
Using TLS in Applications D. Margolis
Internet-Draft M. Risher
Intended status: Standards Track Google, Inc
Expires: November 24, 2018 B. Ramakrishnan
 Yahoo!, Inc
 A. Brotman
 Comcast, Inc
 J. Jones
 Microsoft, Inc
 May 23, 2018

SMTP MTA Strict Transport Security (MTA-STS)
draft-ietf-uta-mta-sts-19

Abstract

 SMTP Mail Transfer Agent Strict Transport Security (MTA-STS) is a
 mechanism enabling mail service providers to declare their ability to
 receive Transport Layer Security (TLS) secure SMTP connections, and
 to specify whether sending SMTP servers should refuse to deliver to
 MX hosts that do not offer TLS with a trusted server certificate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 24, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Margolis, et al. Expires November 24, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft MTA-STS May 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3

2. Related Technologies . 4
3. Policy Discovery . 4
3.1. MTA-STS TXT Records 4
3.2. MTA-STS Policies . 6
3.3. HTTPS Policy Fetching 9
3.4. Policy Selection for Smart Hosts and Subdomains 10

4. Policy Validation . 10
4.1. MX Host Validation 11
4.2. Recipient MTA Certificate Validation 11

5. Policy Application . 11
5.1. Policy Application Control Flow 12

6. Reporting Failures . 12
7. Interoperability Considerations 13
7.1. SNI Support . 13
7.2. Minimum TLS Version Support 13

8. Operational Considerations 13
8.1. Policy Updates . 13
8.2. Policy Delegation . 14
8.3. Removing MTA-STS . 15
8.4. Preserving MX Candidate Traversal 15

9. IANA Considerations . 16
9.1. Well-Known URIs Registry 16
9.2. MTA-STS TXT Record Fields 16
9.3. MTA-STS Policy Fields 16

10. Security Considerations 17
10.1. Obtaining a Signed Certificate 17
10.2. Preventing Policy Discovery 18
10.3. Denial of Service 18
10.4. Weak Policy Constraints 19
10.5. Compromise of the Web PKI System 19

11. Contributors . 20
12. References . 20
12.1. Normative References 20
12.2. Informative References 22

Appendix A. MTA-STS example record & policy 23
Appendix B. Message delivery pseudocode 23

 Authors' Addresses . 25

Margolis, et al. Expires November 24, 2018 [Page 2]

Internet-Draft MTA-STS May 2018

1. Introduction

 The STARTTLS extension to SMTP [RFC3207] allows SMTP clients and
 hosts to negotiate the use of a TLS channel for encrypted mail
 transmission.

 While this opportunistic encryption protocol by itself provides a
 high barrier against passive man-in-the-middle traffic interception,
 any attacker who can delete parts of the SMTP session (such as the
 "250 STARTTLS" response) or who can redirect the entire SMTP session
 (perhaps by overwriting the resolved MX record of the delivery
 domain) can perform downgrade or interception attacks.

 This document defines a mechanism for recipient domains to publish
 policies, via a combination of DNS and HTTPS, specifying:

 o whether MTAs sending mail to this domain can expect PKIX-
 authenticated TLS support

 o what a conforming client should do with messages when TLS cannot
 be successfully negotiated

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [BCP 14] [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 We also define the following terms for further use in this document:

 o MTA-STS Policy: A commitment by the Policy Domain to support PKIX
 [RFC5280] authenticated TLS for the specified MX hosts.

 o Policy Domain: The domain for which an MTA-STS Policy is defined.
 This is the next-hop domain; when sending mail to
 "alice@example.com" this would ordinarily be "example.com", but
 this may be overridden by explicit routing rules (as described in

Section 3.4, "Policy Selection for Smart Hosts and Subdomains").

 o Policy Host: The HTTPS host which serves the MTA-STS Policy for a
 Policy Domain. Rules for constructing the hostname are described
 in Section 3.2, "MTA-STS Policies".

 o Sender: The SMTP Mail Transfer Agent sending an email message.

https://datatracker.ietf.org/doc/html/rfc3207
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5280

Margolis, et al. Expires November 24, 2018 [Page 3]

Internet-Draft MTA-STS May 2018

2. Related Technologies

 The DANE TLSA record [RFC7672] is similar, in that DANE is also
 designed to upgrade unauthenticated encryption or plaintext
 transmission into authenticated, downgrade-resistant encrypted
 transmission. DANE requires DNSSEC [RFC4033] for authentication; the
 mechanism described here instead relies on certificate authorities
 (CAs) and does not require DNSSEC, at a cost of risking malicious
 downgrades. For a thorough discussion of this trade-off, see

Section 10, "Security Considerations".

 In addition, MTA-STS provides an optional testing-only mode, enabling
 soft deployments to detect policy failures; partial deployments can
 be achieved in DANE by deploying TLSA records only for some of a
 domain's MXs, but such a mechanism is not possible for the per-domain
 policies used by MTA-STS.

 The primary motivation of MTA-STS is to provide a mechanism for
 domains to ensure transport security even when deploying DNSSEC is
 undesirable or impractical. However, MTA-STS is designed not to
 interfere with DANE deployments when the two overlap; in particular,
 senders who implement MTA-STS validation MUST NOT allow a "valid" or
 "testing"-only MTA-STS validation to override a failing DANE
 validation.

3. Policy Discovery

 MTA-STS policies are distributed via HTTPS from a "well-known"
 [RFC5785] path served within the Policy Domain, and their presence
 and current version are indicated by a TXT record at the Policy
 Domain. These TXT records additionally contain a policy "id" field,
 allowing sending MTAs to check the currency of a cached policy
 without performing an HTTPS request.

 To discover if a recipient domain implements MTA-STS, a sender need
 only resolve a single TXT record. To see if an updated policy is
 available for a domain for which the sender has a previously cached
 policy, the sender need only check the TXT record's version "id"
 against the cached value.

3.1. MTA-STS TXT Records

 The MTA-STS TXT record is a TXT record with the name "_mta-sts" at
 the Policy Domain. For the domain "example.com", this record would
 be "_mta-sts.example.com". MTA-STS TXT records MUST be US-ASCII,
 semicolon-separated key/value pairs containing the following fields:

 o "v": (plain-text, required). Currently only "STSv1" is supported.

https://datatracker.ietf.org/doc/html/rfc7672
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc5785

Margolis, et al. Expires November 24, 2018 [Page 4]

Internet-Draft MTA-STS May 2018

 o "id": (plain-text, required). A short string used to track policy
 updates. This string MUST uniquely identify a given instance of a
 policy, such that senders can determine when the policy has been
 updated by comparing to the "id" of a previously seen policy.
 There is no implied ordering of "id" fields between revisions.

 An example TXT record is as below:

 "_mta-sts.example.com. IN TXT "v=STSv1; id=20160831085700Z;""

 The formal definition of the "_mta-sts" TXT record, defined using
 [RFC7405], is as follows:

 sts-text-record = sts-version 1*(field-delim sts-field) [field-delim]

 sts-field = sts-id / ; Note that sts-id record
 sts-extension ; is required.

 field-delim = *WSP ";" *WSP

 sts-version = %s"v=STSv1"

 sts-id = %s"id=" 1*32(ALPHA / DIGIT) ; id=...

 sts-extension = sts-ext-name "=" sts-ext-value ; name=value

 sts-ext-name = (ALPHA / DIGIT)
 *31(ALPHA / DIGIT / "_" / "-" / ".")

 sts-ext-value = 1*(%x21-3A / %x3C / %x3E-7E)
 ; chars excluding "=", ";", and control chars

 The TXT record MUST begin with sts-version field, and the order of
 other fields is not significant. If multiple TXT records for "_mta-
 sts" are returned by the resolver, records which do not begin with
 "v=STSv1;" are discarded. If the number of resulting records is not
 one, senders MUST assume the recipient domain does not have an
 available MTA-STS policy and skip the remaining steps of policy
 discovery. (Note that absence of a usable TXT record is not by
 itself sufficient to remove a sender's previously cached policy for
 the Policy Domain, as discussed in Section 5.1, "Policy Application
 Control Flow".) If the resulting TXT record contains multiple
 strings, then the record MUST be treated as if those strings are
 concatenated together without adding spaces.

https://datatracker.ietf.org/doc/html/rfc7405

Margolis, et al. Expires November 24, 2018 [Page 5]

Internet-Draft MTA-STS May 2018

3.2. MTA-STS Policies

 The policy itself is a set of key/value pairs (similar to [RFC5322]
 header fields) served via the HTTPS GET method from the fixed
 [RFC5785] "well-known" path of ".well-known/mta-sts.txt" served by
 the Policy Host. The Policy Host DNS name is constructed by
 prepending "mta-sts" to the Policy Domain.

 Thus for a Policy Domain of "example.com" the ful URL is
 "https://mta-sts.example.com/.well-known/mta-sts.txt".

 When fetching a policy, senders SHOULD validate that the media type
 is "text/plain" to guard against cases where webservers allow
 untrusted users to host non-text content (typically, HTML or images)
 at a user-defined path. All parameters other than charset=utf-8 or
 charset=us-ascii are ignored. Additional "Content-Type" parameters
 are also ignored.

 This resource contains the following CRLF-separated key/value pairs:

 o "version": Currently only "STSv1" is supported.

 o "mode": One of "enforce", "testing", or "none", indicating the
 expected behavior of a sending MTA in the case of a policy
 validation failure. See Section 5, "Policy Application." for more
 details about the three modes.

 o "max_age": Max lifetime of the policy (plain-text non-negative
 integer seconds, maximum value of 31557600). Well-behaved clients
 SHOULD cache a policy for up to this value from last policy fetch
 time. To mitigate the risks of attacks at policy refresh time, it
 is expected that this value typically be in the range of weeks or
 greater.

 o "mx": Allowed MX patterns. One or more patterns matching allowed
 MX hosts for the Policy Domain. As an example,

 mx: mail.example.com <CRLF>
 mx: *.example.net

 indicates that mail for this domain might be handled by MX
 "mail.example.com" or any MX at "example.net". Valid patterns can be
 either fully specified names ("example.com") or suffixes prefixed by
 a wildcard ("*.example.net"). If a policy specifies more than one
 MX, each MX MUST have its own "mx:" key, and each MX key/value pair
 MUST be on its own line in the policy file. In the case of
 Internationalized Domain Names ([RFC5891]), the "mx" value MUST
 specify the Punycode-encoded A-label [RFC3492] to match against, and

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc3492

Margolis, et al. Expires November 24, 2018 [Page 6]

Internet-Draft MTA-STS May 2018

 not the Unicode-encoded U-label. The full semantics of certificate
 validation (including the use of wildcard patterns) are described in

Section 4.1, "MX Host Validation."

 An example policy is as below:

 version: STSv1
 mode: enforce
 mx: mail.example.com
 mx: *.example.net
 mx: backupmx.example.com
 max_age: 604800

 The formal definition of the policy resource, defined using
 [RFC7405], is as follows:

sts-policy-record = sts-policy-field *WSP
 *(CRLF sts-policy-field *WSP)
 [CRLF]

sts-policy-field = sts-policy-version / ; required once
 sts-policy-mode / ; required once
 sts-policy-max-age / ; required once

 0*(sts-policy-mx *WSP CRLF) /
 ; required at least once, except when
 ; mode is "none"

 sts-policy-extension ; other fields

field-delim = ":" *WSP

sts-policy-version = sts-policy-version-field field-delim
 sts-policy-version-value

sts-policy-version-field = %s"version"

sts-policy-version-value = %s"STSv1"

sts-policy-mode = sts-policy-mode-field field-delim
 sts-policy-mode-value

sts-policy-mode-field = %s"mode"

sts-policy-mode-value = %s"testing" / %s"enforce" / %s"none"

sts-policy-mx = sts-policy-mx-field field-delim
 sts-policy-mx-value

https://datatracker.ietf.org/doc/html/rfc7405

Margolis, et al. Expires November 24, 2018 [Page 7]

Internet-Draft MTA-STS May 2018

sts-policy-mx-field = %s"mx"

sts-policy-mx-value = ["*."] *(sts-policy-mx-label ".")
 sts-policy-mx-toplabel

sts-policy-mx-label = sts-policy-alphanum |
 sts-policy-alphanum *(sts-policy-alphanum | "-")
 sts-policy-alphanum

sts-policy-mx-toplabel = ALPHA | ALPHA *(sts-policy-alphanum | "-")
 sts-policy-alphanum

sts-policy-max-age = sts-policy-max-age-field field-delim
 sts-policy-max-age-value

sts-policy-max-age-field = %s"max_age"

sts-policy-max-age-value = 1*10(DIGIT)

sts-policy-extension = sts-policy-ext-name ; additional
 field-delim ; extension
 sts-policy-ext-value ; fields

sts-policy-ext-name = (sts-policy-alphanum)
 *31(sta-policy-alphanum / "_" / "-" / ".")

sts-policy-term = CRLF / LF

sts-policy-ext-value = sts-policy-vchar
 [*(%x20 / sts-policy-vchar)
 sts-policy-vchar]
 ; chars, including UTF-8 [@?RFC3629],
 ; excluding CTLs and no
 ; leading/trailing spaces

sts-policy-alphanum = ALPHA | DIGIT

sts-policy-vchar = %x21-7E / UTF8-2 / UTF8-3 / UTF8-4

 Parsers MUST accept TXT records and policy files which are
 syntactically valid (i.e., valid key/value pairs separated by semi-
 colons for TXT records) and but containing additional key/value pairs
 not specified in this document, in which case unknown fields SHALL be
 ignored. If any non-repeated field--i.e., all fields excepting "mx"
 --is duplicated, all entries except for the first SHALL be ignored.
 If any field is not specified, the policy SHALL be treated as
 invalid.

https://datatracker.ietf.org/doc/html/rfc3629

Margolis, et al. Expires November 24, 2018 [Page 8]

Internet-Draft MTA-STS May 2018

3.3. HTTPS Policy Fetching

 Policy bodies are, as described above, retrieved by sending MTAs via
 HTTPS [RFC2818]. During the TLS handshake initiated to fetch a new
 or updated policy from the Policy Host, the Policy Host HTTPS server
 MUST present a X.509 certificate which is valid for the "mta-sts"
 DNS-ID ([RFC6125]) (e.g., "mta-sts.example.com") as described below,
 chain to a root CA that is trusted by the sending MTA, and be non-
 expired. It is expected that sending MTAs use a set of trusted CAs
 similar to those in widely deployed Web browsers and operating
 systems. See [RFC5280] for more details about certificate
 verification.

 The certificate is valid for the Policy Host (i.e., "mta-sts"
 prepended to the Policy Domain) with respect to the rules described
 in [RFC6125], with the following application-specific considerations:

 o Matching is performed only against the DNS-ID identifiers.

 o DNS domain names in server certificates MAY contain the wildcard
 character '*' as the complete left-most label within the
 identifier.

 The certificate MAY be checked for revocation via the Online
 Certificate Status Protocol (OCSP) [RFC6960], certificate revocation
 lists (CRLs), or some other mechanism.

 Policies fetched via HTTPS are only valid if the HTTP response code
 is 200 (OK). HTTP 3xx redirects MUST NOT be followed, and HTTP
 caching (as specified in [RFC7234]) MUST NOT be used.

 Senders may wish to rate-limit the frequency of attempts to fetch the
 HTTPS endpoint even if a valid TXT record for the recipient domain
 exists. In the case that the HTTPS GET fails, we implementions
 SHOULD limit further attempts to a period of five minutes or longer
 per version ID, to avoid overwhelming resource-constrained recipients
 with cascading failures.

 Senders MAY impose a timeout on the HTTPS GET and/or a limit on the
 maximum size of the response body to avoid long delays or resource
 exhaustion during attempted policy updates. A suggested timeout is
 one minute, and a suggested maximum policy size 64 kilobytes; policy
 hosts SHOULD respond to requests with a complete policy body within
 that timeout and size limit.

 If a valid TXT record is found but no policy can be fetched via HTTPS
 (for any reason), and there is no valid (non-expired) previously-

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc7234

Margolis, et al. Expires November 24, 2018 [Page 9]

Internet-Draft MTA-STS May 2018

 cached policy, senders MUST continue with delivery as though the
 domain has not implemented MTA-STS.

 Conversely, if no "live" policy can be discovered via DNS or fetched
 via HTTPS, but a valid (non-expired) policy exists in the sender's
 cache, the sender MUST apply that cached policy.

 Finally, to mitigate the risk of persistent interference with policy
 refresh, as discussed in-depth in Section 10, MTAs SHOULD proactively
 refresh cached policies before they expire; a suggested refresh
 frequency is once per day. To enable administrators to discover
 problems with policy refresh, MTAs SHOULD alert administrators
 (through the use of logs or similar) when such attempts fail, unless
 the cached policy mode is "none".

3.4. Policy Selection for Smart Hosts and Subdomains

 When sending mail via a "smart host"--an administratively configured
 intermediate SMTP relay, which is different from the message
 recipient's server as determined from DNS --compliant senders MUST
 treat the smart host domain as the policy domain for the purposes of
 policy discovery and application.

 When sending mail to a mailbox at a subdomain, compliant senders MUST
 NOT attempt to fetch a policy from the parent zone. Thus for mail
 sent to "user@mail.example.com", the policy can be fetched only from
 "mail.example.com", not "example.com".

4. Policy Validation

 When sending to an MX at a domain for which the sender has a valid
 and non-expired MTA-STS policy, a sending MTA honoring MTA-STS MUST
 check whether:

 1. At least one of the policy's "mx" patterns matches the selected
 MX host, as described in Section 4.1, "MX Host Validation".

 2. The recipient mail server supports STARTTLS and offers a PKIX-
 based TLS certificate, during TLS handshake, which is valid for
 that host, as described in Section 4.2, "Recipient MTA
 Certificate Validation".

 When these conditions are not met, a policy is said to fail to
 validate. This section does not dictate the behavior of sending MTAs
 when the above conditions are not met; see Section 5, "Policy
 Application" for a description of sending MTA behavior when policy
 validation fails.

Margolis, et al. Expires November 24, 2018 [Page 10]

Internet-Draft MTA-STS May 2018

4.1. MX Host Validation

 A receiving candidate MX host is valid according to an applied MTA-
 STS policy if the MX record name matches one or more of the "mx"
 fields in the applied policy. Matching is identical to the rules
 given in [RFC6125], with restriction that the wildcard character "*"
 may only be used to match the entire left-most label in the presented
 identifier. Thus the mx pattern "*.example.com" matches
 "mail.example.com" but not "example.com" or "foo.bar.example.com".

4.2. Recipient MTA Certificate Validation

 The certificate presented by the receiving MTA MUST not be expired,
 and MUST chain to a root CA that is trusted by the sending MTA. The
 certificate MUST have a subject alternative name (SAN, [RFC5280])
 with a DNS-ID ([RFC6125]) matching the host name, per the rules given
 in [RFC6125]. The MX's certificate MAY also be checked for
 revocation via OCSP [RFC6960], CRLs [RFC6818], or some other
 mechanism.

5. Policy Application

 When sending to an MX at a domain for which the sender has a valid,
 non-expired MTA-STS policy, a sending MTA honoring MTA-STS applies
 the result of a policy validation failure one of two ways, depending
 on the value of the policy "mode" field:

 1. "enforce": In this mode, sending MTAs MUST NOT deliver the
 message to hosts which fail MX matching or certificate
 validation, or do not support STARTTLS.

 2. "testing": In this mode, sending MTAs which also implement the
 TLSRPT specification [I-D.ietf-uta-smtp-tlsrpt] merely send a
 report indicating policy application failures (so long as TLSRPT
 is also implemented by the recipient domain).

 3. "none": In this mode, sending MTAs should treat the policy domain
 as though it does not have any active policy; see Section 8.3,
 "Removing MTA-STS", for use of this mode value.

 When a message fails to deliver due to an "enforce" policy, a
 compliant MTA MUST NOT permanently fail to deliver messages before
 checking, via DNS, for the presence of an updated policy at the
 Policy Domain. (In all cases, MTAs SHOULD treat such failures as
 transient errors and retry delivery later.) This allows implementing
 domains to update long-lived policies on the fly.

https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6818

Margolis, et al. Expires November 24, 2018 [Page 11]

Internet-Draft MTA-STS May 2018

5.1. Policy Application Control Flow

 An example control flow for a compliant sender consists of the
 following steps:

 1. Check for a cached policy whose time-since-fetch has not exceeded
 its "max_age". If none exists, attempt to fetch a new policy
 (perhaps asynchronously, so as not to block message delivery).
 Optionally, sending MTAs may unconditionally check for a new
 policy at this step.

 2. For each candidate MX, in order of MX priority, attempt to
 deliver the message. If a policy is present with an "enforce"
 mode, when attempting to deliver to each candidate MX, ensure
 STARTTLS support and host identity validity as described in

Section 4, "Policy Validation". If a candidate fails validation,
 continue to the next candidate (if there is one).

 3. A message delivery MUST NOT be permanently failed until the
 sender has first checked for the presence of a new policy (as
 indicated by the "id" field in the "_mta-sts" TXT record). If a
 new policy is not found, existing rules for the case of temporary
 message delivery failures apply (as discussed in [RFC5321]
 section 4.5.4.1).

6. Reporting Failures

 MTA-STS is intended to be used along with TLSRPT
 [I-D.ietf-uta-smtp-tlsrpt] in order to ensure implementing domains
 can detect cases of both benign and malicious failures, and to ensure
 that failures that indicate an active attack are discoverable. As
 such, senders who also implement TLSRPT SHOULD treat the following
 events as reportable failures:

 o HTTPS policy fetch failures when a valid TXT record is present.

 o Policy fetch failures of any kind when a valid policy exists in
 the policy cache, except if that policy's mode is "none".

 o Delivery attempts in which a contacted MX does not support
 STARTTLS or does not present a certificate which validates
 according to the applied policy, except if that policy's mode is
 "none".

https://datatracker.ietf.org/doc/html/rfc5321#section-4.5.4.1
https://datatracker.ietf.org/doc/html/rfc5321#section-4.5.4.1

Margolis, et al. Expires November 24, 2018 [Page 12]

Internet-Draft MTA-STS May 2018

7. Interoperability Considerations

7.1. SNI Support

 To ensure that the server sends the right certificate chain, the SMTP
 client MUST have support for the TLS SNI extension [RFC6066]. When
 connecting to a HTTP server to retrieve the MTA-STS policy, the SNI
 extension MUST contain the name of the policy host (e.g., "mta-
 sts.example.com"). When connecting to an SMTP server, the SNI
 extension MUST contain the MX hostname.

 HTTP servers used to deliver MTA-STS policies MAY rely on SNI to
 determine which certificate chain to present to the client. HTTP
 servers MUST respond with a certificate chain that matches the policy
 hostname or abort the TLS handshake if unable to do so. Clients that
 do not send SNI information may not see the expected certificate
 chain.

 SMTP servers MAY rely on SNI to determine which certificate chain to
 present to the client. However servers that have one identity and a
 single matching certificate do not require SNI support. Servers MUST
 NOT enforce the use of SNI by clients, as the client may be using
 unauthenticated opportunistic TLS and may not expect any particular
 certificate from the server. If the client sends no SNI extension or
 sends an SNI extension for an unsupported server name, the server
 MUST simply send a fallback certificate chain of its choice. The
 reason for not enforcing strict matching of the requested SNI
 hostname is that MTA-STS TLS clients may be typically willing to
 accept multiple server names but can only send one name in the SNI
 extension. The server's fallback certificate may match a different
 name that is acceptable to the client, e.g., the original next-hop
 domain.

7.2. Minimum TLS Version Support

 MTAs supporting MTA-STS MUST have support for TLS version 1.2
 [RFC5246] or higher. The general TLS usage guidance in [RFC7525]
 SHOULD be followed.

8. Operational Considerations

8.1. Policy Updates

 Updating the policy requires that the owner make changes in two
 places: the "_mta-sts" TXT record in the Policy Domain's DNS zone and
 at the corresponding HTTPS endpoint. As a result, recipients should
 expect a policy will continue to be used by senders until both the

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7525

Margolis, et al. Expires November 24, 2018 [Page 13]

Internet-Draft MTA-STS May 2018

 HTTPS and TXT endpoints are updated and the TXT record's TTL has
 passed.

 In other words, a sender who is unable to successfully deliver a
 message while applying a cache of the recipient's now-outdated policy
 may be unable to discover that a new policy exists until the DNS TTL
 has passed. Recipients SHOULD therefore ensure that old policies
 continue to work for message delivery during this period of time, or
 risk message delays.

 Recipients SHOULD also update the HTTPS policy body before updating
 the TXT record; this ordering avoids the risk that senders, seeing a
 new TXT record, mistakenly cache the old policy from HTTPS.

8.2. Policy Delegation

 Domain owners commonly delegate SMTP hosting to a different
 organization, such as an ISP or a Web host. In such a case, they may
 wish to also delegate the MTA-STS policy to the same organization
 which can be accomplished with two changes.

 First, the Policy Domain must point the "_mta-sts" record, via CNAME,
 to the "_mta-sts" record maintained by the hosting organization.
 This allows the hosting organization to control update signaling.

 Second, the Policy Domain must point the "well-known" policy location
 to the hosting organization. This can be done either by setting the
 "mta-sts" record to an IP address or CNAME specified by the hosting
 organization and by giving the hosting organization a TLS certificate
 which is valid for that host, or by setting up a "reverse proxy"
 (also known as a "gateway") server that serves as the Policy Domain's
 policy the policy currently served by the hosting organization.

 For example, given a user domain "user.example" hosted by a mail
 provider "provider.example", the following configuration would allow
 policy delegation:

 DNS:

 _mta-sts.user.example. IN CNAME _mta-sts.provider.example.

 Policy:

 > GET /.well-known/mta-sts.txt Host: mta-sts.user.example
 < HTTP/1.1 200 OK # Response proxies content from
 # https://mta-sts.provider.example

https://mta-sts.provider.example

Margolis, et al. Expires November 24, 2018 [Page 14]

Internet-Draft MTA-STS May 2018

 Note that in all such cases, the policy endpoint ("https://mta-
 sts.user.example/.well-known/mta-sts.txt" in this example) must still
 present a certificate valid for the Policy Host ("mta-
 sts.user.example"), and not for that host at the provider's domain
 ("mta-sts.provider.example").

 Note that while sending MTAs MUST NOT use HTTP caching when fetching
 policies via HTTPS, such caching may nonetheless be useful to a
 reverse proxy configured as described in this section. An HTTPS
 policy endpoint expecting to be proxied for multiple hosted domains--
 as with a large mail hosting provider or similar--may wish to
 indicate an HTTP Cache-Control "max-age" response directive (as
 specified in [RFC7234]) of 60 seconds as a reasonable value to save
 reverse proxies an unnecessarily high-rate of proxied policy
 fetching.

8.3. Removing MTA-STS

 In order to facilitate clean opt-out of MTA-STS by implementing
 policy domains, and to distinguish clearly between failures which
 indicate attacks and those which indicate such opt-outs, MTA-STS
 implements the "none" mode, which allows validated policies to
 indicate authoritatively that the policy domain wishes to no longer
 implement MTA-STS and may, in the future, remove the MTA-STS TXT and
 policy endpoints entirely.

 A suggested workflow to implement such an opt out is as follows:

 1. Publish a new policy with "mode" equal to "none" and a small
 "max_age" (e.g., one day).

 2. Publish a new TXT record to trigger fetching of the new policy.

 3. When all previously served policies have expired--normally this
 is the time the previously published policy was last served plus
 that policy's "max_age", but note that older policies may have
 been served with a greater "max_age", allowing overlapping policy
 caches--safely remove the TXT record and HTTPS endpoint.

8.4. Preserving MX Candidate Traversal

 Implementors of send-time MTA-STS validation in mail transfer agents
 should take note of the risks of modifying the logic of traversing MX
 candidate lists. Because an MTA-STS policy can be used to prefilter
 invalid MX candidates from the MX candidate list, it is tempting to
 implement a "two-pass" model, where MX candidates are first filtered
 for possible validity according to the MTA-STS policy, and then the
 remaining candidates attempted in order as without an MTA-STS policy.

https://datatracker.ietf.org/doc/html/rfc7234

Margolis, et al. Expires November 24, 2018 [Page 15]

Internet-Draft MTA-STS May 2018

 This may lead to incorrect implementations, such a message loops;
 implementors are instead recommended to traverse the MX candidate
 list as usual, and treat invalid candidates as though they were
 unreachable (i.e., as though there were some transient error when
 trying to deliver to that candidate).

 One consequence of validating MX hosts in order of ordinary candidate
 traversal is that, in the event that a higher-priority MX is MTA-STS
 valid and a lower-priority MX is not, senders may never encounter the
 lower-priority MX, leading to a risk that policy misconfigurations
 that apply only to "backup" MXes may only be discovered in the case
 of primary MX failure.

9. IANA Considerations

9.1. Well-Known URIs Registry

 A new "well-known" URI as described in Section 3 will be registered
 in the Well-Known URIs registry as described below:

 URI Suffix: mta-sts.txt Change Controller: IETF

9.2. MTA-STS TXT Record Fields

 IANA is requested to create a new registry titled "MTA-STS TXT Record
 Fields". The initial entries in the registry are:

 +------------+--------------------+------------------------+
 | Field Name | Description | Reference |
 +------------+--------------------+------------------------+
 | v | Record version | Section 3.1 of RFC XXX |
 | id | Policy instance ID | Section 3.1 of RFC XXX |
 +------------+--------------------+------------------------+

 New fields are added to this registry using IANA's "Expert Review"
 policy.

9.3. MTA-STS Policy Fields

 IANA is requested to create a new registry titled "MTA-STS Policy
 Fields". The initial entries in the registry are:

Margolis, et al. Expires November 24, 2018 [Page 16]

Internet-Draft MTA-STS May 2018

 +------------+----------------------+------------------------+
 | Field Name | Description | Reference |
 +------------+----------------------+------------------------+
 | version | Policy version | Section 3.2 of RFC XXX |
 | mode | Enforcement behavior | Section 3.2 of RFC XXX |
 | max_age | Policy lifetime | Section 3.2 of RFC XXX |
 | mx | MX identities | Section 3.2 of RFC XXX |
 +------------+----------------------+------------------------+

 New fields are added to this registry using IANA's "Expert Review"
 policy.

10. Security Considerations

 SMTP MTA Strict Transport Security attempts to protect against an
 active attacker trying to intercept or tamper with mail between hosts
 that support STARTTLS. There are two classes of attacks considered:

 o Foiling TLS negotiation, for example by deleting the "250
 STARTTLS" response from a server or altering TLS session
 negotiation. This would result in the SMTP session occurring over
 plaintext, despite both parties supporting TLS.

 o Impersonating the destination mail server, whereby the sender
 might deliver the message to an impostor, who could then monitor
 and/or modify messages despite opportunistic TLS. This
 impersonation could be accomplished by spoofing the DNS MX record
 for the recipient domain, or by redirecting client connections
 intended for the legitimate recipient server (for example, by
 altering BGP routing tables).

 MTA-STS can thwart such attacks only if the sender is able to
 previously obtain and cache a policy for the recipient domain, and
 only if the attacker is unable to obtain a valid certificate that
 complies with that policy. Below, we consider specific attacks on
 this model.

10.1. Obtaining a Signed Certificate

 SMTP MTA-STS relies on certificate validation via PKIX based TLS
 identity checking [RFC6125]. Attackers who are able to obtain a
 valid certificate for the targeted recipient mail service (e.g., by
 compromising a certificate authority) are thus able to circumvent STS
 authentication.

https://datatracker.ietf.org/doc/html/rfc6125

Margolis, et al. Expires November 24, 2018 [Page 17]

Internet-Draft MTA-STS May 2018

10.2. Preventing Policy Discovery

 Since MTA-STS uses DNS TXT records for policy discovery, an attacker
 who is able to block DNS responses can suppress the discovery of an
 MTA-STS Policy, making the Policy Domain appear not to have an MTA-
 STS Policy. The sender policy cache is designed to resist this
 attack by decreasing the frequency of policy discovery and thus
 reducing the window of vulnerability; it is nonetheless a risk that
 attackers who can predict or induce policy discovery--for example, by
 inducing a sending domain to send mail to a never-before-contacted
 recipient while carrying out a man-in-the-middle attack--may be able
 to foil policy discovery and effectively downgrade the security of
 the message delivery.

 Since this attack depends upon intercepting initial policy discovery,
 implementers SHOULD prefer policy "max_age" values to be as long as
 is practical.

 Because this attack is also possible upon refresh of a cached policy,
 implementors SHOULD NOT wait until a cached policy has expired before
 checking for an update; if senders attempt to refresh the cache
 regularly (for example, by fetching currently live policy in a
 background task that runs daily or weekly, regardless of the state of
 the "_mta_sts" TXT record, and updating their cache's "max age"
 accordingly), an attacker would have to foil policy discovery
 consistently over the lifetime of a cached policy to prevent a
 successful refresh.

 Additionally, MTAs SHOULD alert administrators to repeated policy
 refresh failures long before cached policies expire (through warning
 logs or similar applicable mechanisms), allowing administrators to
 detect such a persistent attack on policy refresh. (However, they
 should not implement such alerts if the cached policy has a "none"
 mode, to allow clean MTA-STS removal, as described in Section 8.3.)

 Resistance to downgrade attacks of this nature--due to the ability to
 authoritatively determine "lack of a record" even for non-
 participating recipients--is a feature of DANE, due to its use of
 DNSSEC for policy discovery.

10.3. Denial of Service

 We additionally consider the Denial of Service risk posed by an
 attacker who can modify the DNS records for a recipient domain.
 Absent MTA-STS, such an attacker can cause a sending MTA to cache
 invalid MX records, but only for however long the sending resolver
 caches those records. With MTA-STS, the attacker can additionally
 advertise a new, long-"max_age" MTA-STS policy with "mx" constraints

Margolis, et al. Expires November 24, 2018 [Page 18]

Internet-Draft MTA-STS May 2018

 that validate the malicious MX record, causing senders to cache the
 policy and refuse to deliver messages once the victim has resecured
 the MX records.

 This attack is mitigated in part by the ability of a victim domain to
 (at any time) publish a new policy updating the cached, malicious
 policy, though this does require the victim domain to both obtain a
 valid CA-signed certificate and to understand and properly configure
 MTA-STS.

 Similarly, we consider the possibility of domains that deliberately
 allow untrusted users to serve untrusted content on user-specified
 subdomains. In some cases (e.g., the service Tumblr.com) this takes
 the form of providing HTTPS hosting of user-registered subdomains; in
 other cases (e.g. dynamic DNS providers) this takes the form of
 allowing untrusted users to register custom DNS records at the
 provider's domain.

 In these cases, there is a risk that untrusted users would be able to
 serve custom content at the "mta-sts" host, including serving an
 illegitimate MTA-STS policy. We believe this attack is rendered more
 difficult by the need for the attacker to also serve the "_mta-sts"
 TXT record on the same domain--something not, to our knowledge,
 widely provided to untrusted users. This attack is additionally
 mitigated by the aforementioned ability for a victim domain to update
 an invalid policy at any future date.

10.4. Weak Policy Constraints

 Even if an attacker cannot modify a served policy, the potential
 exists for configurations that allow attackers on the same domain to
 receive mail for that domain. For example, an easy configuration
 option when authoring an MTA-STS Policy for "example.com" is to set
 the "mx" equal to "*.example.com"; recipient domains must consider in
 this case the risk that any user possessing a valid hostname and CA-
 signed certificate (for example, "dhcp-123.example.com") will, from
 the perspective of MTA-STS Policy validation, be a valid MX host for
 that domain.

10.5. Compromise of the Web PKI System

 A host of risks apply to the PKI system used for certificate
 authentication, both of the "mta-sts" HTTPS host's certificate and
 the SMTP servers' certificates. These risks are broadly applicable
 within the Web PKI ecosystem and are not specific to MTA-STS;
 nonetheless, they deserve some consideration in this context.

Margolis, et al. Expires November 24, 2018 [Page 19]

Internet-Draft MTA-STS May 2018

 Broadly speaking, attackers may compromise the system by obtaining
 certificates under fraudulent circumstances (i.e., by impersonating
 the legitimate owner of the victim domain), by compromising a
 Certificate Authority or Delegate Authority's private keys, by
 obtaining a legitimate certificate issued to the victim domain, and
 similar.

 One approach commonly employed by Web browsers to help mitigate
 against some of these attacks is to allow for revocation of
 compromised or fraudulent certificates via OCSP [RFC6960] or CRLs
 [RFC6818]. Such mechanisms themselves represent tradeoffs and are
 not universally implemented; we nonetheless recommend implementors of
 MTA-STS to implement revocation mechanisms which are most applicable
 to their implementations.

11. Contributors

 Wei Chuang Google, Inc weihaw@google.com

 Viktor Dukhovni ietf-dane@dukhovni.de

 Markus Laber 1&1 Mail & Media Development & Technology GmbH
 markus.laber@1und1.de

 Nicolas Lidzborski Google, Inc nlidz@google.com

 Brandon Long Google, Inc blong@google.com

 Franck Martin LinkedIn, Inc fmartin@linkedin.com

 Klaus Umbach 1&1 Mail & Media Development & Technology GmbH
 klaus.umbach@1und1.de

12. References

12.1. Normative References

 [I-D.ietf-uta-smtp-tlsrpt]
 Margolis, D., Brotman, A., Ramakrishnan, B., Jones, J.,
 and M. Risher, "SMTP TLS Reporting", draft-ietf-uta-smtp-

tlsrpt-21 (work in progress), May 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc6960
https://datatracker.ietf.org/doc/html/rfc6818
https://datatracker.ietf.org/doc/html/draft-ietf-uta-smtp-tlsrpt-21
https://datatracker.ietf.org/doc/html/draft-ietf-uta-smtp-tlsrpt-21
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Margolis, et al. Expires November 24, 2018 [Page 20]

Internet-Draft MTA-STS May 2018

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3207] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, DOI 10.17487/RFC3207,
 February 2002, <https://www.rfc-editor.org/info/rfc3207>.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, DOI 10.17487/RFC3492, March 2003,
 <https://www.rfc-editor.org/info/rfc3492>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC7405] Kyzivat, P., "Case-Sensitive String Support in ABNF",
RFC 7405, DOI 10.17487/RFC7405, December 2014,

 <https://www.rfc-editor.org/info/rfc7405>.

https://datatracker.ietf.org/doc/html/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc3207
https://www.rfc-editor.org/info/rfc3207
https://datatracker.ietf.org/doc/html/rfc3492
https://www.rfc-editor.org/info/rfc3492
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc5321
https://www.rfc-editor.org/info/rfc5321
https://datatracker.ietf.org/doc/html/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6125
https://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc7405
https://www.rfc-editor.org/info/rfc7405

Margolis, et al. Expires November 24, 2018 [Page 21]

Internet-Draft MTA-STS May 2018

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC6818] Yee, P., "Updates to the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 6818, DOI 10.17487/RFC6818, January
 2013, <https://www.rfc-editor.org/info/rfc6818>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",

RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC7672] Dukhovni, V. and W. Hardaker, "SMTP Security via
 Opportunistic DNS-Based Authentication of Named Entities
 (DANE) Transport Layer Security (TLS)", RFC 7672,
 DOI 10.17487/RFC7672, October 2015,
 <https://www.rfc-editor.org/info/rfc7672>.

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://datatracker.ietf.org/doc/html/rfc5891
https://www.rfc-editor.org/info/rfc5891
https://datatracker.ietf.org/doc/html/rfc6818
https://www.rfc-editor.org/info/rfc6818
https://datatracker.ietf.org/doc/html/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc7672
https://www.rfc-editor.org/info/rfc7672

Margolis, et al. Expires November 24, 2018 [Page 22]

Internet-Draft MTA-STS May 2018

Appendix A. MTA-STS example record & policy

 The owner of "example.com" wishes to begin using MTA-STS with a
 policy that will solicit reports from senders without affecting how
 the messages are processed, in order to verify the identity of MXs
 that handle mail for "example.com", confirm that TLS is correctly
 used, and ensure that certificates presented by the recipient MX
 validate.

 MTA-STS policy indicator TXT RR:

 _mta-sts.example.com. IN TXT "v=STSv1; id=20160831085700Z;"

 MTA-STS Policy file served as the response body at "https://mta-
 sts.example.com/.well-known/mta-sts.txt":

 version: STSv1
 mode: testing
 mx: mx1.example.com
 mx: mx2.example.com
 mx: mx.backup-example.com
 max_age: 1296000

Appendix B. Message delivery pseudocode

 Below is pseudocode demonstrating the logic of a compliant sending
 MTA.

 While this pseudocode implementation suggests synchronous policy
 retrieval in the delivery path, in a working implementation that may
 be undesirable, and we expect some implementers to instead prefer a
 background fetch that does not block delivery if no cached policy is
 present.

func isEnforce(policy) {
 // Return true if the policy mode is "enforce".
}

func isNonExpired(policy) {
 // Return true if the policy is not expired.
}

func tryStartTls(connection) {
 // Attempt to open an SMTP connection with STARTTLS with the MX.
}

func certMatches(connection, host) {

Margolis, et al. Expires November 24, 2018 [Page 23]

Internet-Draft MTA-STS May 2018

 // Assume a handy function to return check if the server certificate
presented
 // in "connection" is valid for "host".
}

func policyMatches(candidate, policy) {
 for mx in policy.mx {
 // Literal match.
 if mx == candidate {
 return true
 }
 // Wildcard matches only the leftmost label.
 // Wildcards must always be followed by a '.'.
 if mx[0] == '*' {
 parts = SplitN(candidate, '.', 2) // Split on the first '.'.
 if len(parts) > 1 && parts[1] == mx[2:] {
 return true
 }
 }
 }
 return false
}

func tryDeliverMail(connection, message) {
 // Attempt to deliver "message" via "connection".
}

func tryGetNewPolicy(domain) {
 // Check for an MTA-STS TXT record for "domain" in DNS, and return the
 // indicated policy.
}

func cachePolicy(domain, policy) {
 // Store "policy" as the cached policy for "domain".
}

func tryGetCachedPolicy(domain) {
 // Return a cached policy for "domain".
}

func reportError(error) {
 // Report an error via TLSRPT.
}

func tryMxAccordingTo(message, mx, policy) {
 connection := connect(mx)
 if !connection {
 return false // Can't connect to the MX so it's not an MTA-STS

 // error.

Margolis, et al. Expires November 24, 2018 [Page 24]

Internet-Draft MTA-STS May 2018

 }
 secure := true
 if !policyMatches(mx, policy) {
 secure = false
 reportError(E_HOST_MISMATCH)
 } else if !tryStartTls(connection) {
 secure = false
 reportError(E_NO_VALID_TLS)
 } else if !certMatches(connection, policy) {
 secure = false
 reportError(E_CERT_MISMATCH)
 }
 if secure || !isEnforce(policy) {
 return tryDeliverMail(connection, message)
 }
 return false
}

func tryWithPolicy(message, domain, policy) {
 mxes := getMxForDomain(domain)
 for mx in mxes {
 if tryMxAccordingTo(message, mx, policy) {
 return true
 }
 }
 return false
}

func handleMessage(message) {
 domain := ... // domain part after '@' from recipient
 policy := tryGetNewPolicy(domain)
 if policy {
 cachePolicy(domain, policy)
 } else {
 policy = tryGetCachedPolicy(domain)
 }
 if policy {
 return tryWithPolicy(message, domain, policy)
 }
 // Try to deliver the message normally (i.e., without MTA-STS).
}

Authors' Addresses

Margolis, et al. Expires November 24, 2018 [Page 25]

Internet-Draft MTA-STS May 2018

 Daniel Margolis
 Google, Inc

 Email: dmargolis@google.com

 Mark Risher
 Google, Inc

 Email: risher@google.com

 Binu Ramakrishnan
 Yahoo!, Inc

 Email: rbinu@yahoo-inc.com

 Alexander Brotman
 Comcast, Inc

 Email: alex_brotman@comcast.com

 Janet Jones
 Microsoft, Inc

 Email: janet.jones@microsoft.com

Margolis, et al. Expires November 24, 2018 [Page 26]

