length that is larger
 than the IP transport payload as an additional type of signal. Using
 a value smaller than the IP transport payload is expected to be
 backward compatible with existing UDP implementations, i.e., to
 deliver the UDP Length of user data to the application and silently
 ignore the additional surplus area data. Using a value larger than
 the IP transport payload would either be considered malformed (and
 be silently dropped) or could cause buffer overruns, and so is not
 considered silently and safely backward compatible. Its use is thus
 out of scope for the extension described in this document.

 >> UDP options MUST be interpreted in the order in which they occur
 in the UDP option area.

Touch Expires November 2, 2021 [Page 7]

Internet-Draft Transport Options for UDP May 2021

5. UDP Options

 The following UDP options are currently defined:

 Kind Length Meaning
 --
 0* - End of Options List (EOL)
 1* - No operation (NOP)
 2* 3 Option checksum (OCS)
 3* 6 Alternate checksum (ACS)
 4* 10/12 Fragmentation (FRAG)
 5* 4 Maximum segment size (MSS)
 6* 4 Maximum reassembled segment size (MRSS)
 7* (varies) Unsafe to ignore (UNSAFE) options
 8 10 Timestamps (TIME)
 9 (varies) Authentication and Encryption (AE)
 10 6 Request (REQ)
 11 6 Response (RES)
 12-126 (varies) UNASSIGNED (assignable by IANA)
 127-253 RESERVED
 254 (varies) RFC 3692-style experiments (EXP)
 255 RESERVED

 These options are defined in the following subsections. Options 0
 and 1 use the same values as for TCP.

 >> An endpoint supporting UDP options MUST support those marked with
 a "*" above: EOL, NOP, OCS, ACS, FRAG, MSS, MRSS, and UNSAFE. This
 includes both recognizing and being able to generate these options
 if configured to do so. These are called "must-support" options.

 >> All other options (without a "*") MAY be implemented, and their
 use SHOULD be determined either out-of-band or negotiated.

 >> Receivers supporting UDP options MUST silently ignore unknown
 options except UNSAFE. That includes options whose length does not
 indicate the specified value(s).

 >> Receivers supporting UDP options MUST silently drop the entire
 datagram containing an UNSAFE option when any UNSAFE option it
 contains is unknown. See Section 5.8 for further discussion of
 UNSAFE options.

 >> Except for NOP, each option SHOULD NOT occur more than once in a
 single UDP datagram. If an option other than NOP occurs more than
 once, a receiver MUST interpret only the first instance of that
 option and MUST ignore all others.

https://datatracker.ietf.org/doc/html/rfc3692

Touch Expires November 2, 2021 [Page 8]

Internet-Draft Transport Options for UDP May 2021

 >> Only the OCS and AE options depend on the contents of the option
 area. AE is always computed as if the AE hash and OCS checksum are
 zero; OCS is always computed as if the OCS checksum is zero and
 after the AE hash has been computed. Future options MUST NOT be
 defined as having a value dependent on the contents of the option
 area. Otherwise, interactions between those values, OCS, and AE
 could be unpredictable.

 Receivers cannot treat unexpected option lengths as invalid, as this
 would unnecessarily limit future revision of options (e.g., defining
 a new ACS that is defined by having a different length).

 >> Option lengths MUST NOT exceed the IP length of the packet. If
 this occurs, the packet MUST be treated as malformed and dropped,
 and the event MAY be logged for diagnostics (logging SHOULD be rate
 limited).

 >> Options with fixed lengths MUST use the default option format.

 >> Options with variable lengths MUST use the default option format
 where their total length is 254 bytes or less.

 >> Options using the extended option format MUST indicate extended
 lengths of 255 or higher; smaller extended length values MUST be
 treated as an error.

 >> "Must-support" options other than NOP and EOL MUST come before
 other options.

 The requirement that must-support options come before others is
 intended to allow for endpoints to implement DOS protection, as
 discussed further in Section 17.

5.1. End of Options List (EOL)

 The End of Options List (EOL) option indicates that there are no
 more options. It is used to indicate the end of the list of options
 without needing to pad the options to fill all available option
 space.

 +--------+
 | Kind=0 |
 +--------+

 Figure 6 UDP EOL option format

Touch Expires November 2, 2021 [Page 9]

Internet-Draft Transport Options for UDP May 2021

 >> When the UDP options do not consume the entire option area, the
 last non-NOP option MUST be EOL.

 >> All bytes in the surplus area after EOL MUST be zero. If these
 bytes are non-zero, the entire surplus area MUST be silently ignored
 and only the UDP data passed to the user with an adjusted UDP length
 to indicate that no options were present.

 Requiring the post-option surplus area to be zero prevents side-
 channel uses of this area, requiring instead that all use of the
 surplus area be UDP options supported by both endpoints. It is
 useful to allow for such padding to increase the packet length
 without affecting the payload length, e.g., for UDP DPLPMTUD [Fa21].

5.2. No Operation (NOP)

 The No Operation (NOP) option is a one byte placeholder, intended to
 be used as padding, e.g., to align multi-byte options along 16-bit
 or 32-bit boundaries.

 +--------+
 | Kind=1 |
 +--------+

 Figure 7 UDP NOP option format

 >> If options longer than one byte are used, NOP options SHOULD be
 used at the beginning of the UDP options area to achieve alignment
 as would be more efficient for active (i.e., non-NOP) options.

 >> Segments SHOULD NOT use more than three consecutive NOPs. NOPs
 are intended to assist with alignment, not other padding or fill.

 This issue is discussed further in Section 17.

5.3. Option Checksum (OCS)

 The Option Checksum (OCS) option is conventional Internet checksum
 [RFC791] that covers all of the surplus area and a pseudoheader
 composed of the 16-bit length of the surplus area (Figure 8). The
 primary purpose of OCS is to detect non-standard (i.e., non-option)
 uses of that area. The surplus area pseudoheader is included to
 enable traversal of errant middleboxes that incorrectly compute the
 UDP checksum over the entire IP payload rather than only the UDP
 payload [Fa18].

https://datatracker.ietf.org/doc/html/rfc791

Touch Expires November 2, 2021 [Page 10]

Internet-Draft Transport Options for UDP May 2021

 The OCS is calculated by computing the Internet checksum over the
 surplus area and surplus length pseudoheader. The OCS protects the
 option area from errors in a similar way that the UDP checksum
 protects the UDP user data (when not zero).

 +--------+--------+
 | surplus length |
 +--------+--------+

 Figure 8 UDP surplus length pseudoheader

 +--------+--------+--------+
 | Kind=2 | checksum |
 +--------+--------+--------+

 Figure 9 UDP OCS option format

 >> The OCS MUST be included when the UDP checksum is nonzero and UDP
 options are present.

 >> When present, the OCS SHOULD occur as early as possible, preceded
 by only NOP options for alignment and the FRAG option if present.

 >> OCS MUST be half-word coordinated with the start of the UDP
 options area and include the surplus length pseudoheader similarly
 coordinated with the start of UDP Header.

 This Internet checksum is computed over the surplus area (including
 EOL, if present) prefixed by the surplus length pseudoheader (Figure
 8) and then adjusting the result before storing it into the OCS
 checksum field. If the OCS checksum field is aligned to the start of
 the options area, then the checksum is inserted as-is, otherwise the
 checksum bytes are swapped before inserting them into the field. The
 effect of this "coordination" is the same is if the checksum were
 computed as if the surplus area and pseudoheader were aligned to the
 UDP header.

 This feature is intended to potentially help the UDP options
 traverse devices that incorrectly attempt to checksum the surplus
 area (as originally proposed as the Checksum Compensation Option,
 i.e., CCO [Fa18]).

 The OCS covers the UDP option area as formatted for transmission and
 immediately upon reception.

Touch Expires November 2, 2021 [Page 11]

Internet-Draft Transport Options for UDP May 2021

 >> If the OCS fails, all options MUST be ignored and the surplus
 area silently discarded.

 >> UDP data that is validated by a correct UDP checksum MUST be
 delivered to the application layer, even if the OCS fails, unless
 the endpoints have negotiated otherwise for this segment's socket
 pair.

 As a reminder, use of the UDP checksum is optional when the UDP
 checksum is zero. When not used, the OCS is assumed to be "correct"
 for the purpose of accepting UDP packets at a receiver (see Section

7).

 The OCS is intended to check for accidental errors, not for attacks.

5.4. Alternate Checksum (ACS)

 The Alternate Checksum (ACS) option provides a stronger alternative
 to the checksum in the UDP header, using a 32-bit CRC of the
 conventional UDP payload only (excluding the IP pseudoheader, UDP
 header, and surplus area). It is an "alternate" to the UDP checksum
 (covering the UDP payload) - not the OCS (the latter covers the
 surplus area) Unlike the UDP checksum, ACS does not include the IP
 pseudoheader or UDP header, thus it does not need to be updated by
 NATs when IP addresses or UDP ports are rewritten. Its purpose is to
 detect UDP payload errors that the UDP checksum, when used, might
 not detect.

 A CRC32c has been chosen because of its ubiquity and use in other
 Internet protocols, including iSCSI and SCTP. The option contains
 the CRC32c in network standard byte order, as described in
 [RFC3385].

 +--------+--------+--------+--------+
 | Kind=3 | Len=6 | CRC32c... |
 +--------+--------+--------+--------+
 | CRC32c (cont.) |
 +--------+--------+

 Figure 10 UDP ACS option format

 When present, the ACS always contains a valid CRC checksum. There
 are no reserved values, including the value of zero. If the CRC is
 zero, this must indicate a valid checksum (i.e., it does not
 indicate that the ACS is not used; instead, the option would simply
 not be included if that were the desired effect).

https://datatracker.ietf.org/doc/html/rfc3385

Touch Expires November 2, 2021 [Page 12]

Internet-Draft Transport Options for UDP May 2021

 ACS does not protect the UDP pseudoheader; only the current UDP
 checksum provides that protection (when used). ACS cannot provide
 that protection because it would need to be updated whenever the UDP
 pseudoheader changed, e.g., during NAT address and port translation;
 because this is not the case, ACS does not cover the pseudoheader.

 >> Packets with incorrect ACS checksums MUST be passed to the
 application by default, e.g., with a flag indicating ACS failure.

 Like all non-UNSAFE UDP options, ACS need to be silently ignored
 when failing. Although all UDP option-aware endpoints support ACS
 (being in the required set), this silently-ignored behavior ensures
 that option-aware receivers operate the same as legacy receivers
 unless overridden.

5.5. Fragmentation (FRAG)

 The Fragmentation option (FRAG) combines properties of IP
 fragmentation and the UDP Lite transport protocol [RFC3828]. FRAG
 provides transport-layer fragmentation and reassembly in which each
 fragment includes a copy of the same UDP transport ports, enabling
 the fragments to traverse Network Address (and port) Translation
 (NAT) devices, in contrast to the behavior of IP fragments. FRAG
 also allows the UDP checksum to cover only a prefix of the UDP data
 payload, to avoid repeated checksums of data prior to reassembly.

 The Fragmentation (FRAG) option supports UDP fragmentation and
 reassembly, which can be used to transfer UDP messages larger than
 limited by the IP receive MTU (EMTU_R [RFC1122]). It is typically
 used with the UDP MSS option to enable more efficient use of large
 messages, both at the UDP and IP layers. FRAG is designed similar to
 the IPv6 Fragmentation Header [RFC8200], except that the UDP variant
 uses a 16-bit Offset measured in bytes, rather than IPv6's 13-bit
 Fragment Offset measured in 8-byte units. This UDP variant avoids
 creating reserved fields.

 >> When FRAG is present, it MUST come first in the UDP options list.

 >> When FRAG is present, the UDP payload MUST be empty. If the
 payload is not empty, all UDP options MUST be silently ignored and
 the payload received to the user.

 Legacy receivers interpret FRAG messages as zero-length payload
 packets (i.e., UDP Length field is 8, the length of just the UDP
 header), which would not affect the receiver unless the presence of
 the packet itself were a signal.

https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc8200

Touch Expires November 2, 2021 [Page 13]

Internet-Draft Transport Options for UDP May 2021

 The FRAG option has two formats; non-terminal fragments use the
 shorter variant (Figure 11) and terminal fragments use the longer
 (Figure 12). The latter includes stand-alone fragments, i.e., when
 data is contained in the FRAG option but reassembly is not required.

 +--------+--------+--------+--------+
 | Kind=4 | Len=10 | Offset |
 +--------+--------+--------+--------+
 | Identification |
 +--------+--------+--------+--------+
 | Frag. Offset |
 +--------+--------+

 Figure 11 UDP non-terminal FRAG option format

 The FRAG option does not need a "more fragments" bit because it
 provides the same indication by using the longer, 12-byte variant,
 which also includes an Internet checksum over the entire reassembled
 UDP payload (omitting the IP pseudoheader and UDP header, as well as
 UDP options), as shown in Figure 12.

 >> The FRAG option MAY be used on a single fragment, in which case
 the Offset would be zero and the option would have the 12-byte
 format, including the reassembly checksum.

 Use of the single fragment variant can be helpful in supporting use
 of UNSAFE options without undesirable impact to receivers that do
 not support either UDP options or the specific UNSAFE options.

 >> The reassembly checksum SHOULD be used, but MAY be unused in the
 same situations when the UDP checksum is unused (e.g., for transit
 tunnels or applications that have their own integrity checks
 [RFC8200]), and by the same mechanism (set the field to 0x0000).

 +--------+--------+--------+--------+
 | Kind=4 | Len=12 | Offset |
 +--------+--------+--------+--------+
 | Identification |
 +--------+--------+--------+--------+
 | Frag. Offset | Reassy. Checksum|
 +--------+--------+--------+--------+

 Figure 12 UDP terminal FRAG option format

 >> During fragmentation, the UDP header checksum of each fragment
 needs to be recomputed based on each datagram's pseudoheader.

https://datatracker.ietf.org/doc/html/rfc8200

Touch Expires November 2, 2021 [Page 14]

Internet-Draft Transport Options for UDP May 2021

 Unlike the UDP checksum, the reassembly checksum does not need to be
 updated if the UDP header changes because it covers only the
 reassembled data. FRAG uses a comparatively weak checksum upon
 reassembly because the fragments are already checked individually.

 >> After reassembly is complete and validated using the checksum of
 the terminal FRAG option, the UDP header checksum of the resulting
 datagram needs to be recomputed based on the datagram's
 pseudoheader.

 The Fragment Offset is 16 bits and indicates the location of the UDP
 payload fragment in bytes from the beginning of the original
 unfragmented payload. The Len field indicates whether there are more
 fragments (Len=10) or no more fragments (Len=12).

 >> The Identification field is a 32-bit value that MUST be unique
 over the expected fragment reassembly timeout.

 >> The Identification field SHOULD be generated in a manner similar
 to that of the IPv6 Fragment ID [RFC8200].

 >> UDP fragments MUST NOT overlap.

 UDP fragmentation relies on a fragment expiration timer, which can
 be preset or could use a value computed using the UDP Timestamp
 option.

 >> The default UDP reassembly SHOULD be no more than 2 minutes.

 Implementers are advised to limit the space available for UDP
 reassembly.

 >> UDP reassembly space SHOULD be limited to reduce the impact of
 DOS attacks on resource use.

 >> UDP reassembly space limits SHOULD NOT be implemented as an
 aggregate, to avoid cross-socketpair DOS attacks.

 >> Individual UDP fragments MUST NOT be forwarded to the user. The
 reassembled datagram is received only after complete reassembly,
 checksum validation, and continued processing of the remaining UDP
 options.

 Any additional UDP options, if used, follow the FRAG option in the
 final fragment and would be included in the reassembled packet.
 Processing of those options would commence after reassembly. This is

https://datatracker.ietf.org/doc/html/rfc8200

Touch Expires November 2, 2021 [Page 15]

Internet-Draft Transport Options for UDP May 2021

 especially important for UNSAFE options, which are interpreted only
 after FRAG.

 >> UDP options MUST NOT follow the FRAG header in non-terminal
 fragments. Any data following the FRAG header in non-terminal
 fragments MUST be silently dropped. All other options that apply to
 a reassembled packet MUST follow the FRAG header in the terminal
 fragment.

 In general, UDP packets are fragmented as follows:

 1. Create a datagram with data and any non-FRAG UDP options, which
 we will call "D". Note that the options apply to the entire data
 area and must follow the data. These options are processed before
 the rest of the fragmentation steps below.

 2. Identify the desired fragment size, which we will call "S". This
 value should take into account the path MTU (if known) and allow
 space for per-fragment options (e.g., OCS).

 3. Fragment "D" into chunks of size no larger than "S"-10 each, with
 one final chunk no larger than "S"-12. Note that all the non-FRAG
 options in step #1 MUST appear in the terminal fragment.

 4. For each chunk of "D" in step #3, create a zero-data UDP packet
 followed by the per-fragment options, with the final option being
 the FRAG option followed by the FRAG data chunk.

 The last chunk includes the non-FRAG options noted in step #1
 after the end of the FRAG data. These UDP options apply to the
 reassembled data as a whole when received.

 5. Process the UDP options of each fragment, e.g., computing its
 OCS.

 Receivers reverse the above sequence. They process all received
 options in each fragment. When the FRAG option is encountered, the
 FRAG data is used in reassembly. After all fragments are received,
 the entire packet is processed with any trailing UDP options
 applying to the reassembled data.

5.6. Maximum Segment Size (MSS)

 The Maximum Segment Size (MSS, Kind = 5) option is a 16-bit hint of
 the largest unfragmented UDP segment that an endpoint believes can
 be received. As with the TCP MSS option [RFC793], the size indicated
 is the IP layer MTU decreased by the fixed IP and UDP headers only

https://datatracker.ietf.org/doc/html/rfc793

Touch Expires November 2, 2021 [Page 16]

Internet-Draft Transport Options for UDP May 2021

 [RFC6691]. The space needed for IP and UDP options need to be
 adjusted by the sender when using the value indicated. The value
 transmitted is based on EMTU_R, the largest IP datagram that can be
 received (i.e., reassembled at the receiver) [RFC1122]. However, as
 with TCP, this value is only a hint at what the receiver believes;
 it does not indicate a known path MTU and thus MUST NOT be used to
 limit transmissions, notably for DPLPMTU probes.

 +--------+--------+--------+--------+
 | Kind=5 | Len=4 | MSS size |
 +--------+--------+--------+--------+

 Figure 13 UDP MSS option format

 The UDP MSS option MAY be used as a hint for path MTU discovery
 [RFC1191][RFC8201], but this may be difficult because of known
 issues with ICMP blocking [RFC2923] as well as UDP lacking automatic
 retransmission. It is more likely to be useful when coupled with IP
 source fragmentation to limit the largest reassembled UDP message as
 indicated by MRSS (see Section 5.7), e.g., when EMTU_R is larger
 than the required minimums (576 for IPv4 [RFC791] and 1500 for IPv6
 [RFC8200]). It can also be used with DPLPMTUD [RFC8899] to provide a
 hint to maximum DPLPMTU, though it MUST NOT prohibit transmission of
 larger UDP packets (or fragments) used as DPLPMTU probes.

5.7. Maximum Reassembled Segment Size (MRSS)

 The Maximum Reassembled Segment Size (MRSS, Kind=6) option is a 16-
 bit indicator of the largest reassembled UDP segment that can be
 received. MRSS is the UDP equivalent of IP's EMTU_R but the two are
 not related [RFC1122]. Using the FRAG option (Section 5.5), UDP
 segments can be transmitted as fragments in multiple IP datagrams
 and be reassembled larger than the IP layer allows.

 +--------+--------+--------+--------+
 | Kind=6 | Len=4 | MRSS size |
 +--------+--------+--------+--------+

 Figure 14 UDP MRSS option format

5.8. Unsafe (UNSAFE)

 The Unsafe option (UNSAFE) extends the UDP option space to allow for
 options that are not safe to ignore and can be used unidirectionally
 or without soft-state confirmation of UDP option capability. They

https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8899
https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires November 2, 2021 [Page 17]

Internet-Draft Transport Options for UDP May 2021

 are always used only when the entire UDP payload occurs inside a
 reassembled set of UDP fragments, such that if UDP fragmentation is
 not supported, the entire fragment would be silently dropped anyway.

 UNSAFE options are an extended option space, with its own additional
 option types. These are indicated in the first byte after the option
 Kind as shown in Figure 15, which is followed by the Length. Length
 is 1 byte for UKinds whose total length (including Kind, UKind, and
 Length fields) is less than 255 or 2 bytes for larger lengths (in
 the similar style as the extended option format).

 +--------+--------+--------+
 | Kind=7 | UKind | Length |...
 +--------+--------+--------+
 1 byte 1 byte 1-2 bytes

 Figure 15 UDP UNSAFE option format

 >> UNSAFE options MUST be used only as part of UDP fragments, used
 either per-fragment or after reassembly.

 >> Receivers supporting UDP options MUST silently drop the entire
 reassembled datagram if any fragment or the entire datagram includes
 an UNSAFE option whose UKind is not supported.

 The following UKind values are defined:

 UKind Length Meaning
 --
 0 RESERVED
 1-253 (varies) UNASSIGNED (assignable by IANA)
 254 (varies) RFC 3692-style experiments (UEXP)
 255 RESERVED

 Experimental UKind EXP ExID values indicate the ExID in the
 following 2 (or 4) bytes, similar to the UDP EXP option as discussed
 in Section 5.12. Assigned UDP EXP ExIDs and UDP UNSAFE UKind UEXP
 ExIDs are assigned from the same registry and can be used either in
 the EXP option (Section 5.12) or within the UKind UEXP.

5.9. Timestamps (TIME)

 The Timestamp (TIME) option exchanges two four-byte timestamp
 fields. It serves a similar purpose to TCP's TS option [RFC7323],
 enabling UDP to estimate the round trip time (RTT) between hosts.
 For UDP, this RTT can be useful for establishing UDP fragment
 reassembly timeouts or transport-layer rate-limiting [RFC8085].

https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc8085

Touch Expires November 2, 2021 [Page 18]

Internet-Draft Transport Options for UDP May 2021

 +--------+--------+------------------+------------------+
 | Kind=8 | Len=10 | TSval | TSecr |
 +--------+--------+------------------+------------------+
 1 byte 1 byte 4 bytes 4 bytes

 Figure 16 UDP TIME option format

 TS Value (TSval) and TS Echo Reply (TSecr) are used in a similar
 manner to the TCP TS option [RFC7323]. On transmitted segments using
 the option, TS Value is always set based on the local "time" value.
 Received TSval and TSecr values are provided to the application,
 which can pass the TSval value to be used as TSecr on UDP messages
 sent in response (i.e., to echo the received TSval). A received
 TSecr of zero indicates that the TSval was not echoed by the
 transmitter, i.e., from a previously received UDP packet.

 >> TIME MAY use an RTT estimate based on nonzero Timestamp values as
 a hint for fragmentation reassembly, rate limiting, or other
 mechanisms that benefit from such an estimate.

 >> TIME SHOULD make this RTT estimate available to the user
 application.

 UDP timestamps are modeled after TCP timestamps and have similar
 expectations. In particular, they are expected to be:

 o Values are monotonic and non-decreasing except for anticipated
 number-space rollover events

 o Values should "increase" (allowing for rollover) according to a
 typical 'tick' time

 o A request is defined as "reply=0" and a reply is defined as both
 fields being non-zero.

 o A receiver should always respond to a request with the highest
 TSval received (allowing for rollover), which is not necessarily
 the most recently received.

 Rollover can be handled as a special case or more completely using
 sequence number extension [RFC5925].

5.10. Authentication and Encryption (AE)

 The Authentication and Encryption (AE) option is intended to allow
 UDP to provide a similar type of authentication as the TCP
 Authentication Option (TCP-AO) [RFC5925]. AE the conventional UDP

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5925

Touch Expires November 2, 2021 [Page 19]

Internet-Draft Transport Options for UDP May 2021

 payload and may also cover the surplus area, depending on
 configuration. It uses the same format as specified for TCP-AO,
 except that it uses a Kind of 9. AE supports NAT traversal in a
 similar manner as TCP-AO [RFC6978]. AE can also be extended to
 provide a similar encryption capability as TCP-AO-ENC, in a similar
 manner [To18ao].

 +--------+--------+--------+--------+
 | Kind=9 | Len | Digest... |
 +--------+--------+--------+--------+
 | Digest (con't)... |
 +--------+--------+--------+--------+

 Figure 17 UDP AE option format

 Like TCP-AO, AE is not negotiated in-band. Its use assumes both
 endpoints have populated Master Key Tuples (MKTs), used to exclude
 non-protected traffic.

 TCP-AO generates unique traffic keys from a hash of TCP connection
 parameters. UDP lacks a three-way handshake to coordinate
 connection-specific values, such as TCP's Initial Sequence Numbers
 (ISNs) [RFC793], thus AE's Key Derivation Function (KDF) uses zeroes
 as the value for both ISNs. This means that the AE reuses keys when
 socket pairs are reused, unlike TCP-AO.

 >> Packets with incorrect AE HMACs MUST be passed to the application
 by default, e.g., with a flag indicating AE failure.

 Like all non-UNSAFE UDP options, AE needs to be silently ignored
 when failing. This silently-ignored behavior ensures that option-
 aware receivers operate the same as legacy receivers unless
 overridden.

 In addition to the UDP payload (which is always included), AE can be
 configured to either include or exclude the surplus area, in a
 similar way as can TCP-AO can optionally exclude TCP options. When
 UDP options are covered, the OCS option area checksum and AE hash
 areas are zeroed before computing the AE hash. It is important to
 consider that options not yet defined might yield unpredictable
 results if not confirmed as supported, e.g., if they were to contain
 other hashes or checksums that depend on the option area contents.
 This is why such dependencies are not permitted except as defined
 for OCS and UDP-AE.

https://datatracker.ietf.org/doc/html/rfc6978
https://datatracker.ietf.org/doc/html/rfc793

Touch Expires November 2, 2021 [Page 20]

Internet-Draft Transport Options for UDP May 2021

 Similar to TCP-AO-NAT, AE can be configured to support NAT
 traversal, excluding (by zeroing out) one or both of the UDP ports
 and corresponding IP addresses [RFC6978].

5.11. Echo request (REQ) and echo response (RES)

 The echo request (REQ, kind=10) and echo response (RES, kind=11)
 options provide a means for UDP options to be used to provide
 packet-level acknowledgements. One such use is described as part of
 the UDP variant of packetization layer path MTU discovery (PLPMTUD)
 [Fa21]. The options both have the format indicated in Figure 18.

 +--------+--------+------------------+
 | Kind | Len=6 | nonce |
 +--------+--------+------------------+
 1 byte 1 byte 4 bytes

 Figure 18 UDP REQ and RES options format

5.12. Experimental (EXP)

 The Experimental option (EXP) is reserved for experiments [RFC3692].
 It uses a Kind value of 254. Only one such value is reserved because
 experiments are expected to use an Experimental ID (ExIDs) to
 differentiate concurrent use for different purposes, using UDP ExIDs
 registered with IANA according to the approach developed for TCP
 experimental options [RFC6994].

 +----------+----------+----------+----------+
 | Kind=254 | Len | UDP ExID |
 +----------+----------+----------+----------+
 | (option contents, as defined)... |
 +----------+----------+----------+----------+

 Figure 19 UDP EXP option format

 >> The length of the experimental option MUST be at least 4 to
 account for the Kind, Length, and the minimum 16-bit UDP ExID
 identifier (similar to TCP ExIDs [RFC6994]).

 Assigned UDP EXP ExIDs and UDP UNSAFE UKind UEXP ExIDs are assigned
 from the same registry and can be used either in the EXP option or
 within the UKind UEXP (Section 5.8).

https://datatracker.ietf.org/doc/html/rfc6978
https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc6994

Touch Expires November 2, 2021 [Page 21]

Internet-Draft Transport Options for UDP May 2021

6. Rules for designing new options

 The UDP option Kind space allows for the definition of new options,
 however the currently defined options do not allow for arbitrary new
 options. For example, FRAG needs to come first if present; new
 options cannot declare that they need to precede it. The following
 is a summary of rules for new options and their rationales:

 >> New options MUST NOT depend on option space content, excepting
 only those contained within the UNSAFE option. Only OCS and AE
 depend on the content of the options themselves and their order is
 fixed (on transmission, AE is computed first using a zero-checksum
 OCS if present, and OCS is computed last before transmission, over
 the entire option area, including AE).

 >> UNSAFE options can both depend on and vary option space content
 because they are contained only inside UDP fragments and thus are
 processed only by UDP option capable receivers.

 >> New options MUST NOT declare their order relative to other
 options, whether new or old.

 >> At the sender, new options MUST NOT modify UDP packet content
 anywhere except within their option field, excepting only those
 contained within the UNSAFE option; areas that need to remain
 unmodified include the IP header, IP options, the UDP body, the UDP
 option area (i.e., other options), and the post-option area.

 >> Options MUST NOT be modified in transit. This includes those
 already defined as well as new options. New options MUST NOT require
 or intend optionally for modification of any UDP options, including
 their new areas, in transit.

 >> New options with fixed lengths smaller than 255 or variable
 lengths that are always smaller than 255 MUST use only the default
 option format.

 Note that only certain of the initially defined options violate
 these rules:

 o >> FRAG MUST be first, if present, and MUST be processed when
 encountered (e.g., even before security options).

 o >> Only FRAG and UNSAFE options are permitted to modify the UDP
 body or option areas.

Touch Expires November 2, 2021 [Page 22]

Internet-Draft Transport Options for UDP May 2021

 o >> OCS SHOULD be the first option, except in the presence of
 FRAG, in which case it SHOULD be the first option after FRAG.

7. Option inclusion and processing

 The following rules apply to option inclusion by senders and
 processing by receivers.

 >> Senders MAY add any option, as configured by the API.

 >> All mandatory options MUST be processed by receivers, if present
 (presuming UDP options are supported at that receiver).

 >> Non-mandatory options MAY be ignored by receivers, if present,
 e.g., based on API settings.

 >> All options MUST be processed by receivers in the order
 encountered in the options list.

 >> All options except UNSAFE options MUST result in the UDP payload
 being passed to the application layer, regardless of whether all
 options are processed, supported, or succeed.

 The basic premise is that, for options-aware endpoints, the sender
 decides what options to add and the receiver decides what options to
 handle. Simply adding an option does not force work upon a receiver,
 with the exception of the mandatory options.

 Upon receipt, the receiver checks various properties of the UDP
 packet and its options to decide whether to accept or drop the
 packet and whether to accept or ignore some its options as follows
 (in order):

 if the UDP checksum fails then
 silently drop (per RFC1122)
 if the UDP checksum passes then
 if OCS is present and fails then
 deliver the UDP payload but ignore all other options
 (this is required to emulate legacy behavior)
 if OCS is present and passes then
 deliver the UDP payload after parsing
 and processing the rest of the options,
 regardless of whether each is supported or succeeds
 (again, this is required to emulate legacy behavior)

https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires November 2, 2021 [Page 23]

Internet-Draft Transport Options for UDP May 2021

 The design of the UNSAFE options as used only inside the FRAG area
 ensures that the resulting UDP data will be silently dropped in both
 legacy and options-aware receivers.

 Options-aware receivers can either drop packets with option
 processing errors via an override of the default or at the
 application layer.

 I.e., all options other than OCS are treated the same, in that the
 transmitter can add it as desired and the receiver has the option to
 require it or not. Only if it is required (e.g., by API
 configuration) should the receiver require it being present and
 correct.

 I.e., for all options other than OCS:

 o if the option is not required by the receiver, then packets
 missing the option are accepted.

 o if the option is required (e.g., by override of the default
 behavior at the receiver) and missing or incorrectly formed,
 silently drop the packet.

 o if the packet is accepted (either because the option is not
 required or because it was required and correct), then pass the
 option with the packet via the API.

 Any options whose length exceeds that of the UDP packet (i.e.,
 intending to use data that would have been beyond the surplus area)
 should be silently ignored (again to model legacy behavior).

8. UDP API Extensions

 UDP currently specifies an application programmer interface (API),
 summarized as follows (with Unix-style command as an example)
 [RFC768]:

 o Method to create new receive ports

 o E.g., bind(handle, recvaddr(optional), recvport)

 o Receive, which returns data octets, source port, and source
 address

 o E.g., recvfrom(handle, srcaddr, srcport, data)

https://datatracker.ietf.org/doc/html/rfc768

Touch Expires November 2, 2021 [Page 24]

Internet-Draft Transport Options for UDP May 2021

 o Send, which specifies data, source and destination addresses, and
 source and destination ports

 o E.g., sendto(handle, destaddr, destport, data)

 This API is extended to support options as follows:

 o Extend the method to create receive ports to include receive
 options that are required. Datagrams not containing these
 required options MUST be silently dropped and MAY be logged.

 o Extend the receive function to indicate the options and their
 parameters as received with the corresponding received datagram.

 o Extend the send function to indicate the options to be added to
 the corresponding sent datagram.

 Examples of API instances for Linux and FreeBSD are provided in
Appendix A, to encourage uniform cross-platform implementations.

9. Whose options are these?

 UDP options are indicated in an area of the IP payload that is not
 used by UDP. That area is really part of the IP payload, not the UDP
 payload, and as such, it might be tempting to consider whether this
 is a generally useful approach to extending IP.

 Unfortunately, the surplus area exists only for transports that
 include their own transport layer payload length indicator. TCP and
 SCTP include header length fields that already provide space for
 transport options by indicating the total length of the header area,
 such that the entire remaining area indicated in the network layer
 (IP) is transport payload. UDP-Lite already uses the UDP Length
 field to indicate the boundary between data covered by the transport
 checksum and data not covered, and so there is no remaining area
 where the length of the UDP-Lite payload as a whole can be indicated
 [RFC3828].

 UDP options are intended for use only by the transport endpoints.
 They are no more (or less) appropriate to be modified in-transit
 than any other portion of the transport datagram.

 UDP options are transport options. Generally, transport datagrams
 are not intended to be modified in-transit. UDP options are no
 exception and here are specified as "MUST NOT" be altered in
 transit. However, the UDP option mechanism provides no specific
 protection against in-transit modification of the UDP header, UDP

https://datatracker.ietf.org/doc/html/rfc3828

Touch Expires November 2, 2021 [Page 25]

Internet-Draft Transport Options for UDP May 2021

 payload, or UDP option area, except as provided by the options
 selected (e.g., OCS or AE).

10. UDP options FRAG option vs. UDP-Lite

 UDP-Lite provides partial checksum coverage, so that packets with
 errors in some locations can be delivered to the user [RFC3828]. It
 uses a different transport protocol number (136) than UDP (17) to
 interpret the UDP Length field as the prefix covered by the UDP
 checksum.

 UDP (protocol 17) already defines the UDP Length field as the limit
 of the UDP checksum, but by default also limits the data provided to
 the application as that which precedes the UDP Length. A goal of
 UDP-Lite is to deliver data beyond UDP Length as a default, which is
 why a separate transport protocol number was required.

 UDP options do not use or need a separate transport protocol number
 because the data beyond the UDP Length offset (surplus data) is not
 provided to the application by default. That data is interpreted
 exclusively within the UDP transport layer.

 The UDP FRAG options option supports a similar service to UDP-Lite.
 The main difference is that UDP-Lite provides the un-checksummed
 user data to the application by default, whereas the UDP FRAG option
 can safely provide that service only between endpoints that
 negotiate that capability in advance. An endpoint that does not
 implement UDP options would silently discard this non-checksummed
 user data, along with the UDP options as well.

 UDP-Lite cannot support UDP options, either as proposed here or in
 any other form, because the entire payload of the UDP packet is
 already defined as user data and there is no additional field in
 which to indicate a separate area for options. The UDP Length field
 in UDP-Lite is already used to indicate the boundary between user
 data covered by the checksum and user data not covered.

11. Interactions with Legacy Devices

 It has always been permissible for the UDP Length to be inconsistent
 with the IP transport payload length [RFC768]. Such inconsistency
 has been utilized in UDP-Lite using a different transport number.
 There are no known systems that use this inconsistency for UDP
 [RFC3828]. It is possible that such use might interact with UDP
 options, i.e., where legacy systems might generate UDP datagrams
 that appear to have UDP options. The UDP OCS provides protection
 against such events and is stronger than a static "magic number".

https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc3828

Touch Expires November 2, 2021 [Page 26]

Internet-Draft Transport Options for UDP May 2021

 UDP options have been tested as interoperable with Linux, macOS, and
 Windows Cygwin, and worked through NAT devices. These systems
 successfully delivered only the user data indicated by the UDP
 Length field and silently discarded the surplus area.

 One reported embedded device passes the entire IP datagram to the
 UDP application layer. Although this feature could enable
 application-layer UDP option processing, it would require that
 conventional UDP user applications examine only the UDP payload.
 This feature is also inconsistent with the UDP application interface
 [RFC768] [RFC1122].

 It has been reported that Alcatel-Lucent's "Brick" Intrusion
 Detection System has a default configuration that interprets
 inconsistencies between UDP Length and IP Length as an attack to be
 reported. Note that other firewall systems, e.g., CheckPoint, use a
 default "relaxed UDP length verification" to avoid falsely
 interpreting this inconsistency as an attack.

12. Options in a Stateless, Unreliable Transport Protocol

 There are two ways to interpret options for a stateless, unreliable
 protocol -- an option is either local to the message or intended to
 affect a stream of messages in a soft-state manner. Either
 interpretation is valid for defined UDP options.

 It is impossible to know in advance whether an endpoint supports a
 UDP option.

 >> All UDP options other than UNSAFE ones MUST be ignored if not
 supported or upon failure (e.g., ACS).

 >> All UDP options that fail MUST result in the UDP data still being
 sent to the application layer by default, to ensure equivalence with
 legacy devices.

 >> UDP options that rely on soft-state exchange MUST allow for
 message reordering and loss.

 The above requirements prevent using any option that cannot be
 safely ignored unless it is hidden inside the FRAG area (i.e.,
 UNSAFE options). Legacy systems also always need to be able to
 interpret the transport payload fragments as individual transport
 datagrams.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1122

Touch Expires November 2, 2021 [Page 27]

Internet-Draft Transport Options for UDP May 2021

13. UDP Option State Caching

 Some TCP connection parameters, stored in the TCP Control Block, can
 be usefully shared either among concurrent connections or between
 connections in sequence, known as TCP Sharing [RFC2140][To21cb].
 Although UDP is stateless, some of the options proposed herein may
 have similar benefit in being shared or cached. We call this UCB
 Sharing, or UDP Control Block Sharing, by analogy. Just as TCB
 sharing is not a standard because it is consistent with existing TCP
 specifications, UCB sharing would be consistent with existing UDP
 specifications, including this one. Both are implementation issues
 that are outside the scope of their respective specifications, and
 so UCB sharing is outside the scope of this document.

14. Updates to RFC 768

 This document updates RFC 768 as follows:

 o This document defines the meaning of the IP payload area beyond
 the UDP length but within the IP length.

 o This document extends the UDP API to support the use of options.

15. Interactions with other RFCs (and drafts)

 This document clarifies the interaction between UDP length and IP
 length that is not explicitly constrained in either UDP or the host
 requirements [RFC768] [RFC1122].

 Teredo extensions (TE) define use of a similar surplus area for
 trailers [RFC6081]. TE defines the UDP length pointing beyond
 (larger) than the location indicated by the IP length rather than
 shorter (as used herein):

 "..the IPv6 packet length (i.e., the Payload Length value in
 the IPv6 header plus the IPv6 header size) is less than or
 equal to the UDP payload length (i.e., the Length value in
 the UDP header minus the UDP header size)"

 As a result, UDP options are not compatible with TE, but that is
 also why this document does not update TE. Additionally, it is not
 at all clear how TE operates, as it requires network processing of
 the UDP length field to understand the total message including TE
 trailers.

 TE updates Teredo NAT traversal [RFC4380]. The NAT traversal
 document defined "consistency" of UDP length and IP length as:

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc6081
https://datatracker.ietf.org/doc/html/rfc4380

Touch Expires November 2, 2021 [Page 28]

Internet-Draft Transport Options for UDP May 2021

 "An IPv6 packet is deemed valid if it conforms to [RFC2460]:
 the protocol identifier should indicate an IPv6 packet and
 the payload length should be consistent with the length of
 the UDP datagram in which the packet is encapsulated."

 IPv6 is clear on the meaning of this consistency, in which the
 pseudoheader used for UDP checksums is based on the UDP length, not
 inferred from the IP length, using the same text in the current
 specification [RFC8200]:

 "The Upper-Layer Packet Length in the pseudo-header is the
 length of the upper-layer header and data (e.g., TCP header
 plus TCP data). Some upper-layer protocols carry their own
 length information (e.g., the Length field in the UDP header);
 for such protocols, that is the length used in the pseudo-
 header."

 This document is consistent the UDP profile for Robust Header
 Compression (ROHC)[RFC3095], noted here:

 "The Length field of the UDP header MUST match the Length
 field(s) of the preceding subheaders, i.e., there must not
 be any padding after the UDP payload that is covered by the
 IP Length."

 ROHC compresses UDP headers only when this match succeeds. It does
 not prohibit UDP headers where the match fails; in those cases, ROHC
 default rules (Section 5.10) would cause the UDP header to remain
 uncompressed. Upon receivep of a compressed UDP header, Section
 A.1.3 of that document indicates that the UDP length is "INFERRED";
 in uncompressed packets, it would simply be explicitly provided.

 This issue of handling UDP header compression is more explicitly
 described in more recent specifications, e.g., Sec. 10.10 of Static
 Context Header Compression [RFC8724].

16. Multicast Considerations

 UDP options are primarily intended for unicast use. Using these
 options over multicast IP requires careful consideration, e.g., to
 ensure that the options used are safe for different endpoints to
 interpret differently (e.g., either to support or silently ignore)
 or to ensure that all receivers of a multicast group confirm support
 for the options in use.

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc8724

Touch Expires November 2, 2021 [Page 29]

Internet-Draft Transport Options for UDP May 2021

17. Security Considerations

 There are a number of security issues raised by the introduction of
 options to UDP. Some are specific to this variant, but others are
 associated with any packet processing mechanism; all are discussed
 in this section further.

 The use of UDP packets with inconsistent IP and UDP Length fields
 has the potential to trigger a buffer overflow error if not properly
 handled, e.g., if space is allocated based on the smaller field and
 copying is based on the larger. However, there have been no reports
 of such vulnerability and it would rely on inconsistent use of the
 two fields for memory allocation and copying.

 UDP options are not covered by DTLS (datagram transport-layer
 security). Despite the name, neither TLS [RFC8446] (transport layer
 security, for TCP) nor DTLS [RFC6347] (TLS for UDP) protect the
 transport layer. Both operate as a shim layer solely on the payload
 of transport packets, protecting only their contents. Just as TLS
 does not protect the TCP header or its options, DTLS does not
 protect the UDP header or the new options introduced by this
 document. Transport security is provided in TCP by the TCP
 Authentication Option (TCP-AO [RFC5925]) or in UDP by the
 Authentication Extension option (Section 5.10). Transport headers
 are also protected as payload when using IP security (IPsec)
 [RFC4301].

 UDP options use the TLV syntax similar to that of TCP. This syntax
 is known to require serial processing and may pose a DOS risk, e.g.,
 if an attacker adds large numbers of unknown options that must be
 parsed in their entirety. Implementations concerned with the
 potential for this vulnerability MAY implement only the required
 options and MAY also limit processing of TLVs. Because required
 options come first and at most once each (with the exception of
 NOPs, which should never need to come in sequences of more than
 three in a row), this limits their DOS impact. Note that TLV formats
 for options does require serial processing, but any format that
 allows future options, whether ignored or not, could introduce a
 similar DOS vulnerability.

 UDP security should never rely solely on transport layer processing
 of options. UNSAFE options are the only type that share fate with
 the UDP data, because of the way that data is hidden in the surplus
 area until after those options are processed. All other options
 default to being silently ignored at the transport layer but may be
 dropped either if that default is overridden (e.g., by
 configuration) or discarded at the application layer (e.g., using

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc4301

Touch Expires November 2, 2021 [Page 30]

Internet-Draft Transport Options for UDP May 2021

 information about the options processed that are passed along with
 the packet).

 UDP fragmentation introduces its own set of security concerns, which
 can be handled in a manner similar to IP fragmentation. In
 particular, the number of packets pending reassembly and effort used
 for reassembly is typically limited. In addition, it may be useful
 to assume a reasonable minimum fragment size, e.g., that non-
 terminal fragments should never be smaller than 500 bytes.

18. IANA Considerations

 Upon publication, IANA is hereby requested to create a new registry
 for UDP Option Kind numbers, similar to that for TCP Option Kinds.
 Initial values of this registry are as listed in Section 5.
 Additional values in this registry are to be assigned from the
 UNASSIGNED values in Section 5 by IESG Approval or Standards Action
 [RFC8126]. Those assignments are subject to the conditions set forth
 in this document, particularly (but not limited to) those in Section

6.

 Upon publication, IANA is hereby requested to create a new registry
 for UDP Experimental Option Experiment Identifiers (UDP ExIDs) for
 use in a similar manner as TCP ExIDs [RFC6994]. UDP ExIDs can be
 used in either the UDP EXP option or the UDP UNSAFE option when
 using UKind=UEXP. This registry is initially empty. Values in this
 registry are to be assigned by IANA using first-come, first-served
 (FCFS) rules [RFC8126]. Options using these ExIDs are subject to the
 same conditions as new options, i.e., they too are subject to the
 conditions set forth in this document, particularly (but not limited
 to) those in Section 6.

 Upon publication, IANA is hereby requested to create a new registry
 for UDP UNSAFE UKind numbers. There are no initial assignments in
 this registry. Values in this registry are to be assigned from the
 UNASSIGNED values in Section 5.8 by IESG Approval or Standards
 Action [RFC8126]. Those assignments are subject to the conditions
 set forth in this document, particularly (but not limited to) those
 in Section 6.

19. References

19.1. Normative References

 [RFC768] Postel, J., "User Datagram Protocol," RFC 768, August
 1980.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc768

Touch Expires November 2, 2021 [Page 31]

Internet-Draft Transport Options for UDP May 2021

 [RFC791] Postel, J., "Internet Protocol," RFC 791, Sept. 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts --
 Communication Layers," RFC 1122, Oct. 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels," BCP 14, RFC 2119, March 1997.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words," RFC 2119, May 2017.

19.2. Informative References

 [Fa18] Fairhurst, G., T. Jones, R. Zullo, "Checksum Compensation
 Options for UDP Options", draft-fairhurst-udp-options-cco,
 Oct. 2018.

 [Fa21] Fairhurst, G., T. Jones, "Datagram PLPMTUD for UDP
 Options," draft-fairhurst-tsvwg-udp-options-dplpmtud, Apr.
 2021.

 [Hi15] Hildebrand, J., B. Trammel, "Substrate Protocol for User
 Datagrams (SPUD) Prototype," draft-hildebrand-spud-

prototype-03, Mar. 2015.

 [RFC793] Postel, J., "Transmission Control Protocol" RFC 793,
 September 1981.

 [RFC1191] Mogul, J., S. Deering, "Path MTU discovery," RFC 1191,
 November 1990.

 [RFC2140] Touch, J., "TCP Control Block Interdependence," RFC 2140,
 Apr. 1997.

 [RFC2923] Lahey, K., "TCP Problems with Path MTU Discovery," RFC
2923, September 2000.

 [RFC3095] Bormann, C. (Ed), et al., "RObust Header Compression
 (ROHC): Framework and four profiles: RTP, UDP, ESP, and
 uncompressed," RFC 3095, July 2001.

 [RFC3385] Sheinwald, D., J. Satran, P. Thaler, V. Cavanna, "Internet
 Protocol Small Computer System Interface (iSCSI) Cyclic
 Redundancy Check (CRC)/Checksum Considerations," RFC 3385,
 Sep. 2002.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-fairhurst-udp-options-cco
https://datatracker.ietf.org/doc/html/draft-fairhurst-tsvwg-udp-options-dplpmtud
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc3385

Touch Expires November 2, 2021 [Page 32]

Internet-Draft Transport Options for UDP May 2021

 [RFC3692] Narten, T., "Assigning Experimental and Testing Numbers
 Considered Useful," RFC 3692, Jan. 2004.

 [RFC3828] Larzon, L-A., M. Degermark, S. Pink, L-E. Jonsson (Ed.),
 G. Fairhurst (Ed.), "The Lightweight User Datagram
 Protocol (UDP-Lite)," RFC 3828, July 2004.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, Dec. 2005.

 [RFC4340] Kohler, E., M. Handley, and S. Floyd, "Datagram Congestion
 Control Protocol (DCCP)", RFC 4340, March 2006.

 [RFC4380] Huitema, C., "Teredo: Tunneling IPv6 over UDP through
 Network Address Translations (NATs)," RFC 4380, Feb. 2006.

 [RFC4960] Stewart, R. (Ed.), "Stream Control Transmission Protocol",
RFC 4960, September 2007.

 [RFC5925] Touch, J., A. Mankin, R. Bonica, "The TCP Authentication
 Option," RFC 5925, June 2010.

 [RFC6081] Thaler, D., "Teredo Extensions," RFC 6081, Jan 2011.

 [RFC6347] Rescorla, E., N. Modadugu, "Datagram Transport Layer
 Security Version 1.2," RFC 6347, Jan. 2012.

 [RFC6691] Borman, D., "TCP Options and Maximum Segment Size (MSS),"
RFC 6691, July 2012.

 [RFC6978] Touch, J., "A TCP Authentication Option Extension for NAT
 Traversal", RFC 6978, July 2013.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options," RFC
6994, Aug. 2013.

 [RFC7323] Borman, D., R. Braden, V. Jacobson, R. Scheffenegger
 (Ed.), "TCP Extensions for High Performance," RFC 7323,
 Sep. 2014.

 [RFC8085] Eggert, L., G. Fairhurst, G. Shepherd, "UDP Usage
 Guidelines," RFC 8085, Feb. 2017.

 [RFC8126] Cotton, M., B. Leiba, T. Narten, "Guidelines for Writing
 an IANA Considerations Section in RFCs," RFC 8126, June
 2017.

https://datatracker.ietf.org/doc/html/rfc3692
https://datatracker.ietf.org/doc/html/rfc3828
https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc4380
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc6081
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6691
https://datatracker.ietf.org/doc/html/rfc6978
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc6994
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc8085
https://datatracker.ietf.org/doc/html/rfc8126

Touch Expires November 2, 2021 [Page 33]

Internet-Draft Transport Options for UDP May 2021

 [RFC8200] Deering, S., R. Hinden, "Internet Protocol Version 6
 (IPv6) Specification," RFC 8200, Jul. 2017.

 [RFC8201] McCann, J., S. Deering, J. Mogul, R. Hinden (Ed.), "Path
 MTU Discovery for IP version 6," RFC 8201, Jul. 2017.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3," RFC 8446, Aug. 2018.

 [RFC8724] Minaburo, A., L. Toutain, C. Gomez, D. Barthel, JC.,
 "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation," RFC 8724, Apr. 2020.

 [RFC8899] Fairhurst, G., T. Jones, M. Tuxen, I. Rungeler, T. Volker,
 "Packetization Layer Path MTU Discovery for Datagram
 Transports," RFC 8899, Sep. 2020.

 [To18ao] Touch, J., "A TCP Authentication Option Extension for
 Payload Encryption," draft-touch-tcp-ao-encrypt, Jul.
 2018.

 [To21cb] Touch, J., M. Welzl, S. Islam, J. You, "TCP Control Block
 Interdependence," draft-touch-tcpm-2140bis, Apr. 2021.

20. Acknowledgments

 This work benefitted from feedback from Bob Briscoe, Ken Calvert,
 Ted Faber, Gorry Fairhurst (including OCS for misbehaving middlebox
 traversal), C. M. Heard (including combining previous FRAG and LITE
 options into the new FRAG), Tom Herbert, Mark Smith, and Raffaele
 Zullo, as well as discussions on the IETF TSVWG and SPUD email
 lists.

 This work was partly supported by USC/ISI's Postel Center.

 This document was prepared using 2-Word-v2.0.template.dot.

Authors' Addresses

 Joe Touch
 Manhattan Beach, CA 90266 USA

 Phone: +1 (310) 560-0334
 Email: touch@strayalpha.com

https://datatracker.ietf.org/doc/html/rfc8200
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8724
https://datatracker.ietf.org/doc/html/rfc8899
https://datatracker.ietf.org/doc/html/draft-touch-tcp-ao-encrypt
https://datatracker.ietf.org/doc/html/draft-touch-tcpm-2140bis

Touch Expires November 2, 2021 [Page 34]

Internet-Draft Transport Options for UDP May 2021

Appendix A. Implementation Information

 The following information is provided to encourage interoperable API
 implementations.

 System-level variables (sysctl):

 Name default meaning
 --
 net.ipv4.udp_opt 0 UDP options available
 net.ipv4.udp_opt_ocs 1 Default include OCS
 net.ipv4.udp_opt_acs 0 Default include ACS
 net.ipv4.udp_opt_mss 0 Default include MSS
 net.ipv4.udp_opt_time 0 Default include TIME
 net.ipv4.udp_opt_frag 0 Default include FRAG
 net.ipv4.udp_opt_ae 0 Default include AE

 Socket options (sockopt), cached for outgoing datagrams:

 Name meaning
 --
 UDP_OPT Enable UDP options (at all)
 UDP_OPT_OCS Enable UDP OCS option
 UDP_OPT_ACS Enable UDP ACS option
 UDP_OPT_MSS Enable UDP MSS option
 UDP_OPT_TIME Enable UDP TIME option
 UDP_OPT_FRAG Enable UDP FRAG option
 UDP_OPT_AE Enable UDP AE option

 Send/sendto parameters:

 Connection parameters (per-socketpair cached state, part UCB):

 Name Initial value
 --
 opts_enabled net.ipv4.udp_opt
 ocs_enabled net.ipv4.udp_opt_ocs

 The following option is included for debugging purposes, and MUST
 NOT be enabled otherwise.

 System variables

 net.ipv4.udp_opt_junk 0

Touch Expires November 2, 2021 [Page 35]

Internet-Draft Transport Options for UDP May 2021

 System-level variables (sysctl):

 Name default meaning
 --
 net.ipv4.udp_opt_junk 0 Default use of junk

 Socket options (sockopt):

 Name params meaning
 --
 UDP_JUNK - Enable UDP junk option
 UDP_JUNK_VAL fillval Value to use as junk fill
 UDP_JUNK_LEN length Length of junk payload in bytes

 Connection parameters (per-socketpair cached state, part UCB):

 Name Initial value
 --
 junk_enabled net.ipv4.udp_opt_junk
 junk_value 0xABCD
 junk_len 4

Touch Expires November 2, 2021 [Page 36]

