
v6ops D. Wing

Internet-Draft A. Yourtchenko

Intended status: Standards Track Cisco

Expires: November 26, 2011 May 25, 2011

Happy Eyeballs: Trending Towards Success with Dual-Stack Hosts

draft-ietf-v6ops-happy-eyeballs-02

Abstract

This document describes an algorithm for a dual-stack client to quickly

determine the functioning address family to a dual-stack server, and

trend towards using that same address family for subsequent

connections. This improves the dual-stack user experience during IPv6

or IPv4 server or network outages.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on November 26, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Notational Conventions

3. Problem Statement

*

*

*

3.1. URIs and hostnames

3.2. IPv6 connectivity

4. Client Recommendations

5. Implementation details: A and AAAA

5.1. Description of State Variables

5.2. Initialization, Cache Flush, and Resetting Smoothed P

5.3. Connecting to a Server

5.4. Adjusting Address Family Preferences

5.5. Exception Cache

6. Implementation Details: SRV

7. Additional Considerations

7.1. Additional Network and Host Traffic

7.2. Abandon Non-Winning Connections

7.3. Determining Address Type

7.4. Debugging and Troubleshooting

7.5. DNS Behavior

7.6. Middlebox Issues

7.7. Multiple Interfaces

7.8. Interaction with Same Origin Policy

8. Content Provider Recommendations

9. Security Considerations

10. Acknowledgements

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informational References

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Appendix A. Changes

Appendix A.1. changes from -01 to -02

Appendix A.2. changes from -00 to -01

Authors' Addresses

1. Introduction

In order to use HTTP successfully over IPv6, it is necessary that the

user enjoys nearly identical performance as compared to IPv4. A

combination of today's applications, IPv6 tunneling and IPv6 service

providers, and some of today's content providers all cause the user

experience to suffer (Section 3). For IPv6, a content provider may

ensure a positive user experience by using a DNS white list of IPv6

service providers who peer directly with them, e.g. [whitelist].

However, this is not scalable to all service providers worldwide, nor

is it scalable for other content providers to operate their own DNS

white list.

Instead, this document suggests a mechanism for applications to quickly

determine if IPv6 or IPv4 is the most optimal to connect to a server.

The suggestions in this document provide a user experience which is

superior to connecting to ordered IP addresses which is helpful during

the IPv6/IPv4 transition with dual stack hosts.

This problem is also described in [RFC1671], published in 1994:

"The dual-stack code may get two addresses back from DNS; which

does it use? During the many years of transition the Internet

will contain black holes. For example, somewhere on the way from

IPng host A to IPng host B there will sometimes (unpredictably)

be IPv4-only routers which discard IPng packets. Also, the state

of the DNS does not necessarily correspond to reality. A host for

which DNS claims to know an IPng address may in fact not be

running IPng at a particular moment; thus an IPng packet to that

host will be discarded on delivery. Knowing that a host has both

IPv4 and IPng addresses gives no information about black holes. A

solution to this must be proposed and it must not depend on

manually maintained information. (If this is not solved, the dual

stack approach is no better than the packet translation

approach.)"

Even after the transition, the procedure described in this document

allows applications to strongly prefer IPv6 -- yet when an IPv6 outage

occurs the application will quickly start using IPv4 and continue using

IPv4. It will quietly continue trying to use IPv6 until IPv6 becomes

available again, and then trend again towards using IPv6.

Following the procedures in this document, once a certain address

family is successful, the application trends towards preferring that

*

*

*

*

*

address family. Thus, repeated use of the application DOES NOT cause

repeated probes over both address families.

Applications would have to change in order to use the mechanism

described in this document, by either implementing the mechanism

directly, or by calling APIs made available to them. To improve IPv6

connectivity experience for legacy applications (e.g., applications

which simply rely on the operating system's address preference order),

operating systems may use other approaches. These can include changing

address sorting based on configuration received from the network, other

configuration, or dynamic detection of the host connectivity to IPv6

and IPV4 destinations.

While the application recommendations in this document are described in

the context of HTTP clients ("web browsers") and SRV clients (e.g.,

XMPP clients) the procedure is also useful and applicable to other

interactive applications.

Code which implements some of the ideas described in this document has

been made available [Perreault] [Andrews].

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Problem Statement

As discussed in more detail in Section 3.1, it is important that the

same URI and hostname be used for IPv4 and IPv6. Using separate

namespaces causes namespace fragmentation and reduces the ability for

users to share URIs and hostnames, and complicates printed material

that includes the URI or hostname.

As discussed in more detail in Section 3.2, IPv6 connectivity is broken

to specific prefixes or specific hosts, or slower than native IPv4

connectivity.

3.1. URIs and hostnames

URIs are often used between users to exchange pointers to content --

such as on social networks, email, instant messaging, or other systems.

Thus, production URIs and production hostnames containing references to

IPv4 or IPv6 will only function if the other party is also using an

application, OS, and a network that can access the URI or the hostname.

3.2. IPv6 connectivity

When IPv6 connectivity is impaired, today's IPv6-capable web browsers

incur many seconds of delay before falling back to IPv4. This harms the

user's experience with IPv6, which will slow the acceptance of IPv6,

because IPv6 is frequently disabled in its entirety on the end systems

to improve the user experience.

Reasons for such failure include no connection to the IPv6 Internet,

broken 6to4 or Teredo tunnels, and broken IPv6 peering.

 DNS Server Client Server

 | | |

 1. |<--www.example.com A?-----| |

 2. |<--www.example.com AAAA?--| |

 3. |---192.0.2.1------------->| |

 4. |---2001:db8::1----------->| |

 5. | | |

 6. | |--TCP SYN, IPv6--->X |

 7. | |--TCP SYN, IPv6--->X |

 8. | |--TCP SYN, IPv6--->X |

 9. | | |

 10. | |--TCP SYN, IPv4------->|

 11. | |<-TCP SYN+ACK, IPv4----|

 12. | |--TCP ACK, IPv4------->|

The client obtains the IPv4 and IPv6 records for the server (1-4). The

client attempts to connect using IPv6 to the server, but the IPv6 path

is broken (6-8), which consumes several seconds of time. Eventually,

the client attempts to connect using IPv4 (10) which succeeds.

Delays experienced by users of various browser and operating system

combinations have been studied [Experiences].

4. Client Recommendations

Happy Eyeballs does two things:

Provides fast connection for users. To provide fast connections

for users, clients should make connections quickly over various

technologies, automatically tune itself to avoid flooding the

network with unnecessary connections (i.e., for technologies

that have not made successful connections), and occasionally

flush its self-tuning if it trended towards IPv4 Section 5.2.

Avoids thrashing the network. Clients need to avoid flooding

the network or servers with excessive connection initiation

traffic. One way to accomplish this, without significant

impairment to the user experience, is to cache which address

family has been unsuccessful and successful, and use that

address family for subsequent connections to the same host.

If a TCP client supports IPv6 and IPv4 and is connected to IPv4 and

IPv6 networks, it can perform the procedures described in this section.

1.

2.

 DNS Server Client Server

 | | |

 1. |<--www.example.com A?-----| |

 2. |<--www.example.com AAAA?--| |

 3. |---192.0.2.1------------->| |

 4. |---2001:db8::1----------->| |

 5. | | |

 6. | |==TCP SYN, IPv6===>X |

 7. | |--TCP SYN, IPv4------->|

 8. | |<-TCP SYN+ACK, IPv4----|

 9. | |--TCP ACK, IPv4------->|

10. | |==TCP SYN, IPv6===>X |

In the diagram above, the client sends two TCP SYNs at the same time

over IPv6 (6) and IPv4 (7). In the diagram, the IPv6 path is broken but

has little impact to the user because there is no long delay before

using IPv4. The IPv6 path is retried until the application gives up

(10).

After performing the above procedure, the client learns if connections

to the host's IPv6 or IPv4 address were successful. The client MUST

cache that information to avoid thrashing the network with excessive

subsequent connection attempts. For example, in the diagram above, the

client has noticed that IPv6 to that address failed, and it should

provide a greater preference to using IPv4 instead.

 DNS Server Client Server

 | | |

 1. |<--www.example.com A?-----| |

 2. |<--www.example.com AAAA?--| |

 3. |---192.0.2.1------------->| |

 4. |---2001:db8::1----------->| |

 5. | | |

 6. | |==TCP SYN, IPv6=======>|

 7. | |--TCP SYN, IPv4------->|

 8. | |<=TCP SYN+ACK, IPv6====|

 9. | |<-TCP SYN+ACK, IPv4----|

10. | |==TCP ACK, IPv6=======>|

11. | |--TCP ACK, IPv4------->|

12. | |--TCP RST, IPv4------->|

The diagram above shows a case where both IPv6 and IPv4 are working,

and IPv4 is abandoned (12).

5. Implementation details: A and AAAA

This section details how to provide robust dual stack service for both

IPv6 and IPv4, so that the user perceives very fast application

response.

Exception Cache:

P:

Smoothed P:

TI:

Depending on implementation, the variables and procedures described

below might be implemented or maintained within a specific application

(e.g., web browser), library, framework, or by the operating system

itself. An API call such as "connect_by_name()" is envisioned which

would call the Happy Eyeballs routine and implement the functions

described in this section.

5.1. Description of State Variables

The system maintains a Smoothed P (which provides the overall

preference to IPv6 or IPv4), and an exception cache. Both of these

change over time and are described below:

This is a cache, indexed by IP prefixes, contains a

"P" value for each prefix. Entries are added to this cache if a

connection to the expected address family failed and a connection to

the other address family succeeded. That is, these are exceptions to

the Smoothed P variable. See Section 5.5 for description of how

these prefixes are defined.

(Note: In previous versions of this document, this was the

"per-destination P (preference) value".)

Address family preference. This is computed for this connection

attempt. A positive value is a preference to start the IPv6

connection first, a negative value to start the IPv4 connection

first, and zero indicates both IPv6 and IPv4 connections are started

simultaneously. The absolute value is the number of milliseconds

between the connection attempts on two address families.

Smoothed address family preference. This is the address

family preference for destinations that are not in the exception

cache. This variable can be positive or negative, with values having

the same meaning as "P". In the absence of more specific

configuration information, it is RECOMMENDED that implementations

enforce a maximum value of 8000 (8 seconds) for this variable.

(Note: In previous versions of this document, this was the

"application-wide P (preference) value".)

The following values are configured and constant:

Tolerance Interval, in milliseconds. This is the allowance in the

time a connection is expected to complete and its actual completion,

and is provided to accommodate slight differences in network and

server responsiveness. In the absence of dynamic configuration

*

*

Initial Headstart (IH):

MAXWAIT:

information from the network (e.g., DHCP) or other configuration

information, it is RECOMMENDED to use 20ms.

The initial headstart ("preference") for IPv6,

in milliseconds. This value provides a preference towards IPv6 (if

positive) or IPv4 (if negative) when the host joins a new network or

otherwise flushes its cached information (see Section 5.2), and the

distance to move P away from zero when P was zero. In the absence of

dynamic configuration information from the network (e.g., [I-

D.ietf-6man-addr-select-opt]) or other configuration information

(e.g., the node's address selection policy has been modified to

prefer IPv4 over IPv6), the value 100ms is recommended, which causes

the initial IPv6 connection to be attempted 100ms before the IPv4

connection.

Maximum wait time for a connection to complete, before trying

additional IP addresses. This is RECOMMENDED to be 10 seconds.

5.2. Initialization, Cache Flush, and Resetting Smoothed P

Because every network has different characteristics (e.g., working or

broken IPv6 or IPv4 connectivity) the Smoothed P variable SHOULD be set

to its default value (Smoothed P = Initial Headstart) and the exception

cache SHOULD be emptied whenever the host is connected to a new network

(e.g., DNAv4 [RFC4436], DNAv6 [RFC6059], [cx-osx], [cx-win]).

If there are IPv6 failures to specific hosts or prefixes, the exception

cache will build up exception entries preferring IPv4, and if there are

significant IPv6 failures to many hosts or prefixes, Smoothed P will

become negative. When this occurs, IPv6 will not be attempted at all.

To avoid this problem, it is strongly RECOMMENDED to occasionally flush

the exception cache of all entries and reset Smoothed P to Initial

Offset. This SHOULD be done every 10 minutes. In so doing, IPv6 and

IPv4 are tried again so that if the IPv6 is working again, it will

quickly be preferred again.

5.3. Connecting to a Server

The steps when connecting to a server are as follows:

query DNS using getaddrinfo(). This will return addresses

sorted by the host's default address selection ordering

[RFC3484], its updates, or the address selection as chosen by

the network administrator [I-D.ietf-6man-addr-select-opt].

If this returns both an IPv6 and IPv4 address, continue

processing to the next stop. Otherwise, Happy Eyeballs

processing stops here.

Of the addresses returned in step (1), look up the first IPv6

address and first IPv4 address in the Happy Eyeballs exception

1.

2.

3.

cache. Matching entries in the exception cache influence the P

value for this connection attempt by setting P to the sum of

Smoothed_P and of the P values from the matching IPv6 entry (if

it exists) and the matching IPv4 entry (if it exists).

If P>=0, initiate a connection attempt using the first IPv6

address returned by step (1). If that connection has not

completed after P milliseconds, initiate a connection attempt

using IPv4.

If P<=0, initiate a connection attempt using the first IPv4

address returned by getaddrinfo. If that connection has not

completed after absolute value(P) milliseconds, initiate a

connection attempt using IPv6.

If neither connection has completed after MAXWAIT seconds,

repeat the procedure at step (3) until the addresses are

exhausted.

After performing the above steps, there will be no connection at all or

one connection will complete first. If no connection was successful, it

should be treated as a failure for both IPv6 and IPv4.

5.4. Adjusting Address Family Preferences

If the preferred address family completed first, Smoothed P is adjusted

towards that address family. If the non-preferred address family

completed, we wait an additional Tolerance Interval milliseconds for

the preferred address family to complete. If the expected address

family succeeded, we increment the absolute value of the Smoothed P; if

the expected address family failed - we create an exception entry that

will make an adjustment to the future value of P for the attempt on

this pair in the direction opposite to the current sign of Smoothed P.

The table below summarizes the adjustments:

 | Connection completed within Tolerance Interval |

+--------+--------------|------------------|------------------+

| | v6 and v4 ok | v6 ok, v4 failed | v6 failed, v4 ok |

+--------+--------------|------------------|------------------+

| P > 0 | SP=SP+10 | SP=SP+10 | SP=SP/2 or cache |

| P < 0 | SP=SP+10 | SP=SP/2 or cache | SP=SP-10 |

| P = 0 |SP=big(10,IH) | SP=IH | SP=(-IH) |

|--------+--------------|------------------|------------------+

The the above table is described in textual form:

If P > 0 (indicating IPv6 is preferred over IPv4):

and both the IPv6 and IPv4 connection attempts completed

within the Tolerance Interval, it means the IPv6 preference

4.

5.

6.

*

-

was accurate or we should gently prefer IPv6, so Smoothed P is

increased by 10 milliseconds (Smoothed P = Smoothed P + 10).

If the IPv6 connection completed but the IPv4 connection

failed within the tolerance interval, it means future

connections should prefer IPv6, so Smoothed P is increased by

10 milliseconds (Smoothed_P = Smoothed_P + 10).

If the IPv6 connection failed but the IPv4 connection

completed within the tolerance interval, it means the IPv6

preference is inaccurate. If no exception cache entry exists

for the IPv6 and IPv4 prefixes, the entries are created and

their P value set to to the connection setup time * -1, and

Smoothed P is halved and rounded towards zero (Smoothed_P =

Smoothed_P * 0.5). If an exception cache entry already

existed, its P value is doubled and Smoothed_P is not

adjusted.

If P < 0 (indicating IPv4 is preferred over IPv6):

and both the IPv6 and IPv4 connection attempts completed

within the tolerance interval, we should gently prefer IPv6,

so Smoothed P is increased by 10 milliseconds (Smoothed_P =

Smoothed_P + 10).

If the IPv6 connection completed but the IPv4 connection

failed within within the tolerance interval, it means the IPv4

preference is inaccurate. If no exception cache entry exists

for the IPv6 and IPv4 prefixes, they are created and their P

values set to the connection setup time and Smoothed P is

halved and rounded towards 0 (Smoothed_P = Smoothed_P * 0.5).

If an exception cahe entry already existed, its P value is

doubled and Smoothed_P is not adjusted.

If the IPv4 connection completed but the IPv6 connection

failed within the tolerance interval, it means future

connections should prefer IPv4, so Smoothed P is decreased by

10 milliseconds (Smoothed_P = Smoothed_P - 10).

If P = 0 (indicating IPv4 and IPv6 are equally preferred):

and both the IPv6 and IPv4 connection attempts completed

within the tolerance interval, we should prefer IPv6

significantly, so Smoothed P is set to the larger of Initial

Headstart or 10 (Smoothed_P = larger(Initial Headstart, 10)).

if the IPv6 connection completed but the IPv4 connection

failed within the Tolerance Interval, it means we need to

prefer IPv6, so Smoothed P is increased by 10 (Smoothed_P =

Smoothed_P + 10).

-

-

*

-

-

-

*

-

-

if the IPv4 connection completed but the IPv6 connection

failed within the Tolerance Interval, it means we need to

prefer IPv4, so P is decreased by 10 (Smoothed_P = Smoothed_P

- 10).

5.5. Exception Cache

An exception cache is maintained of IPv6 prefixes and IPv4 prefixes,

which are exceptions to the Smoothed P value at the time a connection

was made. For IPv6 prefixes, the default prefix length is 64. For IPv4,

the default prefix length is /32.

The exception cache MAY be a fixed size, removing entires using a

least-frequently used algorithm. This works because the network path is

likely to change over time (thus old entries aren't valuable anyway),

and if an entry does not exist the Smoothed P value will still provide

some avoidance of user-noticable connection setup delay.

6. Implementation Details: SRV

[[Editor's Note: SRV processing needs to be incorporated into the

above section, rather than described separately. This will be

done in a future update to this document.]]

For the purposes of this section, "client" is defined as the entity

initiating the connection.

For protocols which support DNS SRV [RFC2782], the client performs the

IN SRV query (e.g. IN SRV _xmpp-client._tcp.example.com) as normal. The

client MUST perform the following steps:

Sort all SRV records according to priority (lowest priority

first)

Process all of the SRV targets of the same priority with a

weight greater than 0:

Perform A/AAAA queries for each SRV target in parallel, as

described in the A/AAAA processing section

Connect to the IPv4/IPv6 addresses

If at least one connection succeeds, stop processing SRV

records

If there is no connection, process all of the SRV targets of

the same priority with a weight of 0, as per steps 2.1 through

2.3 above

Repeat steps 2.1 through 2.3 for the next priority, until a

connection is established or all SRV records have been

exhausted

-

*

1.

2.

a.

b.

c.

3.

4.

If there is still no connection, fallback to using the domain

(e.g., example.com), following steps 2.1 through 2.3 above

7. Additional Considerations

This section discusses considerations and requirements that are common

to new technology deployment.

7.1. Additional Network and Host Traffic

Additional network traffic and additional server load is created due to

the recommendations in this document. This additional load is mitigated

by the P value, especially the exception cache P value.

The procedures described in this document retain a quality user

experience while transitioning from IPv4-only to dual stack, while

still giving IPv6 a slight preference over IPv4 (in order to remove

load from IPv4 networks, most importantly to reduce the load on IPv4

network address translators). The improvement in the user experience

benefits the user to only a small detriment of the network, DNS server,

and server that are serving the user.

7.2. Abandon Non-Winning Connections

It is RECOMMENDED that the non-winning connections be abandoned, even

though they could -- in some cases -- be put to reasonable use. To take

HTTP as an example, the design of some sites can break because of HTTP

cookies that incorporate the client's IP address, require all

connections be from the same IP address. If some connections from the

same client are arriving from different IP addresses, such applications

will break. It is also important to abandon connections to avoid

consuming server resources (file descriptors, TCP control blocks) or

middlebox resources (e.g., NAPT). Using the non-winning connection can

also interfere with the browser's Same Origin Policy (see Section 7.8).

7.3. Determining Address Type

For some transitional technologies such as a dual-stack host, it is

easy for the application to recognize the native IPv6 address (learned

via a AAAA query) and the native IPv4 address (learned via an A query).

While IPv6/IPv4 translation makes that difficult, fortunately IPv6/IPv4

translators are not deployed on networks with dual stack clients, which

is the scope of this document.

7.4. Debugging and Troubleshooting

This mechanism is aimed at ensuring a reliable user experience

regardless of connectivity problems affecting any single transport.

However, this naturally means that applications employing these

techniques are by default less useful for diagnosing issues with any

particular transport. To assist in that regard, the applications

5.

implementing the proposal in this document SHOULD also provide a

mechanism to revert the behavior to that of a default provided by the

operating system - the [RFC3484].

7.5. DNS Behavior

Unique to DNS AAAA queries are the problems described in [RFC4074]

which, if they still persist, require applications to perform an A

query before the AAAA query.

[[Editor's Note 03: It is believed these defective DNS servers

have long since been upgraded. If so, we can remove this

section.]]

7.6. Middlebox Issues

Some devices are known to exhibit what amounts to a bug, when the A and

AAAA requests are sent back-to-back over the same 4-tuple, and drop one

of the requests or replies [DNS-middlebox]. However, in some cases

fixing this behaviour may not be possible either due to the

architectural limitations or due to the administrative constraints

(location of the faulty device is unknown to the end hosts or not

controlled by the end hosts). The algorithm described in this draft, in

the case of this erroneous behaviour will eventually pace the queries

such that this middlebox issue is avoided. The algorithm described in

this draft also avoids calling the operating system's getaddrinfo()

with "any", which should prevent the operating system from sending the

A and AAAA queries from the same port.

For the large part, these issues with simultaneous DNS requests are

believed to be fixed.

7.7. Multiple Interfaces

Interaction of the suggestions in this document with multiple

interfaces, and interaction with the MIF working group, is for further

study ([I-D.chen-mif-happy-eyeballs-extension] is devoted to this).

7.8. Interaction with Same Origin Policy

Web browsers implement same origin policy (SOP, [sop], [I-D.abarth-

origin]), which causes subsequent connections to the same hostname to

go to the same IPv4 (or IPv6) address as the previous successful

connection. This is done to prevent certain types of attacks.

The same-origin policy harms user-visible responsiveness if a new

connection fails (e.g., due to a transient event such as router failure

or load balancer failure). While it is tempting to use Happy Eyeballs

to maintain responsiveness, web browsers MUST NOT change their same

origin policy because of Happy Eyeballs

*

8. Content Provider Recommendations

Content providers SHOULD provide both AAAA and A records for servers

using the same DNS name for both IPv4 and IPv6.

9. Security Considerations

[[Placeholder.]]

See Section 7.2 and Section 7.8.

10. Acknowledgements

The mechanism described in this paper was inspired by Stuart Cheshire's

discussion at the IAB Plenary at IETF72, the author's understanding of

Safari's operation with SRV records, Interactive Connectivity

Establishment (ICE [RFC5245]), and the current IPv4/IPv6 behavior of

SMTP mail transfer agents.

Thanks to Fred Baker, Jeff Kinzli, Christian Kuhtz, and Iljitsch van

Beijnum for fostering the creation of this document.

Thanks to Scott Brim, Rick Jones, Stig Venaas, Erik Kline, Bjoern Zeeb,

Matt Miller, Dave Thaler, and Dmitry Anipko for providing feedback on

the document.

Thanks to Javier Ubillos, Simon Perreault and Mark Andrews for the

active feedback and the experimental work on the independent practical

implementations that they created.

Also the authors would like to thank the following individuals who

participated in various email discussions on this topic: Mohacsi Janos,

Pekka Savola, Ted Lemon, Carlos Martinez-Cagnazzo, Simon Perreault,

Jack Bates, Jeroen Massar, Fred Baker, Javier Ubillos, Teemu

Savolainen, Scott Brim, Erik Kline, Cameron Byrne, Daniel Roesen,

Guillaume Leclanche, Mark Smith, Gert Doering, Martin Millnert, Tim

Durack, Matthew Palmer.

11. IANA Considerations

This document has no IANA actions.

12. References

12.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3484]
Draves, R., "Default Address Selection for Internet

Protocol version 6 (IPv6)", RFC 3484, February 2003.

[RFC2782]

Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for

specifying the location of services (DNS SRV)", RFC

2782, February 2000.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3484
http://tools.ietf.org/html/rfc3484
mailto:arnt@troll.no
mailto:levone@microsoft.com
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc2782

12.2. Informational References

[RFC1671]
Carpenter, B., "IPng White Paper on Transition

and Other Considerations", RFC 1671, August 1994.

[RFC4074]

Morishita, Y. and T. Jinmei, "Common Misbehavior

Against DNS Queries for IPv6 Addresses", RFC

4074, May 2005.

[RFC5245]

Rosenberg, J., "Interactive Connectivity

Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/

Answer Protocols", RFC 5245, April 2010.

[RFC6059]

Krishnan, S. and G. Daley, "Simple Procedures for

Detecting Network Attachment in IPv6", RFC 6059,

November 2010.

[RFC4436]

Aboba, B., Carlson, J. and S. Cheshire,

"Detecting Network Attachment in IPv4 (DNAv4)",

RFC 4436, March 2006.

[I-D.chen-mif-

happy-

eyeballs-

extension]

Chen, G, Williams, C, Wing, D and A Yourtchenko,

"Happy Eyeballs Extension for Multiple

Interfaces", Internet-Draft draft-chen-mif-happy-

eyeballs-extension-03, October 2011.

[I-

D.ietf-6man-

addr-select-

opt]

Matsumoto, A, Fujisaki, T, Kato, J and T Chown,

"Distributing Address Selection Policy using

DHCPv6", Internet-Draft draft-ietf-6man-addr-

select-opt-01, June 2011.

[whitelist]
Google, , "Google IPv6 DNS Whitelist", January

2009.

[DNS-

middlebox]

Various, , "DNS middlebox behavior with multiple

queries over same source port", June 2009.

[cx-osx] Adium, , "AIHostReachabilityMonitor", June 2009.

[cx-win]

Microsoft, ,

"NetworkChange.NetworkAvailabilityChanged Event",

June 2009.

[Perreault]
Perreault, S, "Happy Eyeballs in Erlang",

February 2011.

[Andrews]
Andrews, M, "How to connect to a multi-homed

server over TCP", January 2011.

[I-D.abarth-

origin]

Barth, A, "The Web Origin Concept", Internet-

Draft draft-abarth-origin-09, November 2010.

[sop] W3C, , "Same Origin Policy", January 2010.

[Experiences]

Savolainen, T., Miettinen, N., Veikkolainen, S.,

Chown, T. and J. Morse, "Experiences of host

behavior in broken IPv6 networks", March 2011.

mailto:brian@dxcoms.cern.ch
http://tools.ietf.org/html/rfc1671
http://tools.ietf.org/html/rfc1671
http://tools.ietf.org/html/rfc4074
http://tools.ietf.org/html/rfc4074
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc6059
http://tools.ietf.org/html/rfc6059
http://tools.ietf.org/html/rfc4436
http://tools.ietf.org/html/draft-chen-mif-happy-eyeballs-extension-03
http://tools.ietf.org/html/draft-chen-mif-happy-eyeballs-extension-03
http://tools.ietf.org/html/draft-ietf-6man-addr-select-opt-01
http://tools.ietf.org/html/draft-ietf-6man-addr-select-opt-01
http://tools.ietf.org/html/draft-abarth-origin-09

Appendix A. Changes

Appendix A.1. changes from -01 to -02

Now honors host's address preference (RFC3484 and friends)

No longer requires thread-safe DNS library. It uses getaddrinfo()

No longer describes threading.

IPv6 is given a 200ms head start (Initial Headstart variable).

If the IPv6 and IPv4 connection attempts were made at nearly the

same time, wait Tolerance Interval milliseconds for both to

complete before deciding which one wins.

Renamed "global P" to "Smoothed P", and better described how it

is calculated.

introduced the exception cache. This contains the set of networks

that only work with IPv4 (or only with IPv6), so that subsequent

connection attempts use that address family without them causing

serious affect to Smoothed P.

encourages that every 10 minutes the exception cache and Smoothed

P be reset. This allows IPv6 to be attempted again, so we don't

get 'stuck' on IPv4.

If we didn't get both A and AAAA, abandon all Happy Eyeballs

processing (thanks to Simon Perreault).

added discussion of Same Origin Policy

Removed discussion of NAT-PT and address learning; those are only

used with IPv6-only hosts whereas this document is about dual-

stack hosts contacting dual-stack servers.

Appendix A.2. changes from -00 to -01

added SRV section (thanks to Matt Miller)

Authors' Addresses

Dan Wing Wing Cisco Systems, Inc. 170 West Tasman Drive

San Jose, CA 95134 USA EMail: dwing@cisco.com

Andrew Yourtchenko Yourtchenko Cisco Systems, Inc. De Kleetlaan, 7

San Jose, Diegem B-1831 Belgium EMail: ayourtch@cisco.com

*

*

*

*

*

*

*

*

*

*

*

*

mailto:dwing@cisco.com
mailto:ayourtch@cisco.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notational Conventions
	3. Problem Statement
	3.1. URIs and hostnames
	3.2. IPv6 connectivity
	4. Client Recommendations
	5. Implementation details: A and AAAA
	5.1. Description of State Variables
	5.2. Initialization, Cache Flush, and Resetting Smoothed P
	5.3. Connecting to a Server
	5.4. Adjusting Address Family Preferences
	5.5. Exception Cache
	6. Implementation Details: SRV
	7. Additional Considerations
	7.1. Additional Network and Host Traffic
	7.2. Abandon Non-Winning Connections
	7.3. Determining Address Type
	7.4. Debugging and Troubleshooting
	7.5. DNS Behavior
	7.6. Middlebox Issues
	7.7. Multiple Interfaces
	7.8. Interaction with Same Origin Policy
	8. Content Provider Recommendations
	9. Security Considerations
	10. Acknowledgements
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informational References
	Appendix A. Changes
	Appendix A.1. changes from -01 to -02
	Appendix A.2. changes from -00 to -01
	Authors' Addresses

