
INTERNET-DRAFT E. Nordmark
March 29, 2005 Sun Microsystems, Inc.
Obsoletes: 2893 R. E. Gilligan
 Intransa, Inc.

 Basic Transition Mechanisms for IPv6 Hosts and Routers
 <draft-ietf-v6ops-mech-v2-07.txt>

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This draft expires on September 29, 2005.

Abstract

 This document specifies IPv4 compatibility mechanisms that can be
 implemented by IPv6 hosts and routers. Two mechanisms are specified,
 "dual stack" and configured tunneling. Dual stack implies providing
 complete implementations of both versions of the Internet Protocol
 (IPv4 and IPv6) and configured tunneling provides a means to carry
 IPv6 packets over unmodified IPv4 routing infrastructures.

 This document obsoletes RFC 2893.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 1]

https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 Contents

 Status of this Memo.. 1

1. Introduction... 3
1.1. Terminology... 3

2. Dual IP Layer Operation.................................. 5
2.1. Address Configuration............................... 5
2.2. DNS... 5

3. Configured Tunneling Mechanisms.......................... 6
3.1. Encapsulation....................................... 8
3.2. Tunnel MTU and Fragmentation........................ 8

3.2.1. Static Tunnel MTU.............................. 9
3.2.2. Dynamic Tunnel MTU............................. 10

3.3. Hop Limit... 11
3.4. Handling ICMPv4 errors.............................. 12
3.5. IPv4 Header Construction............................ 14
3.6. Decapsulation....................................... 15
3.7. Link-Local Addresses................................ 18
3.8. Neighbor Discovery over Tunnels..................... 19

4. Threat Related to Source Address Spoofing................ 20

5. IANA Considerations...................................... 21

6. Security Considerations.................................. 21

7. Acknowledgments.. 23

8. References... 23
8.1. Normative References................................ 23
8.2. Informative References.............................. 23

9. Authors' Addresses....................................... 25

10. Changes from RFC 2893................................... 26

<draft-ietf-v6ops-mech-v2-07.txt> [Page 2]

https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

1. Introduction

 The key to a successful IPv6 transition is compatibility with the
 large installed base of IPv4 hosts and routers. Maintaining
 compatibility with IPv4 while deploying IPv6 will streamline the task
 of transitioning the Internet to IPv6. This specification defines
 two mechanisms that IPv6 hosts and routers may implement in order to
 be compatible with IPv4 hosts and routers.

 The mechanisms in this document are designed to be employed by IPv6
 hosts and routers that need to interoperate with IPv4 hosts and
 utilize IPv4 routing infrastructures. We expect that most nodes in
 the Internet will need such compatibility for a long time to come,
 and perhaps even indefinitely.

 The mechanisms specified here are:

 - Dual IP layer (also known as Dual Stack): A technique for
 providing complete support for both Internet protocols -- IPv4
 and IPv6 -- in hosts and routers.

 - Configured tunneling of IPv6 over IPv4: A technique for
 establishing point-to-point tunnels by encapsulating IPv6
 packets within IPv4 headers to carry them over IPv4 routing
 infrastructures.

 The mechanisms defined here are intended to be the core of a
 "transition toolbox" -- a growing collection of techniques which
 implementations and users may employ to ease the transition. The
 tools may be used as needed. Implementations and sites decide which
 techniques are appropriate to their specific needs.

 This document defines the basic set of transition mechanisms, but
 these are not the only tools available. Additional transition and
 compatibility mechanisms are specified in other documents.

1.1. Terminology

 The following terms are used in this document:

 Types of Nodes

 IPv4-only node:

 A host or router that implements only IPv4. An IPv4-
 only node does not understand IPv6. The installed base

<draft-ietf-v6ops-mech-v2-07.txt> [Page 3]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 of IPv4 hosts and routers existing before the transition
 begins are IPv4-only nodes.

 IPv6/IPv4 node:

 A host or router that implements both IPv4 and IPv6.

 IPv6-only node:

 A host or router that implements IPv6, and does not
 implement IPv4. The operation of IPv6-only nodes is not
 addressed in this memo.

 IPv6 node:

 Any host or router that implements IPv6. IPv6/IPv4 and
 IPv6-only nodes are both IPv6 nodes.

 IPv4 node:

 Any host or router that implements IPv4. IPv6/IPv4 and
 IPv4-only nodes are both IPv4 nodes.

 Techniques Used in the Transition

 IPv6-over-IPv4 tunneling:

 The technique of encapsulating IPv6 packets within IPv4
 so that they can be carried across IPv4 routing
 infrastructures.

 Configured tunneling:

 IPv6-over-IPv4 tunneling where the IPv4 tunnel endpoint
 address(es) are determined by configuration information
 on tunnel endpoints. All tunnels are assumed to be
 bidirectional. The tunnel provides a (virtual) point-
 to-point link to the IPv6 layer, using the configured
 IPv4 addresses as the lower layer endpoint addresses.

 Other transition mechanisms, including other tunneling mechanisms,
 are outside the scope of this document.

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

<draft-ietf-v6ops-mech-v2-07.txt> [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

2. Dual IP Layer Operation

 The most straightforward way for IPv6 nodes to remain compatible with
 IPv4-only nodes is by providing a complete IPv4 implementation. IPv6
 nodes that provide complete IPv4 and IPv6 implementations are called
 "IPv6/IPv4 nodes." IPv6/IPv4 nodes have the ability to send and
 receive both IPv4 and IPv6 packets. They can directly interoperate
 with IPv4 nodes using IPv4 packets, and also directly interoperate
 with IPv6 nodes using IPv6 packets.

 Even though a node may be equipped to support both protocols, one or
 the other stack may be disabled for operational reasons. Here we use
 a rather loose notion of "stack". A stack being enabled has IP
 addresses assigned etc, but whether or not any particular application
 is available on the stacks is explicitly not defined. Thus IPv6/IPv4
 nodes may be operated in one of three modes:

 - With their IPv4 stack enabled and their IPv6 stack disabled.

 - With their IPv6 stack enabled and their IPv4 stack disabled.

 - With both stacks enabled.

 IPv6/IPv4 nodes with their IPv6 stack disabled will operate like
 IPv4-only nodes. Similarly, IPv6/IPv4 nodes with their IPv4 stacks
 disabled will operate like IPv6-only nodes. IPv6/IPv4 nodes MAY
 provide a configuration switch to disable either their IPv4 or IPv6
 stack.

 The configured tunneling technique, which is described in section 3,
 may or may not be used in addition to the dual IP layer operation.

2.1. Address Configuration

 Because the nodes support both protocols, IPv6/IPv4 nodes may be
 configured with both IPv4 and IPv6 addresses. IPv6/IPv4 nodes use
 IPv4 mechanisms (e.g., DHCP) to acquire their IPv4 addresses, and
 IPv6 protocol mechanisms (e.g., stateless address autoconfiguration
 and/or DHCPv6) to acquire their IPv6 addresses.

2.2. DNS

 The Domain Naming System (DNS) is used in both IPv4 and IPv6 to map
 between hostnames and IP addresses. A new resource record type named

<draft-ietf-v6ops-mech-v2-07.txt> [Page 5]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 "AAAA" has been defined for IPv6 addresses [RFC3596]. Since
 IPv6/IPv4 nodes must be able to interoperate directly with both IPv4
 and IPv6 nodes, they must provide resolver libraries capable of
 dealing with IPv4 "A" records as well as IPv6 "AAAA" records. Note
 that the lookup of A versus AAAA records is independent of whether
 the DNS packets are carried in IPv4 or IPv6 packets, and that there
 is no assumption that the DNS servers know the IPv4/IPv6 capabilities
 of the requesting node.

 The issues and operational guidelines for using IPv6 with DNS are
 described at more length in other documents [DNSOPV6].

 DNS resolver libraries on IPv6/IPv4 nodes MUST be capable of handling
 both AAAA and A records. However, when a query locates an AAAA
 record holding an IPv6 address, and an A record holding an IPv4
 address, the resolver library MAY order the results returned to the
 application in order to influence the version of IP packets used to
 communicate with that specific node -- IPv6 first, or IPv4 first.

 The applications SHOULD be able to specify whether they want IPv4,
 IPv6 or both records [RFC3493]. That defines which address families
 the resolver looks up. If there isn't an application choice, or if
 the application has requested both, the resolver library MUST NOT
 filter out any records.

 Since most applications try the addresses in the order they are
 returned by the resolver, this can affect the IP version "preference"
 of applications.

 The actual ordering mechanisms are out of scope of this memo.
 Address selection is described at more length in [RFC3484].

3. Configured Tunneling Mechanisms

 In most deployment scenarios, the IPv6 routing infrastructure will be
 built up over time. While the IPv6 infrastructure is being deployed,
 the existing IPv4 routing infrastructure can remain functional, and
 can be used to carry IPv6 traffic. Tunneling provides a way to
 utilize an existing IPv4 routing infrastructure to carry IPv6
 traffic.

 IPv6/IPv4 hosts and routers can tunnel IPv6 datagrams over regions of
 IPv4 routing topology by encapsulating them within IPv4 packets.
 Tunneling can be used in a variety of ways:

<draft-ietf-v6ops-mech-v2-07.txt> [Page 6]

https://datatracker.ietf.org/doc/html/rfc3596
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 - Router-to-Router. IPv6/IPv4 routers interconnected by an IPv4
 infrastructure can tunnel IPv6 packets between themselves. In
 this case, the tunnel spans one segment of the end-to-end path
 that the IPv6 packet takes.

 - Host-to-Router. IPv6/IPv4 hosts can tunnel IPv6 packets to an
 intermediary IPv6/IPv4 router that is reachable via an IPv4
 infrastructure. This type of tunnel spans the first segment of
 the packet's end-to-end path.

 - Host-to-Host. IPv6/IPv4 hosts that are interconnected by an
 IPv4 infrastructure can tunnel IPv6 packets between themselves.
 In this case, the tunnel spans the entire end-to-end path that
 the packet takes.

 - Router-to-Host. IPv6/IPv4 routers can tunnel IPv6 packets to
 their final destination IPv6/IPv4 host. This tunnel spans only
 the last segment of the end-to-end path.

 Configured tunneling can be used in all of the above cases, but is
 most likely to be used router-to-router due to the need to explicitly
 configure the tunneling endpoints.

 The underlying mechanisms for tunneling are:

 - The entry node of the tunnel (the encapsulator) creates an
 encapsulating IPv4 header and transmits the encapsulated packet.

 - The exit node of the tunnel (the decapsulator) receives the
 encapsulated packet, reassembles the packet if needed, removes
 the IPv4 header, and processes the received IPv6 packet.

 - The encapsulator may need to maintain soft state information for
 each tunnel recording such parameters as the MTU of the tunnel
 in order to process IPv6 packets forwarded into the tunnel.

 In configured tunneling, the tunnel endpoint addresses are determined
 in the encapsulator from configuration information stored for each
 tunnel. When an IPv6 packet is transmitted over a tunnel, the
 destination and source addresses for the encapsulating IPv4 header
 are set as described in Section 3.5.

 The determination of which packets to tunnel is usually made by
 routing information on the encapsulator. This is usually done via a
 routing table, which directs packets based on their destination
 address using the prefix mask and match technique.

 The decapsulator matches the received protocol-41 packets to the

<draft-ietf-v6ops-mech-v2-07.txt> [Page 7]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 tunnels it has configured, and allows only the packets where IPv4
 source addresses match the tunnels configured on the decapsulator.
 Therefore the operator must ensure that the tunnel's IPv4 address
 configuration is the same both at the encapsulator and the
 decapsulator.

3.1. Encapsulation

 The encapsulation of an IPv6 datagram in IPv4 is shown below:

 +-------------+
 | IPv4 |
 | Header |
 +-------------+ +-------------+
 | IPv6 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Transport | | Transport |
 | Layer | ===> | Layer |
 | Header | | Header |
 +-------------+ +-------------+
 | | | |
 ~ Data ~ ~ Data ~
 | | | |
 +-------------+ +-------------+

 Encapsulating IPv6 in IPv4

 In addition to adding an IPv4 header, the encapsulator also has to
 handle some more complex issues:

 - Determine when to fragment and when to report an ICMPv6 "packet
 too big" error back to the source.

 - How to reflect ICMPv4 errors from routers along the tunnel path
 back to the source as ICMPv6 errors.

 Those issues are discussed in the following sections.

3.2. Tunnel MTU and Fragmentation

 Naively the encapsulator could view encapsulation as IPv6 using IPv4

<draft-ietf-v6ops-mech-v2-07.txt> [Page 8]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 as a link layer with a very large MTU (65535-20 bytes at most; 20
 bytes "extra" are needed for the encapsulating IPv4 header). The
 encapsulator would only need to report ICMPv6 "packet too big" errors
 back to the source for packets that exceed this MTU. However, such a
 scheme would be inefficient or non-interoperable for three reasons
 and therefore MUST NOT be used:

 1) It would result in more fragmentation than needed. IPv4 layer
 fragmentation should be avoided due to the performance problems
 caused by the loss unit being smaller than the retransmission
 unit [KM97].

 2) Any IPv4 fragmentation occurring inside the tunnel, i.e. between
 the encapsulator and the decapsulator, would have to be
 reassembled at the tunnel endpoint. For tunnels that terminate
 at a router, this would require additional memory and other
 resources to reassemble the IPv4 fragments into a complete IPv6
 packet before that packet could be forwarded onward.

 3) The encapsulator has no way of knowing that the decapsulator is
 able to defragment such IPv4 packets (see Section 3.7 for
 details), and has no way of knowing that the decapsulator is
 able to handle such a large IPv6 Maximum Receive Unit (MRU).

 Hence, the encapsulator MUST NOT treat the tunnel as an interface
 with an MTU of 64 kilobytes, but instead either use the fixed static
 MTU or OPTIONAL dynamic MTU determination based on the IPv4 path MTU
 to the tunnel endpoint.

 If both the mechanisms are implemented, the decision which to use
 SHOULD be configurable on a per-tunnel endpoint basis.

3.2.1. Static Tunnel MTU

 A node using static tunnel MTU treats the tunnel interface as having
 a fixed interface MTU. By default, the MTU MUST be between 1280 and
 1480 bytes (inclusive), but it SHOULD be 1280 bytes. If the default
 is not 1280 bytes, the implementation MUST have a configuration knob
 which can be used to change the MTU value.

 A node must be able to accept a fragmented IPv6 packet that, after
 reassembly, is as large as 1500 octets [RFC2460]. This memo also
 includes requirements (see Section 3.6) for the amount of IPv4
 reassembly and IPv6 MRU that MUST be supported by all the
 decapsulators. These ensure correct interoperability with any fixed
 MTUs between 1280 and 1480 bytes.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 9]

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 A larger fixed MTU than supported by these requirements, must not be
 configured unless it has been administratively ensured that the
 decapsulator can reassemble or receive packets of that size.

 The selection of a good tunnel MTU depends on many factors; at least:

 - Whether the IPv4 protocol-41 packets will be transported over
 media which may have a lower path MTU (e.g., IPv4 Virtual
 Private Networks); then picking too high a value might lead to
 IPv4 fragmentation.

 - Whether the tunnel is used to transport IPv6 tunneled packets
 (e.g., a mobile node with an IPv6-in-IPv4 configured tunnel, and
 an IPv6-in-IPv6 tunnel interface); then picking too low a value
 might lead to IPv6 fragmentation.

 If layered encapsulation is believed to be present, it may be prudent
 to consider supporting dynamic MTU determination instead as it is
 able to minimize fragmentation and optimize packet sizes.

 When using the static tunnel MTU the Don't Fragment bit MUST NOT be
 set in the encapsulating IPv4 header. As a result the encapsulator
 should not receive any ICMPv4 "packet too big" messages as a result
 of the packets it has encapsulated.

3.2.2. Dynamic Tunnel MTU

 The dynamic MTU determination is OPTIONAL. However, if it is
 implemented, it SHOULD have the behavior described in this document.

 The fragmentation inside the tunnel can be reduced to a minimum by
 having the encapsulator track the IPv4 Path MTU across the tunnel,
 using the IPv4 Path MTU Discovery Protocol [RFC1191] and recording
 the resulting path MTU. The IPv6 layer in the encapsulator can then
 view a tunnel as a link layer with an MTU equal to the IPv4 path MTU,
 minus the size of the encapsulating IPv4 header.

 Note that this does not eliminate IPv4 fragmentation in the case when
 the IPv4 path MTU would result in an IPv6 MTU less than 1280 bytes.
 (Any link layer used by IPv6 has to have an MTU of at least 1280
 bytes [RFC2460].) In this case the IPv6 layer has to "see" a link
 layer with an MTU of 1280 bytes and the encapsulator has to use IPv4
 fragmentation in order to forward the 1280 byte IPv6 packets.

 The encapsulator SHOULD employ the following algorithm to determine
 when to forward an IPv6 packet that is larger than the tunnel's path

<draft-ietf-v6ops-mech-v2-07.txt> [Page 10]

https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 MTU using IPv4 fragmentation, and when to return an ICMPv6 "packet
 too big" message per [RFC1981]:

 if (IPv4 path MTU - 20) is less than 1280
 if packet is larger than 1280 bytes
 Send ICMPv6 "packet too big" with MTU = 1280.
 Drop packet.
 else
 Encapsulate but do not set the Don't Fragment
 flag in the IPv4 header. The resulting IPv4
 packet might be fragmented by the IPv4 layer
 on the encapsulator or by some router along
 the IPv4 path.
 endif
 else
 if packet is larger than (IPv4 path MTU - 20)
 Send ICMPv6 "packet too big" with
 MTU = (IPv4 path MTU - 20).
 Drop packet.
 else
 Encapsulate and set the Don't Fragment flag
 in the IPv4 header.
 endif
 endif

 Encapsulators that have a large number of tunnels may choose between
 dynamic versus static tunnel MTU on a per-tunnel endpoint basis. In
 cases where the number of tunnels that any one node is using is
 large, it is helpful to observe that this state information can be
 cached and discarded when not in use.

 Note that using dynamic tunnel MTU is subject to IPv4 PMTU blackholes
 should the ICMPv4 "packet too big" messages be dropped by firewalls
 or not generated by the routers. [RFC1435, RFC2923]

3.3. Hop Limit

 IPv6-over-IPv4 tunnels are modeled as "single-hop" from the IPv6
 perspective. The tunnel is opaque to users of the network, and is not
 detectable by network diagnostic tools such as traceroute.

 The single-hop model is implemented by having the encapsulators and
 decapsulators process the IPv6 hop limit field as they would if they
 were forwarding a packet on to any other datalink. That is, they

<draft-ietf-v6ops-mech-v2-07.txt> [Page 11]

https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 decrement the hop limit by 1 when forwarding an IPv6 packet. (The
 originating node and final destination do not decrement the hop
 limit.)

 The TTL of the encapsulating IPv4 header is selected in an
 implementation dependent manner. The current suggested value is
 published in the "Assigned Numbers" RFC [RFC3232][ASSIGNED].
 Implementations MAY provide a mechanism to allow the administrator to
 configure the IPv4 TTL as the IP Tunnel MIB [RFC2667].

3.4. Handling ICMPv4 errors

 In response to encapsulated packets it has sent into the tunnel, the
 encapsulator might receive ICMPv4 error messages from IPv4 routers
 inside the tunnel. These packets are addressed to the encapsulator
 because it is the IPv4 source of the encapsulated packet.

 ICMPv4 error handling is only applicable to dynamic MTU
 determination, even though the functions could be used with static
 MTU tunnels as well.

 The ICMPv4 "packet too big" error messages are handled according to
 IPv4 Path MTU Discovery [RFC1191] and the resulting path MTU is
 recorded in the IPv4 layer. The recorded path MTU is used by IPv6 to
 determine if an ICMPv6 "packet too big" error has to be generated as
 described in section 3.2.2.

 The handling of other types of ICMPv4 error messages depends on how
 much information is available from the encapsulated packet that
 caused the error.

 Many older IPv4 routers return only 8 bytes of data beyond the IPv4
 header of the packet in error, which is not enough to include the
 address fields of the IPv6 header. More modern IPv4 routers are
 likely to return enough data beyond the IPv4 header to include the
 entire IPv6 header and possibly even the data beyond that.

 If sufficient data bytes from the offending packet are available, the
 encapsulator MAY extract the encapsulated IPv6 packet and use it to
 generate an ICMPv6 message directed back to the originating IPv6
 node, as shown below:

<draft-ietf-v6ops-mech-v2-07.txt> [Page 12]

https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc2667
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 +--------------+
 | IPv4 Header |
 | dst = encaps |
 | node |
 +--------------+
 | ICMPv4 |
 | Header |
 - - +--------------+
 | IPv4 Header |
 | src = encaps |
 IPv4 | node |
 +--------------+ - -
 Packet | IPv6 |
 | Header | Original IPv6
 in +--------------+ Packet -
 | Transport | Can be used to
 Error | Header | generate an
 +--------------+ ICMPv6
 | | error message
 ~ Data ~ back to the source.
 | |
 - - +--------------+ - -

 ICMPv4 Error Message Returned to Encapsulating Node

 When receiving ICMPv4 errors as above and the errors are not "packet
 too big" it would be useful to log the error as an error related to
 the tunnel. Also, if sufficient headers are available, then the
 originating node MAY send an ICMPv6 error of type "unreachable" with
 code "address unreachable" to the IPv6 source. (The "address
 unreachable" code is appropriate since, from the perspective of IPv6,
 the tunnel is a link and that code is used for link-specific errors
 [RFC2463]).

 Note that when the IPv4 path MTU is exceeded, and sufficient bytes of
 payload associated with the ICMPv4 errors are not available, or
 ICMPv4 errors do not cause the generation of ICMPv6 errors in case
 there is enough payload, there will be at least two packet drops
 instead of at least one (the case of a single layer of MTU
 discovery). Consider a case where an IPv6 host is connected to an
 IPv4/IPv6 router, which is connected to a network where an ICMPv4
 error about too big packet size is generated. First the router needs
 to learn the tunnel (IPv4) MTU which causes at least one packet loss,
 and then the host needs to learn the (IPv6) MTU from the router which
 causes at least one packet loss. Still, in all cases there can be
 more than one packet loss if there are multiple large packets in

https://datatracker.ietf.org/doc/html/rfc2463

<draft-ietf-v6ops-mech-v2-07.txt> [Page 13]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 flight at the same time.

3.5. IPv4 Header Construction

 When encapsulating an IPv6 packet in an IPv4 datagram, the IPv4
 header fields are set as follows:

 Version:

 4

 IP Header Length in 32-bit words:

 5 (There are no IPv4 options in the encapsulating
 header.)

 Type of Service:

 0 unless otherwise specified. (See [RFC2983] and
[RFC3168] section 9.1 for issues relating to the Type-

 of-Service byte and tunneling.)

 Total Length:

 Payload length from IPv6 header plus length of IPv6 and
 IPv4 headers (i.e., IPv6 payload length plus a constant
 60 bytes).

 Identification:

 Generated uniquely as for any IPv4 packet transmitted by
 the system.

 Flags:

 Set the Don't Fragment (DF) flag as specified in section
3.2. Set the More Fragments (MF) bit as necessary if

 fragmenting.

 Fragment offset:

 Set as necessary if fragmenting.

 Time to Live:

 Set in an implementation-specific manner, as described

<draft-ietf-v6ops-mech-v2-07.txt> [Page 14]

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc3168#section-9.1
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 in section 3.3.

 Protocol:

 41 (Assigned payload type number for IPv6).

 Header Checksum:

 Calculate the checksum of the IPv4 header. [RFC791]

 Source Address:

 An IPv4 address of the encapsulator: either configured
 by the administrator or an address of the outgoing
 interface.

 Destination Address:

 IPv4 address of the tunnel endpoint.

 When encapsulating the packets, the node must ensure that it will use
 the correct source address so that the packets are acceptable to the
 decapsulator as described in Section 3.6. Configuring the source
 address is appropriate particularly in cases in which automatic
 selection of source address may produce different results in a
 certain period of time. This is often the case with multiple
 addresses, and multiple interfaces, or when routes may change
 frequently. Therefore, it SHOULD be possible to administratively
 specify the source address of a tunnel.

3.6. Decapsulation

 When an IPv6/IPv4 host or a router receives an IPv4 datagram that is
 addressed to one of its own IPv4 addresses or a joined multicast
 group address, and the value of the protocol field is 41, the packet
 is potentially a tunnel packet and needs to be verified to belong to
 one of the configured tunnel interfaces (by checking
 source/destination addresses), reassembled (if fragmented at the IPv4
 level), have the IPv4 header removed and the resulting IPv6 datagram
 be submitted to the IPv6 layer code on the node.

 The decapsulator MUST verify that the tunnel source address is
 correct before further processing packets, to mitigate the problems
 with address spoofing (see section 4). This check also applies to
 packets which are delivered to transport protocols on the
 decapsulator. This is done by verifying that the source address is

<draft-ietf-v6ops-mech-v2-07.txt> [Page 15]

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 the IPv4 address of the encapsulator, as configured on the
 decapsulator. Packets for which the IPv4 source address does not
 match MUST be discarded and an ICMP message SHOULD NOT be generated;
 however, if the implementation normally sends an ICMP message when
 receiving an unknown protocol packet, such an error message MAY be
 sent (e.g., ICMPv4 Protocol 41 Unreachable).

 A side effect of this address verification is that the node will
 silently discard packets with a wrong source address, and packets
 which were received by the node but not directly addressed to it
 (e.g., broadcast addresses).

 Independent of any other forms of IPv4 ingress filtering the
 administrator of the node may have configured, the implementation MAY
 perform ingress filtering, i.e., check that the packet is arriving
 from the interface in the direction of the route towards the tunnel
 end-point, similar to a Strict Reverse Path Forwarding (RPF) check
 [RFC3704]. As this may cause problems on tunnels which are routed
 through multiple links, it is RECOMMENDED that this check, if done,
 is disabled by default. The packets caught by this check SHOULD be
 discarded; an ICMP message SHOULD NOT be generated by default.

 The decapsulator MUST be capable of having, on the tunnel interfaces,
 an IPv6 MRU of at least the maximum of of 1500 bytes and the largest
 (IPv6) interface MTU on the decapsulator.

 The decapsulator MUST be capable of reassembling an IPv4 packet that
 is (after the reassembly) the maximum of 1500 bytes and the largest
 (IPv4) interface MTU on the decapsulator. The 1500 byte number is a
 result of encapsulators that use the static MTU scheme in section

3.2.1, while encapsulators that use the dynamic scheme in section
3.2.2 can cause up to the largest interface MTU on the decapsulator

 to be received. (Note that it is strictly the interface MTU on the
 last IPv4 router *before* the decapsulator that matters, but for most
 links the MTU is the same between all neighbors.)

 This reassembly limit allows dynamic tunnel MTU determination by the
 encapsulator to take advantage of larger IPv4 path MTUs. An
 implementation MAY have a configuration knob which can be used to set
 a larger value of the tunnel reassembly buffers than the above
 number, but it MUST NOT be set below the above number.

 The decapsulation is shown below:

<draft-ietf-v6ops-mech-v2-07.txt> [Page 16]

https://datatracker.ietf.org/doc/html/rfc3704
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 +-------------+
 | IPv4 |
 | Header |
 +-------------+ +-------------+
 | IPv6 | | IPv6 |
 | Header | | Header |
 +-------------+ +-------------+
 | Transport | | Transport |
 | Layer | ===> | Layer |
 | Header | | Header |
 +-------------+ +-------------+
 | | | |
 ~ Data ~ ~ Data ~
 | | | |
 +-------------+ +-------------+

 Decapsulating IPv6 from IPv4

 The decapsulator performs IPv4 reassembly before decapsulating the
 IPv6 packet.

 When decapsulating the packet, the IPv6 header is not modified.
 (However, see [RFC2983] and [RFC3168] section 9.1 for issues relating
 to the Type of Service byte and tunneling.) If the packet is
 subsequently forwarded, its hop limit is decremented by one.

 The encapsulating IPv4 header is discarded, and the resulting packet
 is checked for validity when submitted to the IPv6 layer. When
 reconstructing the IPv6 packet the length MUST be determined from the
 IPv6 payload length since the IPv4 packet might be padded (thus have
 a length which is larger than the IPv6 packet plus the IPv4 header
 being removed).

 After the decapsulation the node MUST silently discard a packet with
 an invalid IPv6 source address. The list of invalid source addresses
 SHOULD include at least:

 - all multicast addresses (FF00::/8)

 - the loopback address (::1)

 - all the IPv4-compatible IPv6 addresses [RFC3513] (::/96),
 excluding the unspecified address for Duplicate Address
 Detection (::/128)

 - all the IPv4-mapped IPv6 addresses (::ffff:0:0/96)

<draft-ietf-v6ops-mech-v2-07.txt> [Page 17]

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc3168#section-9.1
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 In addition, the node should be configured to perform ingress
 filtering [RFC2827][RFC3704] on the IPv6 source address, similar to
 on any of its interfaces, e.g.:

 1) if the tunnel is towards the Internet, the node should be
 configured to check that the site's IPv6 prefixes are not used
 as the source addresses, or

 2) if the tunnel is towards an edge network, the node should be
 configured to check that the source address belongs to that edge
 network.

 The prefix lists in the former typically need to be manually
 configured; the latter could be verified automatically, e.g., by
 using a strict unicast RPF check, as long as an interface can be
 designated to be towards an edge.

 It is RECOMMENDED that the implementations provide a single knob to
 make it easier to for the administrators to enable strict ingress
 filtering towards edge networks.

3.7. Link-Local Addresses

 The configured tunnels are IPv6 interfaces (over the IPv4 "link
 layer") and thus MUST have link-local addresses. The link-local
 addresses are used by, e.g., routing protocols operating over the
 tunnels.

 The interface identifier [RFC3513] for such an interface may be based
 on the 32-bit IPv4 address of an underlying interface, or formed
 using some other means, as long as it's unique from the other tunnel
 endpoint with a reasonably high probability.

 Note that it may be desirable to form the link-local address in a
 fashion that minimizes the probability and the effect of having to
 renumber the link-local address in the event of a topology or
 hardware change.

 If an IPv4 address is used for forming the IPv6 link-local address,
 the interface identifier is the IPv4 address, prepended by zeros.
 Note that the "Universal/Local" bit is zero, indicating that the
 interface identifier is not globally unique. The link-local address
 is formed by appending the interface identifier to the prefix
 FE80::/64.

 When the host has more than one IPv4 address in use on the physical

<draft-ietf-v6ops-mech-v2-07.txt> [Page 18]

https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 interface concerned, a choice of one of these IPv4 addresses is made
 by the administrator or the implementation when forming the link-
 local address.

 +-------+-------+-------+-------+-------+-------+------+------+
 | FE 80 00 00 00 00 00 00 |
 +-------+-------+-------+-------+-------+-------+------+------+
 | 00 00 00 00 | IPv4 Address |
 +-------+-------+-------+-------+-------+-------+------+------+

3.8. Neighbor Discovery over Tunnels

 Configured tunnel implementations MUST at least accept and respond to
 the probe packets used by Neighbor Unreachability Detection (NUD)
 [RFC2461]. The implementations SHOULD also send NUD probe packets to
 detect when the configured tunnel fails at which point the
 implementation can use an alternate path to reach the destination.
 Note that Neighbor Discovery allows that the sending of NUD probes be
 omitted for router to router links if the routing protocol tracks
 bidirectional reachability.

 For the purposes of Neighbor Discovery the configured tunnels
 specified in this document are assumed to NOT have a link-layer
 address, even though the link-layer (IPv4) does have an address.
 This means that:

 - the sender of Neighbor Discovery packets SHOULD NOT include
 Source Link Layer Address options or Target Link Layer Address
 options on the tunnel link.

 - the receiver MUST, while otherwise processing the Neighbor
 Discovery packet, silently ignore the content of any Source Link
 Layer Address options or Target Link Layer Address options
 received on the tunnel link.

 Not using a link layer address options is consistent with how
 Neighbor Discovery is used on other point-to-point links.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 19]

https://datatracker.ietf.org/doc/html/rfc2461
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

4. Threat Related to Source Address Spoofing

 The specification above contains rules that apply tunnel source
 address verification in particular and ingress filtering
 [RFC2827][RFC3704] in general to packets before they are
 decapsulated. When IP-in-IP tunneling (independent of IP versions)
 is used it is important that this can not be used to bypass any
 ingress filtering in use for non-tunneled packets. Thus the rules in
 this document are derived based on should ingress filtering be used
 for IPv4 and IPv6, the use of tunneling should not provide an easy
 way to circumvent the filtering.

 In this case, without specific ingress filtering checks in the
 decapsulator, it would be possible for an attacker to inject a packet
 with:

 - Outer IPv4 source: real IPv4 address of attacker

 - Outer IPv4 destination: IPv4 address of decapsulator

 - Inner IPv6 source: Alice which is either the decapsulator or a
 node close to it.

 - Inner IPv6 destination: Bob

 Even if all IPv4 routers between the attacker and the decapsulator
 implement IPv4 ingress filtering, and all IPv6 routers between the
 decapsulator and Bob implement IPv6 ingress filtering, the above
 spoofed packets will not be filtered out. As a result Bob will
 receive a packet that looks like it was sent from Alice even though
 the sender was some unrelated node.

 The solution to this is to have the decapsulator only accept
 encapsulated packets from the explicitly configured source address
 (i.e., the other end of the tunnel) as specified in section 3.6.
 While this does not provide complete protection in the case ingress
 filtering has not been deployed, it does provide a significant
 increase in security. The issue and the remainder threats are
 discussed at more length in Security Considerations.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 20]

https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

5. IANA Considerations

 This memo makes no request to IANA. [[RFC-editor: please remove this
 section upon publication.]]

6. Security Considerations

 Generic security considerations of using IPv6 are discussed in a
 separate document [V6SEC].

 An implementation of tunneling needs to be aware that while a tunnel
 is a link (as defined in [RFC2460]), the threat model for a tunnel
 might be rather different than for other links, since the tunnel
 potentially includes all of the Internet.

 Several mechanisms (e.g., Neighbor Discovery) depend on Hop Count
 being 255 and/or the addresses being link-local for ensuring that a
 packet originated on-link, in a semi-trusted environment. Tunnels
 are more vulnerable to a breach of this assumption than physical
 links, as an attacker anywhere in the Internet can send an IPv6-in-
 IPv4 packet to the tunnel decapsulator, causing injection of an
 encapsulted IPv6 packet to the configured tunnel interface unless the
 decapsulation checks are able to discard packets injected in such a
 manner.

 Therefore, this memo specifies that the decapsulators make these
 steps (as described in Section 3.6) to mitigate this threat:

 - IPv4 source address of the packet MUST be the same as configured
 for the tunnel end-point,

 - Independent of any IPv4 ingress filtering the administrator may
 have configured, the implementation MAY perform IPv4 ingress
 filtering to check that the IPv4 packets are received from an
 expected interface (but as this may cause some problems, it may
 be disabled by default),

 - IPv6 packets with several, obviously invalid IPv6 source
 addresses received from the tunnel MUST be discarded (see

Section 3.6 for details), and

 - IPv6 ingress filtering should be performed (typically requiring
 configuration from the operator), to check that the tunneled
 IPv6 packets are received from an expected interface.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 21]

https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 Especially the first verification is vital: to avoid this check, the
 attacker must be able to know the source of the tunnel (ranging from
 difficult to predictable) and be able to spoof it (easier).

 If the remainder threats of tunnel source verification are considered
 to be significant, a tunneling scheme with authentication should be
 used instead, for example IPsec [RFC2401] (preferable) or Generic
 Routing Encapsulation with a pre-configured secret key [RFC2890]. As
 the configured tunnels are set up more or less manually, setting up
 the keying material is probably not a problem. However, setting up
 secure IPsec IPv6-in-IPv4 tunnels is described in another document
 [V64IPSEC].

 If the tunneling is done inside an administrative domain, proper
 ingress filtering at the edge of the domain can also eliminate the
 threat from outside of the domain. Therefore shorter tunnels are
 preferable to longer ones, possibly spanning the whole Internet.

 Additionally, an implementation MUST treat interfaces to different
 links as separate, e.g., to ensure that Neighbor Discovery packets
 arriving on one link does not effect other links. This is especially
 important for tunnel links.

 When dropping packets due to failing to match the allowed IPv4 source
 addresses for a tunnel the node should not "acknowledge" the
 existence of a tunnel, otherwise this could be used to probe the
 acceptable tunnel endpoint addresses. For that reason, the
 specification says that such packets MUST be discarded, and an ICMP
 error message SHOULD NOT be generated, unless the implementation
 normally sends ICMP destination unreachable messages for unknown
 protocols; in such a case, the same code MAY be sent. As should be
 obvious, the not returning the same ICMP code if an error is returned
 for other protocols may hint that the IPv6 stack (or the protocol 41
 tunneling processing) has been enabled -- the behaviour should be
 consistent on how the implementation otherwise behaves to be
 transparent to probing.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 22]

https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2890
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

7. Acknowledgments

 We would like to thank the members of the IPv6 working group, the
 Next Generation Transition (ngtrans) working group, and the v6ops
 working group for their many contributions and extensive review of
 this document. Special thanks are due to (in alphabetical order) Jim
 Bound, Ross Callon, Tim Chown, Alex Conta, Bob Hinden, Bill Manning,
 John Moy, Mohan Parthasarathy, Chirayu Patel, Pekka Savola, and Fred
 Templin for many helpful suggestions. Pekka Savola helped in editing
 the final revisions of the specification.

8. References

8.1. Normative References

 [RFC791] J. Postel, "Internet Protocol", RFC 791, September 1981.

 [RFC1191] Mogul, J., and S. Deering., "Path MTU Discovery", RFC 1191,
 November 1990.

 [RFC1981] McCann, J., S. Deering, and J. Mogul. "Path MTU Discovery
 for IP version 6", RFC 1981, August 1996.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2460] Deering, S., and Hinden, R. "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC2463] A. Conta, S. Deering, "Internet Control Message Protocol
 (ICMPv6) for the Internet Protocol Version 6 (IPv6)
 Specification", RFC 2463, December 1998.

8.2. Informative References

 [ASSIGNED] IANA, "Assigned numbers online database",
http://www.iana.org/numbers.html

 [DNSOPV6] Durand, A., Ihren, J., and Savola P., "Operational
 Considerations and Issues with IPv6 DNS", draft-ietf-dnsop-

<draft-ietf-v6ops-mech-v2-07.txt> [Page 23]

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1981
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc2463
http://www.iana.org/numbers.html
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 ipv6-dns-issues-10.txt, work-in-progress, October 2004.

 [KM97] Kent, C., and J. Mogul, "Fragmentation Considered Harmful".
 In Proc. SIGCOMM '87 Workshop on Frontiers in Computer
 Communications Technology. August 1987.

 [V6SEC] P. Savola, "IPv6 Transition/Co-existence Security
 Considerations", draft-savola-v6ops-security-overview-

03.txt, work-in-progress, October 2004.

 [V64IPSEC] Graveman, R., et al., "Using IPsec to Secure IPv6-over-IPv4
 Tunnels", draft-tschofenig-v6ops-secure-tunnels-03.txt,
 work-in-progress, December 2004.

 [RFC1122] Braden, R., "Requirements for Internet Hosts - Communication
 Layers", STD 3, RFC 1122, October 1989.

 [RFC1435] S. Knowles, "IESG Advice from Experience with Path MTU
 Discovery", RFC 1435, March 1993.

 [RFC1812] F. Baker, "Requirements for IP Version 4 Routers", RFC 1812,
 June 1995.

 [RFC2401] Kent, S., Atkinson, R., "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [RFC2461] Narten, T., Nordmark, E., and Simpson, W. "Neighbor
 Discovery for IP Version 6 (IPv6)", RFC 2461, December 1998.

 [RFC2462] Thomson, S., and Narten, T. "IPv6 Stateless Address
 Autoconfiguration," RFC 2462, December 1998.

 [RFC2667] D. Thaler, "IP Tunnel MIB", RFC 2667, August 1999.

 [RFC2827] Ferguson, P., and Senie, D., "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", RFC 2827, May 2000.

 [RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, September 2000.

 [RFC2923] K. Lahey, "TCP Problems with Path MTU Discovery", RFC 2923,
 September 2000.

 [RFC2983] D. Black, "Differentiated Services and Tunnels", RFC 2983,
 October 2000.

 [RFC3056] B. Carpenter, and K. Moore, "Connection of IPv6 Domains via

https://datatracker.ietf.org/doc/html/draft-savola-v6ops-security-overview-03.txt
https://datatracker.ietf.org/doc/html/draft-savola-v6ops-security-overview-03.txt
https://datatracker.ietf.org/doc/html/draft-tschofenig-v6ops-secure-tunnels-03.txt
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1435
https://datatracker.ietf.org/doc/html/rfc1812
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2461
https://datatracker.ietf.org/doc/html/rfc2462
https://datatracker.ietf.org/doc/html/rfc2667
https://datatracker.ietf.org/doc/html/rfc2827
https://datatracker.ietf.org/doc/html/rfc2890
https://datatracker.ietf.org/doc/html/rfc2923
https://datatracker.ietf.org/doc/html/rfc2983

<draft-ietf-v6ops-mech-v2-07.txt> [Page 24]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 IPv4 Clouds", RFC 3056, February 2001.

 [RFC3168] K. Ramakrishnan, S. Floyd, D. Black, "The Addition of
 Explicit Congestion Notification (ECN) to IP", RFC 3168,
 September 2001.

 [RFC3232] Reynolds, J., "Assigned Numbers: RFC 1700 is Replaced by an
 On-line Database", RFC 3232, January 2002.

 [RFC3484] R. Draves, "Default Address Selection for IPv6", RFC 3484,
 February 2003.

 [RFC3493] Gilligan, R., et al, "Basic Socket Interface Extensions for
 IPv6", RFC 3493, February 2003.

 [RFC3513] Hinden, R., and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 3513, April 2003.

 [RFC3596] Thomson, S., C. Huitema, V. Ksinant, and M. Souissi, "DNS
 Extensions to support IP version 6", RFC 3596, October 2003.

 [RFC3704] Baker, F., and Savola P., "Ingress Filtering for Multihomed
 Networks", RFC 3704, BCP 84, March 2004.

9. Authors' Addresses

 Erik Nordmark
 Sun Microsystems Laboratories
 180, avenue de l'Europe
 38334 SAINT ISMIER Cedex, France
 Tel : +33 (0)4 76 18 88 03
 Fax : +33 (0)4 76 18 88 88
 Email : erik.nordmark@sun.com

 Robert E. Gilligan
 Intransa, Inc.
 2870 Zanker Rd., Suite 100
 San Jose, CA 95134

 Tel : +1 408 678 8600
 Fax : +1 408 678 8800
 Email : gilligan@intransa.com, gilligan@leaf.com

<draft-ietf-v6ops-mech-v2-07.txt> [Page 25]

https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc3232
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/rfc3596
https://datatracker.ietf.org/doc/html/rfc3704
https://datatracker.ietf.org/doc/html/bcp84
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

10. Changes from RFC 2893

 The motivation for the bulk of these changes are to simplify the
 document to only contain the mechanisms of wide-spread use.

RFC 2893 contains a mechanism called automatic tunneling. But a much
 more general mechanism is specified in RFC 3056 [RFC3056] which gives
 each node with a (global) IPv4 address a /48 IPv6 prefix i.e., enough
 for a whole site.

 The following changes have been performed since RFC 2893:

 - Removed references to A6 and retained AAAA.

 - Removed automatic tunneling and use of IPv4-compatible
 addresses.

 - Removed default Configured Tunnel using IPv4 "Anycast Address"

 - Removed Source Address Selection section since this is now
 covered by another document ([RFC3484]).

 - Removed brief mention of 6over4.

 - Split into normative and non-normative references and other
 reference cleanup.

 - Dropped "or equal" in if (IPv4 path MTU - 20) is less than or
 equal to 1280

 - Dropped this: However, IPv6 may be used in some environments
 where interoperability with IPv4 is not required. IPv6 nodes
 that are designed to be used in such environments need not use
 or even implement these mechanisms.

 - Described Static MTU and Dynamic MTU cases separately; clarified
 that the dynamic path MTU mechanism is OPTIONAL but if it is
 implemented it should follow the rules in section 3.2.2.

 - Specified Static MTU to default to a MTU of 1280 to 1480 bytes,
 and that this may be configurable. Discussed the issues with
 using Static MTU at more length.

 - Specified minimal rules for IPv4 reassembly and IPv6 MRU to
 enhance interoperability and to minimize blacholes.

 - Restated the "currently underway" language about Type-of-
 Service, and loosely point at [RFC2983] and [RFC3168].

https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/rfc3056
https://datatracker.ietf.org/doc/html/rfc2893
https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc3168

<draft-ietf-v6ops-mech-v2-07.txt> [Page 26]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 - Fixed reference to Assigned Numbers to be to online version
 (with proper pointer to "Assigned Numbers is obsolete" RFC).

 - Clarified text about ingress filtering e.g. that it applies to
 packet delivered to transport protocols on the decapsulator as
 well as packets being forwarded by the decapsulator, and how the
 decapsulator's checks help when IPv4 and IPv6 ingress filtering
 is in place.

 - Removed unidirectional tunneling; assume all tunnels are
 bidirectional, between endpoint addresses (not nodes).

 - Removed the guidelines for advertising addresses in DNS as
 slightly out of scope, referring to another document for the
 details.

 - Removed the SHOULD requirement that the link-local addresses
 should be formed based on IPv4 addresses.

 - Added a SHOULD for implementing a knob to be able to set the
 source address of the tunnel, and add discussion why this is
 useful.

 - Added stronger wording for source address checks: both IPv4 and
 IPv6 source addresses MUST be checked, and RPF-like ingress
 filtering is optional.

 - Rewrote security considerations to be more precise about the
 threats of tunneling.

 - Added a note about considering using TTL=255 when encapsulating.

 - Added more discussion in Section 3.2 why using an "infinite"
 IPv6 MTU leads to likely interoperability problems.

 - Added an explicit requirement that if both MTU determination
 methods are used, choosing one should be possible on a per-
 tunnel basis.

 - Clarified that ICMPv4 error handling is only applicable to
 dynamic MTU determination.

 - Removed/clarified DNS record filtering; an API is a SHOULD and
 if it does not exist, MUST NOT filter anything. Decree ordering
 out of scope, but refer to RFC3484.

 - Add a note that the destination IPv4 address could also be a
 multicast address.

https://datatracker.ietf.org/doc/html/rfc3484

<draft-ietf-v6ops-mech-v2-07.txt> [Page 27]

https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

 - Make it RECOMMENDED to provide a toggle to perform strict
 ingress filtering on an interface.

 - Generalize the text on the data in ICMPv4 messages.

 - Made a lot of miscellaneous editorial cleanups.

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 28]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

INTERNET DRAFT Basic IPv6 Transition Mechanisms March 2005

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

<draft-ietf-v6ops-mech-v2-07.txt> [Page 29]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/draft-ietf-v6ops-mech-v2-07.txt

