
WEBDAV Working Group J. Slein, Xerox
INTERNET DRAFT E.J. Whitehead Jr., UC Irvine
<draft-ietf-webdav-binding-protocol-02.txt> J. Davis, CourseNet
 G. Clemm, Rational
 C. Fay, FileNet
 J. Crawford, IBM
 December 17, 1999
Expires June 17, 2000

WebDAV Bindings

Status of this Memo

This document is an Internet-Draft and is in full conformance with all
provisions of Section 10 of RFC2026. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas, and
its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress".

To view the list Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

Distribution of this document is unlimited. Please send comments to the
Distributed Authoring and Versioning (WebDAV) working group at <w3c-
dist-auth@w3.org>, which may be joined by sending a message with subject
"subscribe" to <w3c-dist-auth-request@w3.org>.

Discussions of the WEBDAV working group are archived at URL:
<http://lists.w3.org/Archives/Public/w3c-dist-auth/>.

Abstract

This is one of a pair of specifications that extend the WebDAV
Distributed Authoring Protocol to enable clients to create new access
paths to existing resources. The two protocol extensions have very
different characteristics that make them useful for different sorts of
applications.

The present specification defines bindings, and the BIND method for
creating them. Creating a new binding to a resource indirectly creates
one or more new URIs mapped to that resource, which can then be used to
access it. Servers are required to insure the integrity of any bindings
that they allow to be created.

The related specification, RFC xxxx, defines redirect reference
resources. A redirect reference resource is a resource whose default
response is an HTTP/1.1 302 (Found) status code, redirecting the client

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-binding-protocol-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/shadow.html
http://lists.w3.org/Archives/Public/w3c-dist-auth/

to a different resource, the target resource. A redirect reference
makes it possible to access the target resource indirectly, through any
URI mapped to the redirect reference resource. There are no integrity
guarantees associated with redirect reference resources.

Slein et al. Page 1
Internet-Draft WebDAV Bindings December 1999

Table of Contents

1 Notational Conventions.......................................2
2 Introduction...3
3 Terminology..4
3.1 Rationale for Distinguishing Bindings from URI Mappings......7
4 Overview of Bindings...8
5 BIND Method..8
5.1 Overview of BIND...8
5.2 Bindings to Collections......................................9
5.3 URI Mappings Created by a BIND..............................10
5.4 Example: URI Mappings Created by a BIND.....................11
5.5 BIND Status Codes...11
5.6 Example: BIND...11
6 DELETE and Bindings...12
7 COPY and Bindings...12
8 MOVE and Bindings...13
9 Bindings and Other Methods..................................14
10 Determining Whether Two Bindings Are to the Same Resource...14
10.1 resourceid URI Scheme.......................................15
11 Discovering the Bindings to a Resource......................15
12 Status Codes..16
12.1 506 Loop Detected...16
12.2 507 Cross-Server Binding Forbidden..........................17
13 Properties..17
13.1 bindings Property...17
13.2 resourceid Property...18
14 XML Elements..18
14.1 segment XML Element...18
15 Capability Discovery..18
15.1 Example: Discovery of Support for Bindings..................18
16 Security Considerations.....................................19
16.1 Privacy Concerns..19
16.2 Redirect Loops..19
16.3 Bindings, and Denial of Service.............................19
16.4 Private Locations May Be Revealed...........................20
16.5 DAV:bindings and Denial of Service..........................20
17 Internationalization Considerations.........................20
18 IANA Considerations...20
19 Copyright...21
20 Intellectual Property.......................................21

21 Acknowledgements..21
22 References..21
23 Authors' Addresses..22
24 Appendices..22
24.1 Appendix 1: Extensions to the WebDAV Document Type
 Definition..22

1 Notational Conventions

Since this document describes a set of extensions to the WebDAV
Distributed Authoring Protocol [WebDAV], itself an extension to the
HTTP/1.1 protocol, the augmented BNF used here to describe protocol
elements is exactly the same as described in Section 2.1 of [HTTP].

Slein et al. Page 2
Internet-Draft WebDAV Bindings December 1999

Since this augmented BNF uses the basic production rules provided in
Section 2.2 of [HTTP], these rules apply to this document as well.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

2 Introduction

This is one of a pair of specifications that extend the WebDAV
Distributed Authoring Protocol to enable clients to create new access
paths to existing resources. This capability is useful for several
reasons:

URIs of WebDAV-compliant resources are hierarchical and correspond to a
hierarchy of collections in resource space. The WebDAV Distributed
Authoring Protocol makes it possible to organize these resources into
hierarchies, placing them into groupings, known as collections, which
are more easily browsed and manipulated than a single flat collection.
However, hierarchies require categorization decisions that locate
resources at a single location in the hierarchy, a drawback when a
resource has multiple valid categories. For example, in a hierarchy of
vehicle descriptions containing collections for cars and boats, a
description of a combination car/boat vehicle could belong in either
collection. Ideally, the description should be accessible from both.
Allowing clients to create new URIs that access the existing resource
lets them put that resource into multiple collections.

Hierarchies also make resource sharing more difficult, since resources
that have utility across many collections are still forced into a single
collection. For example, the mathematics department at one university
might create a collection of information on fractals that contains
bindings to some local resources, but also provides access to some
resources at other universities. For many reasons, it may be
undesirable to make physical copies of the shared resources on the local

https://datatracker.ietf.org/doc/html/rfc2119

server: to conserve disk space, to respect copyright constraints, or to
make any changes in the shared resources visible automatically. Being
able to create new access paths to existing resources in other
collections or even on other servers is useful for this sort of case.

The BIND method defined here provides a mechanism for allowing clients
to create alternative access paths to existing WebDAV resources. HTTP
and WebDAV methods are able to work because there are mappings between
URIs and resources. A method is addressed to a URI, and the server
follows the mapping from that URI to a resource, applying the method to
that resource. Multiple URIs may be mapped to the same resource, but
until now there has been no way for clients to create additional URIs
mapped to existing resources.

BIND lets clients associate a new URI with an existing WebDAV resource,
and this URI can then be used to submit requests to the resource. Since
URIs of WebDAV resources are hierarchical, and correspond to a hierarchy
of collections in resource space, the BIND method also has the effect of
adding the resource to a collection. As new URIs are associated with
the resource, it appears in additional collections.

Slein et al. Page 3
Internet-Draft WebDAV Bindings December 1999

The companion specification, RFC xxxx, defines redirect reference
resources, a different mechanism for creating alternative access paths
to existing resources. A redirect reference is a resource in one
collection whose purpose is to forward requests to another resource (its
target), usually in a different collection. In this way, it provides
access to the target resource from another collection. It redirects
most requests to the target resource using the HTTP 302 (Moved
Temporarily) status code, thereby providing a form of mediated access to
the target resource.

Bindings and redirect reference resources have very different
characteristics:

A BIND request does not create a new resource, but simply makes
available a new URI for submitting requests to an existing resource.
The new URI is indistinguishable from any other URI when submitting a
request to a resource. Only one round trip is needed to submit a
request to the intended target. Servers are required to enforce the
integrity of the relationships between the new URIs and the resources
associated with them. Consequently, it may be very costly for servers
to support BIND requests that cross server boundaries.

A redirect reference is a resource, and so can have properties of its
own. Properties of the redirect reference can contain such information
as who created the reference, when, and why. Since redirect references
are implemented using HTTP 302 responses, it generally takes two round

trips to submit a request to the intended resource. Servers are not
required to enforce the integrity of redirect references. Redirect
references work equally well for local resources and for resources that
reside on a different server from the reference.

The remainder of this specification is organized as follows. Section 3
defines terminology used in the rest of the specification, while Section
4 briefly overviews bindings. Section 5 specifies the BIND method, used
to create bindings. Sections 6 through 9 discuss the relationships
between bindings and other HTTP and WebDAV methods. Sections 10 and 11
define mechanisms for tracking bindings. Sections 12 through 14 define
the new status codes, properties, and XML elements needed to support
bindings. Section 15 discusses compliance and capability discovery.
Security concerns, internationalization issues, and IANA considerations
are described in Sections 16 through 18. The remaining sections provide
other supporting information.

3 Terminology

The terminology used here follows and extends that in the WebDAV
Distributed Authoring Protocol specification [WebDAV]. Definitions of
the terms resource, Uniform Resource Identifier (URI), and Uniform
Resource Locator (URL) are provided in [URI].

URI Mapping
 A relation between an absolute URI and a resource. For an
 absolute URI U and the resource it identifies R, the URI mapping
 can be thought of as (U => R). Since a resource can represent

Slein et al. Page 4
Internet-Draft WebDAV Bindings December 1999

 items that are not network retrievable, as well as those that are,
 it is possible for a resource to have zero, one, or many URI
 mappings. Mapping a resource to an "http" scheme URL makes it
 possible to submit HTTP protocol requests to the resource using
 the URL.

Path Segment
 Informally, the characters found between slashes ("/") in a URI.
 Formally, as defined in section 3.3 of [URI].

Binding
 A relation between a single path segment (in a collection) and a
 resource. A binding is part of the state of a collection. If two
 different collections contain a binding between the same path
 segment and the same resource, these are two distinct bindings.
 So for a collection C, a path segment S, and a resource R, the
 binding can be thought of as C:(S -> R). Bindings create URI
 mappings, and hence allow requests to be sent to a single resource
 from multiple locations in a URI namespace. For example, given

 o collection C, accessible through the URI
http://www.srv.com/coll/,

 o path segment S, equal to "foo.html", and
 o resource R,

 creating the binding C: (S -> R) makes it possible to use the URI
http://www.srv.com/coll/foo.html to access R.

 The following figure illustrates a more complex example of how
 bindings create URI mappings.

 +-----------------------------+
 | root collection |
 |-----------------------------|
 | bindings: |
 | |
 | Coll1 Coll2 Coll3 |
 | | | \ |
 +---|-------|--------\--------+
 | | \
 | | \
 +-------------------+ +----------------------+
 | collection C1 | | collection C2 | |
 |-------------------| |----------------------|
 | bindings: | | bindings: |
 | | | |
 | foo bar | | foo |
 | | \ | | / |
 +--|------\---------+ +-/--------------------+
 | \ /
 | \ /
 | \ /
 | \ /
 +--------------+ +---------------+
 | resource R1 | | resource R2 |

Slein et al. Page 5
Internet-Draft WebDAV Bindings December 1999

 +--------------+ +---------------+

 Figure 1

 Since there are two bindings in the root collection, Coll1 and
 Coll2, to collection C1, the single binding C1:(foo -> R1) between
 foo and resource R1 in collection C1 creates two URI mappings,
 /Coll1/foo and /Coll2/foo, to resource R1. Each of these URI
 mappings can be used to submit requests to R1. The binding
 C1:(bar -> R2) between bar and resource R2 in collection C1 and
 the binding C2:(foo -> R2) between foo and resource R2 in

http://www.srv.com/coll/
http://www.srv.com/coll/foo.html

 collection C2 create altogether 3 URI mappings to resource R2:
 /Coll1/bar, /Coll2/bar, and /Coll3/foo. All 3 URI mappings can be
 used to submit requests to resource R2.

Collection
 A resource that contains, as part of its state, a set of bindings
 that identify member resources.

Internal Member URI
 Informally, the complete set of URLs by which a collection member
 is known. Formally, the URI U of a URI mapping (U => R), created
 by a binding that is contained in a collection. The following
 figure illustrates the relationship between bindings and internal
 member URIs in a collection:

 +-----------------------------+
 | root collection |
 |-----------------------------|
 | internal member URIs: |
 | |
 | /Coll1/ |
 | /Coll2/ |
 | /Coll3/ |
 |-----------------------------|
 | bindings: |
 | |
 | Coll1 Coll2 Coll3 |
 | | | \ |
 +---|-------|--------\--------+
 | | \
 | | \
 +----------------------+ +----------------------+
 | collection C1 | | collection C2 |
 |----------------------| |----------------------|
 | internal member URIs:| | internal member URIs:|
 | | | |
 | /Coll1/foo | | /Coll3/foo |
 | /Coll2/foo | |----------------------|
 | /Coll1/bar | | bindings: |
 | /Coll2/bar | | |
 |----------------------| | foo |
 | bindings: | | / |
 | | +-/--------------------+
 | foo bar | /

Slein et al. Page 6
Internet-Draft WebDAV Bindings December 1999

 | | \ | /
 +--|------\------------+ /
 | \ /

 | \ /
 | \ /
 | \ /
 +--------------+ +---------------+
 | resource R1 | | resource R2 |
 +--------------+ +---------------+

 Figure 2

 The URIs of all URI mappings created by a collection's bindings
 are internal member URIs of the collection.

 However, for a given request, only the URIs from those URI
 mappings that incorporate the Request-URI are treated as internal
 member URIs. This is done to prevent large amounts of duplicate
 information from being returned for operations on collections.
 The problem would occur if a PROPFIND on a collection to which
 there are multiple URI mappings returned information for every URI
 mapping.

 For example, in Figure 2 above, if a PROPFIND request with "Depth:
 infinity" is submitted to collection C1 using the Request-URI
 /Coll1/, only the URI mappings starting with the Request-URI would
 be listed as internal member URIs. The response would include
 only /Coll1/ itself and the internal member URIs /Coll1/foo and
 /Coll1/bar. It would not include /Coll2/, /Coll2/foo, or
 /Coll2/bar, even though the URI /Coll2/ does map to the
 collection, and /Coll2/foo and /Coll2/bar are internal member URIs
 of the collection.

 In [WebDAV], a collection is defined as containing a list of
 internal member URIs, where an internal member URI is the URI of
 the collection, plus a single path segment. This definition
 combines the two concepts of binding and URI mapping that are
 separated in this specification. As a result, this specification
 redefines a collection's state to be a set of bindings, and
 redefines an internal member URI to be the URI of a URI mapping
 derived from a binding. After this redefinition, an internal
 member URI can be used when reading [WebDAV] without loss of
 meaning. For purposes of interpretation, when [WebDAV] discusses a
 collection "containing" an internal member URI, this should be
 read as the collection containing a binding whose mapping to a URI
 creates an internal member URI, in this sense "containing" the
 internal member URI. The authors of this specification anticipate
 and recommend that future revisions of [WebDAV] perform a full
 reconciliation of terms between these two specifications.

3.1 Rationale for Distinguishing Bindings from URI Mappings

Consider again collection C1 in Figure 2. If we had only the notion of
URI mappings, we would be forced to say that C1's membership was defined

by the list of internal member URIs. If these URIs identify the

Slein et al. Page 7
Internet-Draft WebDAV Bindings December 1999

membership, and are part of the state of the collection, then the act of
making the collection available via a new URI has the effect of changing
the collection's membership, hence changing the collection's state. This
is undesirable, since ideally a collection's membership should remain
the same, if suddenly a new URI can be used to access the collection.
What is needed is a way to separate the final segment of a URI from the
collection's URI contribution.

The notion of binding is introduced to separate the final segment of a
URI from its parent collectionÆs contribution. This done, a collection
can be defined as containing a set of bindings, thus permitting new
mappings to a collection without modifying its membership. We introduce
the concept of URI mapping to combine together the collection's URI and
a binding's segment to create a full URI that can be used in protocol
requests. Finally, the internal member URI, first defined in [WebDAV],
is redefined here to maintain backward compatibility with that
specification.

4 Overview of Bindings

Bindings are part of the state of a collection. In general, there is a
one-to-many correspondence between a collection's bindings and its
internal member URIs, as illustrated in Figure 2 above. The URI segment
associated with a resource by one of a collection's bindings is also the
final segment of one or more of the collection's internal member URIs.
The final segment of each internal member URI identifies one of the
bindings that is part of the collection's state.

Bindings are not unique to advanced collections, although the BIND
method for explicitly creating bindings is introduced here. Existing
methods that create resources, such as PUT, MOVE, COPY, and MKCOL,
implicitly create bindings. There is no difference between implicitly
created bindings and bindings created with BIND.

The identity of a binding C:(S -> R) is determined by the URI segment
(in its collection) and the resource that the binding associates. If
the resource goes out of existence (as a result of some out-of-band
operation), the binding also goes out of existence. If the URI segment
comes to be associated with a different resource, the original binding
ceases to exist and another binding is created.

It would be very undesirable if one binding could be destroyed as a side
effect of operating on the resource through a different binding. It is
not acceptable for moving a resource through one binding to disrupt
another binding, turning that binding into a dangling path segment. Nor
is it acceptable for a server, after removing one binding, to reclaim

the system resources associated with its resource while other bindings
to the resource remain. Implementations MUST ensure the integrity of
bindings.

5 BIND Method

5.1 Overview of BIND

The BIND method creates a new binding between the resource identified by

Slein et al. Page 8
Internet-Draft WebDAV Bindings December 1999

the Request-URI and the final segment of the Destination header (minus
any trailing slash). This binding is added to the collection identified
by the Destination header minus its trailing slash (if present) and
final segment. The Destination header is defined in Section 9.3 of
[WebDAV].

If a server cannot guarantee the binding behavior specified here,
including the guarantee of the integrity of the binding, the BIND
request MUST fail.

Note: It is especially difficult to maintain the integrity of cross-
server bindings. Unless the server where the resource resides knows
about all bindings on all servers to that resource, it may unwittingly
destroy the resource or move it without notifying another server that
manages a binding to the resource. For example, if server A permits
creation of a binding to a resource on server B, server A must notify
server B about its binding and must have an agreement with B that B will
not destroy the resource while A's binding exists. Otherwise server B
may receive a DELETE request that it thinks removes the last binding to
the resource and destroy the resource while A's binding still exists.
Status code 507 (Cross-server Binding Forbidden) is defined in Section
12.2 for cases where servers must fail cross-server BIND requests
because they cannot guarantee the integrity of cross-server bindings.

If the Destination header does not contain a path segment (i.e., it
consists simply of a slash "/"), the BIND operation MUST fail and report
a 400 (Bad Request) status code. A binding consists of a (collection,
segment, resource) triple, and the Destination header is required to
specify the collection and segment of this triple.

If the Destination header minus its final path segment does not identify
a collection, the BIND operation MUST fail and report a 400 (Bad
Request) status code.

Note: Section 5.1 of [WebDAV] defines a consistent namespace to be one
such that "for every URL in the HTTP hierarchy there exists a collection
that contains that URL as an internal member," but [WebDAV] does not
require namespaces to be consistent. There can exist URIs that map to
resources, but do not depend on the existence of collections for the

mapping. For example, the URI http://www.svr.com/x/y.html may map to
resource R even if the URI http://www.svr.com/x/ does not map to any
resource. This specification does not support the creation of such URI
mappings. The BIND method can be used only in consistent sections of a
namespace.

After successful processing of a BIND request, it MUST be possible for
clients to use the URI in the Destination header to submit requests to
the resource identified by the Request-URI.

By default, if the Destination header identifies an existing binding,
the new binding replaces the existing binding. This default binding
replacement behavior can be overridden using the Overwrite header
defined in Section 9.6 of [WebDAV].

5.2 Bindings to Collections

Slein et al. Page 9
Internet-Draft WebDAV Bindings December 1999

Bindings to collections can result in loops. If a server wants to
prevent a loop from being created, it MAY fail the BIND request with a
403 (Forbidden) status code. If a server allows a loop to be created,
it MUST detect the loop when processing "Depth: infinity" requests that
encounter the loop. It is sometimes possible to complete an operation
in spite of the presence of a loop. However, the 506 (Loop Detected)
status code is defined in Section 12.1 for use in contexts where an
operation is terminated because a loop was encountered.

Creating a new binding to a collection makes each resource associated
with a binding in that collection accessible via a new URI, and thus
creates new URI mappings to those resources but no new bindings.

For example, suppose a new binding COLLX is created for collection C1 in
the figure below. It immediately becomes possible to access resource R1
using the URI /COLLX/x.gif and to access resource R2 using the URI
/COLLX/y.jpg, but no new bindings for these child resources were
created. This is because bindings are part of the state of a
collection, and associate a URI that is relative to that collection with
its target resource. No change to the bindings in Collection C1 is
needed to make its children accessible using /COLLX/x.gif and
/COLLX/y.jpg.

+-------------------------+
| Root Collection |
| (properties) |
| bindings: |
| coll1 COLLX |
+-------------------------+
 | /

http://www.svr.com/x/y.html
http://www.svr.com/x/

 | /
 | /
+------------------+
| Collection C1 |
| (properties) |
| bindings: |
| x.gif y.jpg |
+------------------+
 | \
 | \
 | \
+-------------+ +-------------+
| Resource R1 | | Resource R2 |
+-------------+ +-------------+

Figure 3

5.3 URI Mappings Created by a BIND

Suppose a BIND request causes a binding from "Binding-Name" to resource
R to be added to a collection, C. Then if C-MAP is the set of URI's
that were mapped to C before the BIND request, then for each URI "C-URI"
in C-MAP, the URI "C-URI/Binding-Name" is mapped to resource R following
the BIND request.

Slein et al. Page 10
Internet-Draft WebDAV Bindings December 1999

Note that if R is a collection, additional URI mappings are created to
the descendents of R. Also note that if a binding is made in collection
C to C itself (or to a parent of C), an infinite number of mappings is
introduced.

5.4 Example: URI Mappings Created by a BIND

For example, if a binding from "foo.html" to R is added to a collection
C, and if the following URI's are mapped to C:

http://www.fuzz.com/A/1
http://fuzz.com/A/one

then the following new mappings to R are introduced:

http://www.fuzz.com/A/1/foo.html
http://fuzz.com/A/one/foo.html

If a binding from "myself" to C is then added to C, the following
infinite number of additional mappings to C are introduced:

http://www.fuzz.com/A/1/myself
http://www.fuzz.com/A/1/myself/myself

http://www.fuzz.com/A/1
http://fuzz.com/A/one
http://www.fuzz.com/A/1/foo.html
http://fuzz.com/A/one/foo.html
http://www.fuzz.com/A/1/myself
http://www.fuzz.com/A/1/myself/myself

 ...

and the following infinite number of additional mappings to R are
introduced:

http://www.fuzz.com/A/1/myself/foo.html
http://www.fuzz.com/A/1/myself/myself/foo.html

 ...

5.5 BIND Status Codes

201 (Created): The binding was successfully created.

400 (Bad Request): The client set an invalid value for the Destination
header or Request-URI.

403 (Forbidden): This server has a policy that forbids creation of
bindings that would result in loops.

412 (Precondition Failed): The Overwrite header is "F", and a binding
already exists for the Destination header.

507 (Cross-Server Binding Forbidden): The server is unable to create the
requested binding because it would bind a segment in a collection on one
server to a resource on a different server.

5.6 Example: BIND

>> Request:

BIND /pub/i-d/draft-webdav-protocol-08.txt HTTP/1.1

Slein et al. Page 11
Internet-Draft WebDAV Bindings December 1999

Host: www.ics.uci.edu
Destination: http://www.ics.uci.edu/~whitehead/dav/spec08.txt

>> Response:

HTTP/1.1 201 Created

The server created a new binding, associating "spec08.txt" with the
resource identified by the URL "http://www.ics.uci.edu/pub/i-d/draft-
webdav-protocol-08.txt". Clients can now use the URI in the Destination
header, "http://www.ics.uci.edu/~whitehead/dav/spec08.txt", to submit
requests to that resource. As part of this operation, the server added
the binding "spec08.txt" to collection /~whitehead/dav/.

6 DELETE and Bindings

The DELETE method was originally defined in [HTTP]. This section

http://www.fuzz.com/A/1/myself/foo.html
http://www.fuzz.com/A/1/myself/myself/foo.html
http://www.ics.uci.edu/~whitehead/dav/spec08.txt

redefines the behavior of DELETE in terms of bindings, an abstraction
not available when writing [HTTP]. [HTTP] states that "the DELETE method
requests that the origin server delete the resource identified by the
Request-URI." Because [HTTP] did not distinguish between bindings and
resources, the intent of its definition of DELETE is unclear. The
definition presented here is a clarification of the definition in
[HTTP].

The DELETE method requests that the server remove the binding between
the resource identified by the Request-URI and the binding name, the
last path segment of the Request-URI. The binding MUST be removed from
its parent collection, identified by the Request-URI minus its trailing
slash (if present) and final segment.

Once a resource is unreachable by any URI mapping, the server MAY
reclaim system resources associated with that resource. If DELETE
removes a binding to a resource, but there remain URI mappings to that
resource, the server MUST NOT reclaim system resources associated with
the resource.

Although [WebDAV] allows a DELETE to be a non-atomic operation, the
DELETE operation defined here is atomic. In particular, a DELETE on a
hierarchy of resources is simply the removal of a binding to the
collection identified by the Request-URI, and so is a single (and
therefore atomic) operation.

Section 8.6.1 of [WebDAV] states that during DELETE processing, a server
"MUST remove any URI for the resource identified by the Request-URI from
collections which contain it as a member." Servers that support
bindings MUST NOT follow this requirement.

7 COPY and Bindings

As defined in Section 8.8 of [WebDAV], COPY causes the resource
identified by the Request-URI to be duplicated, and makes the new
resource accessible using the URI specified in the Destination header.
Upon successful completion of a COPY, a new binding is created between
the last path segment of the Destination header, and the destination

Slein et al. Page 12
Internet-Draft WebDAV Bindings December 1999

resource. The new binding is added to its parent collection, identified
by the Destination header minus its trailing slash (if present) and
final segment.

Figure 4 below shows an example: Suppose that a COPY is issued to URI 3
for resource R (which is also mapped to URI 1 and URI 2), with the
Destination header set to URIX. After successful completion of the COPY
operation, resource R is duplicated to create resource R', and a new
binding has been created which creates at least the URI mapping between

URIX and the new resource (although other URI mappings may also have
been created).

 URI 1 URI 2 URI 3 URIX
		<---- URI Mappings ---->
+---------------------+ +------------------------+		
Resource R		Resource R'
+---------------------+ +------------------------+

Figure 4

It might be thought that a COPY request with "Depth: 0" on a collection
would duplicate its bindings, since bindings are part of the
collection's state. This is not the case, however. The definition of
Depth in [WebDAV] makes it clear that a "Depth: 0" request does not
apply to a collection's members. Consequently, a COPY with "Depth: 0"
does not duplicate the bindings contained by the collection.

8 MOVE and Bindings

The MOVE method has the effect of creating a new binding to a resource
(at the Destination), and removing an existing binding (at the Request-
URI). The name of the new binding is the last path segment of the
Destination header, and the new binding is added to its parent
collection, identified by the Destination header minus its trailing
slash (if present) and final segment.

As an example, suppose that a MOVE is issued to URI 3 for resource R
below (which is also mapped to URI 1 and URI 2), with the Destination
header set to URIX. After successful completion of the MOVE operation,
a new binding has been created which creates at least the URI mapping
between URIX and resource R (although other URI mappings may also have
been created). The binding corresponding to the final segment of URI 3
has been removed, which also causes the URI mapping between URI 3 and R
to be removed.

>> Before Request:

 URI 1 URI 2 URI 3
 | | |
 | | | <---- URI Mappings
 | | |
+---------------------+
| Resource R |

Slein et al. Page 13
Internet-Draft WebDAV Bindings December 1999

+---------------------+

>> After Request:

 URI 1 URI 2 URIX
 | | |
 | | | <---- URI Mappings
 | | |
+---------------------+
| Resource R |
+---------------------+

Figure 5

Although [WebDAV] allows a MOVE on a collection to be a non-atomic
operation, the MOVE operation defined here MUST be atomic. Even when
the Request-URI identifies a collection, the MOVE operation involves
only removing one binding to that collection and adding another. There
are no operations on bindings to any of its children, so the case of
MOVE on a collection is the same as the case of MOVE on a non-collection
resource. Both are atomic.

9 Bindings and Other Methods

This section describes the interaction of bindings with those HTTP
methods not yet explicitly discussed. The semantics of the methods GET,
HEAD, PUT, POST and OPTIONS are specified in [HTTP]. The semantics of
PROPFIND, PROPPATCH, and MKCOL are specified in [WebDAV].

For these methods, no new complexities are introduced by allowing
explicit creation of multiple bindings to the same resource. When
applied to static resources (that is, resources that are not CGI
scripts, Active Server Pages, etc.), they obey the following rule:

o A method submitted through one URI mapping, on success, MUST produce
 the same results as the same method, with the same headers and entity
 body, submitted through any other URI mapping to the same resource.

When applied to dynamic resources, it is not possible to state any such
rule. For any method, a dynamic resource may be sensitive to the URI
mapping used to access it. The resource may produce different results
depending upon which URI mapping was used to submit the request.

Nevertheless, servers MAY allow new bindings to dynamic resources to be
created using BIND.

10 Determining Whether Two Bindings Are to the Same Resource

It is useful to have some way of determining whether two bindings are to
the same resource. Two different resources might have identical
contents and identical values for the properties defined in [WebDAV].
Although the DAV:bindings property defined in Section 13.1 provides this
information, it is an optional property.

The REQUIRED DAV:resourceid property defined in Section 13.2 is a

Slein et al. Page 14
Internet-Draft WebDAV Bindings December 1999

resource identifier, which MUST be unique across all resources for all
time. If the values of DAV:resourceid returned by PROPFIND requests
through two bindings are identical, the client can be assured that the
two bindings are to the same resource.

The DAV:resourceid property is created, and its value assigned, when the
resource is created. The value of DAV:resourceid MUST NOT be changed.
Even after the resource is no longer accessible through any URI, that
value MUST NOT be reassigned to another resource's DAV:resourceid
property.

Any method that creates a new resource MUST assign a new, unique value
to its DAV:resourceid property. For example, a PUT that creates a new
resource must assign a new, unique value to its DAV:resourceid property.
A COPY, since it creates a new resource at the Destination URI, must
assign a new, unique value to its DAV:resourceid property.

On the other hand, any method that affects an existing resource MUST NOT
change the value of its DAV:resourceid property. For example, a PUT
that updates an existing resource must not change the value of its
DAV:resourceid property. A MOVE, since it does not create a new
resource, but only changes the location of an existing resource, must
not change the value of its DAV:resourceid property.

10.1 resourceid URI Scheme

The value of DAV:resourceid is a URI and may use any URI scheme that
guarantees the uniqueness of the value across all resources for all
time. The resourceid URI scheme defined here is an example of an
acceptable URI scheme.

The resourceid URI scheme requires the use of the Universal Unique
Identifier (UUID) mechanism, as described in [ISO-11578]. UUID
generators may choose between two methods of creating the identifiers.
They can either generate a new UUID for every identifier they create or
they can create a single UUID and then add extension characters. If the
second method is selected, then the program generating the extensions
MUST guarantee that the same extension will never be used twice with the
associated UUID.

resourceid-URI = "resourceid:" UUID [Extension] ; The UUID production is
the string representation of a UUID, as defined in [ISO-11578]. Note
that white space (LWS) is not allowed between elements of this
production.

Extension = path ; path is defined in Section 3.3 of [URI].

11 Discovering the Bindings to a Resource

An OPTIONAL DAV:bindings property on a resource provides a list of the
bindings that associate URI segments with that resource. If the
DAV:bindings property exists on a given resource, it MUST contain a
complete list of all bindings to that resource. A PROPFIND requesting
DAV:bindings MUST return only those bindings that the client is
authorized to see. By retrieving this property, a client can discover

Slein et al. Page 15
Internet-Draft WebDAV Bindings December 1999

the bindings that point to the resource and the collections that contain
bindings to the resource.

Rationale: A number of scenarios require clients to navigate from a
resource to the bindings that point to it, and to the collections that
contain those bindings. This capability is particularly important for
Document Management Systems. Their clients may need to determine, for
any object in the DMS, what collections contain bindings to that object.
This information can be used for upward navigation through a hierarchy
or to discover related documents in other collections.

Risks: When deciding whether to support the DAV:bindings property,
server implementers / administrators should balance the benefits it
provides against the cost of maintaining the property and the security
risks enumerated in Sections 16.4 and 16.5.

12 Status Codes

12.1 506 Loop Detected

The 506 (Loop Detected) status code indicates that the server terminated
an operation because it encountered an infinite loop while processing a
request with "Depth: infinity".

When this status code is the top-level status code for the operation, it
indicates that the entire operation failed.

When this status code occurs inside a multistatus response, it indicates
only that a loop is being terminated, but does not indicate failure of
the operation as a whole.

For example, consider a PROPFIND request on the following collection:

Coll-1 (bound to collection C)
 Foo (bound to resource R)
 Bar (bound to collection C)

>> Request:

PROPFIND /Coll-1/ HTTP/1.1

Host: www.somehost.com
Depth: infinity
Content-Type: text/xml; charset="utf-8"
Content-Length: xxx

<?xml version="1.0" encoding="utf-8" ?>
<D:propfind xmlns:D="DAV:">
 <D:prop>
 <D:displayname/>
 </D:prop>
</D:propfind>

>> Response:

HTTP/1.1 207 Multi-Status

Slein et al. Page 16
Internet-Draft WebDAV Bindings December 1999

Content-Type: text/xml; charset="utf-8"
Content-Length: xxx

<?xml version="1.0" encoding="utf-8" ?>
<D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://www.somehost.com/Coll-1/</D:href>
 <D:propstat>
 <D:prop>
 <D:displayname>Loop Demo</D:displayname>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://www.somehost.com/Coll-1/Foo</D:href>
 <D:propstat>
 <D:prop>
 <D:displayname>Bird Inventory</D:displayname>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:propstat>
 </D:response>
 <D:response>
 <D:href>http://www.somehost.com/Coll-1/Bar</D:href>
 <D:propstat>
 <D:prop>
 <D:displayname/>
 </D:prop>
 <D:status>HTTP/1.1 506 Loop Detected</D:status>
 </D:propstat>
 </D:response>

</D:multistatus>

12.2 507 Cross-Server Binding Forbidden

The server is unable to create the requested binding because it would
bind a segment in a collection on one server to a resource on a
different server.

13 Properties

13.1 bindings Property

Name: bindings
Namespace: DAV:
Purpose: Enables clients to discover, for any resource, what bindings
 point to it and what collections contain those bindings.
 This is an optional property. If present on a given
 resource, it is a read-only property, maintained by the
 server, and contains a complete list of all bindings to that
 resource.
Value: List of href / segment pairs for all of the bindings that
 associate URI segments with the resource. The href is an
 absolute URI for one URI mapping of the collection

Slein et al. Page 17
Internet-Draft WebDAV Bindings December 1999

 containing the binding. Since there may be multiple URI
 mappings for this collection, it is necessary to select one
 (preferably the URI mapping contained in the Request-URI of
 the BIND request) for use in the DAV:bindings property. The
 segment is the URI segment that identifies the binding
 within that collection.

<!ELEMENT bindings ((href, segment)*)>

13.2 resourceid Property

Name: resourceid
Namespace: DAV:
Purpose: Enables clients to determine whether two bindings are for
 the same resource.
Value: URI that is guaranteed unique across all resources for all
 time. It may be of the resourceid URI scheme
 defined in Section 10.1 or any other URI scheme that
 guarantees this uniqueness.

<!ELEMENT resourceid (href)>

14 XML Elements

14.1 segment XML Element

Name: segment
Namespace: DAV:
Purpose: The segment that names a binding, used in the DAV:bindings
 property.
Value: segment ; as defined in section 3.3 of [URI].

<!ELEMENT segment (#PCDATA)>

15 Capability Discovery

Sections 9.1 and 15 of [WebDAV] describe the use of compliance classes
with the DAV header in responses to OPTIONS, to indicate which parts of
the WebDAV Distributed Authoring protocol the resource supports. This
specification defines an OPTIONAL extension to [WebDAV]. It defines a
new compliance class, called bindings, for use with the DAV header in
responses to OPTIONS requests. If a resource does support bindings, its
response to an OPTIONS request may indicate that it does, by listing the
new BIND method as one it supports, and by listing the new bindings
compliance class in the DAV header.

When responding to an OPTIONS request, any type of resource can include
bindings in the value of the DAV header. Doing so indicates that the
server permits a binding at the request URI.

15.1 Example: Discovery of Support for Bindings

>> Request:

OPTIONS /somecollection/someresource HTTP/1.1

Slein et al. Page 18
Internet-Draft WebDAV Bindings December 1999

HOST: somehost.org

>> Response:

HTTP/1.1 200 OK
Date: Tue, 20 Jan 1998 20:52:29 GMT
Connection: close
Accept-Ranges: none
Allow: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL,
PROPFIND, PROPPATCH, LOCK, UNLOCK, BIND
Public: OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE, MKCOL,
PROPFIND, PROPPATCH, LOCK, UNLOCK, BIND, MKREF, ORDERPATCH
DAV: 1, 2, bindings

The DAV header in the response indicates that the resource
/somecollection/someresource is level 1 and level 2 compliant, as
defined in [WebDAV]. In addition, /somecollection/someresource supports
bindings. The Allow header indicates that BIND requests can be

submitted to /somecollection/someresource. The Public header shows that
other Request-URIs on the server support additional methods.

16 Security Considerations

This section is provided to make WebDAV applications aware of the
security implications of this protocol.

All of the security considerations of HTTP/1.1 and the WebDAV
Distributed Authoring Protocol specification also apply to this protocol
specification. In addition, bindings introduce several new security
concerns and increase the risk of some existing threats. These issues
are detailed below.

16.1 Privacy Concerns

In a context where cross-server bindings are supported, creating
bindings on a trusted server may make it possible for a hostile agent to
induce users to send private information to a target on a different
server.

16.2 Redirect Loops

Although redirect loops were already possible in HTTP 1.1, the
introduction of the BIND method creates a new avenue for clients to
create loops accidentally or maliciously. If the binding and its target
are on the same server, the server may be able to detect BIND requests
that would create loops. Servers are required to detect loops that are
caused by bindings to collections during the processing of any requests
with "Depth: infinity".

16.3 Bindings, and Denial of Service

Denial of service attacks were already possible by posting URLs that
were intended for limited use at heavily used Web sites. The
introduction of BIND creates a new avenue for similar denial of service
attacks. If cross-server bindings are supported, clients can now create

Slein et al. Page 19
Internet-Draft WebDAV Bindings December 1999

bindings at heavily used sites to target locations that were not
designed for heavy usage.

16.4 Private Locations May Be Revealed

If the DAV:bindings property is maintained on a resource, the owners of
the bindings risk revealing private locations. The directory structures
where bindings are located are available to anyone who has access to the
DAV:bindings property on the resource. Moving a binding may reveal its
new location to anyone with access to DAV:bindings on its resource.

16.5 DAV:bindings and Denial of Service

If the server maintains the DAV:bindings property in response to
bindings created in other administrative domains, it is exposed to
hostile attempts to make it devote resources to adding bindings to the
list.

17 Internationalization Considerations

This specification follows the practices of [WebDAV] in encoding all
human-readable content using XML [XML] and in the treatment of names.
Consequently, this specification complies with the IETF Character Set
Policy [RFC2277].

WebDAV applications MUST support the character set tagging, character
set encoding, and the language tagging functionality of the XML
specification. This constraint ensures that the human-readable content
of this specification complies with [RFC2277].

As in [WebDAV], names in this specification fall into three categories:
names of protocol elements such as methods and headers, names of XML
elements, and names of properties. Naming of protocol elements follows
the precedent of HTTP, using English names encoded in USASCII for
methods and headers. The names of XML elements used in this
specification are English names encoded in UTF-8.

For error reporting, [WebDAV] follows the convention of HTTP/1.1 status
codes, including with each status code a short, English description of
the code (e.g., 423 Locked). Internationalized applications will ignore
this message, and display an appropriate message in the user's language
and character set.

This specification introduces no new strings that are displayed to users
as part of normal, error-free operation of the protocol.

For rationales for these decisions and advice for application
implementors, see [WebDAV].

18 IANA Considerations

This document uses the namespaces defined by [WebDAV] for properties and
XML elements. All other IANA considerations mentioned in [WebDAV] also
apply to this document.

Slein et al. Page 20
Internet-Draft WebDAV Bindings December 1999

In addition, this document defines the new resourceid URI Scheme in
Section 10.1 and the new HTTP/1.1 status codes 506 and 507in Section 12.

19 Copyright

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2277

To be supplied by the RFC Editor.

20 Intellectual Property

To be supplied by the RFC Editor.

21 Acknowledgements

This draft has benefited from thoughtful discussion by Jim Amsden, Peter
Carlson, Steve Carter, Tyson Chihaya, Ken Coar, Ellis Cohen, Dan
Connolly, Bruce Cragun, Spencer Dawkins, Mark Day, Rajiv Dulepet, David
Durand, Roy Fielding, Yaron Goland, Fred Hitt, Alex Hopmann, James Hunt,
Marcus Jager, Chris Kaler, Manoj Kasichainula, Rohit Khare, Daniel
LaLiberte, Steve Martin, Larry Masinter, Jeff McAffer, Surendra Koduru
Reddy, Max Rible, Sam Ruby, Bradley Sergeant, Nick Shelness, John
Stracke, John Tigue, John Turner, Kevin Wiggen, and others.

22 References

[RFC2277] H.T. Alvestrand, "IETF Policy on Character Sets and
Languages." RFC 2277, BCP 18. Uninett. January, 1998.

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax." RFC 2396. MIT/LCS, U.C. Irvine,
Xerox. August, 1998.

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement
Levels." RFC 2119, BCP 14. Harvard University. March, 1997.

[XML] T. Bray, J. Paoli, C.M. Sperberg-McQueen, "Extensible Markup
Language (XML)." World Wide Web Consortium Recommendation REC-xml-
19980210. http://www.w3.org/TR/1998/REC-xml-19980210.

[HTTP] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1." RFC
2616. UC Irvine, Compaq, W3C, Xerox, Microsoft. June, 1999.

[WebDAV] Y. Y. Goland, E. J. Whitehead, Jr., A. Faizi, S. R. Carter, D.
Jensen, "HTTP Extensions for Distributed Authoring - WebDAV." RFC 2518.
Microsoft, U.C. Irvine, Netscape, Novell. February, 1999.

[ISO-11578] ISO (International Organization for Standardization),
ISO/IEC 11578:1996. "Information technology - Open Systems
Interconnection - Remote Procedure Call (RPC)."

[RR] J. Slein, E.J. Whitehead Jr., J. Davis, G. Clemm, C. Fay, J.
Crawford, "WebDAV Redirect References." Internet Draft (work
in progress) draft-ietf-webdav-redirectref-protocol-02. Xerox, UC
Irvine, CourseNet, Rational, FileNet, IBM. December, 1999.

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
http://www.w3.org/TR/1998/REC-xml-19980210
https://datatracker.ietf.org/doc/html/rfc2518
https://datatracker.ietf.org/doc/html/draft-ietf-webdav-redirectref-protocol-02

Slein et al. Page 21
Internet-Draft WebDAV Bindings December 1999

23 Authors' Addresses

J. Slein
Xerox Corporation
800 Phillips Road, 105-50C
Webster, NY 14580
Email: jslein@crt.xerox.com

E. J. Whitehead, Jr.
Dept. of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425
Email: ejw@ics.uci.edu

J. Davis
CourseNet Systems
170 Capp Street
San Francisco, CA 94110
Email: jrd3@alum.mit.edu

G. Clemm
Rational Software Corporation
20 Maguire Road
Lexington, MA 02173-3104
Email: gclemm@rational.com

C. Fay
FileNet Corporation
3565 Harbor Boulevard
Costa Mesa, CA 92626-1420
Email: cfay@filenet.com

J. Crawford
IBM Research
P.O. Box 704
Yorktown Heights, NY 10598
Email: ccjason@us.ibm.com

24 Appendices

24.1 Appendix 1: Extensions to the WebDAV Document Type Definition

<!--============= XML Elements from Section 14 ================-->
<!ELEMENT segment (#PCDATA)>
<!--============= Property Elements from Section 13 ===========-->
<!ELEMENT bindings ((href, segment)*)>
<!ELEMENT resourceid (href)>

Expires June 17, 2000

Slein et al. Page 22

