
Internet Engineering Task Force M. Lentczner
Internet-Draft Linden Research, Inc.
Intended status: Informational M. Hamrick, Ed.
Expires: January 6, 2011 July 5, 2010

Virtual World Region Agent Protocol: Foundation
draft-ietf-vwrap-foundation-00

Abstract

 The Virtual World Region Agent Protocol documents define the
 protocols by which a vast, Internet wide virtual world can operate.
 This protocol enables different regions of the virtual world to be
 operated independently, yet interoperate to form a cohesive
 experience.

 This document specifies the foundation upon which various suites of
 virtual world functionality are built. It describes the basic
 structure of VWRAP interaction and common methodology and terminology
 for protocols.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lentczner & Hamrick Expires January 6, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft VWRAP: Foundation July 2010

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Structure . 3
1.1. Introduction . 3
1.1.1. Requirements Language 3

1.2. Domains . 3
1.3. Basic Flow . 4
1.4. Structure of the Protocol 4
1.5. Document Structure . 5

2. Base Protocols . 5
2.1. Resources, HTTP & REST 5
2.2. LLSD & LLIDL . 6
2.2.1. Serialization . 6

2.3. Capabilities . 6
2.3.1. Obtaining . 7
2.3.2. Invocation . 7
2.3.3. Lifetime & Revocation 7
2.3.4. Names . 8
2.3.5. Seed Capability (Resource Class) 8
2.3.6. Security . 9

2.4. Event Queues . 9
2.4.1. Basic Flow . 9
2.4.2. Restrictions . 9
2.4.3. Event Queue Get (Resource Class) 10
2.4.4. Requests . 10
2.4.5. Responses . 10
2.4.6. Long Poll . 10
2.4.7. Closing the Queue 11

3. Security Considerations 11
4. IANA Considerations . 12
5. Normative References . 12

 Authors' Addresses . 13

Lentczner & Hamrick Expires January 6, 2011 [Page 2]

Internet-Draft VWRAP: Foundation July 2010

1. Structure

1.1. Introduction

 The Virtual World Region Agent Protocol (VWRAP) is about a three way
 interaction between viewer, agent and region in order to facilitate a
 shared experience between people. While the description here is
 grounded in a common view of what a virtual world is, the terms are
 deliberately described so as to be usable in a wider variety of
 situations. The VWRAP structure is design to support the abstract
 the notion of persistent user identity interacting over time in a
 variety of shared experiences in different persistent locations,
 especially where the users and locations are operated by different
 administrative domains.

1.1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Domains

 The viewer is the element that senses and acts on the state of the
 virtual world. The viewer does so from the vantage point of an
 agent. An agent is persistent identity and persona that interacts in
 a virtual world. The agent persists and can be interacted with even
 when the user controlling it (though a viewer) is off-line. Regions
 are persistent locations in the virtual world. Multiple agents may
 be present in a region at the same time, and when they are they have
 a shared experience.

 Groups of regions and agents are managed by domains. A region domain
 is responsible for a collection of regions. An agent domain manages
 agent accounts.

 This protocol makes few assumptions about how a domain manages its
 collection of elements. In particular, it does not assume that a
 region will be entirely managed on a single host, nor that an agent
 will or won't be managed by a single process.

 It is useful to think of the "stance" that each element takes in the
 three-way protocol:

 The viewer is the direct proxy for a human that wants to control an
 agent. This control can be direct as in the case of an interactive
 3D viewer, or indirect as in the case of a web site that the user
 directs to display their agent's status.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Lentczner & Hamrick Expires January 6, 2011 [Page 3]

Internet-Draft VWRAP: Foundation July 2010

 The agent domain is responsible for the agent itself. The persistent
 state of the agent is held within the agent domain, and requests to
 interact with the agent, even by the viewer, are mediated by the
 agent domain.

 The region domain runs the live simulations of regions in the virtual
 world. The region domain manages the persistent state of these
 regions.

1.3. Basic Flow

 The basic flow of the protocol is:

 1. The viewer authenticates to an agent domain for the authorized
 control of a particular agent.

 2. The viewer directs the agent domain to to place the agent in a
 region.

 3. The agent domain contacts the region domain for the region, and
 negotiates placement of the agent.

 4. The region grants access to the agent domain, which in turn
 passes some of that granted access on to the viewer.

 At this stage, each entity will have access to many resources in the
 other entities. For example:

 o The viewer has access to region resources that let it move the
 avatar.

 o The region has access to viewer resources that update the state of
 objects in the region.

 o The viewer and agent have access to resources in each other to
 facilitate text messaging.

1.4. Structure of the Protocol

 The protocol is fundamentally composed of individual resources that
 can be invoked by one entity in the system upon another. Each
 resource is a member of a resource class that describes the syntax
 and semantics of invoking the resource.

 The resource classes are composed into suites that form logical
 groupings, though suites do not otherwise play a part in the
 protocol. Other protocol suites based on this document, when
 complete, will describe the several hundred resource classes that

Lentczner & Hamrick Expires January 6, 2011 [Page 4]

Internet-Draft VWRAP: Foundation July 2010

 make up the virtual world.

 In order to facilitate migration from the existing systems, as well
 as support future extension, some resources could return information
 that allow entities to continue to communicate using other protocols
 and structures. These protocols and structures are not part of
 VWRAP. It is the intention that when this work is complete, virtual
 world interaction will be entirely VWRAP based, and that VWRAP itself
 will have enough extensibility for future development.

 Agent and region domains have a few resources that are available at
 well known URLs. All other resources in the agent and region domains
 are accessed via capabilities obtained from the those few initial
 resources.

 Since viewers are typically behind firewalls that do not allow
 connection, resources in the viewer are accessed by event queues held
 in the agent and region for the viewer. The viewer uses the "long
 poll" technique to efficiently proxy these inward resource
 invocations.

1.5. Document Structure

 VWRAP is a large suite of interrelated protocol suites. Each major
 protocol suite is described in its own document. For examples, see
 the VWRAP Authentication and VWRAP Teleport documents. This document
 describes the base facilities and concepts upon which the other
 protocols are based. To be compliant with VWRAP, an implementation
 MUST conform to this document, and may implement any of the other
 protocol sets that are deemed relevant.

2. Base Protocols

2.1. Resources, HTTP & REST

 All interaction between entities is through a client invoking a
 resource. Resources are invoked either directly via HTTP [RFC2616],
 or through an event queue.

 For each resource class, this protocol defines how the client obtains
 the URL, the HTTP verb (or verbs) to be used, the request and
 response bodies (if any), and significant status codes. Resource
 classes are designed with REST style semantics.

 In general, HTTP & REST are used as follows: The URL will be either
 well-known in advance or returned in a response from another
 resource. The latter is called a capability. Except for security

https://datatracker.ietf.org/doc/html/rfc2616

Lentczner & Hamrick Expires January 6, 2011 [Page 5]

Internet-Draft VWRAP: Foundation July 2010

 reasons, URLs are always treated as opaque. Clients should not
 modify them. Parameters are never added to them via the query
 section. Resource handlers must be prepared to ignore query
 sections.

 Resources follow general REST semantics and so respond to one of
 these HTTP verb sets:

 GET for cacheable resources

 GET, PUT for cacheable resources that can be modified

 GET, PUT, DELETE for cacheable resources that can be modified and
 deleted

 POST for non-cacheable resources

 Unless otherwise stated, if a resource accepts PUT, it accepts
 multiple PUT invocations.

 The request and response bodies are transmitted as serialized LLSD
 data. If a resource has no response defined, then it can return
 either an undefined value, an empty map, or have a zero length
 response body.

 HTTP status codes should only be used to indicate the status of the
 HTTP interaction itself. In general, if the resource is reachable,
 and the request understood, a 2xx code should be returned.

 HTTP headers, both for the request and the response are never part of
 a resource class definition. Headers are handled as per the HTTP
 standard.

2.2. LLSD & LLIDL

 All data in this system is defined by LLSD and protocols specified in
 LLIDL. LLSD is an abstract way of talking about structured data. It
 is defined in LLSD & LLIDL [I-D.ietf-vwrap-type-system].

2.2.1. Serialization

 When used as part of VWRAP, the XML and JSON serializations of LLSD
 MUST be supported.

2.3. Capabilities

 This protocol makes extensive use of capabilities. A capability is
 an opaque HTTP (or HTTPS) URL used for accessing a particular

Lentczner & Hamrick Expires January 6, 2011 [Page 6]

Internet-Draft VWRAP: Foundation July 2010

 resource. The provider of the resource has three logical parts:
 the_grantor_, the_capability host_, and the_service_.

 The grantor uses the capability host to construct a capability that
 maps to the service that provides the resource, then returns that
 capability to the client. At some point in the future, the client
 invokes the capability which makes a connection to the capability
 host. The capability host then proxies to the service to provide the
 resource.

 The parts that make up the provider may be separate entities or may
 be the same.

 The client can't invoke the resource without the capability.
 Typically the capability is a URL with a cryptographically secure
 path component. Within the capability host, this URL is mapped to
 the actual internal resource URL.

 The client is free to hand the capability to other entities who
 become clients of the capability as well. Other than for the
 security considerations below, the client must not rely on any
 assumed structure of the capability URL.

2.3.1. Obtaining

 For each resource a client wants to invoke, the capability must be
 obtained. In a few cases, the capability will have been expressly
 returned in the result of some other resource. Usually, the system
 uses a seed capability (see below) to request the capability for a
 given resource by name.

2.3.2. Invocation

 To invoke a capability, the holder performs an HTTP transaction with
 the capability as the URL. The resource class the capability
 represents will dictate which verb (or verbs) can be used, and what
 the request and response bodies (if any) should be.

2.3.3. Lifetime & Revocation

 Capabilities can be either unlimited or one-shot. Unlimited
 capabilities can be used multiple times, whereas one-shot can be used
 only once and are automatically revoked on invocation.

 Invoking a one-shot with the HTTP verbs HEAD or OPTIONS does not
 revoke it.

 Any capability can be revoked at will by the provider of the

Lentczner & Hamrick Expires January 6, 2011 [Page 7]

Internet-Draft VWRAP: Foundation July 2010

 resource. Clients must be prepared to handle revoked capabilities.
 A revoked capability, when invoked must return a 4xx HTTP status
 code. The capability host may return a 404, even if the capability
 had been previously active.

2.3.4. Names

 The resource a capability performs is identified by name. When
 requesting a capability, or when returning a capability, the opaque
 URL is identified with this name. The names of such resources are
 intended to be globally unique.

 Names are URIs. When a name appears without a scheme component, then
 it is a relative URL, considered relative to the base:

http://xmlns.secondlife.com/capability/name/

 While names do exhibit path-link structure, they are to be considered
 opaque identifiers. For example, while the following three
 capability names are indeed from the same protocol suite, nothing
 should be inferred about a capability that starts with their common
 prefix:

 inventory/root

 inventory/folder_contents

 inventory/move_folder

 While not required, this protocol prefers names that are all lower
 case ASCII letters, separated by underscores and forward slashes.

2.3.5. Seed Capability (Resource Class)

 In many cases, a sub-system will return a_seed capability_from which
 other capabilities can be requested.
 %% seed
 -> { capabilities: [string, ...] }
 <- { capabilities: { $: uri } }

 The request contains an array of all resource names for which
 capabilities are desired. The response contains a map with an entry
 for each capability granted. Note: a grantor may grant all, some or
 none of the requested capabilities. The grantor may also grant
 additional capabilities that were requested, or none at all. If the
 grantor grants none, the response map must be empty and the HTTP
 status code should still be 200.

http://xmlns.secondlife.com/capability/name/

Lentczner & Hamrick Expires January 6, 2011 [Page 8]

Internet-Draft VWRAP: Foundation July 2010

2.3.6. Security

 If an end-point receives a capability from an untrusted source, it is
 permissible for security reasons to check the following aspects of
 the URL before use:

 o The scheme should be http: or https:.

 o The authority (in particular, the resolved host name) should not
 resolve to ports on the local machine that aren't publicly
 accessible.

2.4. Event Queues

 An event queue enables an entity to invoke resources in the viewer,
 which cannot be directly contaced via HTTP. This is usually the case
 because the viewer is behind a firewall that doesn't allow incoming
 TCP (and hence HTTP) connections from the region or agent domains.

 In such a situation, the client establishes a queue of invocation
 requests for resources in the viewer. At the same time, the viewer
 uses an*event_queue/get*capability to effectively tunnel the requests
 from the client to itself.

2.4.1. Basic Flow

 When the viewer invokes*event_queue/get*, the entity replies with the
 list of messages that have been queued up. The viewer takes the
 response, breaks it apart into a series of requests that it processes
 on itself, as resource invocations that the entity wanted to perform.
 The next invocation of *event_queue/get* includes the responses to
 any requests that have completed processing. While it takes two
 resource invocations of* event_queue/get* to tunnel a set of
 invocations in the other directions, subsequent transactions are
 chained, since the acknowledgement of a previous requests is
 performed in the same invocation that gets the next set.

2.4.2. Restrictions

 Resources accessed this way have the following restrictions:

 o Resources are identified by their resource class name. With
 capabilities, there can be several resources in an entity that all
 conform to the same resource class. With event queues only one
 resource can exist for each resource class within the viewer.
 This is not usually a severe restriction.

Lentczner & Hamrick Expires January 6, 2011 [Page 9]

Internet-Draft VWRAP: Foundation July 2010

 o The only verb allowed is POST.

2.4.3. Event Queue Get (Resource Class)

 This resource is a capability both in the agent and in the region,
 for implementing a tunneled series of resource invocations from the
 entity back to the client:
 %% event_queue/get
 -> { responses: [&response, ...], done: bool }
 <- { requests: [&request, ...] }

 &request = { id: int, name: string, body: undef }
 &response = { id: int, status: int, body: undef }

2.4.4. Requests

 Each request contains a name and a body. The name is the resource
 name to be invoked. The request can then be seen as equivalent to
 fetching the capability for this named resource from a seed
 capability, and then invoking that capability. Since the viewer
 cannot have URLs that point into it, these two steps must be combined
 into one operation here.

 The id field represents a number that is used later to correlate
 responses with the requests. The number must be considered opaque
 from the point of view of the viewer. It is up to the entity to
 choose an allocation regieme that works for itself.

2.4.5. Responses

 Each response includes the id number from the request it is the
 response to. This enables the entity to correate responses with
 requests. The status value is the same as the HTTP status code for
 the request. However, the status of 0 (which corresponds to the
 value that would be seen if the status field were missing in the
 LLSD), shall be construed as a status of 200. The body is the
 response body.

 Note that requestors need to be prepared to handle the same set of
 eventualities as any REST request: A response to a request might
 never come, or might be delayed significantly.

2.4.6. Long Poll

 Both viewers and entities must be prepared to handle use the "long
 poll" technique to keep the flow of requests timely. Viewers must be
 prepared to handle that invoking *event_queue/get* may take a
 relatively long time to return, as the entity may choose to delay

Lentczner & Hamrick Expires January 6, 2011 [Page 10]

Internet-Draft VWRAP: Foundation July 2010

 responding if there are no requests pending, or if it believes it
 would be better to wait for more requests to queue. Entities must be
 prepared to handle viewers that request as soon as they are ready for
 events with no delay. Both sides must be prepared to handle time
 outs and retries.

2.4.7. Closing the Queue

 When the viewer is ready to terminate the queue, meaning that it
 wishes to be done accepting requests, it may signal such by including
 the done flag in the next invocation of* event_queue/get*. This
 value is purely advisory, but enables entities to cleanly flush
 remaining events, and release resources. Specifically, setting done
 to true in the invocation body indicates to the entity that if no
 requests are returned, the viewer intends to no longer invoke this
 queue.

3. Security Considerations

 The VWRAP protocols described by this document describe mechanism by
 which other application specific protocols are layered on top.
 Issues such as authentication and authorization are described in
 other VWRAP documents, and only pertain to systems that choose to use
 them. However, as this document's protocols form a base of others,
 and these are intended to be deployed across the Internet, there are
 some basic security considerations at this level.

 All resources in VWRAP are invoked via HTTP or HTTPS URLs. Where a
 resource requires any of end-to-end data integrity, protection from
 man-in-the middle attacks, or authentication of resource provider,
 that resource should be accessed via HTTPS, with the client checking
 the validity of the server certificate. If the URL indicates https:,
 then the security available with HTTPS connections applies to the
 resource request.

 Some resources in VWRAP are accessed via cryptographically strong
 URLs. That is, a entity decides to authorize a client to access a
 resource, and does so by handing back a non-guessable URL to the
 service to the client. When such a URL is returned, it must be over
 a HTTPS channel, lest the URL be sniffed as it traverses the network.
 Care must be taken by the entity providing the capability to ensure
 that the URL is unguessable and unforgeable. Usually, using a 128
 bit random key in the URL path is sufficient, assuming the randomness
 has sufficient cryptographic properties.

 Clients must take care to consider such URLs precious - just as they
 would session cookies in a web browser environment. These URLs are

Lentczner & Hamrick Expires January 6, 2011 [Page 11]

Internet-Draft VWRAP: Foundation July 2010

 authorized to invoke some action, and if leaked, give out that
 ability. Since they are generally limited in scope, it is possible
 to delegate these URLs to other sub-systems the client may entrust to
 perform its work, and it is safer to do so than techniques like
 sharing session cookies or account passwords.

 As discussed in Section 2.3.6, clients must take caution that
 capabilities returned by services don't point to localhost. The
 primary reason for this is that it is common for hosts to have more
 ports and services open to localhost than to external entities. A
 malicous external entity returning a URL pointed at localhost, if it
 can guess the likely services available, can cause the client to
 invoke those services on its behalf, even thought it can't directly
 view the results. Clients should check the resolved IP address for
 the host in the URL, since it is trivial to have remotely controlled
 DNS names that resolve to 127.0.0.1. Note: This threat is no
 different that already exists in web browsing in general.

 There are two denial of service attack vectors. As with any web
 service, entities must be prepared to handle all manner of ill formed
 requests, requests that take too much time, and requests that come at
 a high rate. Standard web service techniques can be used to mitigate
 these risks. In the case of the Event Queue, clients must be
 prepared to handle unreasonable, or malformed requests from the
 contacted entity. If a client finds itself overwhelmed by requests
 from an Event Queue, simply dropping the connection and not replying
 is completely acceptable mitigation. The long poll technique also
 allows either side to release the connection at any time that
 resources are being too heavily consumed.

4. IANA Considerations

 This document has no actions for IANA.

5. Normative References

 [I-D.ietf-vwrap-type-system]
 Brashears, A., Hamrick, M., and M. Lentczner, "VWRAP :
 Abstract Type System for the Transmission of Dynamic
 Structured Data", July 2010.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Lentczner & Hamrick Expires January 6, 2011 [Page 12]

Internet-Draft VWRAP: Foundation July 2010

 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Authors' Addresses

 Mark Lentczner
 Linden Research, Inc.
 945 Battery St.
 San Francisco, CA 94111
 US

 Phone: +1 415 243 9000
 Email: zero@lindenlab.com

 Meadhbh Siobhan Hamrick (editor)
 P.O. Box 783
 Boulder Creek, CA 95006
 US

 Phone: +1 650 283 0344
 Email: OhMeadhbh@gmail.com

https://datatracker.ietf.org/doc/html/rfc2616

Lentczner & Hamrick Expires January 6, 2011 [Page 13]

