
INTERNET-DRAFT Yaron Y. Goland
Expires: April 1998 Saveen Reddy
 Microsoft Corporation
 November 6, 1997

WebDAV Tree Operations
draft-ietf-webdav-depth-01.txt

1. Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

2. Abstract

 The WebDAV protocol specification [Goland et al., 1997] defines the
 DELETE, COPY and MOVE methods. However these methods have a scope of
 a single source resource. It is common for principals to wish to
 perform a DELETE, COPY or MOVE on a collection and all its internal
 members. This specification defines the DELETE-TREE, COPY-TREE and
 MOVE-TREE methods that perform the equivalent of DELETE, COPY and
 MOVE across a collection and all its progeny.

Goland & Reddy [Page 1]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

3. Contents

1. Status of this Memo...1
2. Abstract..1
3. Contents..2
4. Problem Definition..2
5. Proposed Solution...3
6. Levels of Recursion...3
7. Message Headers and Recursion...................................3
8. Lock Tokens and *-TREE Methods..................................4
9. DELETE-TREE Method..4

 10.COPY-TREE Method..6
 11.MOVE-TREE Method..7

12.102 "Processing" Response Code..................................9
 13.Status-URI Response Header......................................9
 14.Author's Address...10
 15.Bibliography...10

4. Problem Definition

 HTTP is designed such that a single message causes a single action
 on a single resource. This has proven to be a simple, interoperable,
 robust mechanism for delivering methods. In addition, in a world
 where the majority of requests are GETS, it is also a 'fair'
 arbitrator of server resources. Specifically, as load increases each
 client suffers degradation in service proportional to the number of
 requests made.

 However clients often wish to perform actions against all internal
 members of a collection. Currently a client has no choice but to
 execute each method individually on each member of the collection,
 in other words, there is no way to instruct a server to recurse
 through a namespace on behalf of a client.

 In many cases forcing the client to perform their own recursive
 calls is a desirable situation as it maintains the fairness of load
 distribution. The average HTTP editing server, which handles mostly
 GETs and PUTs with the occasional COPY or MOVE, is probably better
 off using non-recursive operations.

 However some servers routinely deal with operations on collection,
 so routinely in fact that they have developed a number of
 optimizations to allow them to quickly execute an operation against
 a hierarchy.

 A typical example is a copy on write system which can copy an entire
 hierarchy by putting a single pointer into the server's internal
 namespace and then tracking when one of the original resources is

 changed, thus performing the copy only when required. These servers
 are unable to take advantage of their optimizations because DAV does
 not provide a way for a client to tell the server that it intends to
 execute the copy against an entire hierarchy.

Goland & Reddy [Page 2]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

 In addition, in some circumstances, it is too expensive for clients
 to handle recursion themselves. For example, a hand held unit with
 limited memory, power, and bandwidth, would not be able to deal very
 well with a simple operation such as deleting a collection. The hand
 held unit would be required to execute a large number of methods and
 potentially record a large number of index entries as it recurses
 through the hierarchy. In such cases fairness takes second place to
 access.

 As such a means is needed for a client to efficiently indicate to a
 server its desire to execute a single method against a hierarchy.

5. Proposed Solution

 The proposed solution is the introduction of three new methods:
 DELETE-TREE, COPY-TREE, and MOVE-TREE.

 The three new methods are not the same as their root methods,
 DELETE, COPY, and MOVE. For example, a MOVE on a collection has
 different semantics then MOVE on a single resource.

 Clients MUST NOT rely upon the three new methods executing on
 members of their hierarchies in any particular order and the three
 new methods are not atomic.

 Upon executing the three new methods will perform as much of their
 assigned task as possible and then return a response specifying what
 they were able to accomplish and what they failed to do.

 So, for example, an attempt to COPY a hierarchy may result in some
 of the members being copied and some not.

6. Levels of Recursion

 As currently defined, all three new methods apply to the full length
 of the hierarchy. It has been suggested that the number of levels to
 be recursed should be an option. However no compelling case has been
 presented for why allowing the depth of recursion to be controlled
 is a desirable feature. As such this specification errs on the side
 of simplicity and declares that all three new methods apply to the
 full hierarchy.

7. Message Headers and Recursion

 Any headers on the three new methods MUST be applied to all
 resources in the scope of the method. For example, an if-match
 header will have its value applied against every resource in the
 method's scope and will cause the method to fail if the header fails

 to match properly.

Goland & Reddy [Page 3]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

 [Ed. Note: No, this isn't an error. Think about it, if you put an
 'if-match: *' what are you after? I think that putting propagation
 rules are just going to complicate things beyond reason. Look at the
 typical case 'I only want to copy this collection if its membership
 has changed or if the value of its members have changed.' The best
 an e-tag could give you is detection of membership change, not if
 the member's values have changed. I say leave well enough alone and
 just propagate everything.]

8. Lock Tokens and *-TREE Methods

 If a resource, source or destination, within scope of the *-TREE
 method is locked in such a way as to prevent the successful
 execution of the *-TREE method, then the lock token for that
 resource MUST be submitted with the *-TREE request in the State-
 Token request header.

9. DELETE-TREE Method

9.1. Request

 The DELETE-TREE method is only meaningful on a collection. If used
 on a non-collection the DELETE-TREE MUST be treated as a DELETE.

 DELETE-TREE instructs that the collection specified in the request-
 URI, the records of its external member resources, and all its
 internal member resources, are to be deleted.

 If any member can not be deleted then all of the member's progeny
 MUST NOT be deleted, so as to maintain the namespace.

 Any headers included with DELETE-TREE MUST be applied in processing
 every resource to be deleted. In this case, a header of special
 interest is the DESTROY header which specifies the method to be used
 to delete all resources in the scope of the DELETE-TREE.

 When the DELETE-TREE method has completed processing it MUST return
 a consistent namespace. Please refer to [Goland et al., 1997] for a
 full definition of a consistent namespace.

9.2. Response

 The response SHOULD be a multi-status response that describes the
 result of the DELETE-TREE on each effected resource.

 [Editor's Note: The response to a TREE method could potentially be
 huge, larger than a client may want or need to deal with. It has
 been suggested that clients be given the ability to tell the server
 they only want to get back a response code, not a response body.

 Thoughts?]

Goland & Reddy [Page 4]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

9.3. Response Codes

 415 Conflict - This can be used to indicate that some unspecified
 problem has occurred which makes it impossible to delete a
 particular resource. The most common scenario is that a new internal
 member was added to a collection while a DELETE-TREE was running and
 thus the collection can not be deleted.

9.4. Example

 DELETE-TREE /container/ HTTP/1.1
 Host: www.foo.bar
 Destroy: <http://www.ietf.org/standards/dav/NoUndelete>

 HTTP/1.1 207 Multi-Response
 Content-Type: text/xml
 Content-Length: xxxxx

 <?namespace href = "http://www.ietf.org/standards/dav/" As = "d"?>
 <d:multiresponse>
 <d:response>
 <d:href>http://www.foo.bar/container/resource1</d:href>
 <d:href>http://www.foo.bar/container/resource2</d:href>
 <d:status>HTTP/1.1 200 Success</d:status>
 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/container/</d:href>
 <d:status>HTTP/1.1 418 Method Failure</d:status>
 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/container/resource3</d:href>
 <d:status>HTTP/1.1 412 Precondition Failed</d:status>
 </d:response>
 </d:multiresponse>

 In this example the attempt to delete
http://www.foo.bar/container/resource3 failed. Given that there is

 only one precondition, one can figure out that the failure was
 caused the inability of the system to meet the requirement of the
 Destroy header. Normally however, the client will not know exactly
 what precondition caused the failure.

 The result is that container wasn't deleted because of the failure
 to delete container/resource3.

 [Ed-Note: To state the obvious, do we want to provide information on
 which precondition actually failed? This is not the panacea it might

http://www.ietf.org/standards/dav/NoUndelete
http://www.foo.bar/container/resource3

 seem as the failure may have occurred for multiple reasons and
 listing a bunch of headers may or may not be useful. Besides, the
 reality is, nobody every pays attention to error codes. There are

Goland & Reddy [Page 5]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

 really only two error codes in the world "It worked" or "Something
 Went Wrong."]

10. COPY-TREE Method

10.1. Request

 The COPY-TREE method is only meaningful on a collection. If used on
 a non-collection the COPY-TREE MUST be treated as a COPY.

 COPY-TREE instructs that the collection specified in the Request-
 URI, the records of its external member resources, and all its
 internal member resources, are to be copied to a location relative
 to the Destination header.

 Any headers included with COPY-TREE are to be applied in processing
 every resource to be copied.

 The exception to this rule is the Destination header. This header
 only specifies the destination for the Request-URI. When applied to
 members of the collection specified in the request-URI the value of
 Destination is to be modified to reflect the current location in the
 hierarchy. So, if the request-URI is "a" and the destination is "b"
 then when a/c/d is processed it MUST use a destination of b/c/d.

 When the COPY-TREE method has completed processing it MUST have
 created a consistent namespace at the destination. Thus if it is not
 possible to COPY a collection with internal members, the internal
 members may still be copied but a collection will have to be created
 at the destination to contain them.

 Please refer to the definition of COPY in section XYZ of [Goland et
 Al., 1997] for the rules on merging members and properties of source
 collections with pre-existing collections at the destination.

10.2. Response

 The response is a multi-status response that describes the result of
 the COPY-TREE on each effected resource. The response is given for
 the resource that was to be copied, not the resource that was
 created as a result of the copy. In other words, each entry
 indicates if the copy on the resource specified in the href
 succeeded or failed and why.

 The exception to this rule is for errors that occurred on the
 destination. For example, if the destination was locked the response
 would indicate the destination URL and a 416 "Locked" error.

Goland & Reddy [Page 6]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

10.3. Example

 COPY-TREE /container/ HTTP/1.1
 Host: www.foo.bar
 Destination: http://www.foo.bar/othercontainer/
 Enforce-Live-Properties: *

 HTTP/1.1 207 Multiresponse
 Content-Type: text/xml
 Content-Length: xxxxx

 <?namespace href = "http://www.ietf.org/standards/dav/" As = "d"?>
 <d:multiresponse>
 <d:response>
 <d:href>http://www.foo.bar/container/resource1</d:href>
 <d:href>http://www.foo.bar/container/resource2</d:href>
 <d:href>http://www.foo.bar/container/</d:href>
 <d:href>http://www.foo.bar/container/R2/D2</d:href>
 <d:status>HTTP/1.1 201 Created</d:status>
 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/container/R2/</d:href>
 <d:status>HTTP/1.1 415 Precondition Failed</d:status>
 </d:response>
 </d:multiresponse>

 In this example most of the resources, along with the container,
 were copied successfully. However the container R2 failed, most
 likely due to a problem with enforcing live properties. R2's member
 D3 was successfully copied. As a result a collection was created at
 www.foo.bar/othercontainer/R2 to contain D2.

11. MOVE-TREE Method

11.1. Request

 The MOVE-TREE method is only meaningful on a collection. If used on
 a non-collection the MOVE-TREE MUST be treated as a MOVE.

 MOVE-TREE instructs that the collection specified in the Request-
 URI, the records of its external member resources, and all its
 internal member resources, are to be moved to a location relative to
 the Destination header.

 Any headers included with MOVE-TREE are to be applied in processing
 every resource to be moved.

 The exception to this rule is the Destination header. The behavior
 of this header is the same as given for COPY-TREE.

http://www.foo.bar/othercontainer/

Goland & Reddy [Page 7]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

 When the MOVE-TREE method has completed processing it MUST have
 created a consistent namespace on both the source and destination,
 creating collections at the source or destination as necessary.

 As specified in the definition of MOVE, a MOVE of a collection over
 another collection causes the destination collection and all its
 members to be deleted.

11.2. Response

 The response is a multi-status response that describes the result of
 the MOVE-TREE on each effected resource. The response is given for
 the resource that was to be moved, not the resource that was created
 as a result of the move. In other words, each entry indicates if the
 move on the resource specified in the href succeeded or failed and
 why.

 The exception to this rule is for errors that occurred on the
 destination. For example, if the destination was locked the response
 would indicate the destination URL and a 416 "Locked" error.

11.3. Example

 MOVE-TREE /container/ HTTP/1.1
 Host: www.foo.bar
 Destination: http://www.foo.bar/othercontainer/
 Enforce-Live-Properties: *
 Overwrite: False
 State-Token: <OpaqueLockToken:xxxx> <OpaqueLockToken:xxxx>

 HTTP/1.1 207 Multiresponse
 Content-Type: text/xml
 Content-Length: xxxxx

 <?namespace href = "http://www.ietf.org/standards/dav/" As = "D"?>
 <d:multiresponse>
 <d:response>
 <d:href>http://www.foo.bar/container/resource1</d:href>
 <d:href>http://www.foo.bar/container/resource2</d:href>
 <d:href>http://www.foo.bar/container/</d:href>
 <d:href>http://www.foo.bar/container/C2/R2</d:href>
 <d:status>HTTP/1.1 201 Created</d:status>
 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/container/C2</d:href>
 <d:status>HTTP/1.1 418 Method Failure</d:status>
 <d:response>
 <d:href>http://www.foo.bar/othercontainer/C2</d:href>

http://www.foo.bar/othercontainer/

 <d:status>HTTP/1.1 416 Locked</d:status>
 </d:response>
 </d:multiresponse>

Goland & Reddy [Page 8]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

 In this example the client has submitted a number of lock tokens
 with the request. A lock token will need to be submitted for every
 resource, both source and destination, anywhere in the scope of the
 method, that is locked. In this case the proper lock token was not
 submitted for the destination http://www.foo.bar/othercontainer/C2.
 This means that the resource continer/c2 could not be copied,
 although its child container/C2/R2 could be copied.

12. 102 "Processing" Response Code

 The *-Tree methods can potentially take a long period of time to
 process. In such cases the client may time-out the connection while
 waiting for a response. To prevent this the server MAY return a 102
 response code to indicate to the client that the server is still
 processing the method.

 If a method is taking longer than [INSERT NUMBER HERE] seconds to
 process the server SHOULD return a 102 "Processing" response.

13. Status-URI Response Header

 The Status-URI response header MAY be used with the 102 "Processing"
 response code to inform the client as to the status of a method.

 Status-URI = "Status-URI" ":" *(Status-Code "<" URI ">") ; Status-
 Code is defined in 6.1.1 of [RFC2068]

 The URIs listed in the header are source resources which have been
 effected by the outstanding method. The status code indicates the
 resolution of the method on the identified resource. So, for
 example, if a COPY-TREE method is outstanding and a 102 "Processing"
 response with a Status-URI response header is returned, the included
 URIs will indicate resources that have had copy attempted on them
 and what the result was. Note that including the URI does not
 indicate the result of applying the method.

http://www.foo.bar/othercontainer/C2
https://datatracker.ietf.org/doc/html/rfc2068

Goland & Reddy [Page 9]

INTERNET-DRAFT WebDAV Tree Operations November 6, 1997

14. Author's Address

 Yaron Y. Goland
 Saveen Reddy
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA. 98053
 USA

 e-mail: {yarong, saveenr}@microsoft.com

15. Bibliography

 [Goland et al., 1997] Y. Goland, E. J. Whitehead, Jr., Asad Faizi,
 Stephen R. Carter, Del Jensen 'Extensions for Distributed Authoring
 and Versioning on the World Wide Web -- WEBDAV', March 1997, <URL:

ftp://ftp.ietf.org/internet-drafts/draft-ietf-webdav-protocol-
04.txt>

 [RFC2068] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-
 Lee, 'Hypertext Transfer Protocol -- HTTP/1.1', RFC 2068, January
 1997, <URL:ftp://ds.internic.net/rfc/rfc2068.txt>

ftp://ftp.ietf.org/internet-drafts/draft-ietf-webdav-protocol-04
ftp://ftp.ietf.org/internet-drafts/draft-ietf-webdav-protocol-04
https://datatracker.ietf.org/doc/html/rfc2068

Goland & Reddy [Page 10]

