
 INTERNET-DRAFT G. Clemm
draft-ietf-webdav-bind-00 Rational Software

 J. Crawford
 IBM Research
 J. Reschke
 Greenbytes
 J. Slein
 Xerox
 E.J. Whitehead
 U.C. Santa Cruz

 Expires April 2, 2002 October 2, 2001

Binding Extensions to WebDAV

 Status of this Memo
 This document is an Internet-Draft and is in full conformance with all
 provisions of RFC 2026, Section 10.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other groups
 may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference material
 or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract
 This specification defines bindings, and the BIND method for creating
 multiple bindings to the same resource. Creating a new binding to a
 resource causes at least one new URI to be mapped to that resource.
 Servers are required to insure the integrity of any bindings that they
 allow to be created.

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-bind-00
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Clemm, et al. [Page 1]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 Table of Contents

1 INTRODUCTION...3
1.1 Terminology...4
1.2 Rationale for Distinguishing Bindings from URI Mappings6

2 OVERVIEW OF BINDINGS...................................6
2.1 Bindings to Collections...............................7
2.2 URI Mappings Created by a new Binding.................7
2.3 DELETE and Bindings...................................8
2.4 COPY and Bindings.....................................9
2.5 MOVE and Bindings....................................10
2.6 Determining Whether Two Bindings Are to the Same Resource..........10
2.7 Discovering the Bindings to a Resource...............11

3 PROPERTIES..11
3.1 DAV:resource-id Property.............................11
3.2 DAV:parent-set Property..............................12

4 BIND METHOD...12
4.1 Example: BIND..13

5 ADDITIONAL STATUS CODES...............................14
5.1 506 Loop Detected....................................14

6 SECURITY CONSIDERATIONS...............................15
6.1 Privacy Concerns.....................................15
6.2 Redirect Loops.......................................15
6.3 Bindings, and Denial of Service......................16
6.4 Private Locations May Be Revealed....................16
6.5 DAV:parent-set and Denial of Service.................16

7 INTERNATIONALIZATION CONSIDERATIONS...................16

8 IANA CONSIDERATIONS...................................16

9 INTELLECTUAL PROPERTY.................................16

10 ACKNOWLEDGEMENTS.....................................17

11 REFERENCES...17

12 AUTHORS' ADDRESSES...................................18

Clemm, et al. [Page 2]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

1 INTRODUCTION

 This specification extends the WebDAV Distributed Authoring
 Protocol to enable clients to create new access paths to existing
 resources. This capability is useful for several reasons:

 URIs of WebDAV-compliant resources are hierarchical and correspond
 to a hierarchy of collections in resource space. The WebDAV
 Distributed Authoring Protocol makes it possible to organize these
 resources into hierarchies, placing them into groupings, known as
 collections, which are more easily browsed and manipulated than a
 single flat collection. However, hierarchies require
 categorization decisions that locate resources at a single location
 in the hierarchy, a drawback when a resource has multiple valid
 categories. For example, in a hierarchy of vehicle descriptions
 containing collections for cars and boats, a description of a
 combination car/boat vehicle could belong in either collection.
 Ideally, the description should be accessible from both. Allowing
 clients to create new URIs that access the existing resource lets
 them put that resource into multiple collections.

 Hierarchies also make resource sharing more difficult, since
 resources that have utility across many collections are still
 forced into a single collection. For example, the mathematics
 department at one university might create a collection of
 information on fractals that contains bindings to some local
 resources, but also provides access to some resources at other
 universities. For many reasons, it may be undesirable to make
 physical copies of the shared resources on the local server: to
 conserve disk space, to respect copyright constraints, or to make
 any changes in the shared resources visible automatically. Being
 able to create new access paths to existing resources in other
 collections or even on other servers is useful for this sort of
 case.

 The BIND method defined here provides a mechanism for allowing
 clients to create alternative access paths to existing WebDAV
 resources. HTTP and WebDAV methods are able to work because there
 are mappings between URIs and resources. A method is addressed to
 a URI, and the server follows the mapping from that URI to a
 resource, applying the method to that resource. Multiple URIs may
 be mapped to the same resource, but until now there has been no way
 for clients to create additional URIs mapped to existing resources.

 BIND lets clients associate a new URI with an existing WebDAV
 resource, and this URI can then be used to submit requests to the
 resource. Since URIs of WebDAV resources are hierarchical, and

 correspond to a hierarchy of collections in resource space, the
 BIND method also has the effect of adding the resource to a
 collection. As new URIs are associated with the resource, it
 appears in additional collections.

Clemm, et al. [Page 3]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 A BIND request does not create a new resource, but simply makes
 available a new URI for submitting requests to an existing
 resource. The new URI is indistinguishable from any other URI when
 submitting a request to a resource. Only one round trip is needed
 to submit a request to the intended target. Servers are required
 to enforce the integrity of the relationships between the new URIs
 and the resources associated with them. Consequently, it may be
 very costly for servers to support BIND requests that cross server
 boundaries.

 This specification is organized as follows. Section 1.1 defines
 terminology used in the rest of the specification, while Section 2
 overviews bindings. Section 3 specifies the BIND method, used to
 create multiple bindings to the same resource. Sections Error!
 Reference source not found. defines the new properties needed to
 support multiple bindings to the same resource.

1.1 Terminology

 The terminology used here follows and extends that in the WebDAV
 Distributed Authoring Protocol specification [RFC2518].

 URI Mapping

 A relation between an absolute URI and a resource. For an absolute
 URI U and the resource it identifies R, the URI mapping can be
 thought of as (U => R). Since a resource can represent items that
 are not network retrievable, as well as those that are, it is
 possible for a resource to have zero, one, or many URI mappings.
 Mapping a resource to an "http" scheme URL makes it possible to
 submit HTTP protocol requests to the resource using the URL.

 Path Segment

 Informally, the characters found between slashes ("/") in a URI.
 Formally, as defined in section 3.3 of [RFC2396].

 Binding

 A relation between a single path segment (in a collection) and a
 resource. A binding is part of the state of a collection. If two
 different collections contain a binding between the same path
 segment and the same resource, these are two distinct bindings. So
 for a collection C, a path segment S, and a resource R, the binding
 can be thought of as C:(S -> R). Bindings create URI mappings, and
 hence allow requests to be sent to a single resource from multiple
 locations in a URI namespace. For example, given a collection C
 (accessible through the URI http://www.srv.com/coll/), a path

https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc2396#section-3.3
http://www.srv.com/coll/

 segment S (equal to "foo.html"), and a resource R, then creating
 the binding C: (S -> R) makes it possible to use the URI

http://www.srv.com/coll/foo.html to access R.

Clemm, et al. [Page 4]

http://www.srv.com/coll/foo.html

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 Collection

 A resource that contains, as part of its state, a set of bindings
 that identify internal member resources.

Clemm, et al. [Page 5]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 Internal Member URI

 The URI that identifies an internal member of a collection, and
 that consists of the URI for the collection, followed by a slash
 character ('/'), followed by the path segment of the binding for
 that internal member.

1.2 Rationale for Distinguishing Bindings from URI Mappings

 In [RFC2518], the state of a collection is defined as containing a
 list of internal member URIs. If there are multiple mappings to a
 collection, then the state of the collection is different when you
 refer to it via a different URI. This is undesirable, since ideally
 a collection's membership should remain the same, independent of
 which URI was used to reference it.

 The notion of binding is introduced to separate the final segment
 of a URI from its parent collection s contribution. This done, a
 collection can be defined as containing a set of bindings, thus
 permitting new mappings to a collection without modifying its
 membership. The authors of this specification anticipate and
 recommend that future revisions of [RFC2518] will update the
 definition of the state of a collection to correspond to the
 definition in this document.

2 OVERVIEW OF BINDINGS

 Bindings are part of the state of a collection. They define the
 internal members of the collection, and the names of those internal
 members.

 Bindings are added and removed by a variety of existing HTTP
 methods. A method that creates a new resource, such as PUT, COPY,
 and MKCOL, adds a binding. A method that deletes a resource, such
 as DELETE, removes a binding. A method that moves a resource (e.g.
 MOVE) both adds a binding (in the destination collection) and
 removes a binding (in the source collection). The BIND method
 introduced here provides a mechanism for adding a second binding to
 an existing resource. There is no difference between an initial
 binding added by PUT, COPY, or MKCOL, and additional bindings added
 with BIND.

 It would be very undesirable if one binding could be destroyed as a
 side effect of operating on the resource through a different
 binding. In particular, the removal of one binding to a resource
 (e.g. with a DELETE or a MOVE) MUST NOT disrupt another binding to
 that resource, e.g. by turning that binding into a dangling path

https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc2518

 segment. The server MUST NOT reclaim system resources after
 removing one binding, while other bindings to the resource remain.
 In other words, the server MUST maintain the integrity of a
 binding.

Clemm, et al. [Page 6]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

2.1 Bindings to Collections

 Bindings to collections can result in loops, which servers MUST
 detect when processing "Depth: infinity" requests. It is sometimes
 possible to complete an operation in spite of the presence of a
 loop. However, the 506 (Loop Detected) status code is defined in

Section 5 for use in contexts where an operation is terminated
 because a loop was encountered. Servers MUST allow loops to be
 created.

 Creating a new binding to a collection makes each resource
 associated with a binding in that collection accessible via a new
 URI, and thus creates new URI mappings to those resources but no
 new bindings.

 For example, suppose a new binding CollY is created for collection
 C1 in the figure below. It immediately becomes possible to access
 resource R1 using the URI /CollY/x.gif and to access resource R2
 using the URI /CollY/y.jpg, but no new bindings for these child
 resources were created. This is because bindings are part of the
 state of a collection, and associate a URI that is relative to that
 collection with its target resource. No change to the bindings in
 Collection C1 is needed to make its children accessible using
 /CollY/x.gif and /CollY/y.jpg.

 +-------------------------+
 | Root Collection |
 | (properties) |
 | bindings: |
 | CollX CollY |
 +-------------------------+
 | /
 | /
 | /
 +------------------+
 | Collection C1 |
 | (properties) |
 | bindings: |
 | x.gif y.jpg |
 +------------------+
 | \
 | \
 | \
 +-------------+ +-------------+
 | Resource R1 | | Resource R2 |
 +-------------+ +-------------+

2.2 URI Mappings Created by a new Binding

 Suppose a binding from "Binding-Name" to resource R to be added to
 a collection, C. Then if C-MAP is the set of URI's that were
 mapped to C before the BIND request, then for each URI "C-URI" in

Clemm, et al. [Page 7]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 C-MAP, the URI "C-URI/Binding-Name" is mapped to resource R
 following the BIND request.

 For example, if a binding from "foo.html" to R is added to a
 collection C, and if the following URI's are mapped to C:

http://www.fuzz.com/A/1/
http://fuzz.com/A/one/

 then the following new mappings to R are introduced:

http://www.fuzz.com/A/1/foo.html
http://fuzz.com/A/one/foo.html

 Note that if R is a collection, additional URI mappings are created
 to the descendents of R. Also, note that if a binding is made in
 collection C to C itself (or to a parent of C), an infinite number
 of mappings are introduced.

 For example, if a binding from "myself" to C is then added to C,
 the following infinite number of additional mappings to C are
 introduced:

http://www.fuzz.com/A/1/myself
http://www.fuzz.com/A/1/myself/myself

 ...

 and the following infinite number of additional mappings to R are
 introduced:

http://www.fuzz.com/A/1/myself/foo.html
http://www.fuzz.com/A/1/myself/myself/foo.html

 ...

2.3 DELETE and Bindings

 The DELETE method was originally defined in [RFC2616]. This section
 redefines the behavior of DELETE in terms of bindings, an
 abstraction not available when writing [RFC2616]. [RFC2616] states
 that "the DELETE method requests that the origin server delete the
 resource identified by the Request-URI." Because [RFC2616] did not
 distinguish between bindings and resources, the intent of its
 definition of DELETE is unclear. The definition presented here is
 a clarification of the definition in [RFC2616].

 The DELETE method requests that the server remove the binding
 between the resource identified by the Request-URI and the binding
 name, the last path segment of the Request-URI. The binding MUST be
 removed from its parent collection, identified by the Request-URI

http://www.fuzz.com/A/1/
http://fuzz.com/A/one/
http://www.fuzz.com/A/1/foo.html
http://fuzz.com/A/one/foo.html
http://www.fuzz.com/A/1/myself
http://www.fuzz.com/A/1/myself/myself
http://www.fuzz.com/A/1/myself/foo.html
http://www.fuzz.com/A/1/myself/myself/foo.html
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

 minus its trailing slash (if present) and final segment.

 Once a resource is unreachable by any URI mapping, the server MAY
 reclaim system resources associated with that resource. If DELETE
 removes a binding to a resource, but there remain URI mappings to

Clemm, et al. [Page 8]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 that resource, the server MUST NOT reclaim system resources
 associated with the resource.

 Although [RFC2518] allows a DELETE to be a non-atomic operation,
 the DELETE operation defined here is atomic. In particular, a
 DELETE on a hierarchy of resources is simply the removal of a
 binding to the collection identified by the Request-URI, and so is
 a single (and therefore atomic) operation.

Section 8.6.1 of [RFC2518] states that during DELETE processing, a
 server "MUST remove any URI for the resource identified by the
 Request-URI from collections which contain it as a member."
 Servers that support bindings MUST NOT follow this requirement.

2.4 COPY and Bindings

 As defined in Section 8.8 of [RFC2518], COPY causes the resource
 identified by the Request-URI to be duplicated, and makes the new
 resource accessible using the URI specified in the Destination
 header. Upon successful completion of a COPY, a new binding is
 created between the last path segment of the Destination header,
 and the destination resource. The new binding is added to its
 parent collection, identified by the Destination header minus its
 trailing slash (if present) and final segment.

 The following figure shows an example: Suppose that a COPY is
 issued to URI 3 for resource R (which is also mapped to URI 1 and
 URI 2), with the Destination header set to URIX. After successful
 completion of the COPY operation, resource R is duplicated to
 create resource R', and a new binding has been created which
 creates at least the URI mapping between URIX and the new resource
 (although other URI mappings may also have been created).

 URI 1 URI 2 URI 3 URIX
 | | | |
 | | | <---- URI Mappings ----> |
 | | | |
 +---------------------+ +------------------------+
 | Resource R | | Resource R' |
 +---------------------+ +------------------------+

 It might be thought that a COPY request with "Depth: 0" on a
 collection would duplicate its bindings, since bindings are part of
 the collection's state. This is not the case, however. The
 definition of Depth in [RFC2518] makes it clear that a "Depth: 0"
 request does not apply to a collection's members. Consequently, a
 COPY with "Depth: 0" does not duplicate the bindings contained by
 the collection.

https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc2518#section-8.6.1
https://datatracker.ietf.org/doc/html/rfc2518#section-8.8
https://datatracker.ietf.org/doc/html/rfc2518

Clemm, et al. [Page 9]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

2.5 MOVE and Bindings

 The MOVE method has the effect of creating a new binding to a
 resource (at the Destination), and removing an existing binding (at
 the Request-URI). The name of the new binding is the last path
 segment of the Destination header, and the new binding is added to
 its parent collection, identified by the Destination header minus
 its trailing slash (if present) and final segment.

 As an example, suppose that a MOVE is issued to URI 3 for resource
 R below (which is also mapped to URI 1 and URI 2), with the
 Destination header set to URIX. After successful completion of the
 MOVE operation, a new binding has been created which creates at
 least the URI mapping between URIX and resource R (although other
 URI mappings may also have been created). The binding
 corresponding to the final segment of URI 3 has been removed, which
 also causes the URI mapping between URI 3 and R to be removed.

 >> Before Request:

 URI 1 URI 2 URI 3
 | | |
 | | | <---- URI Mappings
 | | |
 +---------------------+
 | Resource R |
 +---------------------+

 >> After Request:

 URI 1 URI 2 URIX
 | | |
 | | | <---- URI Mappings
 | | |
 +---------------------+
 | Resource R |
 +---------------------+

 Although [RFC2518] allows a MOVE on a collection to be a non-atomic
 operation, the MOVE operation defined here MUST be atomic. Even
 when the Request-URI identifies a collection, the MOVE operation
 involves only removing one binding to that collection and adding
 another. There are no operations on bindings to any of its
 children, so the case of MOVE on a collection is the same as the
 case of MOVE on a non-collection resource. Both are atomic.

2.6 Determining Whether Two Bindings Are to the Same Resource

https://datatracker.ietf.org/doc/html/rfc2518

 It is useful to have some way of determining whether two bindings
 are to the same resource. Two resources might have identical
 contents and properties, but not be the same resource (e.g. an
 update to one resource does not affect the other resource).

Clemm, et al. [Page 10]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 The REQUIRED DAV:resource-id property defined in Section 3.1 is a
 resource identifier, which MUST be unique across all resources for
 all time. If the values of DAV:resource-id returned by PROPFIND
 requests through two bindings are identical, the client can be
 assured that the two bindings are to the same resource.

 The DAV:resource-id property is created, and its value assigned,
 when the resource is created. The value of DAV:resource-id MUST
 NOT be changed. Even after the resource is no longer accessible
 through any URI, that value MUST NOT be reassigned to another
 resource's DAV:resource-id property.

 Any method that creates a new resource MUST assign a new, unique
 value to its DAV:resource-id property. For example, a PUT that
 creates a new resource must assign a new, unique value to its
 DAV:resource-id property. A COPY, since it creates a new resource
 at the Destination URI, must assign a new, unique value to its
 DAV:resource-id property.

 On the other hand, any method that affects an existing resource
 MUST NOT change the value of its DAV:resource-id property. For
 example, a PUT that updates an existing resource must not change
 the value of its DAV:resource-id property. A MOVE, since it does
 not create a new resource, but only changes the location of an
 existing resource, must not change the value of its DAV:resource-id
 property.

2.7 Discovering the Bindings to a Resource

 An OPTIONAL DAV:parent-set property on a resource provides a list
 of the bindings that associate a collection and a URI segment with
 that resource. If the DAV:parent-set property exists on a given
 resource, it MUST contain a complete list of all bindings to that
 resource that the client is authorized to see. When deciding
 whether to support the DAV:parent-set property, server implementers
 / administrators should balance the benefits it provides against
 the cost of maintaining the property and the security risks
 enumerated in Sections 6.4 and 6.5.

3 PROPERTIES

 The bind feature introduces the following properties for a
 resource.

3.1 DAV:resource-id Property

 The DAV:resource-id property is a REQUIRED property that enables
 clients to determine whether two bindings are to the same resource.
 The value of DAV:resource-id is a URI, and may use any registered
 URI scheme that guarantees the uniqueness of the value across all

Clemm, et al. [Page 11]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 resources for all time (e.g. the opaquelocktoken: scheme defined in
 [RFC2518]).

 <!ELEMENT resource-id (href)>

3.2 DAV:parent-set Property

 The DAV:parent-set property is an OPTIONAL property that enables
 clients to discover what collections contain a binding to this
 resource (i.e. what collections have that resource as an internal
 member). It contains an of href/segment pair for each collection
 that has a binding to the resource. The href identifies the
 collection, and the segment identifies the binding name of that
 resource in that collection.

 A given collection MUST appear only once in the DAV:parent-set for
 any given binding, even if there are multiple URI mappings to that
 collection. For example, if collection C1 is mapped to both /CollX
 and /CollY, and C1 contains a binding named "x.gif" to a resource
 R1, then either [/CollX, x.gif] or [/CollY, y.gif] can appear in
 the DAV:parent-set of R1, but not both. But if C1 also had a
 binding named "y.gif" to R1, then there would be two entries for C1
 in the DAV:binding-set of R1 (i.e. either both [/CollX, x.gif] and
 [/CollX, y.gif] or alternatively, both [/CollY, x.gif] and [/CollY,
 y.gif]).

 <!ELEMENT parent-set (parent)*>
 <!ELEMENT parent (href, segment)>
 <!ELEMENT segment (#PCDATA)>
 PCDATA value: segment, as defined in section 3.3 of [RFC2396]

4 BIND METHOD

 The BIND method modifies the collection identified by the Request-
 URI, by adding a new binding from the segment specified in the BIND
 body to the resource identified in the BIND body.

 If a server cannot guarantee the integrity of the binding, the BIND
 request MUST fail. Note that it is especially difficult to
 maintain the integrity of cross-server bindings. Unless the server
 where the resource resides knows about all bindings on all servers
 to that resource, it may unwittingly destroy the resource or make
 it inaccessible without notifying another server that manages a
 binding to the resource. For example, if server A permits creation
 of a binding to a resource on server B, server A must notify server
 B about its binding and must have an agreement with B that B will
 not destroy the resource while A's binding exists. Otherwise
 server B may receive a DELETE request that it thinks removes the
 last binding to the resource and destroy the resource while A's

https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc2396#section-3.3

 binding still exists. Status code 507 (Cross-server Binding
 Forbidden) is defined in Section 5.1 for cases where servers fail
 cross-server BIND requests because they cannot guarantee the
 integrity of cross-server bindings.

Clemm, et al. [Page 12]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 By default, if there already is a binding for the specified segment
 in the collection, the new binding replaces the existing binding.
 This default binding replacement behavior can be overridden using
 the Overwrite header defined in Section 9.6 of [RFC2518].

 Marshalling:

 The request MAY include an Overwrite header.

 The request body MUST be a DAV:bind XML element.

 <!ELEMENT bind ANY>
 <!ELEMENT bind (segment, href)>

 If a response body for a successful request is included, it MUST be
 a DAV:bind-response XML element. Note that this document does not
 define any elements for the BIND response body, but the DAV:bind-
 response element is defined to ensure interoperability between
 future extensions that do define elements for the BIND response
 body.

 <!ELEMENT bind-response ANY>
 Preconditions:

 (DAV:bind-into-collection): The Request-URL MUST identify a
 collection.

 (DAV:cross-server-binding): If the resource identified by the
 DAV:href element in the request body is on another server from the
 collection identified by the request-URL, the server MUST support
 cross-server bindings.

 (DAV:can-overwrite): If the collection already contains a binding
 with the specified path segment, and if an Overwrite header is
 included, the value of the Overwrite header MUST be "T".

 Postconditions:

 (DAV:new-binding): The collection MUST have a binding that maps the
 segment specified in the DAV:segment element in the request body,
 to the resource identified by the DAV:href element in the request
 body.

4.1 Example: BIND

 >> Request:

 BIND /coll HTTP/1.1

https://datatracker.ietf.org/doc/html/rfc2518#section-9.6

 Host: www.somehost.com
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxx

 <?xml version="1.0" encoding="utf-8" ?>

Clemm, et al. [Page 13]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 <D:bind xmlns:D="DAV:">
 <D:segment>bar.html</D:segment>
 <D:href>http://www.somehost.com/coll</D:href>
 </D:bind>

 >> Response:

 HTTP/1.1 201 Created

 The server added a new binding to the collection,
 "http://www.somehost.com/coll", associating "bar.html" with the
 resource identified by the URL
 "http://www.somehost.com/coll/foo.html". Clients can now use the
 URL "http://www.somehost.com/coll/bar.html", to submit requests to
 that resource.

5 ADDITIONAL STATUS CODES

5.1 506 Loop Detected

 The 506 (Loop Detected) status code indicates that the server
 terminated an operation because it encountered an infinite loop
 while processing a request with "Depth: infinity".

 When this status code is the top-level status code for the
 operation, it indicates that the entire operation failed.

 When this status code occurs inside a multi-status response, it
 indicates only that a loop is being terminated, but does not
 indicate failure of the operation as a whole.

 For example, consider a PROPFIND request on /Coll (bound to
 collection C), where the members of /Coll are /Coll/Foo (bound to
 resource R) and /Coll/Bar (bound to collection C).

 >> Request:

 PROPFIND /Coll/ HTTP/1.1
 Host: www.somehost.com
 Depth: infinity
 Content-Type: text/xml; charset="utf-8"
 Content-Length: xxx

 <?xml version="1.0" encoding="utf-8" ?>
 <D:propfind xmlns:D="DAV:">
 <D:prop> <D:displayname/> </D:prop>
 </D:propfind>

 >> Response:

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml; charset="utf-8"

Clemm, et al. [Page 14]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 Content-Length: xxx

 <?xml version="1.0" encoding="utf-8" ?>
 <D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://www.somehost.com/Coll/</D:href>
 <D:propstat>
 <D:prop>
 <D:displayname>Loop Demo</D:displayname>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://www.somehost.com/Coll/Foo</D:href>
 <D:propstat>
 <D:prop>
 <D:displayname>Bird Inventory</D:displayname>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://www.somehost.com/Coll/Bar</D:href>
 <D:status>HTTP/1.1 506 Loop Detected</D:status>
 </D:response>
 </D:multistatus>

6 SECURITY CONSIDERATIONS

 This section is provided to make WebDAV applications aware of the
 security implications of this protocol.

 All of the security considerations of HTTP/1.1 and the WebDAV
 Distributed Authoring Protocol specification also apply to this
 protocol specification. In addition, bindings introduce several
 new security concerns and increase the risk of some existing
 threats. These issues are detailed below.

6.1 Privacy Concerns

 In a context where cross-server bindings are supported, creating
 bindings on a trusted server may make it possible for a hostile
 agent to induce users to send private information to a target on a
 different server.

6.2 Redirect Loops

 Although redirect loops were already possible in HTTP 1.1, the
 introduction of the BIND method creates a new avenue for clients to
 create loops accidentally or maliciously. If the binding and its
 target are on the same server, the server may be able to detect

Clemm, et al. [Page 15]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 BIND requests that would create loops. Servers are required to
 detect loops that are caused by bindings to collections during the
 processing of any requests with "Depth: infinity".

6.3 Bindings, and Denial of Service

 Denial of service attacks were already possible by posting URLs
 that were intended for limited use at heavily used Web sites. The
 introduction of BIND creates a new avenue for similar denial of
 service attacks. If cross-server bindings are supported, clients
 can now create bindings at heavily used sites to target locations
 that were not designed for heavy usage.

6.4 Private Locations May Be Revealed

 If the DAV:parent-set property is maintained on a resource, the
 owners of the bindings risk revealing private locations. The
 directory structures where bindings are located are available to
 anyone who has access to the DAV:parent-set property on the
 resource. Moving a binding may reveal its new location to anyone
 with access to DAV:parent-set on its resource.

6.5 DAV:parent-set and Denial of Service

 If the server maintains the DAV:parent-set property in response to
 bindings created in other administrative domains, it is exposed to
 hostile attempts to make it devote resources to adding bindings to
 the list.

7 INTERNATIONALIZATION CONSIDERATIONS

 All internationalization considerations mentioned in [RFC2518] also
 apply to this document.

8 IANA CONSIDERATIONS

 All IANA considerations mentioned in [RFC2518] also apply to this
 document.

9 INTELLECTUAL PROPERTY

 The following notice is copied from RFC 2026, Section 10.4, and
 describes the position of the IETF concerning intellectual property
 claims made against this document.

https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/rfc2026#section-10.4

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use other technology described in

Clemm, et al. [Page 16]

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on
 the procedures of the IETF with respect to rights in standards-
 track and standards-related documentation can be found in BCP-11.
 Copies of claims of rights made available for publication and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to practice
 this standard. Please address the information to the IETF
 Executive Director.

10 ACKNOWLEDGEMENTS

 This draft is the collaborative product of the authors and Tyson
 Chihaya, Jim Davis, and Chuck Fay. This draft has benefited from
 thoughtful discussion by Jim Amsden, Peter Carlson, Steve Carter,
 Ken Coar, Ellis Cohen, Dan Connolly, Bruce Cragun, Spencer Dawkins,
 Mark Day, Rajiv Dulepet, David Durand, Roy Fielding, Yaron Goland,
 Fred Hitt, Alex Hopmann, James Hunt, Marcus Jager, Chris Kaler,
 Manoj Kasichainula, Rohit Khare, Daniel LaLiberte, Steve Martin,
 Larry Masinter, Jeff McAffer, Surendra Koduru Reddy, Max Rible, Sam
 Ruby, Bradley Sergeant, Nick Shelness, John Stracke, John Tigue,
 John Turner, Kevin Wiggen, and other members of the WebDAV working
 group.

11 REFERENCES

 [RFC2026] S.Bradner, "The Internet Standards Process", RFC 2026,
 October 1996.

 [RFC2119] S.Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2277] H.Alvestrand, "IETF Policy on Character Sets and
 Languages." RFC 2277, January 1998.

 [RFC2396] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax." RFC 2396, August 1998.

 [RFC2518] Y.Goland, E.Whitehead, A.Faizi, S.R.Carter, D.Jensen,
 "HTTP Extensions for Distributed Authoring - WEBDAV", RFC 2518,

https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2518

 February 1999.

 [RFC2616] R.Fielding, J.Gettys, J.C.Mogul, H.Frystyk, L.Masinter,
 P.Leach, and T.Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

Clemm, et al. [Page 17]

https://datatracker.ietf.org/doc/html/rfc2616

INTERNET-DRAFT WebDAV Versioning October 2, 2001

 [XML] T. Bray, J. Paoli, C.M. Sperberg-McQueen, "Extensible Markup
 Language (XML)." World Wide Web Consortium Recommendation REC-xml-
 19980210. http://www.w3.org/TR/1998/REC-xml-19980210.

12 AUTHORS' ADDRESSES

 Geoffrey Clemm
 Rational Software Corporation
 20 Maguire Road
 Lexington, MA 02173-3104
 Email: geoffrey.clemm@rational.com

 Jason Crawford
 IBM Research
 P.O. Box 704
 Yorktown Heights, NY 10598
 Email: ccjason@us.ibm.com

 Julian F. Reschke
 greenbytes GmbH
 Salzmannstrasse 152
 Muenster, NW 48159, Germany
 Email: julian.reschke@greenbytes.de

 Judy Slein
 Xerox Corporation
 800 Phillips Road, 105-50C
 Webster, NY 14580
 Email: jslein@crt.xerox.com

 Jim Whitehead
 UC Santa Cruz, Dept. of Computer Science
 1156 High Street, Santa Cruz, CA 95064
 Email: ejw@cse.ucsc.edu

http://www.w3.org/TR/1998/REC-xml-19980210

 Clemm, et al. [Page 18]

