
 WEBDAV Working Group Y. Goland, Microsoft
 INTERNET-DRAFT E. J. Whitehead, Jr., U.C. Irvine
 <draft-ietf-webdav-protocol-00> Asad Faizi, Netscape
 Stephen R. Carter, Novell
 Del Jensen, Novell
 Expires January 15, 1997 July 13, 1997

Extensions for Distributed Authoring and Versioning
on the

World Wide Web -- WEBDAV

 Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or made obsolete by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress".

 To learn the current status of any Internet-Draft, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net
 (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East
 Coast), or ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments
 to the Distributed Authoring and Versioning (WEBDAV) working
 group at <w3c-dist-auth@w3.org>, which may be joined by sending a
 message with subject "subscribe" to <w3c-dist-auth-
 request@w3.org>.

 Discussions of the WEBDAV working group are archived at
 <URL:http://www.w3.org/pub/WWW/Archives/Public/w3c-dist-auth>.

 Abstract
 This Document specifies a set of methods and content-types
 ancillary to HTTP/1.1 for the management of resource properties,
 simple name space manipulation,
 simple resource locking (collision avoidance) and resource
 version control.

 Table of Contents

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-00

 Abstract
1 Terminology
2 Data Model and Methods for DAV Properties
 2.1 Introduction

 2.1.1............................The DAV Property
 2.1.2.................Existing Metadata Proposals
 2.1.3.................Properties and HTTP Headers
 2.2 A Property Model for HTTP Resources
 2.2.1....................................Overview
 2.2.2..........................Property Namespace
 2.2.3.........................Property Attributes

 2.2.4.....................................Schemas
 2.3 DAV Schema
 2.3.1..............................Live Attribute
 2.3.2..........................ReadOnly Attribute
 2.3.3....................................Elements
 2.4 Property Identifiers
 2.4.1..........................Problem Definition
 2.4.2........................Solution Requirement
 2.4.3...........................DAV URL Parameter
 2.4.4...............................Name Encoding
 2.4.5...........Compatibility with legacy systems
 2.5 Link XML Element
 2.5.1.........................Problem Description
 2.5.2.......................Solution Requirements
 2.5.3............................Link XML Element
 2.5.4.............................Src XML Element
 2.5.5.............................Dst XML Element
 2.5.6.....................................Example
 2.6 Properties and Methods
 2.6.1......................................DELETE
 2.6.2...GET
 2.6.3............................PROPPATCH Method
 2.6.4...PUT
 2.6.5......................................SEARCH

3 A Proposal for Collections of Web Resources and Name Space
 Operations
 3.1 Observations on the HTTP Object Model
 3.1.1........................Collection Resources
 3.1.2Creation and Retrieval of Collection Resources
 3.1.3.......Source Resources and Output Resources
 3.2 MKCOL Method
 3.2.1.........................Problem Description
 3.2.2.......................Solution Requirements

 3.2.3.....................................Request
 3.2.4....................................Response
 3.2.5.....................................Example
 3.3 INDEX Method
 3.3.1.........................Problem Description
 3.3.2.......................Solution Requirements
 3.3.3.................................The Request
 3.3.4................................The Response
 3.3.5.......................Response Message Body
 3.3.6.....................................Example
 3.4 Behavior of RFC 2068 Methods on Collections
 3.4.1...................GET, HEAD for Collections
 3.4.2........................POST for Collections
 3.4.3.........................PUT for Collections
 3.4.4......................DELETE for Collections
 3.5 COPY Method
 3.5.1.........................Problem Description
 3.5.2.......................Solution Requirements
 3.5.3.................................The Request
 3.5.4................................The Response
 3.5.5....................................Examples
 3.6 MOVE Method
 3.6.1.........................Problem Description
 3.6.2.......................Solution Requirements
 3.6.3.................................The Request
 3.6.4................................The Response
 3.6.5....................................Examples
 3.7 Multi-Status Response
 3.7.1..........................Problem Definition
 3.7.2.......................Solution Requirements
 3.7.3.......................Multi-Status Response
 3.7.4.....................................Example

 3.8 ADDREF Method
 3.8.1..........................Problem Definition
 3.8.2.......................Solution Requirements
 3.8.3.................................The Request
 3.9 DELREF Method
 3.9.1..........................Problem Definition
 3.9.2.......................Solution Requirements
 3.9.3.................................The Request
 3.10 PATCH Method
 3.10.1.........................Problem Definition
 3.10.2......................Solution Requirements
 3.10.3................................The Request
 3.10.4.........application/XML elements for PATCH

https://datatracker.ietf.org/doc/html/rfc2068

 3.10.5...............................The Response
 3.10.6...................................Examples
 3.11 Headers
 3.11.1......................................Depth
 3.11.2................................Destination
 3.11.3....................Enforce-Live-Properties
 3.11.4.......................Duplicate-Properties
 3.11.5..................................Overwrite
 3.11.6.............................Destroy Header
 3.11.7...................Collection-Member Header
 3.12 Links
 3.12.1..................Source Link Property Type

4 State Tokens
 4.1 Overview

 4.1.1.........................Problem Description
 4.1.2.......................Solution Requirements
 4.2 State Token Syntax
 4.3 State Token Conditional Headers
 4.3.1..............................If-State-Match
 4.3.2.........................If-None-State-Match
 4.4 State Token Header
 4.5 E-Tags

5 Locking
 5.1 Problem Description - Overview

 5.1.1..................Exclusive Vs. Shared Locks
 5.1.2............................Required Support
 5.2 LOCK Method
 5.2.1...................................Operation
 5.2.2The Effect of Locks on Properties and Containers
 5.2.3................Locking Replicated Resources
 5.2.4..............Interaction with other Methods
 5.2.5....................Lock Compatibility Table
 5.2.6................................Status Codes
 5.2.7.....................................Example
 5.2.8....................Lock-Info Request Header
 5.2.9........................Owner Request Header
 5.2.10............................Time-Out Header
 5.2.11.........................State-Token Header
 5.3 Write Lock
 5.4 Lock Tokens
 5.4.1.........................Problem Description
 5.4.2...........................Proposed Solution
 5.4.3.......................Lock Token Definition
 5.5 UNLOCK Method
 5.5.1..........................Problem Definition
 5.5.2.....................................Example
 5.6 Discovery Mechanisms
 5.6.1.........................Lock Type Discovery
 5.6.2.......................Active Lock Discovery

6 Version Control
7 Internationalization Support

8 Security Considerations

9 Acknowledgements
10 References
11 Authors' Addresses

 Appendix 1 - Content Type Application/XML
 Syntax
 XML element
 Entity-Name
 Close
 XML Encoding
 Markup Modifier
 XML Syntax Shorthand
 Appendix 2 - Parameter Syntax for Content-Type Application/XML
 Schema Content-Type Parameter
 Appendix 3 URI Path Encoding
 Problem Definition
 Solution Requirement
 Path Component
 Appendix 4 - XML URI
 Appendix 5 - XML elements
 Ref XML element
 Namespace
 Namespace XML element
 AS XML element
 Required XML element
 The XML URI and Namespace

1 Terminology
 Collection - A resource that contains member resources.

 Member Resource - a resource referred to by a collection. There
 are two types of member resources: external and internal.

 Internal Member Resource - the name given to a member resource of
 a collection whose URI is relative to the URI of the collection.

 External Member Resource - a member resource with an absolute URI
 that is not relative to its parent s URI.

 Properties Also known as small-chunk metadata, a hierarchical
 set of name/value pairs that describe a resource.

 Live Properties Properties whose semantics and syntax are
 enforced by the server. For example, a live read-only property

 that is enforced by the server would disallow PUTs to the
 associated resource.

 Dead properties Properties whose semantics and syntax are not
 enforced by the server. A dead read-only property would not be
 enforced by the server and thus would not be used by the server as
 a reason to disallow a PUT on the associated resource.

2 Data Model and Methods for DAV Properties

2.1 Introduction

2.1.1 The DAV Property

 Properties are pieces of data that describe the state of a
 resource. Properties are data about data. The term property is
 used within this specification to disambiguate the concept from
 the overloaded terms metadata and attribute .

 Properties are used within distributed authoring environments to
 provide for efficient discovery and management of resources. For

 example, a subject property might allow for the indexing of all
 resources by their subject, and an author property might allow
 for the discovery of what authors have written which documents.

2.1.2 Existing Metadata Proposals

 Properties have a long played an essential role in the maintenance
 of large document repositories, and many current proposals contain
 some notion of a property. These include PICS [Miller et al.,
 1996], PICS-NG, the Rel/Rev draft [Maloney, 1996], Web
 Collections, XML [Bray, 1997], several proposals on representing
 relationships within HTML, digital signature manifests (DCMF), and
 a position paper on Web metadata architecture [Berners-Lee, 1997].

 Some proposals come from a digital library perspective. These
 include the Dublin Core [Weibel et al., 1995] metadata set and the
 Warwick Framework [Lagoze, 1996], a container architecture for
 different metadata schemas. The literature includes many examples
 of metadata, including MARC [MARC, 1994], a bibliographic metadata
 format, RFC 1807 [Lasher, Cohen, 1995], a technical report
 bibliographic format employed by the Dienst system, and the
 proceedings from the first IEEE Metadata conference describe many

https://datatracker.ietf.org/doc/html/rfc1807

 community-specific metadata sets.

 Participants of the 1996 Metadata II Workshop in Warwick, UK
 [Lagoze, 1996], noted that, "new metadata sets will develop as the
 networked infrastructure matures" and "different communities will
 propose, design, and be responsible for different types of
 metadata." These observations can be corroborated by noting that
 many community-specific sets of metadata already exist, and there
 is significant motivation for the development of new forms of
 metadata as many communities increasingly make their data
 available in digital form, requiring a metadata format to assist
 data location and cataloging.

2.1.3 Properties and HTTP Headers

 Properties already exist, in a limited sense, within HTTP through
 the use of message headers. However, in distributed authoring
 environments a relatively large number of properties are needed to
 fully describe the state of a resource, and setting/returning them
 all through HTTP headers is inefficient. Thus a mechanism is
 needed which allows a principal to identify a set of properties in
 which the principal is interested and to then set or retrieve just
 those properties.

2.2 A Property Model for HTTP Resources

2.2.1 Overview

 The DAV property model is based on name/value/attribute triples.
 The name of a property identifies the property s syntax and
 semantics, and provides an address with which to refer to a
 property. The value of a property is an octet stream. The
 attributes of a property are a set of name/value pairs that are
 not directly addressable. Attributes are retrieved in conjunction
 with retrieving a property, and are set when changing a property s
 value. This specification defines two attributes, live, which
 indicates if the property s syntax and semantics is enforced by
 the server, and readonly, which indicates that the property s
 value may be retrieved but not set.

2.2.2 Property Namespace

2.2.2.1 Problem Definition

 The requirement is to be able to associate a value with a property

 name on a resource and to be able to directly address that value.

2.2.2.2 Solution Requirement

 Ideally a property namespace should work well with extant property
 implementations as well as database systems. The DAV property
 namespace has been specified with the following two facts in mind:

 Namespaces associated with flat file systems are certainly
 ubiquitous.

 Many databases use a fixed schema mechanism, which makes
 efficient implementation of hierarchical properties
 difficult. Specifically, each property has a random set of
 children; the best a relational database can do is provide
 a table with name and value, where the value is a series
 of indexes into other tables and each index represents a
 specific value. However most RDBS do not provide for table
 pointers, only index values. Such a system would have to
 be jury-rigged to handle table pointers. In addition,
 indexing systems are optimized for a small set of
 relatively large tables; hierarchical property systems
 tend toward many properties, each with different numbers
 and types of children, thus potentially requiring a table
 for each child.

 It would seem best to implement a flat property namespace,
 inducing a natural isomorphism between DAV and most native
 file systems. Adopting such a model should not restrict RDBS
 from taking full advantage of their search facilities.

 However, it seems that future trends might be toward
 hierarchical properties. As such, DAV requirements []
 stipulate that the design of the flat property system MUST
 be such that it will be possible to add true hierarchical
 properties later without breaking downlevel clients.
 Specifically, a flat client MUST be able to speak to a
 hierarchical server and a hierarchical client MUST be able
 to speak to a flat server. Worst case either way MUST be
 that the request fails.

 2.2.2.3 Property Names

 A property name identifies both the syntax and semantics of
 the property s value. It is critical that property names do
 not collide, e.g., two principals defining the same property
 name with two different meanings.

 The URI framework provides for a mechanism to prevent
 namespace collision and for varying degrees of

 administrative control. Rather than reinvent these desirable
 features, DAV properties make use of them by requiring that
 all DAV property names MUST be URIs.

 The property namespace is flat, that is, it is not possible
 to string together a series of property names in order to
 refer to a hierarchy of properties. Thus it is possible to
 refer to a property A but not a property A/B.

 2.2.3 Property Attributes

 The attributes of a property provide information about the
 property. Note that a property contains information about a
 resource.

 Attributes consist of name/value pairs whose value MUST be a
 string. Attributes are not directly addressable, rather they
 are retrieved and defined in the context of other property
 operations. For example, if one retrieves a property value,
 the attributes will also be returned. If one sets a property
 value, one may also specify the values for its attributes.

 All attributes on a server MUST be live. This means that the
 server MUST only record attributes with syntax and semantics
 the server understands and enforces. This normally means
 that clients can not define new attributes on a property;
 clients may only make use of the attributes supported by the
 server.

 If a client submits an attribute when setting a property
 then the server MUST NOT record the property unless it
 accepts the values specified for the corresponding
 attributes. Thus, if a property value is submitted with a
 live attribute then the server MUST NOT record the value
 unless the server understands and enforces the syntax and
 semantics of the property.

 2.2.4 Schemas

 A schema is a group of property names, attributes, and XML
 elements.

 It is often useful to indicate support for a particular
 schema in a request or a response. Schema discovery is also
 useful for determining if a system supports a group of
 properties, attributes, or XML elements. A property does not

 necessarily contain sufficient information to identify any
 schema(s) to which it may belong.

 As with property names, schemas MUST use URIs as their
 names.

 2.3 DAV Schema
 The DAV Schema is specified as

http://www.ietf.org/standards/dav/. This schema is used to
 indicate support for

 properties and attributes that can be defined on a resource
 and

 XML elements that can be returned in responses.

 All DAV compliant servers MUST support the DAV schema.

 2.3.1 Live Attribute

 Name: http://www.ietf.org/standards/dav/live

 Purpose: To indicate that the property has its syntax and
 semantics enforced by the resource on which it is recorded.

 Schema: http://www.ietf.org/standards/dav/

 Parent: Any property

 Values= = < >< >

 Description: This attribute is used to indicate that the
 resource expressing the property understands and enforces

 the syntax and semantics of the property. The absence of the
 Live attribute in a response indicates to the client that
 the corresponding property does not have its syntax and
 semantics enforced by the resource on which it is recorded.
 If a live attribute is included when setting the value of a
 property then the server SHOULD set the property if the
 property will be live and MUST NOT set the property if the
 property will not be live.

 2.3.2 ReadOnly Attribute

 Name: http://www.ietf.org/standards/dav/readonly

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/live
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/readonly

 Purpose: To indicate that a property can be retrieved, but
 not set through the property mechanism.

 Schema: http://www.ietf.org/standards/dav/

 Parent: Any property

 Values= = < >< >

 Description: This attribute is used to indicate that the
 property can only be retrieved, not set through the property
 mechanism. This attribute is not meant as an access control
 mechanism but rather to reflect the fact that the property
 is not designed to have its value set through the property
 mechanism. If this attribute is included when setting the
 value of a property, the request MUST be rejected since
 accepting the value would violate ReadOnly attribute. A
 server MUST NOT effect a property protocol element that is
 inconsistent or ill-defined with respect to the element s
 attribute state, were it to be expressed.

 2.3.3 Elements

 2.3.3.1 Prop XML element

 Name: http://www.ietf.org/standards/dav/prop

 Purpose: To specify the name and value of a property

 Schema: http://www.ietf.org/standards/dav/

 Parent: Any

 Values: PropName PropValue

 2.3.3.2 PropName XML element

 Name: http://www.ietf.org/stnadards/dav/name

 Purpose: To specify the name of a property, which MUST be a
 URI.

 Schema: http://www.ietf.org/standards/dav/

 Parent: Prop

 Values: URI

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/prop
http://www.ietf.org/standards/dav/
http://www.ietf.org/stnadards/dav/name
http://www.ietf.org/standards/dav/

 2.3.3.3 PropValue XML element

 Name: http://www.ietf.org/standards/dav/propvalue

 Purpose: To specify the value of a property.

 Schema: http://www.ietf.org/standards/dav/

 Parent: Prop

 Values: The contents of a property.

 2.4 Property Identifiers

 2.4.1 Problem Definition

 The addition of DAV properties to the HTTP object model
 introduces the need for a mechanism to unambiguously refer
 to either the body of the resource or the properties of a
 resource.

 2.4.2 Solution Requirement

 The mechanism used for referring to the resource body must
 also be usable for referring to the resource s properties,
 such that even non-DAV aware clients can retrieve DAV
 properties.

 2.4.3 DAV URL Parameter

 To allow for the specification of property information in
 the context of an http scheme URL, a switch is needed. The
 switch indicates that following path segments specify a
 property location. To this end the DAV param is introduced
 for use with http scheme URLs. The path segment to the right
 of the DAV param MUST be formatted according to the XML Link
 standard, described in Appendix 3.

 2.4.4 Name Encoding

 Properties on a resource are given URIs as a name. Thus, in
 order to be able to refer to a property one must be able to
 put the property s URI into an HTTP URI.

 For example, the author property with full name

http://www.ietf.org/standards/dav/propvalue
http://www.ietf.org/standards/dav/

http://www.w3.org/standards/z39.50/author is defined on
http://somewhere.com/resource.

 To create a reference to the author one would perform the
 following steps.

 Add the DAV parameter to the base URI,
http://somewhere.com/resource;DAV.

 Add / to refer to the root of the resource s property
 namespace, http://somewhere.com/resource;DAV/.

 Change the author property s name into parameter format by
 changing / s to �! s and encasing the entire value in
 parenthesis. The value must be encased in parenthesis in
 order to indicate the / to �! translation. The
 translation / to �! is done in order to prevent
 confusion over segments boundaries, and to make sure that
 the syntax for relative URIs remains well-defined.

http://somewhere.com/resource;DAV/(http:�!�!www.w3.org�!stand
 ards�!z39.50�!author).

 The process is now complete, and the URL can be used in a
 GET or PATCH to retrieve or alter the value. See appendix 3
 for more information.

 2.4.5 Compatibility with legacy systems

 2.4.5.1 Problem Definition

 The HTTP parameter space is uncontrolled, thus someone may
 already be using a parameter with a value of DAV for some
 end other than the one described here. Thus a client sending
 a URI with a DAV param to a server may receive an unexpected
 or inappropriate response.

 2.4.5.2 Solution Requirement

 A mechanism is needed to prevent namespace collisions.

 2.4.5.3 Proposed Solution

 All DAV compliant servers MUST honor the DAV param type on
 http URLs. Thus if a client knows it is talking to a DAV

http://www.w3.org/standards/z39.50/author
http://somewhere.com/resource
http://somewhere
http://somewhere
http://somewhere

 server, it can safely send an http URL with the DAV param.

 The client may send the http URL with the DAV param
 extension to a server that is not known to be DAV compliant
 if the client uses PEP [Connolly, 1997] to prevent
 collisions. The proper PEP header is:

 DAVPEP = PEP: {{map DAV �}{strength must�}�}

 Note: this PEP header is not compliant with [Connolly,
 1997]; the PEP authors have indicated they will change the
 format to make the example legal.

 2.5 Link XML Element

 2.5.1 Problem Description

 A mechanism is needed to associate resources with other
 resources. These associations, also known as links, consist
 of three values, a type describing the nature of the
 association, the source of the link, and the destination of
 the link. In the case of annotation, neither the source nor
 the destination of a link need be the resource upon which
 the link is recorded.

 2.5.2 Solution Requirements

 The association mechanism MUST make use of the DAV property
 mechanism in order to make the existence of the associations
 searchable.

 2.5.3 Link XML Element

 Name: http://www.ietf.org/standards/dav/link

 Purpose: The XML document which is the value of a link.

 Schema: http://www.ietf.org/standards/dav/

 Values= An XML document which MUST have a src and dst XML
 element.

 Description: Link is used to provide the source and one or
 more destinations of the link. The type of the property
 provides the type of the link. Link is a multivalued
 element,so multiple Links may be used together to indicate
 multiple links with the same type.

http://www.ietf.org/standards/dav/link
http://www.ietf.org/standards/dav/

 2.5.4 Src XML Element

 Name: http://www.ietf.org/standards/dav/src

 Purpose: To indicate the source of a link.

 Schema: http://www.ietf.org/standards/dav/

 Parent: http://www.ietf.org/standards/dav/link

 Values= URI

 2.5.5 Dst XML Element

 Name: http://www.ietf.org/standards/dav/Dst

 Purpose: To indicate one or more destinations of a link

 Schema: http://www.ietf.org/standards/dav/

 Parent: http://www.ietf.org/standards/dav/link

 Values= URI

 2.5.6 Example

 <XML>
 <Namespace><Ref>http://www.ietf.org/standards/dav/</><A
 S>D</></>
 <D:Prop>
 <Propname>Source</>
 <Propvalue>
 <XML:XML>
 <Namespace>

 <Ref>http://www.ietf.org/standards/
 dav/</><AS>D</>
 </>
 <Namespace>

 <Ref>http://www.foocorp.com/Project
 /</><AS>F</>
 </>
 <D:Link>
 <F:ProjectFiles>Source</>
 <src>http://foo.bar/program</>

 <dst>http://foo.bar/source/main.c</>

http://www.ietf.org/standards/dav/src
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/link
http://www.ietf.org/standards/dav/Dst
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/link

 </>
 <D:Link>
 <F:ProjectFiles>Library</>
 <src>http://foo.bar/program</>

 <dst>http://foo.bar/source/main.lib</>
 </>
 <D:Link>
 <F:ProjectFiles>Makefile</>
 <src>http://foo.bar/program</>

 <dst>http://foo.bar/source/makefile</>
 </> </> </> </> </>

 In this example the resource http://foo.bar/program has a
 source property defined which contains three links. Each
 link contains three elements, two of which, src and dst, are
 part of the DAV schema defined in this document, and one
 which is defined by the schema

http://www.foocorp.com/project/ (Source, Library, and

 Makefile). A client which only implements the elements in
 the DAV spec will not understand the foocorp elements and
 will ignore them, thus seeing the expected source and
 destination links. An enhanced client may know about the
 foocorp elements and be able to present the user with
 additional information about the links.

 2.6 Properties and Methods

 2.6.1 DELETE

 The delete method, when used on a property, causes the
 property to be removed.

 2.6.2 GET

 A GET on a property returns the name of the property. Accept
 types may be used to specify the format of the return value,
 but all DAV compliant servers MUST at minimum support a
 return type of application/XML. If application/XML is used
 as the response format then it MUST include the

http://www.ietf.org/standards/dav/ schema.

 2.6.2.1 Example

http://foo.bar/program
http://www.foocorp.com/project/
http://www.ietf.org/standards/dav/

 GET bar;DAV/(http:�!�!www.w3.org�!standards�!z39.50�!Authors)
 HTTP/1.1
 Host: foo.com

 HTTP/1.1 200 OK
 Content-Type: application/xml
 Content-Length: xxxx
 E-tag: 1234
 Last-Modified: xxxx

 <XML>
 <XML:Namespace><Ref>http://www.ietf.org/standards/dav/<
 /><AS>D</></>
 <XML:Namespace><Ref>http://www.w3.com/standards/z39.50/
 </><AS>Z</></>
 <D:prop>
 <propname>Z:Authors</>
 <propvalue>
 <XML:XML>
 <Namespace>

 <Ref>http://www.ietf.org/standards/
 dav/</>
 <AS>D</>
 </>
 <Namespace>

 <Ref>http://www.w3.com/standards/z39.50/
 </>
 <AS>Z</>
 </>
 <Z:Author>Jane Doe</>
 <Z:Author>Joe Doe</>
 <Z:Author>Lots o Doe</>
 </> </> </> </>

 GET bar;DAV/(Dublin:Producer) HTTP/1.1
 Host: foo.com

 HTTP/1.1 200 OK

 Content-Type: application/xml
 Content-Length: xxxx
 E-tag: 2345
 Last-Modified: xxxx

 <XML>
 <XML:Namespace><Ref>http://www.ietf.org/standards/dav/<
 /><AS>D</></>
 <XML:Namespace><Ref>Dublin</><AS>Du</></>
 <D:prop>
 <propname>Du:Producer</>
 <propvalue><XML:XML>Marcus Doe</></>
 </> </>

 GET bar;DAV/ HTTP/1.1
 Host: foo.com

 HTTP/1.1 200 OK
 Content-Type: application/xml
 Content-Length: xxxx
 E-tag; 1234
 Last-Modified: xxxx

 <XML>
 <XML:Namespace><Ref>http://www.ietf.org/standards/dav/<
 /><AS>D</></>
 <XML:Namespace><Ref>http://www.w3.com/standards/z39.50/
 </><AS>Z</></>
 <XML:Namespace><Ref>Dublin</><AS>Du</></>
 <D:prop>
 <propname>Z:Authors</>
 <propvalue>
 <XML:XML>
 <Namespace>

 <Ref>http://www.ietf.org/standards/
 dav/</>
 <AS>D</>
 </>
 <Namespace>

 <Ref>http://www.w3.com/standards/z39.50/
 </>
 <AS>Z</>
 </>
 <Z:Author>Jane Doe</>
 <Z:Author>Joe Doe</>
 <Z:Author>Lots o Doe</>
 </> </> </>
 <D:prop>
 <propname>Du:Producer</>
 <propvalue><XML:XML>Marcus Doe</></>
 </> </>

 2.6.3 PROPPATCH Method

 The PROPPATCH method specifies how to alter a property. The
 message body controls the actual action taken by a
 PROPPATCH. All DAV compliant servers are required to support
 the use of the application/XML content-type using the

http://www.ietf.org/standards/dav/proppatch/ schema in a
 PROPPATCH method with a request-URI that points to the
 resource upon which the property is defined.

 The changes in a http://www.w3.com/standards/dav/proppatch/
request MUST be atomically executed, partial results are not

 allowed.

 2.6.3.1 Request URI

 The request URI of a PROPPATCH method with the
http://www.ietf.org/standards/dav/proppatch/ schema MUST

 point to the resource upon which the property is defined.

 2.6.3.2 PropertyUpdate XML element

 Name: http://www.ietf.org/standards/dav/PropertyUpdate

 Purpose: To contain a request to alter the properties on a
 resource.

 Schema: http://www.ietf.org/standards/dav/

 Parent: <XML>

 Values= *(Create | Remove | Insert)

 Description: This XML element is a container for the
 information required to modify the properties on the
 resource. This XML element is multivalued.

 2.6.3.3 Create XML element

 Name: http://www.ietf.org/standards/dav/create

 Purpose: To create the DAV property specified inside the
 Create XML element.

 Schema: http://www.ietf.org/standards/dav/

http://www.ietf.org/standards/dav/proppatch/
http://www.w3.com/standards/dav/proppatch/request
http://www.w3.com/standards/dav/proppatch/request
http://www.ietf.org/standards/dav/proppatch/
http://www.ietf.org/standards/dav/PropertyUpdate
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/create
http://www.ietf.org/standards/dav/

 Parent: http://www.ietf.org/standards/dav/PropertyUpdate

 Values= Prop

 Description: This XML element contains a Prop as the only
 element. The PropName contains the name of the property to
 be created or overwritten. The PropValue XML element
 contains the value of the new property.

 2.6.3.4 Remove XML element

 Name: http://www.ietf.org/standards/dav/remove

 Purpose: To remove the DAV property specified inside the
 Remove XML element.

 Schema: http://www.ietf.org/standards/dav/

 Parent: http://www.ietf.org/standards/dav/PropertyUpdate

 Values= PropName

 Description: Remove specifies that the property specified in
 PropName should be removed. Specifying the removal of a
 property that does not exist is not an error.

 2.6.3.5 Response Codes

 200 OK The command succeeded. As there can be a mixture of
 PUT and DELETEs in a body, a 201 Create seems inappropriate.

 400 Bad Request The client has provide a value whose
 syntax is illegal for the property.

 401 Unauthorized The client does not have authorization to

 alter one of the properties. This error also occurs if a
 property is inherently read only.

 403 Forbidden The client, for reasons the server chooses
 not to specify, can not alter one of the properties.

 405 Conflict The client has provided a value whose
 semantics are not appropriate for the property.

 413 Request Entity Too Long If a particular property is

http://www.ietf.org/standards/dav/PropertyUpdate
http://www.ietf.org/standards/dav/remove
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/PropertyUpdate

 too long to be recorded then a composite XML error will be
 returned indicating the offending property.

 2.6.3.6 Example

 PROPPATCH bar;DAV/ HTTP/1.1
 Host: www.foo.com
 Content-Type: application/XML
 Content-Length: xxxx

 <XML>
 <Namespace><Ref>http://www.ietf.org/standards/dav/</><A
 S>D</></>
 <Namespace><Ref>http://www.w3.com/standards/z39.50/</><
 AS>Z</></>
 <D:PropertyUpdate>
 <Create><prop>
 <propname>Z:authors</>
 <propvalue>
 <XML:XML>
 <Namespace>

 <Ref>http://www.ietf.org/standards/dav/proppatch/</>
 <AS>D</>
 </>
 <Namespace>

 <Ref>http://www.w3.com/standards/z39.50/</>
 <AS>Z</>
 </>
 <Z:Author>Jim Whitehead</>
 <Z:Author>Roy Fielding</>
 </>
 </>
 <Remove><propname>Z:Copyright-Onwer</></>
 </> </>

 2.6.4 PUT

 A PUT is specified in order to control what is returned by a
 GET. However a GET on a property always returns some sort of
 property containment format. As such PUT can not be used if
 the Request-URI refers to a property.

 2.6.5 SEARCH

 2.6.5.1 Request-URI

 The request-URI of the search method is the URI of the

 resource. .

 The Depth header MUST NOT be used on a SEARCH method which
 contains a Limited-Search XML element (limited search).

 2.6.5.2 Command Format

 The message body stipulates the action of a SEARCH method.
 This section defines an application/xml content type using
 the http://www.ietf.org/standards/dav/ schema. This method
 is not normally cacheable.

 2.6.5.2.1 Limited-Search XML element

 Name: http://www.ietf.org/standards/dav/limited-search

 Purpose: To specify the set of matching properties

 Schema: http://www.ietf.org/standards/dav/

 Parent: <XML>

 Values: The value is a single OR XML element. The OR element
 may only contain AND XML elements, and MUST contain at least
 one AND element.

 Description: This property indicates a very limited search.
 The search may only be on HTTP properties.

 2.6.5.2.2 OR XML element

 Name: http://www.ietf.org/standards/dav/or

 Purpose: To take its members, evaluate them, get a true or
 false result, or the results together, and have that be
 the total result.

 Schema: http://www.ietf.org/standards/dav/

 Parent: Limited-Search XML element

 Values: AND XML element.

 2.6.5.2.3 AND XML element

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/limited-search
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/or
http://www.ietf.org/standards/dav/

 Name: http://www.ietf.org/sandards/dav/and

 Purpose: To take its members, evaluate them, get a true or
 false result, and the results together, and have that be
 the total result.

 Schema: http://www.ietf.org/standards/dav

 Parent: OR XML element

 Values: Zero or one Name XML element, and zero or one Value
 XML element. There MUST be at least one Name or Value XML
 element.

 2.6.5.2.4 Name XML element

 Name: http://www.ietf.org/standards/dav/name

 Purpose: To provide a pattern against which property names
 are to be compared. If the name matches then the property
 evaluates to true, otherwise false.

 Schema: http://www.ietf.org/standards/dav/

 Parent: AND XML element

 Values: Match-Stream

 2.6.5.2.5 Value XML element

 Name: http://www.ietf.org/standards/dav/value

 Purpose: To provide a pattern against which property values
 are to be compared. If the value matches then the property
 evaluates to true, otherwise false.

 Schema: http://www.ietf.org/standards/dav/

 Parent: AND XML element

 Values: Match-Stream

 2.6.5.2.6 Match-String XML element

 Name: http://www.ietf.org/standards/dav/match-string

http://www.ietf.org/sandards/dav/and
http://www.ietf.org/standards/dav
http://www.ietf.org/standards/dav/name
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/value
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/match-string

 Purpose: To specify a search pattern to be matched against
 an octet stream

 Schema: http://www.ietf.org/standards/dav/

 Parent: Name or Value XML element

 Values: (* | �? | EncodedOctet)
 EncodedOctet = <An EncodedOctet uses XML encoding to encode
 * and �? as well as < and >

 Description: This element provides a template against which
 anything that can be expressed as an octet stream may be
 compared. * is a wildcard that matches zero or more
 unspecified contiguous octets. �? is a wildcard that
 matches exactly one unspecified octet.

 2.6.5.3 Response Format

 The response is an application/xml message body which
 contains a single SearchResult XML element whose contents
 are a series of XML elements representing matching
 properties.

 2.6.5.3.1 SearchResult XML element

 Name: http://www.ietf.org/standards/dav/searchresult

 Purpose: To contain the results of a SEARCH request

 Schema: http://www.ietf.org/standards/dav/

 Parent: Any, usually <XML>

 Values: Zero or more Prop XML elements (defined in
 Properties draft)

 Description: The SearchResult XML element provides the
 context to inform the client that its contents are not just
 some XML element, but an XML representation of the requested
 property.

 2.6.5.4 Example

 SEARCH /container/ HTTP/1.1
 Host: www.foo.bar
 Content-Length: xxxx
 Content-Type: application/xml

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/searchresult
http://www.ietf.org/standards/dav/

 <XML>
 <XML:Namespace>
 <Ref>http://www.ietf.org/standards/dav/</>
 <AS>S</>
 </>
 <S:limited-search>

 <OR>
 <AND>
 <Name>*</>
 </>
 </>
 </>
 </>

 HTTP/1.1 200 OK
 Content-Type: application/xml
 Content-Length: xxxxx

 <XML>
 <XML:Namespace>
 <Ref>http://www.ietf.org/standards/dav/</>
 <As>S</>
 </>
 <XML:Namespace>
 <Ref>http://www.foo.bar/boxschema</>
 <AS>R</>
 </>
 <S:SearchResult>
 <Prop>
 <PropName>R:bigbox</>
 <PropValue>
 <XML:XML>
 <BoxType>Box type A</>
 </>
 </>
 </>
 <Prop>
 <PropName>R:author</>
 <PropValue>
 <XML:XML>
 <Name>J.J.
 Dingleheimerschmidt</>
 </>
 </>

 </>
 </>
 </>

 The result will return all properties on the container and
 its members. In this case only two properties were found,
 one on the container and one on one of its members, both
 properties are live.

 3 A Proposal for Collections of Web Resources and Name
 Space Operations

 3.1 Observations on the HTTP Object Model
 As a prerequisite for specification of collections and name
 space operations for the Web, a model for collection
 resources and for namespace topology must be given. This
 section describes a new type of Web resource, the collection
 resource, and provides a model for discussing the
 relationship between the resources that are generated as the
 result of a data-producing process, and the source resources
 that describe the process.

 3.1.1 Collection Resources

 A collection is a Web resource type whose primary state is a
 set of URIs and associated values that are recorded as
 properties on the resource. The URIs identify resources
 that are members of the collection. The values associated
 with each URI include information such as the Last Modified
 Date, Entity Tag, Creation Date, Content Type, Display Name,
 and whether the member is a collection.

 A member of a collection is either an internal member
 resource, which MUST have a URI that is relative to the base
 URI of the collection, or an external member resource, which
 has a URI which is not relative to the base URI of the
 collection. External member resources are further subdivided
 into propagate members, which have recursive method
 invocations propagated to them, and no-propagate members,
 which do not.

 A collection resource may be viewed and used as a compound
 resource in which the collection is a container for a group
 of related resources that, together, form a larger logical
 unit. For example, a collection of HTML resources where

 each resource is the chapter of a book can be viewed as a
 compound resource representing the entire book.

 Some methods, when invoked on a collection, affect the
 entire collection. For example, it is possible to copy an
 entire collection and its contents with just a single copy
 method request. The model for performing these operations is
 a tree traversal. The method is invoked on the collection,
 which then performs the method on itself before propagating
 the method to all its internal members and propagate
 external members. If these are non-collection resources,
 the request method is processed. However, if the request is
 propagated to another collection, then the propagation
 begins again. This sequence of actions causes the method to
 be propagated as a tree traversal of the members of the
 collections. It is incumbent upon the client to perform any
 locking operation on the collection or subordinate members
 that it deems necessary in order to maintain state
 consistency during the execution of such methods.

 3.1.2 Creation and Retrieval of Collection Resources

 Since the existing HTTP methods for creating (PUT, POST) and
 retrieving (GET) a resource were defined for non-collection
 resources, it is not surprising that the semantics of these
 methods do not transfer well to collections. For example,
 the PUT method is defined to store the request entity under
 the Request-URI. While a description format for a
 collection can readily be constructed that could be used
 with PUT, the implications of sending such a description to
 the server are undesirable. For example, if a description
 of a collection that omitted some existing resources were
 PUT to a server, this might be interpreted as a command to
 remove those members. This would extend PUT to perform
 DELETE functionality, which is undesirable since it changes
 the semantics of PUT, and makes it difficult to control
 DELETE functionality with an access control scheme based on
 methods.

 While the POST method is sufficiently open-ended that a
 create a collection POST command could be constructed,
 this is undesirable because it would be difficult to provide
 separate access control for collection creation and other
 uses of POST if they both use the same method.

 The GET method when applied to collections is also

 problematic. While it might seem desirable to have GET
 return a listing of the members of a collection, this is
 foiled by the existence of the index.html de-facto
 standard namespace redirection, in which a GET request on a
 collection is automatically redirected to the index.html
 resource.

 Because of the difficulty of reusing some existing HTTP/1.1
 methods for collections, two new resource creation/retrieval
 methods are needed. This specification introduces the MKCOL
 method for creating collection resources, and the INDEX
 method for retrieving the contents of a collection.

 The exact definition of the behavior of GET and PUT on
 collections is defined later in this draft.

 3.1.3 Source Resources and Output Resources

 For many resources, the entity returned by GET exactly
 matches the persistent state of the resource, for example, a
 GIF file stored on a disk. For this simple case, the URL at
 which a resource is accessed is identical to the URL at
 which the source (the persistent state) of the resource is
 accessed. This is also the case for HTML source files that
 are not processed by the server prior to transmission.

 However, HTML files can sometimes be processed by the server
 before being transmitted as a return entity body. Server-
 side-include directives within an HTML file instruct a
 server to replace the directive with another value, such as
 the current date. In this case, what is returned by GET
 (HTML plus date) differs from the persistent state of the
 resource (HTML plus directive). Typically there is no way to
 access the HTML file containing the unprocessed directive.

 Sometimes the entity returned by GET is the output of a
 data-producing process that is described by one or more
 source resources (that may not even have a location in the
 URL namespace). A single data-producing process may
 dynamically generate the state of a potentially large number
 of output resources. An example of this is a CGI script that
 describes a "finger" gateway process that maps part of the
 namespace of a server into finger requests, such as

http://www.foo.bar.org/finger_gateway/user@host.

 In the absence of distributed authoring capability, the fact
 that the source resource(s) for server generated output do
 not have a mapping to the URI namespace is not a problem,
 and has desirable security benefits. However, if remote
 editing of the source resource(s) is desired, they should be

http://www.foo.bar.org/finger_gateway/user@host

 given a location in the URI namespace. This source location
 should not be one of the locations at which the generated
 output is retrievable, since in general it is impossible for
 the server to differentiate requests for source resources
 from requests for process output resources. There is often a
 many-to-many relationship between source resources and
 output resources.

 For DAV compliant servers all output resources which have a
 single source resource (and that source resource has a URI),
 the URI of the source resource SHOULD be stored in a single
 link on the output resource with type DAV:/ Source. Note
 that by storing the source URI in links on the output
 resources, the burden of discovering the source is placed on
 the authoring client.

 In the general case, a large number of source resources can
 comprise a data-producing process that generates many output
 resources, creating a many-to-many relationship between
 output resources and source resources. If each output
 resource had links back to every source resource in the
 data-producing process, there can be a potentially large
 number of such links. Due to the potentially large number of
 links, and the lack of a policy for ordering access to
 multiple sources, explicit storage of source relationships
 is limited to cases with only a single source resource.

 3.2 MKCOL Method

 3.2.1 Problem Description

 The client needs a way to create a collection.

 3.2.2 Solution Requirements

 The solution:

 Must ensure that a collection has been made (i.e. that it
 responds to the INDEX method) as opposed to a non-
 collection resource. If a collection could not be made, it
 must indicate a failure to the principal.

 Requires that the server MAY, if necessary, create any
 intermediate collections so that the underlying storage

 medium is self-consistent.

 3.2.3 Request

 The MKCOL method creates a new collection resource at the
 location specified by the Request-URI. If the Request-URI
 exists then MKCOL must fail.

 During MKCOL processing, a server MAY add the Request-URI to
 one or more collections within the server s controlled
 namespace.

 3.2.3.1 MKCOL Without Request Body

 When MKCOL is invoked without a request body then the
 collection created has no members.

 3.2.3.2 MKCOL With Request Body

 A MKCOL request message MAY contain a message body. The
 behavior of a MKCOL request when the body is present is
 limited to creating collections, members of a collection,
 bodies of members and properties on the collections or
 members. If the server receives a MKCOL request entity type
 it does not support or understand it MUST respond with a 415
 (Unsupported Media Type) status code.

 3.2.3.3 Creating Multiple Collections

 The server MAY create intermediate collections if they do
 not already exist. For example, if the collection

http://server/a/ already exists in the server s namespace,
 then while performing a MKCOL to create http://server/a/b/c/

the server may also create a collection at
http://server/a/b/.

 3.2.4 Response

 Responses from a MKCOL request are not cacheable, since
 MKCOL has non-idempotent semantics.

 201 (Created) - The structured resource was created in its
 entirety.

http://server/a/
http://server/a/b/c/the
http://server/a/b/c/the
http://server/a/b/

 403 (Forbidden) - The server does not allow the creation of
 collections at the given location in its namespace.

 415 (Unsupported Media Type) The server does not support
 the request type of the body.

 416 (Unprocessable Entity) - A new status code. The server
 understands the content type of the request entity, but was
 unable to process the contained instructions.

 3.2.5 Example

 This example creates a container collection called
 /webdisc/xfiles/ on the server www.server.org.

 MKCOL /webdisc/xfiles/ HTTP/1.1
 Host: www.server.org

 HTTP/1.1 201 Created

 3.3 INDEX Method

 3.3.1 Problem Description

 A mechanism is needed to discover if a resource is a
 collection and if so, list its members.

 3.3.2 Solution Requirements

 The solution:

 must allow a client to discover the members of a collection

 must always provide a machine-readable description of the
 membership of a collection

 3.3.3 The Request

 The INDEX method returns a machine-readable representation
 of the membership of the resource at the Request-URI. For a
 collection, INDEX MUST return a machine-readable list of its
 members. For other resources, the information returned by
 INDEX is undefined, and MAY vary. The request message body
 of an INDEX request SHOULD be ignored.

 The Depth header can be used to indicate how much of a
 result can be generated for the response. The specific
 values allowed for the depth header when used with the INDEX

 method are 1 and infinity. The 1 value indicates that the
 internal and external member resources should be reported in
 the result, infinity indicates that all internal and
 external member resources and all their descendants should
 be in the result. If the Depth header is not given, then 1
 is assumed. Servers MUST honor a depth of 1. Servers MAY
 honor infinity. If the server does not support the value of
 the depth header then a 412 (Precondition failed) MUST be
 returned.

 3.3.4 The Response

 200 (OK) The server MUST send an application/xml response
 entity which describes the collection.

 404 (Not Found) - Same behavior as HTTP 1.1. The server
 never had the resource, or the server permanently deleted
 the resource and has no knowledge that it ever existed. This
 error code implies that, essentially, the server has no
 information about the Request URI.

 3.3.5 Response Message Body

 The default INDEX response for a resource is an
 application/xml HTTP entity (i.e., an Extensible Markup
 Language (XML) document) that contains a single XML element
 called collectionresource which describes the collection,
 and a set of XML elements called memberesource which
 describe the members of the collection.

 The response from INDEX is cacheable, and SHOULD be
 accompanied by an ETag header (see section 13.3.4 of RFC

2068). If GET and INDEX return different entities for the
 same resource state, they MUST return different entity tags.

 The server MUST transmit the following XML elements for each
 member resource of a collection: Ref, IsCollection, Content-
 Type, External. The server MUST transmit the following XML
 elements if it can generate any meaningful values for them:
 Creation-Date, Last-Modified, DisplayName, Content-Language.
 The server SHOULD transmit Etag XML elements for each
 member (see section 13.3.4 of RFC 2068).

 The value of content-type, last-modified, and etag XML
 elements MUST be identical to the value of the response
 header field of the same name in the HTTP/1.1 specification.

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068#section-13.3.4

 Since the HTTP/1.1 header fields are described in terms of
 the on-the-wire entity, the values presented by INDEX are
 those that would be generated if the resource was accessed
 using the GET method without content negotiation.

 3.3.5.1 CollectionResource

 Name: http://www.ietf.org/standards/dav/collectionresource

 Purpose: Describes a collection

 Schema: http://www.ietf.org/standards/dav/

 Parent: <XML>

 Value:MemberResource

 3.3.5.2 MemberResource

 Name: http://www.ietf.org/standards/dav/memberresource

 Purpose: Describes a member of a collection

 Schema: http://www.ietf.org/standards/dav/

 Parent: CollectionResource

 Value:Ref, IsCollection, Content-Type, External, Creation-
 Date, Last-Modified, ETag, DisplayName (other XML elements
 MAY also be present)

 3.3.5.3 Ref

 See XML definition.

 3.3.5.4 IsCollection

 Name: http://www.ietf.org/standards/dav/iscollection

 Purpose: This is a boolean value which is set to true if
 the entry is a collection

 Schema: http://www.ietf.org/standards/dav/

 Parent: MemberResource

http://www.ietf.org/standards/dav/collectionresource
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/memberresource
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/iscollection
http://www.ietf.org/standards/dav/

 Value:(true | false)

 3.3.5.5 Content-Type

 Name: http://www.ietf.org/standards/dav/content-type

 Purpose: The content-type of the member resource.

 Schema: http://www.ietf.org/standards/dav/

 Parent: MemberResource

 Value:media-type ; defined in Section 3.7 of [HTTP11]
 If no meaningful content-type can be generated, then an
 empty value MUST be given.

 3.3.5.6 External

 Name: http://www.ietf.org/standards/dav/external

 Purpose: If present, this element indicates the resource is
 an external member of the collection. If the value is
 propagate, it is a propagate member, if the value is no-
 propagate, it is a no-propagate member.

 Schema: http://www.ietf.org/standards/dav/

 Parent: MemberResource

 Value:(propagate | no-propagate)

 3.3.5.7 Creation-Date

 Name: http://www.ietf.org/standards/dav/creation-date

 Purpose: The date the resource was created.

 Schema: http://www.ietf.org/standards/dav/

 Parent: MemberResource

 Value:The date MUST be given in RFC 1123 format (rfc-1123
 production, defined in section 3.3.1 of [HTTP11]

 3.3.5.8 Last-Modified

 Name: http://www.ietf.org/standards/dav/last-modified

http://www.ietf.org/standards/dav/content-type
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/external
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/creation-date
http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123
http://www.ietf.org/standards/dav/last-modified

 Purpose: The date the resource was last modified.

 Schema: http://www.ietf.org/standards/dav/

 Parent: MemberResource

 Value:The date MUST be given in RFC 1123 format (rfc-1123
 production, defined in section 3.3.1 of [HTTP11]

 3.3.5.9 ETag

 Name: http://www.ietf.org/standards/dav/etag

 Purpose: The entity tag of the resource.

 Schema: http://www.ietf.org/standards/dav/

 Parent: MemberResource

 Value:entity-tag ; defined in Section 3.11 of [HTTP11]

 3.3.5.10 DisplayName

 Name: http://www.ietf.org/standards/dav/displayname

 Purpose: A name for the resource that is suitable for
 presentation to a person

 Schema: http://www.ietf.org/standards/dav/

 Parent: MemberResource

 Value:Any valid XML character data (from XML specification)

 3.3.5.11 Content-Language

 Name: http://www.ietf.org/standards/dav/content-language

 Purpose: Describes the natural language(s) of the intended
 audience for the resource.

 Schema: http://www.ietf.org.standards/dav/

 Parent: MemberResource

http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc1123
http://www.ietf.org/standards/dav/etag
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/displayname
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/content-language
http://www.ietf.org.standards/dav/

 Value: 1#language-tag ;language-tag is defined in section
14.13 of RFC 2068

 3.3.6 Example

 INDEX /user/yarong/dav_drafts/ HTTP/1.1
 Host: www.microsoft.com
 Depth: 1

 HTTP/1.1 200 OK
 Content-Type: application/xml
 Content-Length: xxx
 Last-Modified: xxx
 ETag: fooyyybar

 <XML>
 <XML:Namespace><Ref>http://www.ietf.org/standards/dav/<
 /><As>D</></>
 <D:CollectionResource>
 <MemberResource>
 <XML:Ref>namespace.doc</>
 <IsCollection>false</>
 <Content-Type>application/msword</>
 <External>false</>
 <Creation-Date>Thu, 20 Mar 1997 23:05:25
 GMT</>
 <Last-Modified>Fri, 22 Aug 1997 18:22:56
 GMT</>
 <Etag>8675309</>
 <DisplayName>WebDAV Name Space Operations
 Draft</>
 <Content-Language>en</>
 </> </>
 </>

 This example shows the result of the INDEX method applied to

 the collection resource
http://www.microsoft.com/er/yarong/dav_drafts/. It returns

 a response body in XML format, which gives information about
 the container s sole member,

http://www.microsoft.com/users/yarong/dav_drafts/namespace.d
 oc.

https://datatracker.ietf.org/doc/html/rfc2068#section-14.13
https://datatracker.ietf.org/doc/html/rfc2068#section-14.13
http://www.microsoft.com/er/yarong/dav_drafts/
http://www.microsoft.com/users/yarong/dav_drafts/namespace.d

 3.4 Behavior of RFC 2068 Methods on Collections
 With the introduction of the collection resource type to the
 HTTP object model, it is necessary to define the behavior of
 the existing methods (defined in RFC 2068) when invoked on a
 collection resource to avoid ambiguity. While some methods,
 such as OPTIONS and TRACE behave identically when applied to
 collections, GET, HEAD, POST, PUT, and DELETE require some
 additional explanation.

 3.4.1 GET, HEAD for Collections

 The semantics of GET are unchanged when applied to a
 collection, since GET is defined as, retrieve whatever
 information (in the form of an entity) is identified by the
 Request-URI [HTTP11]. GET when applied to a collection MAY
 return the contents of an index.html resource, a human-
 readable view of the contents of the collection, or
 something else altogether, and hence it is possible the
 result of a GET on a collection will bear no correlation to
 the state of the collection.

 Similarly, since the definition of HEAD is a GET without a
 response message body, the semantics of HEAD do not require
 any modification when applied to collection resources.

 3.4.2 POST for Collections

 Since by definition the actual function performed by POST is
 determined by the server and often depends on the particular
 resource, the behavior of POST when applied to collections
 cannot be modified because it is largely undefined. Thus
 the semantics of POST do not require any modification when
 applied to a collection.

 3.4.3 PUT for Collections

 In HTTP/1.1, PUT stores the request entity under the
 Request-URI, and hence its semantics are limited to non-
 collection resources. If a PUT is invoked on a collection
 resource it MUST fail.

 When the PUT operation creates a new non-collection
 resource, a server MAY add that resource s URI to one or
 more collections within the server s controlled namespace.

 3.4.4 DELETE for Collections

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068

 When DELETE is applied to a collection resource, all
 internal members MUST be recursively deleted. The
 dav:link/propagate external members MUST be deleted and
 their links must be removed. dav:link/nopropagate external
 members MUST have only their link removed; the resources
 MUST not be deleted.

 The Depth header does not apply to the DELETE method. It
 cannot be used to limit the extent of the operation. If it

 is present it MUST be ignored.

 When applied to any resource, the DELETE method deletes all
 properties on the Request-URI.

 During DELETE processing, a server MAY remove the URI of the
 deleted resource(s) from collections within its controlled
 namespace.

 3.4.4.1 New Response Codes for DELETE

 207 (Partial Success) Only some of the member resources were
 deleted. The response entity will describe any errors.

 500 (Server Error) The resource was in such a state that it
 could not be deleted. The response entity will describe
 reason for the error.

 3.5 COPY Method

 3.5.1 Problem Description

 Currently, in order to create a copy of a resource, the
 client must GET an entity and then PUT that entity to the
 desired destination. This requires (1) an entity to be
 transmitted to and from the server and (2) that the resource
 be expressible as an entity with complete fidelity.

 This is problematic because of the network traffic involved
 in making a copy, and because there is often no way to fully
 express a resource as an entity without a loss of fidelity.

 3.5.2 Solution Requirements

 The solution:

 MUST allow a principal to create a copy of a resource
 without having to transmit the resource to and from the
 server.

 3.5.3 The Request

 The COPY method creates a duplicate of the source resource,
 given by the Request-URI, in the destination resource, given
 by the Destination header. The Destination header MUST be
 present. The exact behavior of the COPY method depends on
 the type of the source resource.

 3.5.3.1 COPY for HTTP/1.1 resources

 When the source resource is not a collection, and is not a
 property, the body of the destination resource MUST be
 octet-for-octet identical to the body of the source
 resource. Alterations to the destination resource do not
 modify the source resource. Alterations to the source
 resource do not modify the destination resource. Thus, all
 copies are performed by-value .

 If the Duplicate-Properties header is false, then
 properties SHOULD NOT be copied to the destination resource.
 If the Duplicate-Properties header is false and the
 Enforce-Live-Properties header is also present, the request
 MUST fail with a 412 (Precondition Failed) status code.
 [Ed. Note: what if resource to be copied has no properties,
 and no properties are explicitly named in the header�?]

 All properties on a source resource SHOULD be duplicated on

 the destination resource following the definition for
 copying properties.

 3.5.3.2 COPY for Properties

 Live properties SHOULD be duplicated as identically behaving
 live properties at the destination resource. Since they are
 live properties, the server determines the syntax and
 semantics (hence value) of these properties. Properties
 named by the Enforce-Live-Properties header MUST be live on
 the destination resource, or the method MUST fail. If a

 property is not named by Enforce-Live-Properties and cannot
 be copied live, then its value MUST be duplicated in an
 identically named, dead resource on the destination
 resource.

 For every dead property defined on the source resource,
 there SHOULD be an octet-for-octet identical dead property
 on the destination resource.

 3.5.3.3 COPY for Collections

 The Depth and Overwrite headers govern the behavior of COPY
 for collections.

 When performing a recursive copy, all HTTP/1.1 request
 headers are duplicated on the propagated method request
 except for the precondition headers If-Modified-Since, If-
 Match, If-None-Match, If-Range, If-Unmodified-Since, which
 should only be applied to the Request-URI in order to
 determine if the operation should be performed. The
 Destination header MUST be rewritten to preserve the
 membership of the destination collection, i.e., by appending
 the relative URI of the member to the URI of the destination
 collection.

 A Depth of 0 indicates the collection MUST duplicate all
 of its external members in a new collection at the
 Destination. Since the COPY method is not propagated to its
 members, no internal member resource is duplicated.

 A Depth of 1 indicates the collection MUST propagate the
 COPY to all internal, non-collection members. If the
 Overwrite header is true the COPY method duplicates all of
 its external members in a new collection at the Destination.
 If the Overwrite header is false and the destination
 resource is a collection, the COPY method does not duplicate
 its external members, but is propagated to all internal,
 non-collection members.

 A Depth of infinity indicates the collection MUST
 propagate the COPY method to all internal members. If the
 Overwrite header is true, the COPY method MUST duplicate
 all of its external members in a new collection at the
 Destination. If the Overwrite header is false and the
 destination resource is a collection, then the COPY method
 does not duplicate its external members, but is propagated
 to all internal members.

 3.5.3.4 Type Interactions

 If the destination resource identifies a property and the
 source resource is not a property, then the copy SHOULD
 fail.

 If the destination resource identifies a collection and the
 Overwrite header is true, prior to performing the copy,

 the server MUST perform a DELETE operation on the
 collection.

 3.5.4 The Response

 200 (OK) The source resource was successfully copied to a
 pre-existing destination resource.

 201 (Created) The source resource was successfully copied.
 The copy operation resulted in the creation of a new
 resource.

 207 (Partial Success) Only some of the member resources were
 copied. The return entity body describes the status code for
 each resource.

 412 (Precondition Failed) This status code MUST be returned
 if the server was unable to maintain the liveness of the
 properties listed in the Enforce-Live-Properties header, or
 if the Overwrite header is false, and the state of the
 destination resource is non-null.

 500 (Server Error) The resource was in such a state that it
 could not be copied. This may occur if the Destination
 header indicated an external (from the point of view of the
 server) resource and the server has no capability to copy to
 an external resource.

 502 (Bad Gateway) - This may occur when copying to external
 resources and the destination server refused to accept the
 resource.

 3.5.5 Examples

 3.5.5.1 Overwrite Example

 This example shows resource

http://www.ics.uci.edu/~fielding/index.html being copied to
 the location

http://www.ics.uci.edu/users/f/fielding/index.html. The
 contents of the destination resource were overwritten, if
 non-null.

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination:

http://www.ics.uci.edu/users/f/fielding/index.html
 Overwrite: true

 HTTP/1.1 200 OK

 3.5.5.2 No Overwrite Example

 The following example shows the same copy operation being
 performed, except with the Overwrite header set to false.
 A response of 412, Precondition Failed, is returned because
 the destination resource has a non-null state.

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination:

http://www.ics.uci.edu/users/f/fielding/index.html

 HTTP/1.1 412 Precondition Failed

 3.6 MOVE Method

 3.6.1 Problem Description

 The move operation on a resource is the logical equivalent
 of a copy followed by a delete.

 In HTTP 1.1, the procedure could be performed in several
 steps. First, the client could issue a GET to retrieve a
 representation of a resource, issue a DELETE to remove the
 resource from the server, then use PUT to place the resource
 on the server with a new URI. As is the case for COPY -
 because of the network traffic involved in making a move,
 and because there is often no way to fully express a

http://www.ics.uci.edu/~fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html

 resource as an entity without a loss of fidelity - server
 move functionality is preferable.

 With a DAV server, a principal may accomplish this task by
 issuing a COPY and then DELETE. Network load decreases, but
 the server load may still be significant because the server
 must create a duplicate resource. Were a server to know
 beforehand that a principal intended to perform COPY and
 DELETE operations in succession, it could avoid the creation
 of a duplicate resource.

 3.6.2 Solution Requirements

 The solution:

 Must prevent the unneeded transfer of entity bodies from and
 to the server.

 Must prevent the unneeded creation of copies by the server.

 3.6.3 The Request

 The MOVE method is defined as the logical equivalent of a
 COPY followed by a DELETE of the source resource, performed
 atomically.

 3.6.4 The Response

 200 (OK) - The resource was moved. A successful response
 must contain the Content-Location header, set equal to the
 URI in source. This lets caches properly flush any cached
 entries for the source. Unfortunately the Content-Location
 header only allows a single value so it is not possible for
 caches unfamiliar with the MOVE method to properly clear
 their caches.

 207 (Partial Success) Only some of the member resources were
 moved. The return entity body will give the status code for
 each resource.

 412 (Precondition Failed) This status code MUST be returned
 if the server was unable to maintain the liveness of the
 properties listed in the Enforce-Live-Properties header, or
 if the Overwrite header is false, and the state of the
 destination resource is non-null.

 501 (Not Implemented) - This may occur if the Destination
 header specifies a resource which is outside its domain of
 control (e.g., stored on another server) resource and the

 server either refuses or is incapable of moving to an
 external resource.

 502 (Bad Gateway) - This may occur when moving to external
 resources and the destination server refused to accept the
 resource.

 3.6.5 Examples

 3.6.5.1 Overwrite Example

 This example shows resource
http://www.ics.uci.edu/~fielding/index.html being moved to

 the location
http://www.ics.uci.edu/users/f/fielding/index.html. The

 contents of the destination resource were overwritten, if
 non-null.

 MOVE /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination:

http://www.ics.uci.edu/users/f/fielding/index.html
 Overwrite: true

 HTTP/1.1 200 OK
 Content-Location:

http://www.ics.uci.edu/users/f/fielding/index.html

 3.7 Multi-Status Response

 3.7.1 Problem Definition

 Certain methods (COPY, MOVE, and DELETE) when applied to a
 collection might be recursively applied to all sub-members
 of the collection. In this case, it is possible that the
 operation will succeed on some member resources and fail on
 others, thus generating a 207 (Partial Success) status code.
 A principal may need to know which members of the
 collection succeeded and which failed.

 3.7.2 Solution Requirements

 The solution must:

http://www.ics.uci.edu/~fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html

 - communicate the status code and reason

 - give the URI of the resource on which the method was
 invoked

 - be consistent with other return body formats

 3.7.3 Multi-Status Response

 The default multi-status response body is an application/xml
 HTTP entity that contains a single XML element called
 multiresponse, which contains a set of XML elements called
 response, one for each 200, 300, 400, and 500 series status
 code generated during the method invocation. 100 series
 status codes MUST NOT be recorded in a response XML element.
 Each response XML element contains two sub-entities, ref,
 the URI of the resource on which the method was invoked, and
 status, which holds the status-line from the method
 invocation.

 A multi-status response MUST be present when a 207 (Partial
 Success) status code is returned by the initial method
 invocation.

 3.7.3.1 MultiResponse

 Name:
http://www.ietf.org/standards/dav/multiresponse/multi

 response

 Purpose: Contains multiple response messages.

 Schema: http://www.ietf.org/standards/dav/multiresponse/

 Parent: <XML>

 Value:1*Response

 3.7.3.2 Response

 Name:
http://www.ietf.org/standards/dav/multiresponse/respo

 nse

 Purpose: Holds a single response

http://www.ietf.org/standards/dav/multiresponse/multi
http://www.ietf.org/standards/dav/multiresponse/
http://www.ietf.org/standards/dav/multiresponse/respo

 Schema: http://www.ietf.org/standards/dav/multiresponse/

 Parent: MultiResponse

 Value:Ref, Status

 3.7.3.3 Status

 Name:
http://www.ietf.org/standards/dav/multiresponse/statu

 s

 Purpose: Holds a single HTTP status-line

 Schema: http://www.ietf.org/standards/dav/multiresponse/

 Parent: Response

 Value:status-line ;status-line defined in [HTTP11]

 3.7.4 Example

 COPY /users/jdoe/collection/ HTTP/1.1
 Host: www.doecorp.com
 Destination:

http://www.doecorp.com/users/jdoe/othercollection/
 Depth: infinity
 Overwrite: false

 HTTP/1.1 207 Partial Success
 Content-Type: application/xml
 Content-Length: xxx

 <XML>
 <XML:Namespace><Ref>http://www.ietf.org/standards/dav/multir
 esponse/</><As>R</></>
 <R:MultiResponse>
 <Response>

 <XML:Ref>http://www.doecorp.com/users/jdoe/collection/i
 ndex.html</>
 <Status>HTTP/1.1 412 Precondition Failed</>
 </>
 <Response>

http://www.ietf.org/standards/dav/multiresponse/
http://www.ietf.org/standards/dav/multiresponse/statu
http://www.ietf.org/standards/dav/multiresponse/
http://www.doecorp.com/users/jdoe/othercollection/

 <XML:Ref>http://www.doecorp.com/users/jdoe/collection/r
 eport.html</>
 <Status>HTTP/1.1 200 OK</>
 </>
 </>
 </>

 3.8 ADDREF Method

 3.8.1 Problem Definition

 There needs to be a way to add an external member to a
 collection.

 3.8.2 Solution Requirements

 The solution must:

 allow access control

 allow referencing to URIs of external members

 not require a body

 3.8.3 The Request

 The ADDREF method adds the URI specified in the Collection-
 Member header as an external member to the collection
 specified by the Request-URI. The value in the Collection-
 Member header MUST be an absolute URI meeting the
 requirements of an external member URI. The propagation
 type of the external URI is specified in the Collection-
 Member Header.

 3.9 DELREF Method

 3.9.1 Problem Definition

 There needs to be a way to remove an external member from a
 collection.

 3.9.2 Solution Requirements

 The solution must:

 allow access control

 allow referencing to URIs of external members

 not require a body

 3.9.3 The Request

 The DELREF method removes the URI specified in the
 Collection-Member header from the collection specified by
 the Request-URI.

 3.10 PATCH Method

 3.10.1 Problem Definition

 At present, if a principal wishes to modify a resource, they
 must issue a GET against the resource, modify their local
 copy of the resource, and then issue a PUT to place the
 modified resource on the server. This procedure is
 inefficient because the entire entity for a resource must be
 transmitted to and from the server in order to make even
 small changes. Ideally, the update entity transmitted to
 the server should be proportional in size to the
 modifications.

 3.10.2 Solution Requirements

 The solution must:

 allow partial modification of a resource without having to
 transmit the entire modified resource

 allow byte-range patching

 allows extensions so that patches can be done beyond simple
 byte-range patching

 allow ranges to be deleted, inserted, and replaced

 3.10.3 The Request

 The PATCH method contains a list of differences between the
 original version of the resource identified by the Request-
 URI and the desired content of the resource after the PATCH
 action has been applied. The list of differences is in a

 format defined by the media type of the entity (e.g.,
 "application/diff") and must include sufficient information
 to allow the server to convert the original version of the
 resource to the desired version.

 Since the semantics of PATCH are non-idempotent, responses
 to this method are not cacheable.

 If the request appears (at least initially) to be
 acceptable, the server MUST transmit an interim 100 response
 message after receiving the empty line terminating the
 request headers and continue processing the request.

 While server support for PATCH is optional, if a server does
 support PATCH, it MUST support at least the application/xml
 diff format defined below. Support for the VTML difference
 format [VTML] is recommended, but not required.

 3.10.4 application/XML elements for PATCH

 The resourceupdate XML elementXML element contains a set of
 XML sub-entities that describe modification operations. The
 name and meaning of these XML elements is given below.
 Processing of these directives MUST be performed in the
 order encountered within the XML document. A directive
 operates on the resource as modified by all previous
 directives (executed in sequential order).

 3.10.4.1 ResourceUpdate

 Name:
http://www.ietf.org/standards/dav/patch/resourceupdat

 e

 Purpose: Contains an ordered set of changes to a non-
 collection, non-property resource.

 Schema: http://www.ietf.org/standards/dav/patch/

 Parent: <XML>

 Value:*(Insert | Delete | Replace)

 3.10.4.2 Insert

http://www.ietf.org/standards/dav/patch/resourceupdat
http://www.ietf.org/standards/dav/patch/

 Name: http://www.ietf.org/standards/dav/patch/insert

 Purpose: Insert the XML elementXML element s contents
 starting exactly at the specified octet.

 Schema: http://www.ietf.org/standards/dav/patch/

 Parent: ResourceUpdate

 Value:The insert XML elementXML element MUST contain an
 octet XML elementXML element that specifies an octet
 position within the body of a resource. A value of end
 specifies the end of the resource. The body of the insert
 XML elementXML element contains the octets to be inserted.

 3.10.4.3 Delete

 Name: http://www.ietf.org/standards/dav/patch/delete

 Purpose: Removes the specified range of octets.

 Schema: http://www.ietf.org/standards/dav/patch/

 Parent: ResourceUpdate

 Value:The Delete XML elementXML element MUST contain an
 octet-range XML elementXML element. The value of this XML
 elementXML element is empty.

 Discussion: The octets which are deleted are removed, which
 means the resource is collapsed and the length of the
 resource is decremented by the size of the octet range. It
 is not appropriate to replace deleted octets with zeroed-out
 octets, since zero is a valid octet value.

 3.10.4.4 Replace

 Name: http://www.ietf.org/standards/dav/patch/replace

 Purpose: Replaces the specified range of octets with the
 contents of the XML element. If the number of octets in the
 XML element is different from the number of octets
 specified, the update MUST be rejected.

 Schema: http://www.ietf.org/standards/dav/patch/

 Parent: ResourceUpdate

 Value:The Replace XML element MUST contain an octet-range
 XML element. The contents of the entity are the replacement

http://www.ietf.org/standards/dav/patch/insert
http://www.ietf.org/standards/dav/patch/
http://www.ietf.org/standards/dav/patch/delete
http://www.ietf.org/standards/dav/patch/
http://www.ietf.org/standards/dav/patch/replace
http://www.ietf.org/standards/dav/patch/

 octets.

 3.10.4.5 Octet-Range Attribute

 Name:
http://www.ietf.org/standards/dav/patch/octet-range

 Purpose: Specifies a range of octets which the enclosing
 property effects.

 Schema: http://www.ietf.org/standards/dav/patch/

 Parent: Insert, Delete, Replace

 Value: number [- (number | end)]

 Number = 1*Digit

 Description: Octet numbering begins with 0. If the octet
 contains a single number then the operation is to begin at
 that octet and to continue for a length specified by the
 operation. In the case of a delete, this would mean to
 delete but a single octet. In the case of an insert this
 would mean to begin the insertion at the specified octet and
 to continue for the length of the included value, extending
 the resource if necessary. In the case of replace, the
 replace begins at the specified octet and overwrites all
 that follow to the length of the included value. Octet
 values MUST specify locations in the state of the resource
 prior to the processing of the PATCH method.

 3.10.5 The Response

 200 (OK) - The request entity body was processed without
 error, resulting in an update to the state of the resource.

 409 (Conflict) - If the update information in the request
 message body does not make sense given the current state of
 the resource (e.g., an instruction to delete a non-existent
 line), this status code MAY be returned.

 415 (Unsupported Media Type) - The server does not support
 the content type of the update instructions in the request
 message body.

http://www.ietf.org/standards/dav/patch/octet-range
http://www.ietf.org/standards/dav/patch/

 416 (Unprocessable Entity) - A new status code. The server
 understands the content type of the request entity, but was
 unable to process the contained instructions.

 3.10.6 Examples

 3.10.6.1 HTML file modification

 The following example shows a modification of the title and
 contents of the HTML resource
 http://www.example.org/hello.html.

 Before:

 <HTML>
 <HEAD>
 <TITLE>Hello world HTML page</TITLE>
 </HEAD>
 <BODY>
 <P>Hello, world�!</P>
 </BODY>
 </HTML>

 PATCH Request: Response:

 PATCH hello.html HTTP/1.1
 Host: www.example.org
 Content-Type: application/xml
 Content-Length: xxx

 HTTP/1.1 100 Continue
 <XML>
 <XML:Namespace><ref>http://www.ietf.org/standards/dav/p

 atch/</><AS>D</></>
 <D:ResourceUpdate>
 <Replace><octet-range>14</>&003CTITLE&003ENew
 Title&003C/TITLE&003E</>
 <Delete><octet-range>38-50</>
 <Insert><octet-range>86</>&003CP&003ENew
 paragraph&003C/P&003E
 </>
 </></>
 HTTP/1.1 200 OK
 After:

 <HTML>
 <HEAD>
 <TITLE>New Title</TITLE>
 </HEAD>
 <BODY>
 <P>Hello, world�!</P>
 <P>New paragraph</P>
 </BODY>
 </HTML>

 3.11 Headers

 3.11.1 Depth

 The Depth header determines the depth to which a method is
 propagated on a resource s children.

 Depth = Depth : DepthToken
 DepthToken = "0" | "1" | "infinity" | token

 The optional token allows for extension. A server MUST
 ignore a Depth header with an unknown value.

 3.11.2 Destination

 The Destination header specifies a destination resource for
 methods such as COPY and MOVE, which take two URIs as
 parameters.

 Destination= Destination : URI

 3.11.3 Enforce-Live-Properties

 The Enforce-Live-Properties header specifies properties that
 MUST be live after they are copied (moved) to the
 destination resource of a copy (or move). If the value *
 is given for the header, then it designates all live
 properties on the source resource.

 EnforceLiveProperties = "Enforce-Live-Properties :"
 (* | 1#(Property-Name))
 Property-Name = < > URI < >

 3.11.4 Duplicate-Properties

 The Duplicate-Properties header instructs the server whether
 to duplicate the source resource s properties onto the

 destination resource during a COPY or MOVE. A value of
 false requires that the server MUST NOT duplicate on the
 destination resource any properties that are defined on the
 source resource. By default, the value of this header is
 true, and a client MAY omit this header from a request
 when its value is true.

 Duplicate-Properties = Duplicate-Properties :
 (true | false)

 3.11.5 Overwrite

 The Overwrite header specifies whether the server should
 overwrite the state of a non-null destination resource
 during a COPY or MOVE. A value of false states that the
 server MUST NOT perform the COPY or MOVE operation if the
 state of the destination resource is non-null. By default,
 the value of Overwrite is false, and a client MAY omit
 this header from a request when its value is false. While
 the Overwrite header appears to duplicate the functionality
 of the If-Match: * header of HTTP/1.1, If-Match applies only
 to the Request-URI, and not to the Destination of a COPY or
 MOVE.

 Overwrite = Overwrite : (true | false)

 3.11.6 Destroy Header

 When deleting a resource the client often wishes to specify
 exactly what sort of delete is being enacted. The Destroy
 header, used with PEP, allows the client to specify the end
 result they desire. The Destroy header is specified as
 follows:

 DestroyHeader = "Destroy" ":" #Choices
 Choices = "VersionDestroy" | "NoUndelete" | "Undelete"
 | Token

 The Undelete token requests that, if possible, the resource
 should be left in a state such that it can be undeleted. The
 server is not required to honor this request.

 The NoUndelete token requests that the resource MUST NOT be
 left in a state such that it can be undeleted.

 The VersionDestroy token includes the functionality of the
 NoUndelete token and extends it to include having the server

 remove all versioning references to the resource that it has
 control over.

 3.11.7 Collection-Member Header

 The Collection-Member header specifies the URI of an
 external resource to be added/deleted to/from a collection.

 CollectionMember = Collection-Member : PropType SP
 URI
 PropType = propagation = (prop | noprop)

 3.12 Links

 3.12.1 Source Link Property Type

 Name: http://www.ietf.org/standards/dav/link/source

 Purpose: The destination of the source link identifies the
 resource that contains the unprocessed source of the link s
 source.

 Schema: http://www.ietf.org/standards/dav/link/

 Parent: Any.

 Value:An XML document with zero or more link XML elements.

 Discussion: The source of the link (src) is typically the

 URI of the output resource on which the link is defined, and
 there is typically only one destination (dst) of the link,
 which is the URI where the unprocessed source of the
 resource may be accessed. When more than one link
 destination exists, DAV asserts no policy on partial
 ordering.

 4 State Tokens

 4.1 Overview

 4.1.1 Problem Description

 There are times when a principal will want to predicate

http://www.ietf.org/standards/dav/link/source
http://www.ietf.org/standards/dav/link/

 successful execution of a method on the current state of a
 resource. While HTTP/1.1 provides a mechanism for
 conditional execution of methods using entity tags via the
 If-Match and If-None-Match headers, the mechanism is not
 sufficiently extensible to express conditional statements
 involving more generic state indicators, such as lock
 tokens.

 The fundamental issue with entity tags is that they can only
 be generated by a resource. However there are times when a
 client will want to be able to share state tokens between
 resources, potentially on different servers, as well as be
 able to generate certain types of lock tokens without first
 having to communicate with a server.

 For example, a principal may wish to require that resource B
 have a certain state in order for a method to successfully
 execute on resource A. If the client submits an e-tag from
 resource B to resource A, then A has no way of knowing that
 the e-tag is meant to describe resource B.

 Another example occurs when a principal wishes to predicate
 the successful completion of a method on the absence of any
 locks on a resource. It is not sufficient to submit an If-
 None-Match: * as this refers to the existence of an entity,
 not of a lock.

 This draft defines the term state token as an identifier
 for a state of a resource. The sections below define
 requirements for state tokens and provide a state token
 syntax, along with two new headers which can accept the new
 state token syntax.

 4.1.2 Solution Requirements

 4.1.2.1 Syntax

 Self-Describing. A state token must be self describing such
 that upon inspecting a state token it is possible to
 determine what sort of state token it is, what resource(s)
 it applies to, and what state it represents.

 This self-describing nature allows servers to accept tokens
 from other servers and potentially be able to coordinate
 state information cross resource and cross site through
 standardized protocols. For example, the execution of a
 request on resource A can be predicated on the state of
 resource B, where A and B are potentially on different
 servers.

 Client Generable. The state token syntax must allow, when

 appropriate, for clients to generate a state token without
 having first communicated with a server.

 One drawback of entity tags is that they are set by the
 server, and there is no interoperable algorithm for
 calculating an entity tag. Consequently, a client cannot
 generate an entity tag from a particular state of a
 resource. However, a state token which encodes an MD5 state
 hash could be calculated by a client based on a client-held
 state of a resource, and then submitted to a server in a
 conditional method invocation.

 Another potential use for client generable state tokens is
 for a client to generate lock tokens with wild card fields,
 and hence be able to express conditionals such as: only
 execute this GET if there are no write locks on this
 resource.

 4.1.2.2 Conditonals

 Universal. A solution must be applicable to all requests.

 Positive and Negative. Conditional expressions must allow
 for the expression of both positive and negative state
 requirements.

 4.2 State Token Syntax
 State tokens are URLs employing the following syntax:

 State-Token = StateToken: Type : Resources : State-
 Info
 Type = Type = Caret-encoded-URL
 Resources = Res = Caret-encoded-URL
 Caret-encoded-URL = �^ Resource �^
 Resource = <A URI where all �^ characters are escaped>
 State-Info = *(uchar | reserved) ; uchar, reserved defined

section 3.2.1 of RFC 2068

 This proposal has created a new URL scheme for state tokens
 because a state token names a network resource using its
 normal name, which is typically state-invariant, along with
 additional information that specifies a particular state of
 the resource. Encoding the state information into the

https://datatracker.ietf.org/doc/html/rfc2068#section-3.2.1

 native URL scheme of the network resource was not felt to be
 safe, since freedom from name space collisions could not be
 guaranteed. If this proposal is accepted, the StateToken URL
 scheme will need to be defined and registered with IANA.

 State Token URLs begin with the URL scheme name StateToken
 rather than the name of the particular state token type they
 represent in order to make the URL self describing. Thus it
 is possible to examine the URL and know, at a minimum, that
 it is a state token.

 Labeled name/value pairs are used within the token to allow
 new fields to be added. Processors of state tokens MUST be
 prepared to accept the fields in whatever order they are
 present and MUST ignore any fields they do not understand.

 The Type field specifies the type of the state information
 encoded in the state token. A URL is used in order to avoid
 namespace collisions.

 The Res field identifies the resource for which the state
 token specifies a particular state. Since commas and spaces
 are acceptable URL characters, a caret is used to delimit a
 URL. Since a caret is an acceptable URL character, any

 instances of it must be escaped using the % escape
 convention.

 The State-Info production is expanded upon in descriptions
 of specific state token types, and is intended to contain
 the state description information for a particular state
 token.

 4.3 State Token Conditional Headers

 4.3.1 If-State-Match

 If-State-Match = "If-State-Match" ":" (AND | OR) 1#(<
 State-Token >)

 The If-State-Match header is intended to have similar
 functionality to the If-Match header defined in section

14.25 of RFC 2068.

 If the AND keyword is used and all of the state tokens
 identify the state of the resource, then the server MAY
 perform the requested method. If the OR keyword is used and

https://datatracker.ietf.org/doc/html/rfc2068#section-14.25
https://datatracker.ietf.org/doc/html/rfc2068#section-14.25

 any of the state tokens identifies the current state of the
 resource, then server MAY perform the requested method. If
 neither of the keyword requirements is met, the server MUST
 NOT perform the requested method, and MUST return a 412
 (Precondition Failed) response.

 4.3.2 If-None-State-Match

 If-None-State-Match = "If-None-State-Match" : 1#(<
 State-Token >)

 The If-None-State-Match header is intended to have similar
 functionality to the If-None-Match header defined in section

14.26 of RFC 2068.

 If any of the state tokens identifies the current state of
 the resource, the server MUST NOT perform the requested
 method. Instead, if the request method was GET, HEAD,
 INDEX, or GETMETA, the server SHOULD respond with a 304 (Not
 Modified) response, including the cache-related entity-
 header fields (particularly ETag) of the current state of
 the resource. For all other request methods, the server
 MUST respond with a status of 412 (Precondition Failed).

 If none of the state tokens identifies the current state of
 the resource, the server MAY perform the requested method.

 Note that the AND and OR keywords specified with the If-
 State-Match header are intentionally not defined for If-
 None-State-Match, because this functionality is not
 required.

 4.4 State Token Header
 State-Token-Header = State-Token : 1#(< State-Token
 >)
 The State Token header is intended to have similar
 functionality to the etag header defined in section 14.20 of
 RFC 2068. The purpose of the tag is to return state tokens
 defined on a resource in a response. The contents of the
 state-token are not guaranteed to be exhaustive and are
 generally used to return a new state token that has been
 defined as the result of a method. For example, if a LOCK
 method were successfully executed on a resource the response
 would include a state token header with the lock state token
 included.

 4.5 E-Tags

https://datatracker.ietf.org/doc/html/rfc2068#section-14.26
https://datatracker.ietf.org/doc/html/rfc2068#section-14.26
https://datatracker.ietf.org/doc/html/rfc2068#section-14.20
https://datatracker.ietf.org/doc/html/rfc2068#section-14.20

 E-tags have already been deployed using the If-Match and If-
 None-Match headers. Introducing two mechanisms to express
 e-tags would only confuse matters, therefore e-tags should
 continue to be expressed using quoted strings and the If-
 Match and If-None-Match headers.

 5 Locking

 5.1 Problem Description - Overview
 Locking is used to arbitrate access to a resource amongst
 principals that have equal access rights to that resource.

 This draft allows locks to vary over two parameters, the
 number of principals involved and the type of access to be
 granted. This draft will only provide for the definition of
 locking for one access type, write. However, the syntax is
 extensible enough to allow for the specification of other
 access types. It is a goal of this proposal that it use the
 same access verbs as will be defined in the access control
 draft.

 5.1.1 Exclusive Vs. Shared Locks

 The most basic form of LOCK is an exclusive lock. This is a
 lock where the access right in question is only granted to a
 single principal. The need for this arbitration results from
 a desire to avoid having to constantly merge results. In
 fact, many users so dislike having to merge that they would
 rather serialize their access to a resource rather than have
 to constantly perform merges.

 However, there are times when the goal of a lock is not to
 exclude others from exercising an access right but rather to
 provide a mechanism for principals to indicate that they
 intend to exercise their access right. Shared locks are
 provided for this case. A shared lock allows multiple
 principals to receive a lock, hence any principal with
 appropriate access can get the lock.

 With shared locks there are two trust sets that affect a
 resource. The first trust set is created by access
 permissions. Principals who are trusted, for example, may
 have permission to write the resource, those who are not,
 don't. Among those who have access permission to write the
 resource, the set of principals who have taken out a shared
 lock also must trust each other, creating a (probably)
 smaller trust set within the access permission write set.

 Starting with every possible principal on the Internet, in

 most situations the vast majority of these principals will
 not have write access to a given resource. Of the small
 number who do have write access, some principals may decide
 to guarantee their edits are free from overwrite conflicts
 by using exclusive write locks in conjunction with a
 precondition header (If-State-Match) that checks for
 existence of the lock prior to writing the resource. Others
 may decide they trust their collaborators (the potential set
 of collaborators being the set of principals who have write
 permission) and use a shared lock, which informs their
 collaborators that a principal is potentially working on the
 resource.

 The WebDAV extensions to HTTP do not need to provide all of
 the communications paths necessary for principals to

 coordinate their activities. When using shared locks,
 principals may use any out of band communication channel to
 coordinate their work (e.g., face-to-face interaction,
 written notes, post-it notes on the screen, telephone
 conversation, email). The intent of a shared lock is to let
 collaborators know who else is potentially working on a
 resource..

 Why not use exclusive write locks all the time�? Experience
 from initial Web distributed authoring systems has indicated
 that exclusive write locks are often too rigid. An
 exclusive write lock is used to enforce a particular editing
 process: take out exclusive write lock, read the resource,
 perform edits, write the resource, release the lock. What
 happens if the lock isn't released�? While the time-out
 mechanism provides one solution, if you need to force the
 release of a lock immediately, it doesn't help much.
 Granted, an administrator can release the lock for you, but
 this could become a significant burden for large sites.
 Further, what if the administrator can't be reached
 immediately�?

 Despite their potential problems, exclusive write locks are
 extremely useful, since often a guarantee of freedom from
 overwrite conflicts is exactly what is needed. The
 solution: provide exclusive write locks, but also provide a
 less strict mechanism in the form of shared locks which can
 be used by a set of people who trust each other and who have
 access to a communications channel external to HTTP which
 can be used to negotiate writing to the resource.

 5.1.2 Required Support

 A DAV compliant server is not required to support locking in
 any form. If the server does support locking it may choose
 to support any combination of exclusive and shared locks for
 any access types.

 The reason for this flexibility is that server implementers
 have said that they are willing to accept minimum
 requirements on all services but locking. Locking policy
 strikes to the very heart of their resource management and
 versioning systems and they require control over what sort
 of locking will be made available. For example, some systems
 only support shared write locks while others only provide
 support for exclusive write locks. As each system is
 sufficiently different to merit exclusion of certain locking
 features, the authors are proposing that locking be allowed
 as the sole axis of negotiation within DAV.

 5.2 LOCK Method

 5.2.1 Operation

 A lock method invocation creates the lock specified by the
 Lock-Info header on the request-URI. Lock method requests
 SHOULD NOT have a request body. A user-agent SHOULD submit
 an Owner header field with a lock request.

 A successful response to a lock invocation MUST include a
 Lock-Token header. If the server supports a time based lock
 removal mechanism on the resource, a successful lock
 invocation SHOULD return a Time-Out header.

 5.2.2 The Effect of Locks on Properties and Containers

 By default a lock affects the entire state of the resource,
 including its associated properties. As such it is illegal
 to specify a lock on a property. For containers, a lock also
 affects the ability to add or remove members. The nature of
 the effect depends upon the type of access control involved.
 The Depth header expresses the general semantics of a LOCK
 method request when invoked on a collection (note that
 specific lock types may restrict the effect of a lock, for
 example limiting the allowable values of the Depth header):

 A Depth header (defined in the namespace draft) may be used

 on a LOCK method when the LOCK method is applied to a
 collection resource. The legal values for Depth on a LOCK
 are 0, 1, and Infinity. A Depth of 0 instructs the
 resource to just lock the container. As previously
 mentioned, depending on the type of lock, the lock affects
 the ability to add or remove members of the container.

 @.A Depth of 1 means that the container is locked and a LOCK
 is executed on the container s propagate members with a
 Depth of 0 and If-Range, If-Modified-Since, If-Unmodified-
 Since, If-Match and If-None-Match headers are dropped.
 However, the effects of the LOCK MUST be atomic in that
 either the container and all of its members are locked or
 no lock is granted. The result of a Depth 1 lock is a
 single lock token which represents the lock on the
 container and all of its members. This lock token may be
 used in an If-State-Match or If-Not-State-Match header
 against any of the resources covered by the lock. Since
 the lock token represents a lock on all the resources, an
 UNLOCK using that token will remove the lock from all
 included resources, not just the resource the UNLOCK was
 executed on.

 @.A Depth of infinity means that the LOCK is recursively
 executed, with a Depth of infinity, on the collection and
 all of its propagate members and all of their propagate
 members. As with a Depth of 1, the LOCK must be granted in
 total or not at all. Otherwise the lock operates in the
 same manner as a Depth of 1 lock.

 The default behavior when locking a container is to act as
 if a Depth: 0 header had been placed on the method.

 5.2.3 Locking Replicated Resources

 Some servers automatically replicate resources across
 multiple URLs. In such a circumstance the server MAY only
 accept a lock on one of the URLs if the server can guarantee
 that the lock will be honored across all the URLs.

 5.2.4 Interaction with other Methods

 Only two methods, MOVE and DELETE, have side effects which
 involve locks. When a resource is moved, its lock SHOULD be
 moved with it. However this may not always be possible and
 there is currently no proposal to create a header which
 would specify that the lock request should fail if the
 resource s locks can not be maintained. A COPY MUST NOT copy
 any locks on the source resource over to the destination

 resource. Deleting a resource MUST remove all locks on the
 resource.

 5.2.5 Lock Compatibility Table

 The table below describes the behavior that occurs when a
 lock request is made on a resource.

 Current lock state/ Shared Lock Exclusive Lock
 Lock request
 None True True
 Shared Lock True False
 Exclusive Lock False False*
 Legend: True = lock MAY be granted. False = lock MUST NOT
 be granted. *=if the principal requesting the lock is the
 owner of the lock, the lock MAY be regranted.

 The current lock state of a resource is given in the
 leftmost column, and lock requests are listed in the first
 row. The intersection of a row and column gives the result
 of a lock request. For example, if a shared lock is held on
 a resource, and an exclusive lock is requested, the table
 entry is false , indicating the lock must not be granted.

 If an exclusive lock is re-requested by the principal who
 owns the lock, the lock MAY be regranted. If the lock is
 regranted, the same lock token that was previously issued
 MUST be returned.

 5.2.6 Status Codes

 412 Precondition Failed The included state-token was not
 enforceable on this resource.

 416 Locked The resource is locked so the method has been
 rejected.

 5.2.7 Example

 LOCK /workspace/webdav/proposal.doc HTTP/1.1
 Host: webdav.sb.aol.com
 Lock-Info: LockType=Write LockScope=Exclusive
 Owner: <http://www.ics.uci.edu/~ejw/contact.html>

http://www.ics.uci.edu/~ejw/contact.html

 HTTP/1.1 200 OK
 State-Token: StateToken:Type=�^DAV:/LOCK/DAVLOCK�^:Res=�^http:/
 /www.ics.uci.edu/workspace/webdav/proposal.doc�^:LockType=Wri
 te:LockScope=Exclusive:ServerID=12382349AdfFFF
 Time-Out: ClockType=Activity TimeType=second;604800

 This example shows the successful creation of an exclusive
 write lock on resource

http://webdav.sb.aol.com/workspace/webdav/proposal.doc. The
 resource http://www.ics.uci.edu/~ejw/contact.html contains
 contact information for the owner of the lock. The server
 has an activity-based timeout policy in place on this
 resource, which causes the lock to automatically be removed
 after 1 week (604800 seconds). The response has a Lock-Token
 header that gives the state token URL for the lock token
 generated by this lock request.

 5.2.8 Lock-Info Request Header

 The Lock-Info header specifies the scope and type of a lock
 for a LOCK method request. The syntax specification below is
 extensible, allowing new type and scope identifiers to be
 added.

 LockInfo = Lock-Info : DAVLockType SP DAVLockScope CRLF
 DAVLockType = LockType = DAVLockTypeValue
 DAVLockTypeValue = (Write | *(uchar | reserved))
 DAVLockScope = LockScope = DAVLockScopeValue
 DAVLockScopeValue = (Exclusive | Shared | *(uchar |
 reserved))

 5.2.9 Owner Request Header

 5.2.9.1 Problem Description

 When discovering the list of owners of locks on a resource,
 a principal may want to be able to contact the owner
 directly. For this to be possible the lock discovery
 mechanism must provide enough information for the lock owner
 to be contacted.

 5.2.9.2 Solution Requirements

 Not all systems have authentication procedures that provide

http://webdav.sb.aol.com/workspace/webdav/proposal.doc
http://www.ics.uci.edu/~ejw/contact.html

 sufficient information to identify a particular user in a
 way that is meaningful to a human. In addition, many systems
 that do have sufficient information, such as a name and e-
 mail address, do not have the ability to associate this
 information with the lock discovery mechanism. Therefore a
 means is needed to allow principals to provide
 authentication in a manner which will be meaningful to a
 human.

 The From header (defined in RFC 2068), which contains only
 an email mailbox, is not sufficient for the purposes of
 quick identification. When desperately looking for someone
 to remove a lock, e-mail is often not sufficient. A
 telephone number (cell number, pager number, etc.) would be
 better. Furthermore, the email address in the From field may
 or may not support including the owners name and that name
 is often set to an alias anyway. Therefore a header more
 flexible than From is required.

 5.2.9.3 Syntax

 Owner = "Owner" ":" ((< URI >) | quoted-string)

 The URI SHOULD provide a means for either directly
 contacting the principal (such as a telephone number or e-
 mail URI), or for discovering the principal (such as the
 URL of a homepage). The quoted string SHOULD provide a
 means for directly contacting the principal, such as a name
 and telephone number.

 5.2.10 Time-Out Header

 5.2.10.1 Problem Description

 In a perfect world principals take out locks, use the
 resource as needed, and then remove the lock when it is no
 longer needed. However, this scenario is frequently not
 completed, leaving active but unused locks. Reasons for this
 include client programs crashing and loosing information
 about locks, users leaving their systems for the day and
 forgetting to remove their locks, etc. As a result of this
 behavior, servers need to establish a policy by which they
 can remove a lock without input from the lock owner. Once
 such a policy is instituted, the server also needs a
 mechanism to inform the principal of the policy.

https://datatracker.ietf.org/doc/html/rfc2068

 5.2.10.2 Solution Requirements

 There are two basic lock removal policies, administrator and
 time based remove. In the first case a principal other than
 the lock owner has sufficient access rights to order the
 lock removed, even though they did not take it out. User-
 agents MUST assume that such a mechanism is available and
 thus locks may arbitrarily disappear at any time. If their
 actions require confirmation of the existence of a lock then
 the If-State headers are available.

 The second solution, is the time based removal policy.
 Activity based systems set a timer as soon as the lock is
 taken out. Every time a method is executed on the resource,
 the timer is reset. If the timer runs out, the lock is
 removed.

 Finally, some systems only allow locks to exist for the
 duration of a session, where a session is defined as the
 time when the HTTP connection that was used to take out the
 lock remains connected. This mechanism is used to allow
 programs which are likely to be improperly exited, such as
 JAVA programs running in a browser, to take out locks
 without leaving a lot of ownerless locks around when they
 are improperly exited.

 5.2.10.3 Syntax

 TimeOut = "Time-Out" ":" ((TimeOutType SP Session) |
 TimeOutVal |
 Session) CRLF
 TimeOutType = ClockType SP TimeType
 ClockType = ClockType = ClockTypeValue
 ClockTypeValue = Activity
 TimeType = TimeType = TimeTypeValue
 TimeTypeValue = Second ; DAVTimeOutVal
 DAVTimeOutVal = 1*digit
 Session = Session = (Yes | No)

 The Second TimeType specifies the number of seconds that
 may elapse before the lock is automatically removed. A
 server MUST not generate a time out value for second
 greater than 2�^32-1.

 If no time based system is in use then a Time-Out header
 MUST NOT be returned. The Time-Out header MUST only be
 returned in a response to a LOCK request.When session is set
 to yes then whatever clocktype and timetype is being used,

 their effects are scoped within that particular session. So
 an absolute lock with a ten day expiration period will only
 remain active so long as the session remains active. A
 DAVTimeOutVal value must be greater than zero.

 Clients MAY include TimeOut headers in their LOCK requests.
 However the server is not required to honor or even consider
 the request. The primary purpose in allowing clients to
 submit a TimeOut header is to inform the server if the
 client is requesting a session based lock. If a timeout is
 associated with the lock, the server MUST return a TimeOut
 header with a valid value.

 5.2.11 State-Token Header

 5.2.11.1 Problem Definition

 Program A, used by User A, takes out a write lock on a
 resource. Program B, also run by User A, then proceeds to
 perform a PUT to the locked resource. The PUT will succeed
 because locks are associated with a principal, not a
 program, and thus program B, because it is acting with
 principal A s credential, will be allowed to perform the
 PUT. In reality program B had no knowledge of the lock and
 had it had such knowledge, would not have overwritten the
 resource. Hence, a mechanism is needed to prevent different
 programs from accidentally ignoring locks taken out by other
 programs with the same authorization.

 5.2.11.2 Solution Requirement

 The solution must not require principals to perform
 discovery in order to prevent accidental overwrites as this
 could cause race conditions.

 The solution must not require that clients guess what sorts
 of locks might be used and use if-state-match headers with
 wildcards to prevent collisions. The problem with trying to
 guess which locks are being used is that new lock types
 might be introduced, and the program would not know to
 guess them . So, for example, a client might put in an if-
 state-match header with a wildcard specifying that if any
 write lock is outstanding then the operation should fail.
 However a new read/write lock could be introduced which the
 client would not know to put in the header.

 5.2.11.3 State-Token Header

 The State-Token header is returned in a successful response
 to the LOCK method or is used as a request header with the
 UNLOCK method.

 The State-Token header containing a lock token owned by the
 request principal is used by the principal on arbitrary
 method to indicate that the principal is aware of the
 specified lock. If the State-Token header with the
 appropriate lock token is not included the request MUST be
 rejected, even though the requesting principal has
 authorization to make modifications specified by the lock
 type. This injunction does not apply to methods that are not
 affected by the principal s lock.

 For example, Program A, used by user A, takes out a write
 lock on a resource. Program A then makes a number of PUT
 requests on the locked resource, all the requests contain a
 State-Token header which includes the write lock state
 token. Program B, also run by User A, then proceeds to
 perform a PUT to the locked resource. However program B was
 not aware of the existence of the lock and so does not
 include the appropriate state-token header. The method is
 rejected even though principal A is authorized to perform
 the PUT. Program B can, if it so chooses, now perform lock
 discovery and obtain the lock token. Note that program A and
 B can perform GETs without using the state-token header
 because the ability to perform a GET is not affected by a
 write lock.

 Note that having a lock state token provides no special
 access rights. Anyone can find out anyone else s lock state
 token by performing lock discovery. Locks are to be enforced
 based upon whatever authentication mechanism is used by the
 server, not based on the secrecy of the token values.

 5.3 Write Lock
 A write lock prevents a principal without the lock from
 successfully executing a PUT, POST, DELETE, MKCOL,
 PROPPATCH, PATCH, ADDREF or DELREF on the locked resource.
 All other methods, GET in particular, function independent
 of the lock.

 While those without a write lock may not alter a property on

 a resource it is still possible for the values of live
 properties to change, even while locked, due to the
 requirements of their schemas. Only dead properties and live
 properties defined to respect locks are guaranteed to not
 change while locked.

 It is possible to assert a write lock on a null resource in
 order to lock the name. Please note, however, that locking a
 null resource effectively makes the resource non-null as the
 resource now has lock related properties defined on it.

 Write locking a container also prevents adding or removing
 members of the container. This means that attempts to
 PUT/POST a resource into the immediate name space of the
 write locked container MUST fail if the principal requesting
 the action does not have the write lock on the container. In
 order to keep the behavior of locking containers consistent
 all locks on containers MUST contain a Depth header equal to
 infinity, any other value is illegal.

 5.4 Lock Tokens

 5.4.1 Problem Description

 It is possible that once a lock has been granted it may be
 removed without the lock owner s knowledge. This can cause
 serialization problems if the lock owner executes methods
 thinking their lock is still in effect. Thus a mechanism is
 needed for a principal to predicate the successful execution
 of a message upon the continuing existence of a lock.

 5.4.2 Proposed Solution

 The proposed solution is to provide a lock token in the
 response of a lock request. The lock token is a type of
 state token and describes a particular lock. The same lock
 token must never be repeated on a particular resource. This
 prevents problems with long held outstanding lock tokens
 being confused with newer tokens. This uniqueness
 requirement is the same as for e-tags. This requirement also
 allows for tokens to be submitted across resources and
 servers without fear of confusion.

 5.4.3 Lock Token Definition

 The lock token is returned in the State-Token header in the
 response to a LOCK method. The lock token can also be
 discovered through lock discovery on a resource.

 Lock-Token-URL = StateToken: Type : Resources : State-

 Info
 Type = Type = �^DAV:/LOCK/DAVLOCK�^

 Resources = Res = 1*(�^ Caret-Encoded-URI �^)
 Caret-Encoded-URI = <This is a URI which has all �^ s %
 encoded.>
 State-Info = DAVLockScope : DAVLockType : ServerID ;
 DAVLockScope, DAVLockType defined in Lock-Info header
 ServerID = ServerID = *(uchar | reserved)

 The ServerID is a field for use by the server. Its most
 basic purpose is to put in a unique identifier to guarantee
 that a server will never confuse an old lock token with a
 newer one. However the server is free to use the field to
 record whatever information it deems fit. The field is
 opaque to clients.

 5.5 UNLOCK Method

 5.5.1 Problem Definition

 The UNLOCK method removes the lock identified by the lock
 token in the State-Token header from the Request-URI.

 5.5.2 Example

 UNLOCK /workspace/webdav/proposal.doc HTTP/1.1
 Host: webdav.sb.aol.com
 State-Token: StateToken:Type=�^DAV:/LOCK/DAVLOCK�^:Res=�^http:/
 /www.ics.uci.edu/workspace/webdav/proposal.doc�^:LockType=Wri
 te:LockScope=Exclusive:ServerID=12382349AdfFFF

 HTTP/1.1 200 OK

 In this example, the lock from example of Section 2.9 is
 removed from the resource at

http://webdav.sb.aol.com/workspace/webdav/proposal.doc

 5.6 Discovery Mechanisms

 5.6.1 Lock Type Discovery

 5.6.1.1 Problem Definition

http://webdav.sb.aol.com/workspace/webdav/proposal.doc

 Since server lock support is optional, a client trying to
 lock a resource on a server can either try the lock and hope
 for the best or can perform some form of discovery to
 determine what lock types the server actually supports, then
 formulate a supported request. This is known as lock type
 discovery. Lock type discovery is not the same as
 discovering what access control types are supported, as
 there may be access control types without corresponding lock
 types.

 5.6.1.2 SupportedLock Property

 Name: http://www.ietf.org/standards/dav/lock/supportedlock

 Purpose: To provide a listing of the lock types supported by
 the resource.

 Schema: http://www.ietf.org/standards/dav/

 Values: An XML document containing zero or more LockEntry
 XML elements.

 Description: The SupportedLock property of a resource

 returns a listing of the combinations of scope and access
 types which may be specified in a lock request on the
 resource. Note that the actual contents are themselves
 controlled by access controls so a server is not required to
 provide information the client is not authorized to see. If
 SupportedLock is available on * then it MUST define the
 set of locks allowed on all resources on that server.

 5.6.1.3 LOCKENTRY XML Element

 Name: http://www.ietf.org/standards/dav/lockentry

 Purpose: Defines a DAVLockType/LockScope pair which may be
 legally used with a LOCK on the specified resource.

 Schema: HYPERLINK http://www.ietf.org/standards/dav/

 Parent: A SupportedLock entry

 Values: LockType LockScope

http://www.ietf.org/standards/dav/lock/supportedlock
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/lockentry
http://www.ietf.org/standards/dav/

 5.6.1.4 LOCKTYPE XML Element

 Name: http://www.ietf.org/standards/dav/locktype

 Purpose: Lists a DAVLockType

 Schema: http://www.ietf.org/standards/dav/

 Parent: LOCKENTRY

 Values: DAVLockTypeValue

 5.6.1.5 LOCKSCOPE XML Element

 Name: http://www.ietf.org/standards/dav/lockscope

 Purpose: Lists a DAVLockScope

 Schema: http://www.ietf.org/standards/dav/

 Parent: LOCKENTRY

 Values: DAVLockScopeValue

 5.6.2 Active Lock Discovery

 5.6.2.1 Problem Definition

 If another principal locks a resource that a principal
 wishes to access, it is useful for the second principal to
 be able to find out who the first principal is.

 5.6.2.2 Solution Requirements

 The lock discovery mechanism should provide a list of who
 has the resource locked, what locks they have, and what
 their lock tokens are. The lock tokens are useful in shared
 lock situations where two principals in particular may want
 to guarantee that they do not overwrite each other. The lock
 tokens are also useful for administrative purposes so that
 an administrator can remove a lock by referring to its
 token.

 5.6.2.3 LOCKDISCOVERY Property

 Name: http://www.ietf.org/standards/dav/lockdiscovery

 Purpose: To discover what locks are active on a resource

http://www.ietf.org/standards/dav/locktype
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/lockscope
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/lockdiscovery

 Schema: http://www.ietf.org/standards/dav/

 Values= An XML document containing zero or more ActiveLock
 XML elements.

 Description: The LOCKDISCOVERY property returns a listing of
 who has a lock, what type of lock they have, the time out
 type and the time remaining on the time out, and the
 associated lock token. The server is free to withhold any or
 all of this information if the requesting principal does not
 have sufficient access rights to see the requested data.

 5.6.2.4 ACTIVELOCK XML Element

 Name: http://www.ietf.org/standards/dav/activelock

 Purpose: A multivalued XML element that describes a
 particular active lock on a resource

 Schema: http://www.ietf.org/standards/dav/

 Parent: A LOCKDISCOVERY entry

 Values= LOCKTYPE LOCKSCOPE OWNER TIMEOUT LOCKTOKEN

 5.6.2.5 OWNER XML Element

 Name: http://www.ietf.org/standards/dav/lock/owner

 Purpose: Returns owner information

 Schema: http://www.ietf.org/standards/dav/

 Parent: ACTIVELOCK

 Values= XML:REF | {any valid XML string�}

 5.6.2.6 TIMEOUT XML Element

 Name: http://www.ietf.org/standards/dav/timeout

 Purpose: Returns information about the timeout associated
 with the lock

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/activelock
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/lock/owner
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/timeout

 Schema: http://www.ietf.org/standards/dav/

 Parent: ACTIVELOCK

 Values= CLOCKTYPE TIMETYPE TIMEOUTVAL

 5.6.2.7 CLOCKTYPE XML Element

 Name: http://www.ietf.org/standards/dav/clocktype

 Purpose: Returns the clock type used with this lock

 Schema: http://www.ietf.org/standards/dav/

 Parent: TIMEOUT

 Values= ClockTypeValue

 5.6.2.8 TIMETYPE XML Element

 Name: http://www.ietf.org/standards/dav/clocktype

 Purpose: Returns the time type used with this lock

 Schema: http://www.ietf.org/standards/dav/

 Parent: TIMEOUT

 Values= TimeTypeValue

 5.6.2.9 TIMEOUTVAL XML Element

 Name: http://www.ietf.org/standards/dav/timeoutval

 Purpose: Returns the amount of time left on the lock

 Schema: http://www.ietf.org/standards/dav/

 Parent: TIMEOUT

 Values= DAVTimeOutVal

 5.6.2.10 LOCKTOKEN XML Element

 Name: http://www.ietf.org/standards/dav/statetoken

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/clocktype
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/clocktype
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/timeoutval
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/statetoken

 Purpose: Returns the lock token

 Schema: http://www.ietf.org/standards/dav/

 Parent: ACTIVELOCK

 Values= XML:REF

 Description: The REF contains a Lock-Token-URL.

 6 Version Control
 [TBD]

 7 Internationalization Support
 [TBD]

 8 Security Considerations
 [TBD]

 9 Acknowledgements
 Roy Fielding, Richard Taylor, Larry Masinter, Henry Sanders,
 Judith Slein, Dan Connolly, David Durand, Henrik Nielsen,
 Paul Leach. Kenji Ota, Kenji Takahashi. Jim Cunningham.
 Others, TBD.

 10 References
 [Berners-Lee, 1997] T. Berners-Lee, "Metadata Architecture."
 Unpublished white paper, January 1997.

http://www.w3.org/pub/WWW/DesignIssues/Metadata.html.

 [Bray, 1997] T. Bray, C. M. Sperberg-McQueen, Extensible
 Markup Language (XML): Part I. Syntax , WD-xml-lang.html,

http://www.w3.org/pub/WWW/TR/WD-xml-lang.html.

 [Connolly, 1997] D. Connolly, R. Khare, H.F. Nielsen, PEP -
 an Extension Mechanism for HTTP , Internet draft, work-in-
 progress. draft-ietf-http-pep-03.txt,

ftp://ds.internic.net/internet-drafts/draft-ietf-http-pep-
03.txt.

 [Lasher, Cohen, 1995] R. Lasher, D. Cohen, "A Format for
 Bibliographic Records," RFC 1807. Stanford, Myricom. June,
 1995.

http://www.ietf.org/standards/dav/
http://www.w3.org/pub/WWW/DesignIssues/Metadata.html
http://www.w3.org/pub/WWW/TR/WD-xml-lang.html
https://datatracker.ietf.org/doc/html/draft-ietf-http-pep-03.txt
ftp://ds.internic.net/internet-drafts/draft-ietf-http-pep-03.txt
ftp://ds.internic.net/internet-drafts/draft-ietf-http-pep-03.txt
https://datatracker.ietf.org/doc/html/rfc1807

 [Maloney, 1996] M. Maloney, "Hypertext Links in HTML."
 Internet draft (expired), work-in-progress, January, 1996.

 [MARC, 1994] Network Development and MARC Standards, Office,
 ed. 1994. "USMARC Format for Bibliographic Data", 1994.
 Washington, DC: Cataloging Distribution Service, Library of
 Congress.

 [Miller et.al., 1996] J. Miller, T. Krauskopf, P. Resnick,
 W. Treese, "PICS Label Distribution Label Syntax and
 Communication Protocols" Version 1.1, W3C Recommendation
 REC-PICS-labels-961031. http://www.w3.org/pub/WWW/TR/REC-

PICS-labels-961031.html.

 [WebDAV, 1997] WEBDAV Design Team. A Proposal for Web
 Metadata Operations. Unpublished manuscript.

http://www.ics.uci.edu/~ejw/authoring/proposals/metadata.htm
 l

 [Weibel et al., 1995] S. Weibel, J. Godby, E. Miller, R.
 Daniel, "OCLC/NCSA Metadata Workshop Report."

http://purl.oclc.org/metadata/dublin_core_report.

 [Yergeau, 1997] F. Yergeau, UTF-8, a transformation format
 of Unicode and ISO 10646 , Internet Draft, work-in-progress,

draft-yergeau-utf8-rev-00.txt,
http://www.internic.net/internet-drafts/draft-yergeau-utf8-
rev-00.txt.

 11 Authors' Addresses
 Yaron Y. Goland
 Microsoft Corporation
 One Microsoft Way
 Bldg. 27N/3445
 Redmond, WA 98052-6399
 Fax (206) 936 7329
 Email yarong@microsoft.com

 E. J. Whitehead, Jr.
 Dept. Of Information and Computer Science
 University of California, Irvine
 Irvine, CA 92697-3425
 Email: ejw@ics.uci.edu

http://www.w3.org/pub/WWW/TR/REC-PICS-labels-961031.html
http://www.w3.org/pub/WWW/TR/REC-PICS-labels-961031.html
http://www.ics.uci.edu/~ejw/authoring/proposals/metadata.htm
http://purl.oclc.org/metadata/dublin_core_report
https://datatracker.ietf.org/doc/html/draft-yergeau-utf8-rev-00.txt
http://www.internic.net/internet-drafts/draft-yergeau-utf8-rev-00.txt
http://www.internic.net/internet-drafts/draft-yergeau-utf8-rev-00.txt

 Asad Faizi
 Netscape
 685 East Middlefield Road
 Mountain View, CA 94043
 Email: asad@netscape.com

 Stephen R Carter
 Novell
 1555 N. Technology Way
 M/S ORM F111
 Orem, UT 84097-2399
 Fax (801) 228 5176
 Email srcarter@novell.com

 Del Jensen
 Novell
 1555 N. Technology Way
 M/S ORM F111
 Orem, UT 84097-2399
 Fax (801) 228 5176
 Email dcjensen@novell.com

 Appendix 1 - Content Type Application/XML
 This is a digest of the XML data specification available at

http://www.w3.org/TR/WD-xml-lang.html

 Syntax
 The application/XML content type contains an XML document.
 Its syntax is as defined below.

 XML = XMLStart *XMLEntity Close

 XMLStart = < XML >

 XMLEntity= Open *(XMLText | XMLEntity) Close

 Close = </> | < / Entity-Name Markup >

 Open = < Entity-Name *Attribute >

 Attribute = Entity-Name = Quoted-String

 XMLText = <An Octet Stream which uses XML encoding for <
 and > >

 Entity-Name = ([As-Tag :] Name) | (As-Tag :)

http://www.w3.org/TR/WD-xml-lang.html

 As-Tag = 1*Alpha

 Name = (alpha | _) *(alpha | digit | . | - | _ |
 other)

 Other = <Other characters must be encoded>

 XML element
 An XML element, as defined in the BNF, is an open tag with
 content followed by a close tag. In order to prevent
 confusion with the term entity as used in HTTP, the term XML
 element will be used.

 The first XML element of a XML document MUST be the <XML>
 XML element. This XML element tells the parser that it is
 dealing with an XML document. So long as this XML element is
 present the parser can be sure that it can parse the
 document, even if XML has been extended. If XML is ever
 altered in a manner that is not backwards compatible with
 this specification then the content-type and the outer most
 XML element MUST be changed.

 Entity-Name
 All XML element names must map to URIs. However due to
 historical restrictions on what characters may appear in an
 XML element name, URIs cannot be expressed in an XML element
 name. This issue is dealt with in more detail in section 10.

 Entity-Names without [AS] are relative URIs whose base is
 the enclosing Entity-Name. If the enclosing Entity-Name is
 <XML> then the Entity-Name MUST use an [AS].

 Close
 The close production marks the end of a XML element.

 XML Encoding
 In different contexts certain characters are reserved, for
 example / can not be used in an XML element name and
 > / < can not be used in a value. As such these values
 must be encoded as follows:

 Encoding = Decimal | Hex4

 Decimal = & Non-Zero *(0 | Non-Zero)

 Hex4 = &u- 4(Hex)

 Non-Zero = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
 9

 Hex = 0 | Non-Zero | A | B | C | D | E | F

 The numbers MUST map to the UTF8 character encodings. Please
 note that the & character must always be encoded.

 Markup Modifier
 The markup modifier, (- , after the end of an XML element)
 instructs the principal how to treat a XML element with an
 unknown name. If the modifier is used and the XML element is
 not recognized then the XML element name MUST be stripped
 and the XML element s contents promoted one level in the
 parse tree. If the modifier is not used and the XML element
 name is unknown then the XML element and its contents MUST
 be ignored.

 XML Syntax Shorthand
 The following template is recommended for efficiently
 providing a description of an XML element.

 Name: The name of the XML element

 Purpose: A one line description of the XML element s
 purpose.

 Schema: The schema, if any, that the XML element belongs to

 Parent: XML elements that this XML element may be a child
 of.

 Values: A description, usually a BNF, of the simple and
 compound values that the XML element supports.

 Description: Further information.

 Example: An example of the XML element s use.

 Appendix 2 - Parameter Syntax for Content-Type
 Application/XML
 HTTP 1.1 provides for a mechanism to include a parameter
 with a content type. In order to prevent namespace
 collisions the parameters for application/XML must use the
 following syntax:

 Parameter = #(< >URI< > [= (token | Quoted-String)])

 Schema Content-Type Parameter
 Parameter = < > http://www.w3.org/standards/xml/content-

type/schema < > = < > #URI < >

http://www.w3.org/standards/xml/content-type/schema
http://www.w3.org/standards/xml/content-type/schema

 The http://www.w3.org/standards/xml/content-type/schema/ URL
 is used as a parameter to an application/xml content type.
 The URL indicates that its value lists some subset of the
 schemas defined in NameSpace parameters within the enclosed
 document. The URI can also be used in requests to indicate
 schemas that should appear in the result.

 An example of the use of this parameter is to include it in
 an accept-type header on a request to indicate that the
 response should contain the specified namespace. Thus the
 client is able to inform the server of its support for a
 particular set of namespaces. The server is not required to
 return a result with the specified namespaces.

 Appendix 3 URI Path Encoding

 Problem Definition
 A mechanism is needed to refer to specific DAV properties in
 a manner that can handle simple, composite, and multivalued
 DAV properties.

 Solution Requirement
 The reference mechanism must use the standard URL syntax so
 it can be used with both currently existing and future URLs.
 For example, the syntax could be appended to an HTTP URL to
 specify a HTTP property on that URL.

 Path Component
 URIPath = / [segment]

 Segment = ((Abs-URI) | Rel-URI)[Index]*(; param)

 Index = [([-]*digit)]

 Abs-URI = < An absolute or relative URI which has been URI-
 Path encoded >

 Rel-URI = < A relative URI for which URI-Encoding(Rel-URI)
 == Rel-URI >

 URI-Path encoding consists of the following algorithm:

 URL encode all �! characters

 Map all / characters to �! characters

 Please note that all relative URIs are relative to the URI

http://www.w3.org/standards/xml/content-type/schema/

 in the path segment preceding them. Hence the URI in the
 first path segment MUST be an absolute URI.

 The purpose of the encoding is to allow URLs to be used as
 segments without having to use % encoding on all the /
 which produces a URL form which is extremely difficult for
 humans to deal with, and which changes the semantics of the
 URL.

 Appendix 4 - XML URI
 The XML scheme is to be registered with IANA as a reserved
 namespace that will be owned by the XML group through the
 W3C.

 The new URI is defined as:

 XML = XML : XML-Path

 Appendix 5 - XML elements

 Ref XML element
 Name: XML:Ref

 Purpose: A XML element that indicates that its contents are
 a URI.

 Schema: XML

 Parent: Any

 Value = URI

 Namespace

 Namespace XML element

 Name: XML:Namespace

 Purpose: To inform the parser that a particular schema is in
 use and to provide a shorthand name for referring to XML
 elements related to that schema.

 Schema: XML

 Parent: Any

 Value = (Ref [AS])

 Description: This XML element contains two XML elements, Ref
 and AS. The purpose of the XML element is to inform the
 parser that a schema, identified by the value of the Ref XML
 element, is in use and, when appropriate, to provide a
 shorthand name to refer XML elements derived from that
 schema using the AS XML element. The AS mechanism is needed
 for efficiency reasons and because a URI can not be fully
 specified in an XML open tag. The Namespace XML element s
 scope is all siblings and their children.

 AS XML element

 Name: XML:AS

 Purpose: To provide a short name for the URI of the schema
 provided in the Ref XML entity of a namespace XML entity.

 Schema: XML

 Parent: XML:Namespace

 Value = 1*Alpha

 Description: The AS XML entity is used to provide a
 shorthand reference for the URI in the Ref XML entity of a
 Namespace XML entity. The value contained in the AS XML
 entity is generated at the XML producer s discretion, the
 only requirement is that all AS values MUST be unique within
 the contents of the parent of the namespace element.

 All XML entity open tags contain a name of the form As-
 Tag:Name. The As-Tag is the value defined in an AS XML
 entity inside of a Namespace. To resolve the As-Tag:Name
 into a properly formatted URI replace As-Tag: with the URI
 provided in the Ref that the AS was defined with. Also note
 that AS value also applies to any URIs defined in a Ref
 inside of Namespace.

 For example,

 <XML>
 <XML:Namespace><Ref>http://blah;DAV/</><AS>B</></>
 <XML:Namespace><Ref>B:(B:)/</><AS>C</></>
 <C:Moo></>
 </>
 So B:(B:) translates to http://blah;DAV/(http:�!�!blah;DAV�!)/
 and C:Moo translates to
 http://blah;DAV/(http:�!�!blah;DAV�!)/Moo.

 Required XML element

 Name: XML:Required

 Purpose: To indicate that the read MUST understand the
 associated Namespace in order to successfully process the
 XML document.

 Schema: XML

 Parent: XML:Namespace

 Value: None

 The XML URI and Namespace

 In order to prevent a logical loop the XML namespace is said
 to be declared, with the AS value of XML as a consequence
 of the <XML> enclosing property.

