
 WEBDAV Working Group Y. Y. Goland, Microsoft
 INTERNET-DRAFT E. J. Whitehead, Jr., U.C. Irvine
 <draft-ietf-webdav-protocol-04> A. Faizi, Netscape
 S. R Carter, Novell
 D. Jensen, Novell
 Expires April 20, 1998 October 12, 1997

Extensions for Distributed Authoring and Versioning
on the

World Wide Web -- WEBDAV

 Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or made obsolete by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress".

 To learn the current status of any Internet-Draft, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net
 (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East
 Coast), or ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments
 to the Distributed Authoring and Versioning (WEBDAV) working
 group at <w3c-dist-auth@w3.org>, which may be joined by sending a
 message with subject "subscribe" to <w3c-dist-auth-
 request@w3.org>.

 Discussions of the WEBDAV working group are archived at
 <URL:http://www.w3.org/pub/WWW/Archives/Public/w3c-dist-auth>.

 Abstract

 This Document specifies a set of methods and content-types
 ancillary to HTTP/1.1 for the management of resource properties,
 simple name space manipulation, simple resource locking
 (collision avoidance) and resource version control.

 Table of Contents
 Abstract

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-04

1 Terminology
2 Data Model and Methods for DAV Properties
 2.1 Introduction

 2.1.1 The DAV Property
 2.1.2 Existing Metadata Proposals
 2.1.3 Properties and HTTP Headers
 2.2 A Property Model for HTTP Resources
 2.2.1 Overview
 2.2.2 Property Namespace
 2.3 Schemas
 2.3.1 PropSchema XML Element
 2.3.2 DTD XML Element
 2.3.3 DefinedProps XML Element

 2.3.4 PropEntries XML Element
 2.3.5 Live XML Element
 2.4 DAV Schema
 2.4.1 DAV Property
 2.4.2 Level XML Element
 2.4.3 Prop XML element
 2.4.4 PropLoc XML Attribute
 2.4.5 Example
 2.5 Property Identifiers
 2.5.1 Problem Definition
 2.6 Link XML Element
 2.6.1 Problem Description
 2.6.2 Solution Requirements
 2.6.3 Link XML Element
 2.6.4 Src XML Element
 2.6.5 Dst XML Element
 2.6.6 Example
 2.7 Multi-Status Response
 2.7.1 Problem Definition
 2.7.2 Solution Requirements
 2.7.3 Multi-Status Response
 2.8 Properties and Methods
 2.8.1 DELETE
 2.8.2 GET
 2.8.3 PROPPATCH
 2.8.4 PUT
 2.8.5 PROPFIND

3 A Proposal for Collections of Web Resources and Name Space
 Operations

 3.1 Observations on the HTTP Object Model
 3.1.1 Collection Resources
 3.1.2 Creation and Retrieval of Collection

 Resources
 3.1.3 Source Resources and Output Resources
 3.2 MKCOL Method
 3.2.1 Problem Description
 3.2.2 Solution Requirements
 3.2.3 Request
 3.2.4 Response
 3.2.5 Example
 3.3 Standard DAV Properties
 3.3.1 IsCollection Property
 3.3.2 DisplayName Property
 3.3.3 CreationDate Property
 3.3.4 GETentity Property
 3.3.5 INDEXentity Property
 3.3.6 Content-Type XML Element
 3.3.7 Content-Length XML Element
 3.3.8 Content-Language XML Element
 3.3.9 Last-Modified XML Element
 3.3.10 Etag XML Element
 3.4 INDEX Method
 3.4.1 Problem Description
 3.4.2 Solution Requirements
 3.4.3 The Request
 3.4.4 The Response
 3.4.5 ResInfo XML Element
 3.4.6 Members XML Element
 3.4.7 Href XML Element
 3.4.8 Example
 3.5 Behavior of RFC 2068 Methods on Collections
 3.5.1 GET, HEAD for Collections
 3.5.2 POST for Collections
 3.5.3 PUT for Collections
 3.5.4 DELETE for Collections

 3.5.5 DELETE Method for Non-Collection
 Resources
 3.6 COPY Method
 3.6.1 Problem Description
 3.6.2 Solution Requirements
 3.6.3 The Request
 3.6.4 The Response
 3.6.5 Examples
 3.7 MOVE Method
 3.7.1 Problem Description
 3.7.2 Solution Requirements
 3.7.3 The Request

https://datatracker.ietf.org/doc/html/rfc2068

 3.7.4 The Response
 3.7.5 Examples
 3.8 ADDREF Method
 3.8.1 Problem Definition
 3.8.2 Solution Requirements
 3.8.3 The Request
 3.8.4 Example
 3.9 DELREF Method
 3.9.1 Problem Definition
 3.9.2 Solution Requirements
 3.9.3 The Request
 3.9.4 Example
 3.10 PATCH Method
 3.10.1 Problem Definition
 3.10.2 Solution Requirements
 3.10.3 The Request
 3.10.4 text/xml elements for PATCH
 3.10.5 The Response
 3.10.6 Examples
 3.11 Headers
 3.11.1 Destination Header
 3.11.2 Enforce-Live-Properties Header
 3.11.3 Overwrite Header
 3.11.4 Destroy Header
 3.11.5 Collection-Member Header
 3.12 Links
 3.12.1 Source Link Property Type

4 State Tokens
 4.1 Overview

 4.1.1 Problem Description
 4.1.2 Solution Requirements
 4.2 State Token Syntax
 4.3 State Token Conditional Headers
 4.3.1 If-State-Match
 4.3.2 If-None-State-Match
 4.4 State Token Header
 4.5 E-Tag

5 Locking
 5.1 Locking: Introduction

 5.1.1 Exclusive Vs. Shared Locks
 5.1.2 Required Support
 5.2 LOCK Method
 5.2.1 Operation
 5.2.2 The Effect of Locks on Properties and
 Containers
 5.2.3 Locking Replicated Resources
 5.2.4 Locking Multiple Resources
 5.2.5 Interaction with other Methods
 5.2.6 Lock Compatibility Table
 5.2.7 Status Codes
 5.2.8 Lock-Info Request Header

 5.2.9 Owner Request Header
 5.2.10 Time-Out Header
 5.2.11 Lock Response

 5.2.12 Example - Simple Lock Request
 5.2.13 Example - Multi-Resource Lock Request
 5.3 Write Lock
 5.3.1 Methods Restricted by Write Locks
 5.3.2 Write Locks and Properties
 5.3.3 Write Locks and Null Resources
 5.3.4 Write Locks and Collections
 5.3.5 Write Locks and COPY/MOVE
 5.3.6 Re-issuing Write Locks
 5.3.7 Write Locks and The State-Token Header
 5.4 Lock Tokens
 5.4.1 Problem Description
 5.4.2 Lock Token Introduction
 5.4.3 Generic Lock Tokens
 5.4.4 OpaqueLockToken Lock Token
 5.5 UNLOCK Method
 5.5.1 Problem Definition
 5.5.2 Example
 5.6 Discovery Mechanisms
 5.6.1 Lock Capability Discovery
 5.6.2 Active Lock Discovery

6 Version Control
7 Internationalization Support
8 Security Considerations
9 Copyright
10 Acknowledgements
11 References
12 Authors' Addresses

1 Terminology

 Collection - A resource that contains member resources.

 Member Resource - a resource referred to by a collection. There
 are two types of member resources: external and internal.

 Internal Member Resource - the name given to a member resource of
 a collection whose URI is relative to the URI of the collection.

 External Member Resource - a member resource with an absolute URI
 that is not relative to its parent s URI.

 Properties - A set of name/value pairs that contain descriptive
 information about a resource.

 Live Properties - Properties whose semantics and syntax are
 enforced by the server. For example, a live "read-only" property
 that is enforced by the server would disallow PUTs to the
 associated resource.

 Dead properties - Properties whose semantics and syntax are not
 enforced by the server. A dead "read-only" property would not be
 enforced by the server and thus would not be used by the server
 as a reason to disallow a PUT on the associated resource.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

RFC 2119 [Bradner, 1997].

2 Data Model and Methods for DAV Properties

2.1 Introduction

2.1.1 The DAV Property

 Properties are pieces of data that describe the state of a
 resource. Properties are data about data. The term property is
 used within this specification to disambiguate the concept from
 the overloaded terms "metadata" and "attribute".

 Properties are used within distributed authoring environments to
 provide for efficient discovery and management of resources. For
 example, a 'subject' property might allow for the indexing of all
 resources by their subject, and an 'author' property might allow
 for the discovery of what authors have written which documents.

2.1.2 Existing Metadata Proposals

 Properties have a long played an essential role in the
 maintenance of large document repositories, and many current
 proposals contain some notion of a property. These include PICS
 [Miller et al., 1996], PICS-NG, the Rel/Rev draft [Maloney,
 1996], Web Collections, XML [Bray, Sperberg-McQueen, 1997],
 several proposals on representing relationships within HTML,

https://datatracker.ietf.org/doc/html/rfc2119

 digital signature manifests (DCMF), and a position paper on Web
 metadata architecture [Berners-Lee, 1997].

 Some proposals come from a digital library perspective. These
 include the Dublin Core [Weibel et al., 1995] metadata set and
 the Warwick Framework [Lagoze, 1996], a container architecture
 for different metadata schemas. The literature includes many
 examples of metadata, including MARC [MARC, 1994], a
 bibliographic metadata format, RFC 1807 [Lasher, Cohen, 1995], a
 technical report bibliographic format employed by the Dienst
 system, and the proceedings from the first IEEE Metadata
 conference describe many community-specific metadata sets.

 Participants of the 1996 Metadata II Workshop in Warwick, UK
 [Lagoze, 1996], noted that, "new metadata sets will develop as
 the networked infrastructure matures" and "different communities
 will propose, design, and be responsible for different types of
 metadata." These observations can be corroborated by noting that
 many community-specific sets of metadata already exist, and there
 is significant motivation for the development of new forms of
 metadata as many communities increasingly make their data
 available in digital form, requiring a metadata format to assist
 data location and cataloging.

2.1.3 Properties and HTTP Headers

 Properties already exist, in a limited sense, within HTTP through
 the use of message headers. However, in distributed authoring
 environments a relatively large number of properties are needed
 to describe the state of a resource, and setting/returning them
 all through HTTP headers is inefficient. Thus a mechanism is
 needed which allows a principal to identify a set of properties
 in which the principal is interested and to then set or retrieve
 just those properties.

2.2 A Property Model for HTTP Resources

2.2.1 Overview

 The DAV property model is based on name/value doubles. The name
 of a property identifies the property's syntax and semantics, and
 provides an address with which to refer to a property. The name
 and value of a property is expressed as a well-formed XML
 element, where the name of the property is the name of the XML
 element, and the value of the property MUST be either blank, or a

https://datatracker.ietf.org/doc/html/rfc1807

 well-formed XML element value.

2.2.2 Property Namespace

2.2.2.1 Problem Definition

 The requirement is to be able to associate a value with a
 property name on a resource. It must be possible to associate a
 URL with the property name.

2.2.2.2 Solution Requirement

 Ideally a property namespace should work well with extant
 property implementations as well as database systems. The DAV
 property namespace has been specified with the following two
 facts in mind:
 · Namespaces associated with flat file systems are ubiquitous.
 · The majority of databases use a fixed schema mechanism.
 The last point makes efficient implementation of hierarchical
 properties difficult. Specifically, each property has a random
 set of children; the best a relational database can do is provide
 a table with name and value, where the value is a series of
 indexes into other tables and each index represents a specific
 value. However most RDBS do not provide for table pointers, only
 index values. Such a system would have to be jury-rigged to
 handle table pointers. In addition, indexing systems are
 optimized for a small set of relatively large tables;
 hierarchical property systems tend toward many properties, each
 with different numbers and types of children, thus potentially
 requiring a table for each child.

 It would seem best to implement a flat property namespace,
 inducing a natural isomorphism between DAV and most native file
 systems. Adopting such a model will not restrict RDBS from taking
 full advantage of their search facilities.

 However, it seems that future trends might be toward hierarchical
 properties. Therefore, DAV requirements [Slein et al.] stipulate
 that the design of the flat property system MUST be such that it
 will be possible to add true hierarchical properties later
 without breaking downlevel clients. Specifically, a flat client
 MUST be able to speak to a hierarchical server and a hierarchical
 client MUST be able to speak to a flat server. Worst case either
 way MUST be that the request fails.

2.2.2.3 Property Names

 A property name identifies both the syntax and semantics of the

 property's value. It is critical that property names do not
 collide, e.g., two principals defining the same property name
 with two different meanings.

 The URI framework provides a mechanism to prevent namespace

 collision and for varying degrees of administrative control.
 Rather than reinvent these desirable features, DAV properties
 make use of them by requiring that all DAV property names MUST be
 URIs. Since a property is also an XML element, the name of the
 XML element is a URI.

 The property namespace is flat, that is, it is not possible to
 string together a series of property names in order to refer to a
 hierarchy of properties. Thus it is possible to refer to a
 property B but not a property A/B, where A is also a property
 defined on the resource.

 Finally, it is not possible to define the same property twice as
 this would cause a collision in the resource's property
 namespace.

2.3 Schemas

 A schema is a group of property names and XML elements.

 Schema discovery is used to determine if a system supports a
 group of properties or XML elements. A property does not
 necessarily contain sufficient information to identify any
 schema(s) to which it may belong.

 As with property names, schemas MUST use URIs as their names.

 A resource declares its support for a schema by defining a
 property whose name is the same as the schema's. The property
 SHOULD contain the PropSchema XML element.

2.3.1 PropSchema XML Element

 Name: http://www.ietf.org/standards/dav/PropSchema
 Purpose: To provide information about properties
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Values= [DTD] [DefinedProps]
 Description:This property contains the definition of the schema.

http://www.ietf.org/standards/dav/PropSchema
http://www.ietf.org/standards/dav/

 This definition consists of two parts. A DTD element that
 contains a DTD that declares all XML elements and DefinedProps
 that defines any properties associated with the schema. As with
 all XML it is possible to add extra XML elements. Therefore
 schemas may define extra XML elements which are to be included
 with their values.

2.3.2 DTD XML Element

 Name: http://www.ietf.org/standards/dav/DTD
 Purpose: To contain the DTD for XML elements associated with the
 schema.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Values: XML Declaration statements

2.3.3 DefinedProps XML Element

 Name: http://www.ietf.org/standards/dav/DefinedProps
 Purpose: To contain a list of properties defined by the schema.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Values= 1*PropEntries

2.3.4 PropEntries XML Element

 Name: http://www.ietf.org/standards/dav/PropEntries
 Purpose: To contain the name of a defined property, the DTD of
 its value, and its live/dead status.
 Schema: http://www.ietf.org/standards/dav/
 Parent: DefinedProps
 Values= Prop [DTD] [Live]
 Description:Prop contains the name of the property. The DTD
 contains the DTD of the property's value. Live, if defined,
 indicates that the property has semantics and syntax that are
 enforced by the server.

2.3.5 Live XML Element

 Name: http://www.ietf.org/standards/dav/Live
 Purpose: If present this indicates the server MUST enforce the
 syntax and semantics of the property.
 Schema: http://www.ietf.org/standards/dav/

http://www.ietf.org/standards/dav/DTD
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/DefinedProps
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/PropEntries
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/Live
http://www.ietf.org/standards/dav/

 Parent: PropEntries

2.4 DAV Schema

 The DAV Schema is specified as
http://www.ietf.org/standards/dav/. This schema is used to

 indicate support for
 · properties that may be defined on a resource and
 · XML elements that may be returned in responses.

2.4.1 DAV Property

 Name: http://www.ietf.org/standards/dav
 Purpose: Defines support for the DAV schema and protocol.
 Schema: http://www.ietf.org/standards/dav/
 Values= PropSchema Level
 Description:This property indicates that the resource supports
 the DAV schema and protocol to the level indicated. THE VALUE IN
 PROPSCHEMA IS TBD, WE NEED TO PROVIDE IT IN AN APPENDIX.

2.4.2 Level XML Element

 Name: http://www.ietf.org/standards/dav/level
 Purpose: To indicate the level of DAV compliance the resource
 meets.
 Schema: http://www.ietf.org/standards/dav/
 Parent: DAV
 Values= "1" | "2" | "3"
 Description:A value of 1 for level indicates that the resource
 supports the property and namespace sections of the DAV
 specification. Level 2 indicates that the resource supports level

1 and the lock section of the specification, with a minimum
 locking capability of the write lock. Level 3 indicates support
 for levels 1 and 2 as well as support for the versioning section
 of the DAV specification.

2.4.3 Prop XML element

 Name: http://www.ietf.org/standards/dav/prop

 Purpose: Contains properties related to a resource.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/level
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/prop
http://www.ietf.org/standards/dav/

 Values: XML Elements
 Description:The Prop XML element is a generic container for
 properties defined on resources. All elements inside Prop MUST
 define properties related to the resource. No other elements may
 be used inside of a Prop element.

2.4.4 PropLoc XML Attribute

 Name: http://www.ietf.org/standards/dav/PropLoc
 Purpose: To specify the location of the associated property.
 Schema: http://www.ietf.org/standards/dav/
 Values= URL
 Description:This attribute is used with elements inside of Props
 contained in responses to specify the URL of the property on the
 associated resource. The PropLoc attribute MUST NOT be used in
 requests.

2.4.5 Example

 <?XML:Namespace href="http://www.ietf.org/standards/dav/"
 AS="D"/>
 <?XML:Namespace href="AIIM:Dublin:" AS="A"/>
 <D:Prop>
 <A:Author
 D:PropLoc="http://www.foo.com/resource/props/Author">
 Larry Masinter
 </A:Author>
 </D:Prop>

 The previous specifies that the property author exists on some
 unspecified resource and that the property can be directly
 referenced at http://www.foo.com/resource/props/Author. The
 resource upon which the property is defined must be determined
 from context.

2.5 Property Identifiers

2.5.1 Problem Definition

 DAV properties are resources and thus may have a URI where the
 value of an instance of the property may be retrieved. This URI
 is separate from the URI name of the property, which identifies
 the syntax and semantics of the property, but which does not give
 information on how to access the value of an instance of the
 property.

 A server is free to assign whatever URI it chooses to identify an
 instance of a property defined on a resource. In fact, a server

http://www.ietf.org/standards/dav/PropLoc
http://www.ietf.org/standards/dav/
http://www.foo.com/resource/props/Author

 is free not to reveal the URI of an instance of a particular
 resource and instead require that the client access the property
 through PROPFIND and PROPPATCH. However, many servers will want
 to allow clients to directly manipulate properties. On these
 servers, a client can discover the URI of an instance of a
 property by performing a PROPFIND and examining the PropLoc
 attribute, if returned, of each property.

2.6 Link XML Element

2.6.1 Problem Description

 A mechanism is needed to associate resources with other
 resources. These associations, known as links, consist of three
 values, a type describing the nature of the association, the
 source of the link, and the destination of the link. In the case
 of annotation, neither the source nor the destination of a link
 need be the resource upon which the link is recorded.

2.6.2 Solution Requirements

 The association mechanism MUST make use of the DAV property
 mechanism in order to make the existence of the associations
 searchable.

2.6.3 Link XML Element

 Name: http://www.ietf.org/standards/dav/link
 Purpose: To identify a property as a link and to contain the
 source and destination of that link.
 Schema: http://www.ietf.org/standards/dav/
 Values= 1*Src 1*Dst
 Description:Link is used to provide the sources and destinations
 of a link. The type of the property containing the Link XML
 element provides the type of the link. Link is a multi-valued
 element, so multiple Links may be used together to indicate
 multiple links with the same type.

2.6.4 Src XML Element

 Name: http://www.ietf.org/standards/dav/src
 Purpose: To indicate the source of a link.
 Schema: http://www.ietf.org/standards/dav/

http://www.ietf.org/standards/dav/link
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/src
http://www.ietf.org/standards/dav/

 Parent: http://www.ietf.org/standards/dav/link
 Values= URI

2.6.5 Dst XML Element

 Name: http://www.ietf.org/standards/dav/Dst
 Purpose: To indicate the destination of a link
 Schema: http://www.ietf.org/standards/dav/
 Parent: http://www.ietf.org/standards/dav/link
 Values= URI

2.6.6 Example

 <?XML:Namespace
 href = "http://www.ietf.org/standards/dav/" AS = "D"/>
 <?XML:Namespace
 href = "http://www.foocorp.com/Project/" AS = "F"/>
 <D:Prop>
 <Source>
 <Link>
 <F:ProjFiles>Source</F:ProjFiles>
 <src>http://foo.bar/program</src>
 <dst>http://foo.bar/src/main.c</dst>
 </Link>
 <Link>
 <F:ProjFiles>Library</F:ProjFiles>

 <src>http://foo.bar/program</src>
 <dst>http://foo.bar/src/main.lib</dst>
 </Link>
 <Link>
 <F:ProjFiles>Makefile</F:ProjFiles>
 <src>http://foo.bar/program</src>
 <dst>http://foo.bar/src/makefile</dst>
 <Link>
 </Source>
 </D:Prop>

 In this example the resource http://foo.bar/program has a source
 property defined which contains three links. Each link contains
 three elements, two of which, src and dst, are part of the DAV
 schema defined in this document, and one which is defined by the
 schema http://www.foocorp.com/project/ (Source, Library, and
 Makefile). A client which only implements the elements in the DAV
 spec will not understand the foocorp elements and will ignore

http://www.ietf.org/standards/dav/link
http://www.ietf.org/standards/dav/Dst
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/link
http://foo.bar/program
http://www.foocorp.com/project/

 them, thus seeing the expected source and destination links. An
 enhanced client may know about the foocorp elements and be able
 to present the user with additional information about the links.

2.7 Multi-Status Response

2.7.1 Problem Definition

 Some methods effect more than one resource. The effect of the
 method on each of the scoped resources may be different, as such
 a return format that can specify the effect of the method on each
 resource is needed.

2.7.2 Solution Requirements

 The solution must:
 - communicate the status code and reason
 - give the URI of the resource on which the method was invoked
 - be consistent with other return body formats

2.7.3 Multi-Status Response

 The default multi-status response body is an text/xml HTTP entity
 that contains a single XML element called multiresponse, which
 contains a set of XML elements called response, one for each 200,
 300, 400, and 500 series status code generated during the method
 invocation. 100 series status codes MUST NOT be recorded in a
 response XML element.

2.7.3.1 MultiResponse

 Name: http://www.ietf.org/standards/dav/multiresponse
 Purpose: Contains multiple response messages.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Value: 1*Response [ResponseDescription]
 Description:The ResponseDescription at the top level is used to
 provide a general message describing the over arching nature of
 the response. If this value is available an application MAY use
 it instead of presenting the individual response descriptions
 contain within the responses.

2.7.3.2 Response

http://www.ietf.org/standards/dav/multiresponse
http://www.ietf.org/standards/dav/

 Name: http://www.ietf.org/standards/dav/response
 Purpose: Holds a single response
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Value: (Prop | HREF) Status [ResponseDescription]
 Description: Prop MUST contain one or more empty XML elements
 representing the name of properties. Multiple properties may be
 included if the same response applies to them all. If HREF is
 used then the response refers to a problem with the referenced
 resource, not a property.

2.7.3.3 Status

 Name: http://www.ietf.org/standards/dav/status
 Purpose: Holds a single HTTP status-line
 Schema: http://www.ietf.org/standards/dav/
 Parent: Response
 Value: status-line ;status-line defined in [Fielding et al.,
 1997]

2.7.3.4 ResponseDescription

 Name:
http://www.ietf.org/standards/dav/ResponseDescription

 Purpose: Contains a message that can be displayed to the user
 explaining the nature of the response.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Multiresponse and/or Response
 Value: Any
 Description: This XML element provides information suitable to
 be presented to a user.

2.8 Properties and Methods

2.8.1 DELETE

 As properties are resources, the deletion of a property causes
 the same result as the deletion of any resource. It is worth
 pointing out that the deletion of a property effects both direct
 manipulation, that is by the property's URL, as well as indirect
 discovery and manipulation, that is PROPPATCH and PROPFIND.

2.8.2 GET

 A GET with a Request-URI that identifies a property returns the
 name and value of that property. Accept types may be used to
 specify the format of the return value, but all DAV compliant

http://www.ietf.org/standards/dav/response
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/status
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/ResponseDescription
http://www.ietf.org/standards/dav/

 servers MUST at minimum support a return type of text/xml. If
 text/xml is used as the response format then it MUST return the
 name and value of the property using the Prop XML element.

2.8.2.1 Example

 The following example assumes that the property's URL, originally
 generated by the server, was discovered by examining the proploc
 XML attribute returned on a result from a FINDPROP.

 GET /bar.html;prop=z39.50_authors HTTP/1.1
 Host: foo.com

 HTTP/1.1 200 OK
 Content-Type: text/xml
 Content-Length: xxxx
 E-tag: "1234"
 Last-Modified: xxxx

 <?XML:Namespace
 href = "http://www.ietf.org/standards/dav/" AS = "D"/>
 <?XML:Namespace
 href = "http://www.w3.com/standards/z39.50/"AS = "Z"/>
 <D:prop>
 <Z:Authors>
 <Z:Author>Jane Doe</Z:Author>
 <Z:Author>Joe Doe</Z:Author>
 <Z:Author>Lots o'Doe</Z:Author>
 </Z:Authors>
 </D:prop>

2.8.3 PROPPATCH

 The PROPPATCH method processes instructions specified in the
 request body to create and/or remove properties defined on the
 resource identified by Request-URI.

 All DAV compliant servers MUST process instructions which are
 specified using the PropertyUpdate, Create, and Remove XML
 elements of the DAV schema. The request message body MUST
 contain at least one PropertyUpdate XML element. Instruction
 processing MUST occur in the order instructions are received
 (i.e., from top to bottom), and MUST be performed atomically.

2.8.3.1 PropertyUpdate XML element

 Name: http://www.ietf.org/standards/dav/PropertyUpdate
 Purpose: To contain a request to alter the properties on a
 resource.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Values= *(Create | Remove)
 Description:This XML element is a container for the information
 required to modify the properties on the resource. This XML
 element is multi-valued.

2.8.3.2 Create XML element

 Name: http://www.ietf.org/standards/dav/create
 Purpose: To create the DAV properties specified inside the
 Create XML element.
 Schema: http://www.ietf.org/standards/dav/
 Parent: http://www.ietf.org/standards/dav/PropertyUpdate
 Values= Prop
 Description:This XML element MUST contain only a Prop XML
 element. The elements contained by Prop specify the name and
 value of properties that are created on Request-URI. If a
 property already exists then its value is replaced. The Prop XML
 element MUST NOT contain a PropLoc XML attribute.

2.8.3.3 Remove XML element

 Name: http://www.ietf.org/standards/dav/remove
 Purpose: To remove the DAV properties specified inside the
 Remove XML element.
 Schema: http://www.ietf.org/standards/dav/
 Parent: http://www.ietf.org/standards/dav/PropertyUpdate
 Values= Prop
 Description:Remove specifies that the properties specified in
 Prop should be removed. Specifying the removal of a property that
 does not exist is not an error. All the elements in Prop MUST be
 empty, as only the names of properties to be removed are
 required.

2.8.3.4 Response

 The response MUST have a response body that contains a

http://www.ietf.org/standards/dav/PropertyUpdate
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/create
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/PropertyUpdate
http://www.ietf.org/standards/dav/remove
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/PropertyUpdate

 multiresponse identifying the results for each property.

2.8.3.5 Response Codes

200 OK - The command succeeded. As there can be a mixture of
 Create and Removes in a body, a 201 Create seems inappropriate.

403 Forbidden - The client, for reasons the server chooses not to
 specify, can not alter one of the properties.

405 Conflict - The client has provided a value whose semantics
 are not appropriate for the property. This includes trying to set
 read only properties.

413 Request Entity Too Long - If a particular property is too
 long to be recorded then a composite XML error will be returned
 indicating the offending property.

417 Insufficient Space on Resource - The resource does not have
 sufficient space to record the state of the resource after the
 execution of this method.

418 Atomicity Failure - The command was not executed because of
 an atomicity failure elsewhere the caused the entire command to
 be aborted.

2.8.3.6 Example

 PROPPATCH /bar.html HTTP/1.1
 Host: www.foo.com
 Content-Type: text/xml
 Content-Length: xxxx

 <?XML:Namespace
 href = "http://www.ietf.org/standards/dav/" AS = "D"/>
 <?XML:Namespace
 href = "http://www.w3.com/standards/z39.50/" AS = "Z"/>
 <D:PropertyUpdate>
 <Create>
 <prop>
 <Z:authors>
 <Z:Author>Jim Whitehead</Z:Author>
 <Z:Author>Roy Fielding</Z:Author>
 </Z:authors>
 </Prop>
 </Create>
 <Remove>
 <prop><Z:Copyright-Owner/></prop>
 </Remove>
 </D:PropertyUpdate>

 HTTP/1.1 405 Conflict
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace
 href="http://www.ietf.org/standards/dav/" AS = "D"/>
 <?XML:Namespace
 href="http://www.w3.com/standards/z39.50/" AS = "Z"/>
 <D:MultiResponse>
 <ResponseDescription> Copyright Owner can not be deleted or
 altered.</ResponseDescription>
 <Response>
 <Prop><Z:authors/></Prop>
 <Status>HTTP/1.1 418 Atomicity Failure</Status>
 </Response>
 <Response>
 <Prop><Z:Copyright-Owner/></Prop>
 <Status>HTTP/1.1 405 Conflict</Status>
 </Response>
 </D:MultiResponse>

2.8.4 PUT

 A PUT is specified in order to control what is returned by a GET.
 However a GET on a property always returns a predefined property
 containment format. Therefore PUT can not be used if the Request-
 URI refers to a property.

2.8.5 PROPFIND

 The PROPFIND method retrieves properties defined on Request-URI.
 The request message body is an XML document that MUST contain
 only one PropFind XML element, which specifies the type of
 property find action to be performed. The XML element contained
 by PropFind specifies the type of action to be performed:
 retrieve all property names and values (AllProp), retrieve only
 specified property names and values (Prop), or retrieve only a
 list of all property names (Propname). When a Prop XML element
 is present, it specifies a list of the names of properties whose
 name and value are to be returned. The Prop element, when used
 within a FINDPROP request body MUST be empty.

 The response is a text/xml message body that contains a
 MultiResponse XML element which describes the results of the
 attempts to retrieve the various properties. If a property was
 successfully retrieved then its value MUST be returned in the
 prop XML element. In the case of Allprop and Findprop, if a
 principal does not have the right to know if a particular

 property exists, an error MUST NOT be returned. The results of
 this method SHOULD NOT be cached.

2.8.5.1 Propfind XML element

 Name: http://www.ietf.org/standards/dav/Propfind
 Purpose: To specify the set of matching properties
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Values= (Prop | Allprop | Propname)
 Description: Propfind is a container element for the exact
 specification of a PROPFIND request.

2.8.5.2 Allprop

 Name: http://www.ietf.org/standards/dav/Allprop
 Purpose: To specify that all properties are to be returned
 Schema: http://www.ietf.org/standards/dav/
 Parent: Propfind
 Description: Its presence in a PROPFIND request specifies the
 name and value of all properties defined on the resource MUST be
 returned.

2.8.5.3 Propname

 Name: http://www.ietf.org/standards/dav/Propname
 Purpose: To specify that the names of all properties defined on
 the resource are to be returned.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Propfind
 Description: Its presence in a PROPFIND request specifies the
 name of all properties defined on the resource MUST be returned.

2.8.5.4 PropFindResult XML element

 Name: http://www.ietf.org/standards/dav/PropFindResult
 Purpose: To contain the results of a SEARCH request
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Values: Prop

2.8.5.5 Example 1 - Prop

http://www.ietf.org/standards/dav/Propfind
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/Allprop
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/Propname
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/PropFindResult
http://www.ietf.org/standards/dav/

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Content-Length: xxxx
 Content-Type: text/xml

 <?XML:Namespace href =
 "http://www.ietf.org/standards/dav/" AS = "G"/>
 <?XML:Namespace href =
 "http://www.foo.bar/boxschema/" AS = "B"/>
 <G:PROPFIND>
 <prop>
 <B:bigbox>
 <B:author>
 <B:DingALing>
 <B:Random>
 </prop>
 </G:PROPFIND>

 HTTP/1.1 207 Multi-Response
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace
 href ="http://www.ietf.org/standards/dav/" AS = "S">
 <?XML:Namespace href = "http://www.foo.bar/boxschema" AS = R">
 <D:MultiResponse>
 <ResponseDescription> There has been an access violation
 error. </ResponseDescription>
 <Response>
 <Prop>
 <R:bigbox D:Proploc="http://prop.com/BoxType">

 <BoxType>Box type A</BoxType>
 </R:bigbox>
 <R:author D:Proploc="http://prop.com/Author">
 <Name>J.J. Dingleheimerschmidt</Name>
 </R:author>
 </Prop>
 <Status>HTTP/1.1 200 Success</Status>
 </Response>
 <Response>
 <Prop><R:DingALing/><R:Random/></>
 <Status>HTTP/1.1 403 Forbidden</Status>
 <ResponseDescription> The user does not have access to
 the DingALink property. </ResponseDescription>
 </Response>

 </D:MultiResponse>

 The result will return all properties on the container. In this
 case only two properties were found. The principal did not have
 sufficient access rights to see the third and fourth properties
 so an error was returned.

2.8.5.6 Example 2 - Allprop

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Content-Length: xxxx
 Content-Type: text/xml

 <?XML:Namespace href =
 "http://www.ietf.org/standards/dav/" AS = "G"/>
 <G:PROPFIND>
 <Allprop/>
 </G:PROPFIND>

 HTTP/1.1 200 Success
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace href =
 "http://www.ietf.org/standards/dav/" As = "S">
 <?XML:Namespace href = "http://www.foo.bar/boxschema" AS = R">
 <S:MultiResponse>
 <Prop>
 <R:bigbox D:Proploc="http://prop.com/BigBox">
 <BoxType>Box type A</BoxType>
 </R:bigbox>
 <R:author D:Proploc="http://prop.com/Author">
 <Name>Hadrian</Name>
 </R:author>
 </Prop>
 <Status>HTTP/1.1 200 Success</Status>
 </S:MultiResponse>

 This particular client only had the right to see two properties,
 BoxType and Author. No error is returned for the remaining
 properties, as the client does not even have sufficient rights to
 know they exist. If the client did have the right to know they
 existed but did not have the right to see their value, a 207
 multi-response with a multiresponse, as used in the previous
 example, would have been returned.

2.8.5.7 Example 3 - Propname

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Content-Length: xxxx
 Content-Type: text/xml

 <?XML:Namespace
 href = "http://www.ietf.org/standards/dav/" AS = "G"/>
 <G:PROPFIND>
 <Propname/>
 </G:PROPFIND>

 HTTP/1.1 200 Success
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace
 href = "http://www.ietf.org/standards/dav/" As = "S">
 <?XML:Namespace
 href = "http://www.foo.bar/boxschema" AS = "R">
 <S:MultiResponse>
 <Prop>
 <R:bigbox D:Proploc="http://prop.com/BigBox"/>
 <R:author D:Proploc="http://prop.com/Author"/>
 <R:DingALing/>
 <R:Random/>
 </Prop>
 <Status>HTTP/1.1 200 Success</Status>
 </S:MultiResponse>

 In this case only two of the properties have direct URLs
 available, while the other two properties can only be referenced
 via PROPFIND and PROPPATCH.

3 A Proposal for Collections of Web Resources and Name Space
 Operations

3.1 Observations on the HTTP Object Model

 This section provides a description of a new type of Web
 resource, the collection, and discusses its interactions with the
 HTTP URL namespace. This discussion is a prerequisite for the
 specification of methods that operate on collections, given later
 in this document.

3.1.1 Collection Resources

 A collection is a resource whose state consists of a list of
 internal members, a list of external members, and a set of
 properties. An internal member resource MUST have a URI that is
 immediately relative to the base URI of the collection, that is,
 a relative URI in which "../" is illegal, which must begin with
 "./" and which MAY contain only one other "/" at the end of the
 URI. An external member resource MUST be an absolute URI that is
 not an internal URI. Any given internal or external URI MUST
 only belong to the collection once, i.e., multiple instances of
 URIs in a collection are illegal. Properties defined on
 collections have no special distinction, and behave exactly as do
 properties on non-collection resources.

 The purpose of a collection resource is to model collection-like
 objects (e.g., a filesystem directory) within a server's
 namespace. Once these objects have been modeled with
 collections, a client may perform an INDEX, add and remove

 external members using ADDREF and DELREF, and perform recursive
 operations, such as a full hierarchy copy.

 To support methods which operate on collections, a server SHOULD
 model its collection-like objects with collection resources. For
 example, a server which is implemented on top of a filesystem
 SHOULD treat all filesystem directories exposed by the server as
 collection resources.

3.1.2 Creation and Retrieval of Collection Resources

 This document specifies the MKCOL method to create new collection
 resources, and the INDEX method to list their contents.

 In HTTP/1.1, the PUT method is defined to store the request body
 at the location specified by Request-URI. While a description
 format for a collection can readily be constructed that could be
 used with PUT, the implications of sending such a description to
 the server are undesirable. For example, if a description of a
 collection that omitted some existing resources were PUT to a
 server, this might be interpreted as a command to remove those
 members. This would extend PUT to perform DELETE functionality,
 which is undesirable since it changes the semantics of PUT, and
 makes it difficult to control DELETE functionality with an access
 control scheme based on methods.

 While the POST method is sufficiently open-ended that a "create a
 collection" POST command could be constructed, this is

 undesirable because it would be difficult to separate access
 control for collection creation from other uses of POST if they
 both use the same method.

 While it might seem desirable to have GET return a listing of the
 members of a collection, this is foiled by the existence of the
 "index.html" de-facto standard namespace redirection, in which a
 GET request on a collection is automatically redirected to the
 index.html resource.

 The exact definition of the behavior of GET and PUT on
 collections is defined later in this document.

3.1.2.1 Example

 The structured resource http://foo/bar is created with a PUT. Bar
 is a multipart/related file with two members http://foo/bar/a and

http://foo/bar/b. If bar were deleted then both a and b would
 also be deleted since they are all really just one resource. If

http://foo/bar/a/c was PUT then a DELETE on http://foo/bar/a
 would also delete http://foo/bar/a/c as c was created with a PUT
 not a MKCOL.

 If http://foo/bar/b/d is created with a MKCOL and
http://foo/bar/b/d/e was created then a DELETE on d would fail

 because d is a collection with an internal member. However the
 existence of the collection d is something of an illusion. If a
 DELETE was executed on http://foo/bar then everything would be
 deleted, even though http://foo/bar/b/d was created with a MKCOL.

 Thus the effect of a MKCOL within a composite resource s
 namespace is felt on its children, not its ancestors. The
 children of d MUST be treated as members of a collection when a
 method is executed on d. But a method executed on b or a is
 treated as if there only existed a non-collection resource.

3.1.3 Source Resources and Output Resources

 For many resources, the entity returned by GET exactly matches
 the persistent state of the resource, for example, a GIF file
 stored on a disk. For this simple case, the URL at which a
 resource is accessed is identical to the URL at which the source
 (the persistent state) of the resource is accessed. This is also
 the case for HTML source files that are not processed by the

http://foo/bar
http://foo/bar/a
http://foo/bar/b
http://foo/bar/a/c
http://foo/bar/a
http://foo/bar/a/c
http://foo/bar/b/d
http://foo/bar/b/d/e
http://foo/bar
http://foo/bar/b/d

 server prior to transmission.

 However, the server can sometimes process HTML resources before
 they are transmitted as a return entity body. For example,
 server-side-include directives within an HTML file instruct a
 server to replace the directive with another value, such as the
 current date. In this case, what is returned by GET (HTML plus
 date) differs from the persistent state of the resource (HTML
 plus directive). Typically there is no way to access the HTML
 resource containing the unprocessed directive.

 Sometimes the entity returned by GET is the output of a data-
 producing process that is described by one or more source
 resources (that may not even have a location in the URL
 namespace). A single data-producing process may dynamically
 generate the state of a potentially large number of output
 resources. An example of this is a CGI script that describes a
 "finger" gateway process that maps part of the namespace of a
 server into finger requests, such as

http://www.foo.bar.org/finger_gateway/user@host.

 In the absence of distributed authoring capability, it is
 acceptable to have no mapping of source resource(s) to the URI
 namespace, and in fact has desirable security benefits. However,
 if remote editing of the source resource(s) is desired, the
 source resource(s) should be given a location in the URI
 namespace. This source location should not be one of the
 locations at which the generated output is retrievable, since in
 general it is impossible for the server to differentiate requests
 for source resources from requests for process output resources.
 There is often a many-to-many relationship between source
 resources and output resources.

 For DAV compliant servers all output resources which have a
 single source resource (and that source resource has a URI), the
 URI of the source resource SHOULD be stored in a single link on
 the output resource with type

http://www.ietf.org/standards/dav/source. Note that by storing
 the source URI in links on the output resources, the burden of
 discovering the source is placed on the authoring client.

3.2 MKCOL Method

3.2.1 Problem Description

 A client must be able to create a collection.

3.2.2 Solution Requirements

http://www.foo.bar.org/finger_gateway/user@host
http://www.ietf.org/standards/dav/source

 The solution must ensure that a collection has been made (i.e.
 that it responds to the INDEX method) as opposed to a non-

 collection resource. If a collection could not be made, it must
 indicate this failure to the user-agent.

3.2.3 Request

 MKCOL creates a new collection resource at the location specified
 by the Request-URI. If the Request-URI exists, then MKCOL must
 fail. During MKCOL processing, a server MUST make the Request-URI
 a member of its parent collection. If no such an ancestor exists,
 the method MUST fail. When the MKCOL operation creates a new
 collection resource, all ancestors MUST already exist, or the
 method MUST fail with a 409 Conflict status code. For example,
 if a request to create collection /a/b/c/d/ is made, and neither
 /a/b/ nor /a/b/c/ exist, the request MUST fail.

3.2.3.1 MKCOL Without Request Body

 When MKCOL is invoked without a request body, the newly created
 collection has no members.

3.2.3.2 MKCOL With Request Body

 A MKCOL request message MAY contain a message body. The behavior
 of a MKCOL request when the body is present is limited to
 creating collections, members of a collection, bodies of members
 and properties on the collections or members. If the server
 receives a MKCOL request entity type it does not support or
 understand it MUST respond with a 415 (Unsupported Media Type)
 status code. The exact behavior of MKCOL for various request
 media types is undefined in this document, and will be specified
 in separate documents.

3.2.4 Response

 Responses from a MKCOL request are not cacheable, since MKCOL has
 non-idempotent semantics.

201 (Created) - The collection or structured resource was created
 in its entirety.

403 (Forbidden) - This indicates at least one of two conditions:
 1) The server does not allow the creation of collections at the

 given location in its namespace, and 2) The parent collection of
 the Request-URI exists but cannot accept members.

409 (Conflict) - A collection cannot be made at the Request-URI
 until one or more intermediate collections have been created.

415 (Unsupported Media Type)- The server does not support the
 request type of the body.

417 (Insufficient Space on Resource) - The resource does not have
 sufficient space to record the state of the resource after the
 execution of this method.

3.2.5 Example

 This example creates a container collection called
 /webdisc/xfiles/ on the server www.server.org.
 MKCOL /webdisc/xfiles/ HTTP/1.1
 Host: www.server.org

 HTTP/1.1 201 Created

3.3 Standard DAV Properties

 The following properties are defined on DAV compliant resources.
 All enclosed properties are part of the DAV Schema.

3.3.1 IsCollection Property

 Name: http://www.ietf.org/standards/dav/iscollection
 Purpose: This property contains a Boolean value that is set to
 "true" if the resource is a collection
 Schema: http://www.ietf.org/standards/dav/
 Value: ("true" | "false")
 Description: This property MUST be defined on all DAV compliant
 resources.

3.3.2 DisplayName Property

 Name: http://www.ietf.org/standards/dav/displayname
 Purpose: A name for the resource that is suitable for
 presentation to a user.
 Schema: http://www.ietf.org/standards/dav/
 Value: Any valid XML character data (as defined in [Bray,
 Sperberg-McQueen, 1997])

http://www.ietf.org/standards/dav/iscollection
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/displayname
http://www.ietf.org/standards/dav/

 Description: This property SHOULD be defined on all DAV compliant
 resources. If present, the property contains a description of the
 resource that is suitable for presentation to a user.

3.3.3 CreationDate Property

 Name: http://www.ietf.org/standards/dav/creationdate
 Purpose: The time and date the resource was created.
 Schema: http://www.ietf.org/standards/dav/
 Value: The time and date MUST be given in ISO 8601 format
 [ISO8601]
 Description: This property SHOULD be defined on all DAV compliant
 resources. If present, it contains a timestamp of the moment when
 the resource was created (i.e., the moment it had non-null
 state).

3.3.4 GETentity Property

 Name: http://www.ietf.org/standards/dav/GETentity
 Purpose: Contains the value of headers that are returned by a
 GET without Accept headers.
 Schema: http://www.ietf.org/standards/dav/
 Value: Content-Type Content-Length Content-Language Last-
 Modified Etag Creation-Date
 Description: This property MUST be defined on all DAV compliant
 resources unless GET is not supported, in which case this
 property MUST NOT be defined. This property MUST contain at most
 one instance of each element in its Value, if they are defined.

3.3.5 INDEXentity Property

 Name: http://www.ietf.org/standards/dav/INDEXentity
 Purpose: Contains the value of headers that are returned by an
 INDEX.
 Schema: http://www.ietf.org/standards/dav/
 Value: Content-Type Content-Length Content-Language Last-
 Modified Etag Creation-Date

 Description: This property MUST be defined on all DAV compliant
 resources unless INDEX is not supported, in which case this
 property MUST NOT be defined. This property MUST contain at most
 one instance of each element in its Value, if they are defined.

3.3.6 Content-Type XML Element

http://www.ietf.org/standards/dav/creationdate
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/GETentity
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/INDEXentity
http://www.ietf.org/standards/dav/

 Name: http://www.ietf.org/standards/dav/content-type
 Purpose: The content-type of the member resource.
 Schema: http://www.ietf.org/standards/dav/
 Parent: GETentity or INDEXentity
 Value: media-type ; defined in Section 3.7 of [Fielding et
 al., 1997]
 Description: If the parent of this element is GETentity, the
 value MUST be identical to the content-type returned by a GET on
 the resource without Accept headers. If the parent is
 INDEXentity, the value MUST be identical to the content-type
 returned by an INDEX on the resource. If no content-type is
 available, this element MUST NOT be defined.

3.3.7 Content-Length XML Element

 Name: http://www.ietf.org/standards/dav/content-length
 Purpose: Describes the default content-length of the resource.
 Schema: http://www.ietf.org/standards/dav/
 Value: content-length ; see section 14.14 of RFC 2068
 Description: If the parent of this element is GETentity, this
 element MUST have a value equal to the content-length header
 returned by a GET on the resource without Accept headers. If the
 parent is INDEXentity, the value MUST be identical to the
 content-length returned by an INDEX on the resource. If no
 content-length is available, this element MUST NOT be defined.

3.3.8 Content-Language XML Element

 Name: http://www.ietf.org/standards/dav/content-language
 Purpose: Describes the default natural language of a resource.
 Schema: http://www.ietf.org/standards/dav/
 Value: language-tag ;language-tag is defined in section

14.13 of RFC 2068
 Description: If the parent of this element is GETentity, this
 element MUST have a value equal to the content-language header
 returned by a GET on the resource without Accept headers. If the
 parent is INDEXentity, the value MUST be identical to the
 content-language header returned by an INDEX on the resource. If
 no content-language header is available, this element MUST NOT be
 defined.

3.3.9 Last-Modified XML Element

 Name: http://www.ietf.org/standards/dav/last-modified
 Purpose: The date the resource was last modified.
 Schema: http://www.ietf.org/standards/dav/
 Parent: GETentity or INDEXentity
 Value: The date MUST be given in RFC 1123 format using the

http://www.ietf.org/standards/dav/content-type
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/content-length
http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc2068#section-14.14
http://www.ietf.org/standards/dav/content-language
http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc2068
http://www.ietf.org/standards/dav/last-modified
http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc1123

rfc-1123 production, defined in section 3.3.1 of [Fielding et al.,
 1997].
 Description: If the parent of this element is GETentity, this

 element MUST have a value equal to the last-modified header
 returned by a GET on the resource without Accept headers. If the
 parent is INDEXentity, the value MUST be identical to the last-
 modified header returned by an INDEX on the resource. If no
 last-modified header is available, this element MUST NOT be defined.

3.3.10 Etag XML Element

 Name: http://www.ietf.org/standards/dav/etag
 Purpose: The entity tag of the resource.
 Schema: http://www.ietf.org/standards/dav/
 Parent: GETentity or INDEXentity
 Value: entity-tag ; defined in Section 3.11 of [Fielding et
 al., 1997]
 Description: If the parent of this element is GETentity, this
 element MUST have a value equal to the entity-tag header returned
 by a GET on the resource without Accept headers. If the parent
 is INDEXentity, the value MUST be identical to the entity-tag
 header returned by an INDEX on the resource. If no entity-tag
 header is available, this element MUST NOT be defined.

3.4 INDEX Method

3.4.1 Problem Description

 A mechanism is needed to discover if a resource is a collection
 and if so, list its members.

3.4.2 Solution Requirements

 The solution:
 - must allow a client to discover the members of a collection
 - must always provide a machine-readable description of the
 membership of a collection
 - must be leveraged as a more general mechanism to provide a
 list of contents for any resource which can profitably return a
 membership like listing.

https://datatracker.ietf.org/doc/html/rfc1123
http://www.ietf.org/standards/dav/etag
http://www.ietf.org/standards/dav/

3.4.3 The Request

 The INDEX method returns a machine-readable representation of the
 membership of the resource at the Request-URI.

 For a collection, INDEX MUST return a list of its members. All
 WebDAV compliant resources MUST support the text/xml response
 entity described below. The INDEX result for a collection MAY
 also return a list of the members of child collections, to any
 depth.

 Collections that respond to an INDEX method with a text/xml
 entity MUST contain only one ResInfo element. This ResInfo
 element contains an Href element, which gives the identifier(s)
 of the resource, a Prop element, which gives selected properties
 of the resource, and a Members element, which contains a ResInfo
 element for each member of the collection. The Prop element MUST

 contain at least the following properties, if they are defined
 and available: DisplayName, IsCollection, CreationDate,
 GETentity, and INDEXentity.

 The response from INDEX is cacheable, and SHOULD be accompanied
 by an ETag header (see section 13.3.4 of RFC 2068). If GET and
 INDEX return different entities for the same resource state, they
 MUST return different entity tags.

3.4.4 The Response

200 (OK) - The server MUST send a machine readable response
 entity which describes the membership of the resource.

3.4.5 ResInfo XML Element

 Name: http://www.ietf.org/standards/dav/resinfo
 Purpose: Describes a resource.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Value: Href Prop Members
 Description: There MUST be at least one Href element. Each Href
 element contains a URI for the resource, which MUST be an
 absolute URI. There MUST be a single Prop element that contains a
 series of properties defined on the resource. If the resource is
 a collection, it MAY have at most one Members element, which
 describes the members of the collection.

https://datatracker.ietf.org/doc/html/rfc2068#section-13.3.4
http://www.ietf.org/standards/dav/resinfo
http://www.ietf.org/standards/dav/

3.4.6 Members XML Element

 Name: http://www.ietf.org/standards/dav/members
 Purpose: Describes the membership of a collection resource.
 Schema: http://www.ietf.org/standards/dav/
 Parent: ResInfo
 Value: ResInfo
 Description: Contains zero or more ResInfo elements, which
 describe members of the collection.

3.4.7 Href XML Element

 Name: http://www.ietf.org/standards/dav/href
 Purpose: To identify that the content of the element is a URI.
 Schema: http://www.ietf.org/standards/dav/
 Parent: Any
 Value: URI ; See section 3.2.1 of [Fielding et al., 1997]

3.4.8 Example

 INDEX /user/yarong/dav_drafts/ HTTP/1.1
 Host: www.microsoft.com

 HTTP/1.1 200 OK
 Content-Type: text/xml
 Content-Length: xxx
 Last-Modified: Thu, 11 Sep 1997 23:45:12 GMT
 ETag: "fooyyybar"

 <?XML:Namespace
 href = "http://www.ietf.org/standards/dav/" as = "D"/>

 <D:ResInfo>
 <XML:Href>

http://www.microsoft.com/user/yarong/dav_drafts/
 </XML:Href>
 <Prop>
 <DisplayName>
 WebDAV working drafts directory
 </DisplayName>
 <IsCollection>true</IsCollection>
 <CreationDate>19970418T070304Z</CreationDate>
 <GETentity>
 <Content-Type>text/html</Content-Type>

http://www.ietf.org/standards/dav/members
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/href
http://www.ietf.org/standards/dav/
http://www.microsoft.com/user/yarong/dav_drafts/

 <Content-Length>2754</Content-Length>
 <Content-Language>en</Content-Language>
 <Last-Modified>
 Fri, 22 Aug 1997 10:11:26 GMT
 </Last-Modified>
 <Etag>"8675309"</Etag>
 </GETentity>
 <INDEXentity>
 <Content-Type>text/xml</Content-Type>
 <Content-Length>xxx</Content-Length>
 <Last-Modified>
 Thu, 11 Sep 1997 23:45:12 GMT
 </Last-Modified>
 <Etag>"fooyyybar"</Etag>
 </INDEXentity>
 </Prop>

 <Members>
 <ResInfo>
 <XML:Href>

http://www.microsoft.com/user/yarong/dav_drafts/base
 </XML:Href>
 <Prop>
 <IsCollection
 D:PropLoc="http://www.microsoft.com/user/yarong/dav_drafts/b
 ase;props=IsCollection">
 False
 </IsCollection>
 <DisplayName>
 WebDAV Name Space Operations Draft
 </DisplayName>
 <Creation-Date>19970320T230525Z</Creation-Date>

 <GETentity>
 <Content-Type>application/msword</Content-Type>
 <Content-Length>1400</Content-Length>
 <Content-Language>en</Content-Language>
 <Last-Modified>
 Fri, 22 Aug 1997 18:22:56 GMT
 </Last-Modified>
 <Etag>"8675309"</Etag>
 </GETentity>
 </Prop>
 </ResInfo>
 </Members>
 </D:ResInfo>

 This example shows the result of the INDEX method applied to the
 collection resource

http://www.microsoft.com/user/yarong/dav_drafts/. It returns a
 response body in XML format, which gives information about the

http://www.microsoft.com/user/yarong/dav_drafts/base
http://www.microsoft.com/user/yarong/dav_drafts/

 container and its sole member,
http://www.microsoft.com/user/yarong/dav_drafts/base. The entry

 on the collection confirms that the resource the INDEX was
 executed on is a collection. The result also contains the URI of
 the IsCollection property on the member resource.

3.5 Behavior of RFC 2068 Methods on Collections

 With the introduction of the collection resource type to the HTTP
 object model, it is necessary to define the behavior of the
 existing methods (defined in RFC 2068) when invoked on a
 collection resource to avoid ambiguity. While some methods, such
 as OPTIONS and TRACE behave identically when applied to
 collections, GET, HEAD, POST, PUT, and DELETE require some
 additional explanation.

3.5.1 GET, HEAD for Collections

 The semantics of GET are unchanged when applied to a collection,
 since GET is defined as, "retrieve whatever information (in the
 form of an entity) is identified by the Request-URI" [Fielding et
 al., 1997]. GET when applied to a collection MAY return the
 contents of an "index.html" resource, a human-readable view of
 the contents of the collection, or something else altogether, and
 hence it is possible the result of a GET on a collection will
 bear no correlation to the state of the collection.

 Similarly, since the definition of HEAD is a GET without a
 response message body, the semantics of HEAD are unmodified when
 applied to collection resources.

3.5.2 POST for Collections

 Since by definition the actual function performed by POST is
 determined by the server and often depends on the particular
 resource, the behavior of POST when applied to collections cannot
 be meaningfully modified because it is largely undefined. Thus
 the semantics of POST are unmodified when applied to a
 collection.

3.5.3 PUT for Collections

http://www.microsoft.com/user/yarong/dav_drafts/base
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068

 As defined in the HTTP/1.1 specification [Fielding et al., 1997],
 the "PUT method requests that the enclosed entity be stored under
 the supplied Request-URI." Since submission of an entity
 representing a collection would implicitly encode creation and
 deletion of resources, this specification intentionally does not
 define a transmission format for creating a collection using PUT.
 Instead, the MKCOL method is defined to create collections. If a
 PUT is invoked on a collection resource it MUST fail.

 When the PUT operation creates a new non-collection resource all
 ancestors MUST already exist. If all ancestors do not exist, the
 method MUST fail with a 409 Conflict status code. For example,
 if resource /a/b/c/d.html is to be created and /a/b/c/ does not
 exist, then the request MUST fail.

3.5.3.1 PUT for Non-Collection Resources

 A PUT performed on an existing resource replaces the GET response
 entity of the resource, but MUST NOT change the value of any dead
 properties defined on the resource. Live properties defined on

 the resource MAY be recomputed during PUT processing.

3.5.4 DELETE for Collections

 When DELETE is applied to a collection without internal members
 the collection resource, along with its properties, and external
 members, MUST be deleted. A DELETE method applied to a
 collection resource containing internal member resources MUST
 fail with a 409 Conflict status code.

3.5.5 DELETE Method for Non-Collection Resources

 If the DELETE method is issued to a non-collection resource which
 is an internal member of a collection, then during DELETE
 processing a server MUST remove the Request-URI from its parent
 collection. A server MAY remove the URI of a deleted resource
 from any collections of which the resource is an external member.

3.6 COPY Method

3.6.1 Problem Description

 Currently, in order to create a copy of a resource, the client
 must GET an entity and then PUT that entity to the desired
 destination. This requires (1) an entity to be transmitted to and
 from the server and (2) that the resource be expressible as an
 entity with complete fidelity.

 This is problematic because of the network traffic involved in
 making a copy, and because there is often no way to fully express
 a resource as an entity without a loss of fidelity.

3.6.2 Solution Requirements

 The solution:
 - MUST allow a principal to create a copy of a resource
 without having to transmit the resource to and from the server.

3.6.3 The Request

 The COPY method creates a duplicate of the source resource, given
 by the Request-URI, in the destination resource, given by the
 Destination header. The Destination header MUST be present. The
 exact behavior of the COPY method depends on the type of the
 source resource.

3.6.3.1 COPY for HTTP/1.1 resources

 When the source resource is not a collection, and is not a
 property, the body of the destination resource MUST be octet-for-
 octet identical to the body of the source resource. Alterations
 to the destination resource do not modify the source resource.
 Alterations to the source resource do not modify the destination
 resource. Thus, all copies are performed "by-value".

 All properties on the source resource MUST be duplicated on the
 destination resource, subject to modifying headers, following the
 definition for copying properties.

3.6.3.2 COPY for Properties

 The following section defines how properties on a resource are
 handled during a COPY operation.
 Live properties SHOULD be duplicated as identically behaving live

 properties at the destination resource. Since they are live
 properties, the server determines the syntax and semantics (hence
 value) of these properties. Properties named by the Enforce-
 Live-
 Properties header MUST be live on the destination resource, or
 the method MUST fail. If a property is not named by Enforce-
 Live-
 Properties and cannot be copied live, then its value MUST be
 duplicated, octet-for-octet, in an identically named, dead
 resource on the destination resource.

 If a property on the source already exists on the resource and
 the overwrite header is set to TRUE then the property at the
 destination MUST be overwritten with the property from the
 source. If the overwrite header is false and the previous
 situation exists then the COPY MUST fail with a 409 Conflict.

3.6.3.3 COPY for Collections

 A COPY on a collection causes a new, empty collection resource to
 be created at the destination with the same properties as the
 source resource. All properties on the source collection MUST be
 duplicated on the destination collection, subject to modifying
 headers, following the definition for copying properties. The
 new collection MUST NOT contain any members, internal or
 external.

3.6.3.4 Type Interactions

 If the destination resource identifies a property and the source
 resource is not a property, then the copy SHOULD fail.

 If the destination resource identifies a collection and the
 Overwrite header is "true," prior to performing the copy, the
 server MUST perform a DELETE operation on the collection.

3.6.4 The Response

200 (OK) The source resource was successfully copied to a pre-
 existing destination resource.

201 (Created) The source resource was successfully copied. The
 copy operation resulted in the creation of a new resource.

412 (Precondition Failed) This status code MUST be returned if
 the server was unable to maintain the liveness of the properties
 listed in the Enforce-Live-Properties header, or if the Overwrite
 header is false, and the state of the destination resource is
 non-null.

417 (Insufficient Space on Resource) - The destination resource
 does not have sufficient space to record the state of the
 resource after the execution of this method.

500 (Server Error) The resource was in such a state that it could
 not be copied. This may occur if the Destination header specifies
 a resource that is outside the namespace the resource is able to
 interact with.

3.6.5 Examples

3.6.5.1 Overwrite Example

 This example shows resource
http://www.ics.uci.edu/~fielding/index.html being copied to the

 location http://www.ics.uci.edu/users/f/fielding/index.html. The
 contents of the destination resource were overwritten, if non-
 null.

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html

 HTTP/1.1 200 OK

3.6.5.2 No Overwrite Example

 The following example shows the same copy operation being
 performed, except with the Overwrite header set to "false." A
 response of 412, Precondition Failed, is returned because the
 destination resource has a non-null state.

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html
 Overwrite: "false"

 HTTP/1.1 412 Precondition Failed

http://www.ics.uci.edu/~fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html

3.7 MOVE Method

3.7.1 Problem Description

 The move operation on a resource is the logical equivalent of a
 copy followed by a delete, where the actions are performed
 atomically. Using RFC 2068 methods only, this procedure could be
 performed in several steps. First, the client could issue a GET
 to retrieve a representation of a resource, issue a DELETE to
 remove the resource from the server, then use PUT to place the
 resource on the server with a new URI. As is the case for COPY -
 because of the network traffic involved in making a move, and
 because there is often no way to fully express a resource as an
 entity without a loss of fidelity - server move functionality is
 preferable.

 With a WEBDAV server, a principal may accomplish this task by
 issuing a COPY and then DELETE. Network load decreases, but the
 server load may still be significant because the server must
 create a duplicate resource. Were a server to know beforehand
 that a principal intended to perform COPY and DELETE operations
 in succession, it could avoid the creation of a duplicate
 resource.

3.7.2 Solution Requirements

 The solution:
 - Must prevent the unneeded transfer of entity bodies from and
 to the server.
 - Must prevent the unneeded creation of copies by the server.

3.7.3 The Request

 The move operation on a resource is the logical equivalent of a
 copy followed by a delete, where the actions are performed
 atomically. If a resource exists at the destination, the
 destination resource will be DELETEd as a side effect of the MOVE
 operation, subject to the restrictions of the overwrite header.

3.7.4 The Response

200 (OK) - The resource was moved. A successful response must

https://datatracker.ietf.org/doc/html/rfc2068

 contain the Content-Location header, set equal to the URI in
 source. This lets caches properly flush any cached entries for
 the source. Unfortunately the Content-Location header only allows
 a single value so it is not possible for caches unfamiliar with
 the MOVE method to properly clear their caches.

412 (Precondition Failed) This status code MUST be returned if
 the server was unable to maintain the liveness of the properties
 listed in the Enforce-Live-Properties header, or if the Overwrite
 header is false, and the state of the destination resource is
 non-null.

501 (Not Implemented) - This may occur if the Destination header
 specifies a resource which is outside its domain of control
 (e.g., stored on another server) resource and the server either
 refuses or is incapable of moving to an external resource.

502 (Bad Gateway) - This may occur when moving to external
 resources and the destination server refused to accept the
 resource.

3.7.5 Examples

3.7.5.1 Overwrite Example

 This example shows resource
http://www.ics.uci.edu/~fielding/index.html being moved to the

 location http://www.ics.uci.edu/users/f/fielding/index.html. The
 contents of the destination resource were overwritten, if non-
 null.

 MOVE /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html

 HTTP/1.1 200 OK
 Content-Location:

http://www.ics.uci.edu/users/f/fielding/index.html

3.8 ADDREF Method

3.8.1 Problem Definition

 There needs to be a way to add an external member to a

http://www.ics.uci.edu/~fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html

 collection.

3.8.2 Solution Requirements

 The solution must:
 - allow access control
 - allow referencing to URIs of external members
 - not require a body

3.8.3 The Request

 The ADDREF method adds the URI specified in the Collection-Member
 header as an external member to the collection specified by the
 Request-URI. The value in the Collection-Member header MUST be an
 absolute URI meeting the requirements of an external member URI.

 It is not an error if the URI specified in the Collection-Member
 header already exists as an external member of the collection,
 however, after processing ADDREF there MUST be only one instance
 of the URI in the collection. If the URI specified in the
 Collection-Member header already exists as an internal member of
 the collection, the ADDREF method MUST fail with a 412
 Precondition Failed status code.

3.8.4 Example

 ADDREF /~whitehead/dav/ HTTP/1.1
 HOST: www.ics.udi.edu
 Collection-Member: http://www.ietf.org/standards/dav/

 HTTP/1.1 200 OK

3.9 DELREF Method

3.9.1 Problem Definition

 There needs to be a way to remove an external member from a
 collection.

3.9.2 Solution Requirements

 The solution must:
 - allow access control
 - allow referencing to URIs of external members
 - not require a body

http://www.ietf.org/standards/dav/

3.9.3 The Request

 The DELREF method removes the URI specified in the Collection-
 Member header from the collection specified by the Request-URI.

 DELREFing a URI which is not a member of the collection is not an
 error. DELREFing an internal member MUST fail with a 412
 Precondition Failed status code.

3.9.4 Example

 DELREF /~whitehead/dav/ HTTP/1.1
 Host: www.ics.udi.edu
 Collection-Member: http://www.ietf.org/standards/dav/

 HTTP/1.1 200 OK

3.10 PATCH Method

3.10.1 Problem Definition

 At present, if a principal wishes to modify a resource, they must
 issue a GET against the resource, modify their local copy of the
 resource, and then issue a PUT to place the modified resource on
 the server. This procedure is inefficient because the entire
 entity for a resource must be transmitted to and from the server
 in order to make even small changes. Ideally, the update entity
 transmitted to the server should be proportional in size to the
 modifications.

3.10.2 Solution Requirements

 The solution must:
 - allow partial modification of a resource without having to
 transmit the entire modified resource
 - allow byte-range patching
 - allows extensions so that patches can be done beyond simple
 byte-range patching
 - allow ranges to be deleted, inserted, and replaced

3.10.3 The Request

http://www.ietf.org/standards/dav/

 The request entity of the PATCH method contains a list of
 differences between the resource identified by the Request-URI
 and the desired content of the resource after the PATCH action
 has been applied. The list of differences is in a format defined
 by the media type of the entity (e.g., "application/diff") and
 must include sufficient information to allow the server to
 convert the original version of the resource to the desired
 version. Processing performed by PATCH is atomic, hence all
 changes MUST be successfully executed or the method fails. PATCH
 MUST fail if executed on a non-existent resource; i.e. PATCH does
 not create a resource as a side effect.

 If the request appears (at least initially) to be acceptable, the
 server MUST transmit an interim 100 response message after
 receiving the empty line terminating the request headers and
 continue processing the request. Since the semantics of PATCH
 are non-idempotent, responses to this method are not cacheable.

 While server support for PATCH is optional, if a server does
 support PATCH, it MUST support at least the text/xml diff format
 defined below. Support for the VTML difference format [VTML] is
 recommended, but not required.

3.10.4 text/xml elements for PATCH

 The resourceupdate XML element contains a set of XML sub-entities
 that describe modification operations. The name and meaning of
 these XML elements is given below. Processing of these directives
 MUST be performed in the order encountered within the XML
 document. A directive operates on the resource as modified by
 all previous directives (executed in sequential order). The
 length of the resource MAY be extended or reduced by a PATCH.

 The changes specified by the resourceupdate XML element MUST be
 executed atomically.

3.10.4.1 ResourceUpdate

 Name: http://www.ietf.org/standards/dav/patch/resourceupdate
 Purpose: Contains an ordered set of changes to a non-
 collection, non-property resource.
 Schema: http://www.ietf.org/standards/dav/patch/
 Parent: Any

http://www.ietf.org/standards/dav/patch/resourceupdate
http://www.ietf.org/standards/dav/patch/

 Value: *(Insert | Delete | Replace)

3.10.4.2 Insert

 Name: http://www.ietf.org/standards/dav/patch/insert
 Purpose: Insert the XML element s contents starting at the
 specified octet.
 Schema: http://www.ietf.org/standards/dav/patch/
 Parent: ResourceUpdate
 Value: The insert XML element MUST contain an Octet-Range
 XML element that specifies an octet position within the body of a
 resource. A value of "end" specifies the end of the resource.
 The body of the insert XML element contains the octets to be
 inserted.

 Please note that in order to protect the white space contained in
 this XML element the following attribute/value MUST be included
 in the element: XML-SPACE = "PRESERVE".

3.10.4.3 Delete

 Name: http://www.ietf.org/standards/dav/patch/delete
 Purpose: Removes the specified range of octets.
 Schema: http://www.ietf.org/standards/dav/patch/
 Parent: ResourceUpdate
 Value: The Delete XML element MUST contain an octet-range
 XML element.

 Discussion: The octets that are deleted are removed, which means
 the resource is collapsed and the length of the resource is
 decremented by the size of the octet range. It is not
 appropriate to replace deleted octets with zeroed-out octets,
 since zero is a valid octet value.

3.10.4.4 Replace

 Name: http://www.ietf.org/standards/dav/patch/replace
 Purpose: Replaces the specified range of octets with the
 contents of the XML element. If the number of octets in the XML

 element is different from the number of octets specified, the
 update MUST be rejected.
 Schema: http://www.ietf.org/standards/dav/patch/
 Parent: ResourceUpdate

http://www.ietf.org/standards/dav/patch/insert
http://www.ietf.org/standards/dav/patch/
http://www.ietf.org/standards/dav/patch/delete
http://www.ietf.org/standards/dav/patch/
http://www.ietf.org/standards/dav/patch/replace
http://www.ietf.org/standards/dav/patch/

 Value: The Replace XML element MUST contain an octet-
 range XML element. The contents of the entity are the replacement
 octets.

 Please note that in order to protect the white space contained in
 this XML element the following attribute/value MUST be included
 in the element: XML-SPACE = "PRESERVE".

3.10.4.5 Octet-Range Attribute

 Name: http://www.ietf.org/standards/dav/patch/octet-
 range
 Purpose: Specifies a range of octets that the enclosing property
 effects.
 Schema: http://www.ietf.org/standards/dav/patch/
 Parent: Insert, Delete, Replace
 Value: number ["-" (number | "end")]
 Number = 1*Digit

 Description: Octet numbering begins with 0. If the octet contains
 a single number then the operation is to begin at that octet and
 to continue for a length specified by the operation. In the case
 of a delete, this would mean to delete a single octet. In the
 case of an insert this would mean to begin the insertion at the
 specified octet and to continue for the length of the included
 value, extending the resource if necessary. In the case of
 replace, the replace begins at the specified octet and overwrites
 all that follow to the length of the included value.

3.10.5 The Response

200 (OK) - The request entity body was processed without error,
 resulting in an update to the state of the resource.

409 (Conflict) - If the update information in the request message
 body does not make sense given the current state of the resource
 (e.g., an instruction to delete a non-existent line), this status
 code MAY be returned.

415 (Unsupported Media Type) - The server does not support the
 content type of the update instructions in the request message
 body.

416 (Unprocessable Entity) - A new status code. The server
 understands the content type of the request entity, but was
 unable to process the contained instructions.

417 (Insufficient Space on Resource) - The resource does not have
 sufficient space to record the state of the resource after the
 execution of this method.

http://www.ietf.org/standards/dav/patch/octet-
http://www.ietf.org/standards/dav/patch/

3.10.6 Examples

3.10.6.1 HTML file modification

 The following example shows a modification of the title and
 contents of the HTML resource http://www.example.org/hello.html.

 Before:
 <HTML>
 <HEAD>
 <TITLE>Hello world HTML page</TITLE>
 </HEAD>
 <BODY>
 <P>Hello, world!</P>
 </BODY>
 </HTML>
 PATCH Request: Response:
 PATCH hello.html HTTP/1.1
 Host: www.example.org
 Content-Type: text/xml
 Content-Length: xxx

 HTTP/1.1 100 Continue
 <?XML:Namespace href =
 Shttp://www.ietf.org/standards/dav/patch/" AS = "D"/>
 <D:ResourceUpdate>
 <Replace XML-SPACE = "PRESERVE"><octet-range>14</octet-
 range>&003CTITLE&003ENew Title&003C/TITLE&003E</Replace>
 <Delete><octet-range>38-50</Delete>
 <Insert XML-SPACE = "PRESERVE"><octet-range>86</>&
 003CP&003ENew paragraph&003C/P&003E</Insert>
 </D:ResourceUpdate>
 HTTP/1.1 200 OK
 After:
 <HTML>
 <HEAD>
 <TITLE>New Title</TITLE>
 </HEAD>
 <BODY>
 <P>Hello, world!</P>
 <P>New paragraph</P>
 </BODY>
 </HTML>

3.11 Headers

3.11.1 Destination Header

 The Destination header specifies a destination resource for
 methods such as COPY and MOVE, which take two URIs as parameters.
 Destination= "Destination" ":" URI

3.11.2 Enforce-Live-Properties Header

 The Enforce-Live-Properties header specifies properties that MUST
 be "live" after they are copied (moved) to the destination
 resource of a copy (or move). If the value "*" is given for the
 header, then it designates all live properties on the source
 resource. If the value is "Omit" then the server MUST NOT
 duplicate on the destination resource any properties that are
 defined on the source resource. If this header is not included
 then the server is expected to act as defined by the default
 property handling behavior of the associated method.

 EnforceLiveProperties = "Enforce-Live-Properties" ":" ("*" |
 "Omit" | 1#(Property-Name))
 Property-Name = "<" URI ">"

3.11.3 Overwrite Header

 The Overwrite header specifies whether the server should
 overwrite the state of a non-null destination resource during a
 COPY or MOVE. A value of "false" states that the server MUST NOT
 perform the COPY or MOVE operation if the state of the
 destination resource is non-null. By default, the value of
 Overwrite is "true," and a client MAY omit this header from a
 request when its value is "true." While the Overwrite header
 appears to duplicate the functionality of the If-Match: * header
 of HTTP/1.1, If-Match applies only to the Request-URI, and not to
 the Destination of a COPY or MOVE.

 Overwrite = "Overwrite" ":" ("true" | "false")

 If there is a conflict and the Overwrite header equals "true", or
 is absent and thus defaults to "true", then the method MUST fail
 with a 409 Conflict.

3.11.4 Destroy Header

 When deleting a resource the client often wishes to specify
 exactly what sort of delete is being enacted. The Destroy header,
 used with the Mandatory header, allows the client to specify the
 end result they desire. The Destroy header is specified as
 follows:

 The Undelete token requests that, if possible, the resource
 should be left in a state such that it can be undeleted. The
 server is not required to honor this request.

 The NoUndelete token requests that the resource MUST NOT be left
 in a state such that it can be undeleted.

 The VersionDestroy token includes the functionality of the
 NoUndelete token and extends it to include having the server
 remove all versioning references to the resource that it has
 control over.

 DestroyHeader = "Destroy" ":" #Choices

 Choices = "VersionDestroy" | "NoUndelete" | "Undelete" | token
 |"<" URI ">" ; a token extension MUST NOT be used unless it is
 specified in a RFC16, otherwise a URI MUST be used for
 extensions.

3.11.5 Collection-Member Header

 The Collection-Member header specifies the URI of an external
 resource to be added/deleted to/from a collection.

 CollectionMember = "Collection-Member" ":" URI

3.12 Links

3.12.1 Source Link Property Type

 Name: http://www.ietf.org/standards/dav/link/source
 Purpose: The destination of the source link identifies the
 resource that contains the unprocessed source of the link s
 source.

 Schema: http://www.ietf.org/standards/dav/link/
 Parent: Any

https://datatracker.ietf.org/doc/html/rfc16
http://www.ietf.org/standards/dav/link/source
http://www.ietf.org/standards/dav/link/

 Value: An XML document with zero or more link XML
 elements.

 Discussion: The source of the link (src) is typically the URI of
 the output resource on which the link is defined, and there is
 typically only one destination (dst) of the link, which is the
 URI where the unprocessed source of the resource may be accessed.
 When more than one link destination exists, this specification
 asserts no policy on ordering.

4 State Tokens

4.1 Overview

4.1.1 Problem Description

 There are times when a principal will want to predicate
 successful execution of a method on the current state of a
 resource. While HTTP/1.1 provides a mechanism for conditional
 execution of methods using entity tags via the "If-Match" and
 "If-None-Match" headers, the mechanism is not sufficiently
 extensibleto express conditional statements involving more
 generic state indicators, such as lock tokens.

 The fundamental issue with entity tags is that they can only be
 generated by a resource. However there are times when a client
 will want to be able to share state tokens between resources,
 potentially on different servers, as well as be able to generate
 certain types of lock tokens without first having to communicate
 with a server.

 For example, a principal may wish to require that resource B have
 a certain state in order for a method to successfully execute on
 resource A. If the client submits an e-tag from resource B to
 resource A, then A has no way of knowing that the e-tag is meant
 to describe resource B.

 Another example occurs when a principal wishes to predicate the
 successful completion of a method on the absence of any locks on
 a resource. It is not sufficient to submit an "If-None-Match: *"
 as this refers to the existence of an entity, not of a lock.

 This draft defines the term "state token" as an identifier for a
 state of a resource. The sections below define requirements for
 state tokens and provide a state token syntax, along with two
 new headers which can accept the new state token syntax.

4.1.2 Solution Requirements

4.1.2.1 Syntax

 Self-Describing. A state token must be self describing such that
 upon inspecting a state token it is possible to determine what
 sort of state token it is, what resource(s) it applies to, and
 what state it represents.

 This self-describing nature allows servers to accept tokens from
 other servers and potentially be able to coordinate state

 information cross resource and cross site through standardized
 protocols. For example, the execution of a request on resource A
 can be predicated on the state of resource B, where A and B are
 potentially on different servers.

 Client Generable. The state token syntax must allow, when
 appropriate, for clients to generate a state token without having
 first communicated with a server.

 One drawback of entity tags is that they are set by the server,
 and there is no interoperable algorithm for calculating an entity
 tag. Consequently, a client cannot generate an entity tag from a
 particular state of a resource. However, a state token which
 encodes an MD5 state hash could be calculated by a client based
 on a client-held state of a resource, and then submitted to a
 server in a conditional method invocation.

 Another potential use for client generable state tokens is for a
 client to generate lock tokens with wild card fields, and hence
 be able to express conditionals such as: "only execute this GET
 if there are no write locks on this resource."

4.1.2.2 Conditonals

 Universal. A solution must be applicable to all requests.
 Positive and Negative. Conditional expressions must allow for the
 expression of both positive and negative state requirements.

4.2 State Token Syntax
 State tokens are URLs employing the following syntax:
 State-Token = "StateToken:" Type ":" Resources ":" State-Info
 Type = "Type" "=" Caret-encoded-URL
 Resources = "Res" "=" Caret-encoded-URL
 Caret-encoded-URL = "^" Resource "^"

 Resource = <A URI where all "^" characters are escaped>
 State-Info = *(uchar | reserved) ; uchar, reserved defined

section 3.2.1 of RFC 2068

 This proposal has created a new URL scheme for state tokens
 because a state token names a network resource using its normal
 name, which is typically state-invariant, along with additional
 information that specifies a particular state of the resource.
 Encoding the state information into the native URL scheme of the
 network resource was not felt to be safe, since freedom from name
 space collisions could not be guaranteed. If this proposal is
 accepted, the StateToken URL scheme will need to be defined and
 registered with IANA.

 State Token URLs begin with the URL scheme name "StateToken"
 rather than the name of the particular state token type they
 represent in order to make the URL self describing. Thus it is
 possible to examine the URL and know, at a minimum, that it is a
 state token.

 Labeled name/value pairs are used within the token to allow new
 fields to be added. Processors of state tokens MUST be prepared
 to accept the fields in whatever order they are present and MUST
 ignore any fields they do not understand.
 The "Type" field specifies the type of the state information
 encoded in the state token. A URL is used in order to avoid
 namespace collisions.

 The "Res" field identifies the resource for which the state token

 specifies a particular state. Since commas and spaces are
 acceptable URL characters, a caret is used to delimit a URL.
 Since a caret is an acceptable URL character, any instances of it
 must be escaped using the % escape convention.

 The State-Info production is expanded upon in descriptions of
 specific state token types, and is intended to contain the state
 description information for a particular state token.

4.3 State Token Conditional Headers

4.3.1 If-State-Match

 If-State-Match = "If-State-Match" ":" ("AND" | "OR") 1#("<"
 State-Token ">")

https://datatracker.ietf.org/doc/html/rfc2068#section-3.2.1

 The If-State-Match header is intended to have similar
 functionality to the If-Match header defined in section 14.25 of
 RFC 2068.

 If the AND keyword is used and all of the state tokens identify
 the state of the resource, then the server MAY perform the
 requested method. If the OR keyword is used and any of the state
 tokens identifies the current state of the resource, then server
 MAY perform the requested method. If neither of the keyword
 requirements is met, the server MUST NOT perform the requested
 method, and MUST return a 412 (Precondition Failed) response.

4.3.2 If-None-State-Match

 If-None-State-Match = "If-None-State-Match" ":" 1#("<" State-
 Token ">")

 The If-None-State-Match header is intended to have similar
 functionality to the If-None-Match header defined in section

14.26 of RFC 2068.

 If any of the state tokens identifies the current state of the
 resource, the server MUST NOT perform the requested method.
 Instead, if the request method was GET, HEAD, INDEX, or GETMETA,
 the server SHOULD respond with a 304 (Not Modified) response,
 including the cache-related entity-header fields (particularly
 ETag) of the current state of the resource. For all other
 request methods, the server MUST respond with a status of 412
 (Precondition Failed).

 If none of the state tokens identifies the current state of the
 resource, the server MAY perform the requested method.

 Note that the "AND" and "OR" keywords specified with the If-
 State-Match header are intentionally not defined for If-None-
 State-Match, because this functionality is not required.

4.4 State Token Header

 State-Token-Header = "State-Token" ":" 1#("<" State-Token ">")
 The State Token header is intended to have similar functionality
 to the etag header defined in section 14.20 of RFC 2068. The
 purpose of the tag is to return state tokens defined on a

https://datatracker.ietf.org/doc/html/rfc2068#section-14.25
https://datatracker.ietf.org/doc/html/rfc2068#section-14.25
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068#section-14.20

 resource in a response. The contents of the state-token are not
 guaranteed to be exhaustive and are generally used to return a
 new state token that has been defined as the result of a method.
 For example, if a LOCK method were successfully executed on a
 resource the response would include a state token header with the
 lock state token included.

4.5 E-Tags
 E-tags have already been deployed using the If-Match and If-None-
 Match headers. Introducing two mechanisms to express e-tags
 would only confuse matters, therefore e-tags should continue to
 be expressed using quoted strings and the If-Match and If-None-
 Match headers.

5 Locking

5.1 Locking: Introduction

 Locking is used to arbitrate access to a resource amongst
 principals that have equal access rights to that resource.

 This specification allows locks to vary over two parameters, the
 number of principals involved and the type of access to be
 granted. Furthermore, this document only provides the definition
 of locking for one access type, write. However, the syntax is
 extensible, and allows the specification of other access types.

5.1.1 Exclusive Vs. Shared Locks

 The most basic form of lock is an exclusive lock. This is a lock
 where the access right in question is only granted to a single
 principal. The need for this arbitration results from a desire to
 avoid having to constantly merge results. In fact, many users so
 dislike having to merge that they would rather serialize their
 access to a resource rather than have to constantly perform
 merges.

 However, there are times when the goal of a lock is not to
 exclude others from exercising an access right but rather to
 provide a mechanism for principals to indicate that they intend
 to exercise their access right. Shared locks are provided for
 this case. A shared lock allows multiple principals to receive a
 lock, hence any principal with appropriate access can get the
 lock.

 With shared locks there are two trust sets that affect a
 resource. The first trust set is created by access permissions.
 Principals who are trusted, for example, may have permission to
 write the resource, those who are not, don't. Among those who

 have access permission to write the resource, the set of
 principals who have taken out a shared lock also must trust each
 other, creating a (typically) smaller trust set within the access
 permission write set.

 Starting with every possible principal on the Internet, in most
 situations the vast majority of these principals will not have
 write access to a given resource. Of the small number who do
 have write access, some principals may decide to guarantee their
 edits are free from overwrite conflicts by using exclusive write
 locks. Others may decide they trust their collaborators (the
 potential set of collaborators being the set of principals who
 have write permission) and use a shared lock, which informs their

 collaborators that a principal is potentially working on the
 resource.

 The WebDAV extensions to HTTP do not need to provide all of the
 communications paths necessary for principals to coordinate their
 activities. When using shared locks, principals may use any out
 of band communication channel to coordinate their work (e.g.,
 face-to-face interaction, written notes, post-it notes on the
 screen, telephone conversation, email, etc.) The intent of a
 shared lock is to let collaborators know who else is potentially
 working on a resource.

 Shared locks are included because experience from web distributed
 authoring systems has indicated that exclusive write locks are
 often too rigid. An exclusive write lock is used to enforce a
 particular editing process: take out exclusive write lock, read
 the resource, perform edits, write the resource, release the
 lock. What happens if the lock isn't released? While the time-
 out mechanism provides one solution, if you need to force the
 release of a lock immediately, it doesn't help much. Granted, an
 administrator can release the lock for you, but this could become
 a significant burden for large sites. In addition there is the
 problem that an administrator may not be immediately available.

 Despite their potential problems, exclusive write locks are
 extremely useful, since often a guarantee of freedom from
 overwrite conflicts is what is needed. The tradeoff described in
 this specification is to provide exclusive write locks, but also
 to provide a less strict mechanism in the form of shared locks
 which can be used by a set of people who trust each other and who
 have access to a communications channel external to HTTP which
 can be used to negotiate writing to the resource.

5.1.2 Required Support

 A WebDAV compliant server is not required to support locking in
 any form. If the server does support locking it may choose to
 support any combination of exclusive and shared locks for any
 access types.

 The reason for this flexibility is that server implementers have
 said that they are willing to accept minimum requirements on all
 services but locking. Locking policy strikes to the very heart of
 their resource management and versioning systems and they require
 control over what sort of locking will be made available. For
 example, some systems only support shared write locks while
 others only provide support for exclusive write locks while yet
 others use no locking at all. As each system is sufficiently
 different to merit exclusion of certain locking features, the
 authors are proposing that locking be allowed as the sole axis of
 negotiation within WebDAV.

5.2 LOCK Method

 The following sections describe the LOCK method, which is used to
 take out a lock of any access type. These sections on the LOCK
 method describe only those semantics that are specific to the
 LOCK method and are independent of the access type of the lock
 being requested. Once the general LOCK method has been
 described, subsequent sections describe the semantics of the
 "write" access type, and the write lock.

5.2.1 Operation

 A LOCK method invocation creates the lock specified by the Lock-
 Info header on the Request-URI. Lock method requests SHOULD NOT
 have a request body. A user-agent SHOULD submit an Owner header
 field with a lock request.

 A successful response to a lock invocation MUST include Lock-
 Token and Time-Out headers.

5.2.2 The Effect of Locks on Properties and Containers

 By default the scope of a lock is the entire state of the

 resource, including its body and associated properties. As a
 result, a lock on a resource also locks the resource's
 properties, and a lock on a property may lock a property's
 resource or may restrict the ability to lock the property's
 resource. Only a single lock token MUST be used when a lock
 extends to cover both a resource and its properties. Note that
 certain lock types MAY override this behavior.

 For containers, a lock also affects the ability to add or remove
 members. The nature of the effect depends upon the type of access
 control involved.

5.2.3 Locking Replicated Resources

 Some servers automatically replicate resources across multiple
 URLs. In such a circumstance the server MAY only accept a lock on
 one of the URLs if the server can guarantee that the lock will be
 honored across all the URLs.

5.2.4 Locking Multiple Resources

 The LOCK method supports locking multiple resources
 simultaneously by allowing for the listing of several URIs in the
 LOCK request. These URIs, in addition to the Request-URI, are
 then to be locked as a result of the LOCK method's invocation.
 When multiple resources are specified the LOCK method only
 succeeds if all specified resources are successfully locked.

 The Lock-Tree option of the lock request specifies that the
 resource and all its internal children (including internal
 collections, and their internal members) are to be locked. This
 is another mechanism by which a request for a lock on multiple
 resources can be specified.

 Currently existing locks can not be extended to cover more or
 less resources, and any request to expand or contract the number
 of resources in a lock MUST fail with a 409 Conflict status code.
 So, for example, if resource A is exclusively write locked and
 then the same principal asked to exclusively write lock resources
 A, B, and C, the request would fail as A is already locked and
 the lock can not be extended.

 A successful result will return a single lock token which
 represents all the resources that have been locked. If an UNLOCK
 is executed on this token, all associated resources are unlocked.

 If the lock can not be granted to all resources, a 406 Conflict
 status code MUST be returned with a response entity body
 containing a multiresponse XML element describing which
 resource(s) prevented the lock from being granted.

5.2.5 Interaction with other Methods

 The interaction of a LOCK with various methods is dependent upon
 the lock type. However, independent of lock type, a successful
 DELETE of a resource MUST cause all of its locks to be removed.

5.2.6 Lock Compatibility Table

 The table below describes the behavior that occurs when a lock
 request is made on a resource.

 Current lock state/ Shared Lock Exclusive Lock
 Lock request
 None True True
 Shared Lock True False
 Exclusive Lock False False*

 Legend: True = lock MAY be granted. False = lock MUST NOT be
 granted. *=if the principal requesting the lock is the owner of
 the lock, the lock MAY be regranted.

 The current lock state of a resource is given in the leftmost
 column, and lock requests are listed in the first row. The
 intersection of a row and column gives the result of a lock
 request. For example, if a shared lock is held on a resource,
 and an exclusive lock is requested, the table entry is "false",
 indicating the lock must not be granted.

 If an exclusive or shared lock is re-requested by the principal
 who owns the lock, the lock MUST be regranted. If the lock is
 regranted, the same lock token that was previously issued MUST be
 returned.

5.2.7 Status Codes

409 "Conflict" - The resource is locked, so the method has been
 rejected.

412 "Precondition Failed" - The included state-token was not
 enforceable on this resource or the request in the lock-info
 header could not be satisfied by the server.

5.2.8 Lock-Info Request Header

 The Lock-Info request header specifies the scope and type of a
 lock for a LOCK method request. The syntax specification below is
 extensible, allowing new type and scope identifiers to be added.

 LockInfo = "Lock-Info" ":" DAVLockType SP DAVLockScope [SP
 AdditionalLocks] [SP Lock-Tree]
 DAVLockType = "LockType" "=" DAVLockTypeValue
 DAVLockTypeValue = ("Write" | *(uchar | reserved))
 DAVLockScope = "LockScope" "=" DAVLockScopeValue
 DAVLockScopeValue = ("Exclusive" |"Shared" | *(uchar | reserved))
 AdditionalLocks = "AddLocks" "=" 1*("<" URI ">")
 Lock-Tree = "Lock-Tree" "=" ("True" | "False")

 The LockType field specifies the access type of the lock. At
 present, this specification only defines one lock type, the
 "Write" lock. The LockScope field specifies whether the lock is

 an exclusive lock, or a shared lock. The AddLocks field
 specifies additional URIs, beyond the Request-URI, to which the
 lock request applies. The LockTree field is used to specify
 recursive locks. If the LockTree field is "true", the lock
 request applies to the hierarchy traversal of the internal
 members resources of the Request-URI, and the AddLocks URIs,
 inclusive of the Request-URI and the AddLocks URIs. It is not an
 error if LockTree is true, and the Request-URI or the AddLocks
 URIs have no internal member resources. By default, the value of
 LockTree is "false", and this field MAY be omitted when its value
 is false.

5.2.9 Owner Request Header

5.2.9.1 Problem Description

 When discovering the list of owners of locks on a resource, a
 principal may want to be able to contact the owner directly. For
 this to be possible the lock discovery mechanism must provide
 enough information for the lock owner to be contacted.
 Additionally, programs may wish to be able to record structured
 information in the owner header so that other programs may be
 able to parse it later. Note, however, that these programs may
 not necessarily be coordinating so there need be no guarantee
 that the information can be parsed.

5.2.9.2 Solution Requirements

 Not all systems have authentication procedures that provide
 sufficient information to identify a particular user in a way
 that is meaningful to a person. In addition, many systems that do
 have sufficient information, such as a name and e-mail address,
 do not have the ability to associate this information with the
 lock discovery mechanism. Therefore a means is needed to allow
 principals to provide authentication in a manner which will be
 meaningful to a person.

 The From header (defined in RFC 2068), which contains only an
 email mailbox, is not sufficient for the purposes of quick
 identification. When desperately looking for someone to remove a
 lock, e-mail is often not sufficient. A telephone number (cell
 number, pager number, etc.) would be better. Furthermore, the
 email address in the From header only optionally includes the
 owners name and that name is often set to an alias anyway.
 Therefore a header more flexible than From is required.

 The value also needs to be such that both man and machine can
 place values in it and later retrieve those values.

5.2.9.3 Syntax

 Owner = "Owner" ":" (Coded-XML | quoted-string)
 Coded-XML = field-content ; XML where any character which is
 not legal in field-content (see section 4.2 of [Fielding et al.,
 1997]) is XML encoded

 The XML SHOULD provide information sufficient for either directly
 contacting the principal (such as a telephone number or e-mail
 URI), or for discovering the principal (such as the URL of a
 homepage) who owns the lock. The quoted string SHOULD provide a
 means for directly contacting the principal who owns the lock,

 such as a name and telephone number.

5.2.10 Time-Out Header

5.2.10.1 Problem Description

 In a perfect world principals take out locks, work on the

https://datatracker.ietf.org/doc/html/rfc2068

 resource, and then remove the lock when it is no longer needed.
 However, this process is frequently not completed, leaving active
 but unused locks. Reasons for this include client programs
 crashing and losing information about locks, users leaving their
 systems for the day and forgetting to remove their locks, etc. As
 a result of this behavior, servers need to establish a policy by
 which they can remove a lock without input from the lock owner.
 Once such a policy is instituted, the server also needs a
 mechanism to inform the principal of the policy.

5.2.10.2 Solution Requirements

 There are two basic lock removal policies: administrator and time
 based removal. In the case of administrator based removal, a
 principal other than the lock owner has sufficient access rights
 to order the lock removed, even though they did not take it out.
 The second policy type is time based removal. In this case, a
 timer is set as soon as the lock is created. Every time a method
 is executed on any resource covered by the lock, the timer is
 reset. If the timer runs out, the lock is removed.

 User-agents MUST assume that locks may arbitrarily disappear at
 any time. If their actions require confirmation of the existence
 of a lock then the If-State headers are available.

5.2.10.3 Syntax

 TimeOut = "Time-Out" ":" 1#TimeType
 TimeType = ("Second-" DAVTimeOutVal | "Infinite" | Extend)
 DAVTimeOutVal = 1*digit
 Extend = RFC-Reg | URL "-" Token ; The URL format is used for
 unregistered TimeTypes
 RFC-Req = Token ; This is a TimeType that has been published as
 an RFC

 Clients MAY include TimeOut headers in their LOCK requests.
 However the server is not required to honor or even consider the
 request. Clients MUST NOT submit a Time-Out request header with
 any method other than a LOCK method.

 A Time-Out request header MUST contain at least one TimeType and
 MAY contain multiple TimeType entries. The purpose of listing
 multiple TimeType is to indicate multiple different values and
 value types that are acceptable to the client. The client lists
 the TimeType entries in order of preference.

 The Time-Out response header MUST use a Second value, Infinite,
 or a TimeType the client has indicated familiarity with. The
 server MAY assume a client is familiar with any TimeType

 submitted in a Time-Out header.

 The "Second" TimeType specifies the number of seconds that MUST
 elapse between granting of the lock at the server, and the

 automatic removal of the lock. A server MUST not generate a time
 out value for "Second" greater than 2^32-1.

 The time out counter is restarted any time the client sends a
 method to any member of the lock, including unsupported methods,
 or methods which are unsuccessful. It is recommended that the
 HEAD method be used when the goal is simply to restart the time
 out counter.

 If the timeout expires then the lock is lost. Specifically the
 server SHOULD act as if an UNLOCK method was executed by the
 server on the resource using the lock token of the timed-out
 lock, performed with its override authority. Thus logs,
 notifications, and other mechanisms that act as side effects to
 the granting and removal of a lock will be properly informed as
 to the disposition of the lock.

 Servers are advised to pay close attention to the values
 submitted by clients, as they will be indicative of the type of
 activity the client intends to perform. For example, an applet
 running in a browser may need to lock a resource, but because of
 the instability of the environment within which the applet is
 running, the applet may be turned off without warning. As a
 result, the applet is likely to ask for a relatively small time-
 out value so that if the applet dies, the lock can be quickly
 harvested. However a document management system is likely to ask
 for an extremely long time-out because its user may be planning
 on going off-line.

5.2.11 Lock Response

 A successful lock response MUST contain a Lock-Token response
 header, a Time-Out header and a PROP element in the response body
 which contains the value of the LockDiscovery property.

5.2.11.1 Lock-Token Response Header

 If a resource is successfully locked then a lock-token header
 will be returned containing the lock token that represents the
 lock.

 Lock-Token = "Lock-Token" ":" URI

5.2.12 Example - Simple Lock Request

 LOCK /workspace/webdav/proposal.doc HTTP/1.1
 Host: webdav.sb.aol.com
 Lock-Info: LockType=Write LockScope=Exclusive
 Time-Out: Infinite; Second-4100000000
 Owner: <?XML:Namespace href="http://www.ietf.org/standards/dav/"
 AS =
 "D"/><D:HREF>http://www.ics.uci.edu/~ejw/contact.html</D:HREF>

 HTTP/1.1 200 OK
 Lock-Token: OpaqueLockToken:xyz122393481230912asdfa09s8df09s7df08
 sd0f98a098sda
 Time-Out: Second-604800
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace

 href ="http://www.ietf.org/standards/dav/" AS = "D"/>
 <D:Prop>
 <lockdiscovery>
 <activelock>
 <locktype>write</locktype>
 <lockscope>exclusive</lockscope>
 <addlocks/>
 <owner>
 <HREF>http://www.ics.uci.edu/~ejw/contact.html</HREF>
 </owner>
 <timeout>Second-604800</timeout>
 <locktoken>
 <HREF>
 OpaqueLockToken:xyz122393481230912asdfa09s8df09s7d
 f08sd0f98a098sda
 </HREF>
 </locktoken>
 </activelock>
 </lockdiscovery>
 </D:Prop>

 This example shows the successful creation of an exclusive write
 lock on resource

http://webdav.sb.aol.com/workspace/webdav/proposal.doc. The
 resource http://www.ics.uci.edu/~ejw/contact.html contains
 contact information for the owner of the lock. The server has an
 activity-based timeout policy in place on this resource, which
 causes the lock to automatically be removed after 1 week (604800
 seconds). The response has a Lock-Token header that gives the
 state token URL for the lock token generated by this lock
 request.

5.2.13 Example - Multi-Resource Lock Request

 LOCK /workspace/webdav/proposal.doc HTTP/1.1
 Host: webdav.sb.aol.com
 Lock-Info: LockType=Write LockScope=Exclusive
 Addlocks=<http://webdav.sb.aol.com/workspace/><http://foo.bar/bla
 h>
 Time-Out: Infinite, Second-4100000000
 Owner: <http://www.ics.uci.edu/~ejw/contact.html>

 HTTP/1.1 409 Conflict
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace href =
 "http://www.ietf.org/standards/dav/" As = "D"/>
 <D:MultiResponse>
 <Response>
 <HREF>

http://webdav.sb.aol.com/workspace/webdav/proposal.doc
 </HREF>
 <HREF>

http://webdav.sb.aol.com/workspace/webdav/
 </HREF>
 <Status>HTTP/1.1 202 Accepted</Status>
 </Response>
 <Response>
 <HREF>http://foo.bar/blah</HREF>
 <Status>HTTP/1.1 403 Forbidden</Status>
 </Response>
 </D:MultiResponse>

 This example shows a request for an exclusive write lock on three
 resources,

http://webdav.sb.aol.com/workspace/webdav/proposal.doc,

http://webdav.sb.aol.com/workspace/webdav/proposal.doc
http://www.ics.uci.edu/~ejw/contact.html
http://webdav.sb.aol.com/workspace/
http://foo.bar/bla
http://www.ics.uci.edu/~ejw/contact.html
http://webdav.sb.aol.com/workspace/webdav/proposal.doc
http://webdav.sb.aol.com/workspace/webdav/
http://webdav.sb.aol.com/workspace/webdav/proposal.doc

http://webdav.sb.aol.com/workspace/, and http://foo.bar/blah. In
 this request, the client has specified that it desires an
 infinite length lock, if available, otherwise a timeout of 4.1
 billion seconds, if available. The Owner header field specifies
 the web address for contact information for the principal taking
 out the lock.

 This lock request has failed, because the server rejected the
 lock request for http://foo.bar/blah. The 409 Conflict status
 code indicates that the server was unable to satisfy the request
 because there is a conflict between the state of the resources
 and the operation named in the request. Within the
 multiresponse, the 202 Accepted status code indicates that the
 lock method was accepted by the resources, and would have been
 completed if all resources named in the request were able to be
 locked. The 403 Forbidden status code indicates that the server
 does not allow lock requests on this resource.

5.3 Write Lock

 This section describes the semantics specific to the write access
 type for locks. The write lock is a specific instance of a lock
 type, and is the only lock type described in this specification.

5.3.1 Methods Restricted by Write Locks

 A write lock prevents a principal without the lock from
 successfully executing a PUT, POST, PATCH, PROPPATCH, MOVE,
 DELETE, MKCOL, ADDREF or DELREF on the locked resource. All other
 current methods, GET in particular, function independent of the
 lock.

 Note, however, that as new methods are created it will be
 necessary to specify how they interact with a write lock.

5.3.2 Write Locks and Properties

 While those without a write lock may not alter a property on a
 resource it is still possible for the values of live properties
 to change, even while locked, due to the requirements of their
 schemas. Only dead properties and live properties defined to
 respect locks are guaranteed to not change while write locked.

 If a property is write locked then a LOCK request on the
 associated resource MUST fail with a 409 "Conflict". Note that a
 write lock on a property MAY be extended to include the
 associated resource without the principal having explicitly
 requested the extension.

http://webdav.sb.aol.com/workspace/
http://foo.bar/blah
http://foo.bar/blah

5.3.3 Write Locks and Null Resources

 It is possible to assert a write lock on a null resource in order
 to lock the name. Please note, however, that locking a null
 resource effectively makes the resource non-null as the resource
 now has lock related properties defined on it.

5.3.4 Write Locks and Collections

 A write lock on a collection prevents the addition or removal of
 members of the collection. As a consequence, when a principal
 issues a request to create a new internal member of a collection
 using PUT or POST, or to remove an existing internal member of a
 collection using DELETE, this request MUST fail if the principal
 does not have a write lock on the collection.

 However, if a write lock request is issued to a collection
 containing internal member resources that are currently locked,
 the request MUST fail with a 409 Conflict status code.

5.3.5 Write Locks and COPY/MOVE

 The owner of a write lock MUST NOT execute a MOVE method on a
 resource they have locked. This specification intentionally does
 not define what happens if a MOVE method request is made on a
 locked resource by the lock's owner.

 A COPY method invocation MUST NOT duplicate any write locks
 active on the source.

5.3.6 Re-issuing Write Locks

 If a principal already owns a write lock on a resource, any
 future requests for the same type of write lock, on the same
 resource, while the principal's previous write lock is in effect,
 MUST result in a successful response with the same lock token as
 provided for the currently existing lock. Two lock requests are
 defined to be identical if their Lock-Info headers are identical.

5.3.7 Write Locks and The State-Token Header

5.3.7.1 Problem Definition

 If a user agent is not required to have knowledge about a lock
 when requesting an operation on a locked resource, the following
 scenario might occur. Program A, run by User A, takes out a write
 lock on a resource. Program B, also run by User A, has no
 knowledge of the lock taken out by Program A, yet performs a PUT
 to the locked resource. In this scenario, the PUT succeeds
 because locks are associated with a principal, not a program, and
 thus program B, because it is acting with principal A s
 credential, is allowed to perform the PUT. However, had program B
 known about the lock, it would not have overwritten the resource,
 preferring instead to present a dialog box describing the
 conflict to the user. Due to this scenario, a mechanism is needed
 to prevent different programs from accidentally ignoring locks
 taken out by other programs with the same authorization.

5.3.7.2 Solution Requirement

 The solution must not require principals to perform discovery in
 order to prevent accidental overwrites as this could cause race
 conditions.

 The solution must not require that clients guess what sorts of
 locks might be used and use if-state-match headers with wildcards
 to prevent collisions. The problem with trying to "guess" which
 locks are being used is that new lock types might be introduced,

 and the program would not know to "guess them". So, for example,
 a client might put in an if-state-match header with a wildcard
 specifying that if any write lock is outstanding then the
 operation should fail. However a new read/write lock could be
 introduced which the client would not know to put in the header.

5.3.7.3 State-Token Header

 The State-Token header, containing a lock token owned by the
 requesting principal, is used by the principal to indicate that
 the principal is aware of the existence of the lock specified by
 the lock token. It is used in the following way.

 If the following conditions are met:
 1. a user-agent has authenticated itself as a principal,
 2. the user-agent is submitting a method request to a
 resource

 on which the principal owns a write lock,
 3. the method is restricted by a write lock, as defined in
 the
 section "Methods Restricted by a Write Lock",
 then the method request MUST include a State-Token header with
 the lock token of the write lock, or the method fails with a 409
 Conflict status code. If multiple resources are involved with a
 method, such as a COPY or MOVE method, then the lock tokens, if
 any, for all involved resources, MUST be included in the State-
 Token request header.

 For example, Program A, used by user A, takes out a write lock on
 a resource. Program A then makes a number of PUT requests on the
 locked resource, all the requests contain a State-Token header
 which includes the write lock state token. Program B, also run by
 User A, then proceeds to perform a PUT to the locked resource.
 However program B was not aware of the existence of the lock and
 so does not include the appropriate state-token header. The
 method is rejected even though principal A is authorized to
 perform the PUT. Program B can, if it so chooses, now perform
 lock discovery and obtain the lock token. Note that program A and
 B can perform GETs without using the state-token header because
 the ability to perform a GET is not affected by a write lock.

 Having a lock state token provides no special access rights.
 Anyone can find out anyone else s lock state token by performing
 lock discovery. Locks are to be enforced based upon whatever
 authentication mechanism is used by the server, not based on the
 secrecy of the token values.

5.3.7.3.1 Example

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html
 State-Token: <OpaqueLockToken:123AbcEfg1284h23h2>
 <OpaqueLockToken:AAAASDFcalkjfdas12312>

 HTTP/1.1 200 OK

 In this example, both the source and destination are locked so
 two lock tokens must be submitted. If only one of the two
 resources was locked, then only one token would have to be
 submitted.

http://www.ics.uci.edu/users/f/fielding/index.html

5.4 Lock Tokens

5.4.1 Problem Description

 It is possible that once a lock has been granted it may be
 removed without the lock owner s knowledge. This can cause
 serialization problems if the lock owner executes methods
 thinking their lock is still active. Due to this, a mechanism is
 needed for a principal to predicate the successful execution of a
 message upon the continuing existence of a lock.

5.4.2 Lock Token Introduction

 A lock token is a type of state token that describes a particular
 lock. A lock token is returned by every successful LOCK
 operation, and can also be discovered through lock discovery on a
 resource.

 There are two types of lock tokens, a generic lock token, which
 is unique only for a particular resource, and an opaque lock
 token, which is unique across all resources for all time.

 Uniqueness for a particular resource prevents problems with long
 held outstanding lock tokens being confused with newer tokens.
 This uniqueness requirement is the same as for e-tags. Uniqueness
 across all resources for all time allows for tokens to be
 submitted across resources and servers without fear of confusion.

 Generic lock tokens, because of their relaxed uniqueness
 requirements, are faster to generate than opaque lock tokens.

5.4.3 Generic Lock Tokens

 Any valid URI can be used by the resource as a generic lock
 token. The only requirement is that the lock token MUST never
 have been issued previously on that resource. Because a lock
 token is only guaranteed to be unique on the resource that
 generated it, the lock token MUST NOT be submitted in a state-
 token request header or an if-state[-not]-match header on any
 resource but the resource that generated it.

5.4.4 OpaqueLockToken Lock Token

 The opaquelocktoken scheme is designed to be unique across all
 resources for all time. Due to this uniqueness quality, a client
 MAY submit an opaque lock token in a state-token request header
 and an if-state[-not]-match header on a resource other than the

 one that returned it.

 All resources MUST recognize the opaquelocktoken scheme and be
 able to, at minimum, recognize that the lock token was not
 generated by the resource. Note, however, that resources are not
 required to generate opaquelocktokens.

 In order to guarantee uniqueness across all resources for all
 time the opaquelocktoken requires the use of the GUID mechanism.

 Opaquelocktoken generators however have a choice of how they
 create these tokens. They can either generate a new GUID for
 every lock token they create, which is potentially very

 expensive, or they can create a single GUID and then add
 extension characters. If the second method is selected then the
 program generating the extensions MUST guarantee that the same
 extension will never be used twice with the associated GUID.

 Opaque-Lock-Token = "OpaqueLockToken" ":" GUID [Extension]
 GUID = ; As defined in [LEACH]
 Extension = *urlc ;urlc is defined in [Berners-Lee et al.,
 1997] (draft-fielding-url-syntax-07.txt)

5.5 UNLOCK Method

5.5.1 Problem Definition

 The UNLOCK method removes the lock identified by the lock token
 in the State-Token header from the Request-URI, and all other
 resources included in the lock.

5.5.2 Example

 UNLOCK /workspace/webdav/info.doc HTTP/1.1
 Host: webdav.sb.aol.com
 State-Token: OpaqueLockToken:123AbcEfg1284h23h2

 HTTP/1.1 200 OK

 In this example, the lock identified by the lock token
 "OpaqueLockToken:123AbcEfg1284h23h2" is successfully removed from
 the resource http://webdav.sb.aol.com/workspace/webdav/info.doc.
 If this lock included more than just one resource, the lock is

https://datatracker.ietf.org/doc/html/draft-fielding-url-syntax-07.txt
http://webdav.sb.aol.com/workspace/webdav/info.doc

 removed from those resources as well.

5.6 Discovery Mechanisms

5.6.1 Lock Capability Discovery

5.6.1.1 Problem Definition

 Since server lock support is optional, a client trying to lock a
 resource on a server can either try the lock and hope for the
 best, or perform some form of discovery to determine what lock
 capabilities the server supports. This is known as lock
 capability discovery. Lock capability discovery differs from
 discovery of supported access control types, since there may be
 access control types without corresponding lock types.

5.6.1.2 SupportedLock Property

 Name: http://www.ietf.org/standards/dav/lock/supportedlock
 Purpose: To provide a listing of the lock capabilities supported
 by the resource.
 Schema: http://www.ietf.org/standards/dav/
 Values: An XML document containing zero or more LockEntry XML
 elements.
 Description: The SupportedLock property of a resource returns a
 listing of the combinations of scope and access types which may
 be specified in a lock request on the resource. Note that the
 actual contents are themselves controlled by access controls so a

 server is not required to provide information the client is not
 authorized to see. If SupportedLock is available on "*" then it
 MUST define the set of locks allowed on all resources on that
 server.

5.6.1.3 LOCKENTRY XML Element

 Name: http://www.ietf.org/standards/dav/lockentry
 Purpose: Defines a DAVLockType/LockScope pair which may be
 legally used with a LOCK on the specified resource.
 Schema: http://www.ietf.org/standards/dav/
 Parent: A SupportedLock entry
 Values: LockType LockScope

http://www.ietf.org/standards/dav/lock/supportedlock
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/lockentry
http://www.ietf.org/standards/dav/

5.6.1.4 LOCKTYPE XML Element

 Name: http://www.ietf.org/standards/dav/locktype
 Purpose: Lists a DAVLockType
 Schema: http://www.ietf.org/standards/dav/
 Parent: LOCKENTRY
 Values: DAVLockTypeValue

5.6.1.5 LOCKSCOPE XML Element

 Name: http://www.ietf.org/standards/dav/lockscope
 Purpose: Lists a DAVLockScope
 Schema: http://www.ietf.org/standards/dav/
 Parent: LOCKENTRY
 Values: DAVLockScopeValue

5.6.1.6 Example

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Content-Length: xxxx
 Content-Type: text/xml

 <?XML:Namespace href =
 "http://www.ietf.org/standards/dav/" AS = "D"/>
 <D:PROPFIND>
 <prop><SupportedLock/></prop>
 </D:PROPFIND>

 HTTP/1.1 207 Multi-Response
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace
 href ="http://www.ietf.org/standards/dav/" AS = "D"/>
 <D:MultiResponse>
 <Response>
 <Prop>
 <SupportedLock>
 <LockEntry>
 <LockType>Write</LockType>
 <LockScope>Exclusive</LockScope>
 </LockEntry>
 <LockEntry>
 <LockType>Write</LockType>
 <LockScope>Shared</LockScope>
 </LockEntry>

http://www.ietf.org/standards/dav/locktype
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/lockscope
http://www.ietf.org/standards/dav/

 </SupportedLock>
 </Prop>
 <Status>HTTP/1.1 200 Success</Status>
 </Response>
 </D:MultiResponse>

5.6.2 Active Lock Discovery

5.6.2.1 Problem Definition

 If another principal locks a resource that a principal wishes to
 access, it is useful for the second principal to be able to find
 out who the first principal is.

5.6.2.2 Solution Requirements

 The lock discovery mechanism should provide a list of who has the
 resource locked, what locks they have, and what their lock tokens
 are. The lock tokens are useful in shared lock situations where
 two principals may want to guarantee that they do not overwrite
 each other. The lock tokens are also useful for administrative
 purposes so that an administrator can remove a lock by referring
 to its token.

5.6.2.3 LOCKDISCOVERY Property

 Name: http://www.ietf.org/standards/dav/lockdiscovery
 Purpose: To discover what locks are active on a resource
 Schema: http://www.ietf.org/standards/dav/
 Values= An XML document containing zero or more ActiveLock XML
 elements.

 Description: The LOCKDISCOVERY property returns a listing of who
 has a lock, what type of lock they have, the time out type and
 the time remaining on the time out, and the associated lock
 token. The server is free to withhold any or all of this
 information if the requesting principal does not have sufficient
 access rights to see the requested data. A server which supports
 locks MUST provide the LOCKDISCOVERY property on any resource
 with locks on it.

5.6.2.4 ACTIVELOCK XML Element

http://www.ietf.org/standards/dav/lockdiscovery
http://www.ietf.org/standards/dav/

 Name: http://www.ietf.org/standards/dav/activelock
 Purpose: A multivalued XML element that describes a particular
 active lock on a resource
 Schema: http://www.ietf.org/standards/dav/
 Parent: A LOCKDISCOVERY entry
 Values= LOCKTYPE LOCKSCOPE [ADDLOCKS] OWNER TIMEOUT LOCKTOKEN

5.6.2.5 OWNER XML Element

 Name: http://www.ietf.org/standards/dav/lock/owner
 Purpose: Returns owner information
 Schema: http://www.ietf.org/standards/dav/
 Parent: ACTIVELOCK
 Values= XML:REF | {any valid XML string}

5.6.2.6 TIMEOUT XML Element

 Name: http://www.ietf.org/standards/dav/timeout
 Purpose: Returns information about the timeout associated with
 the lock
 Schema: http://www.ietf.org/standards/dav/
 Parent: ACTIVELOCK
 Values= TimeType

5.6.2.7 ADDLOCKS XML Element

 Name: http://www.ietf.org/standards/dav/addlocks
 Purpose: Lists additional resources associated with this lock, if
 any.
 Schema: http://www.ietf.org/standards/dav/
 Parent: ACTIVELOCK
 Values= 1*HREF

5.6.2.8 LOCKTOKEN XML Element

 Name: http://www.ietf.org/standards/dav/statetoken
 Purpose: Returns the lock token
 Schema: http://www.ietf.org/standards/dav/
 Parent: ACTIVELOCK
 Values= HREF
 Description: The HREF contains a Lock-Token-URL.

5.6.2.9 Example

http://www.ietf.org/standards/dav/activelock
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/lock/owner
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/timeout
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/addlocks
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/statetoken
http://www.ietf.org/standards/dav/

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Content-Length: xxxx
 Content-Type: text/xml

 <?XML:Namespace href =
 "http://www.ietf.org/standards/dav/" AS = "D"/>
 <D:PROPFIND>
 <prop><lockdiscovery/></prop>
 </D:PROPFIND>

 HTTP/1.1 207 Multi-Response
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML:Namespace
 href ="http://www.ietf.org/standards/dav/" AS = "D"/>
 <D:MultiResponse>
 <Response>
 <Prop>
 <lockdiscovery>
 <activelock>
 <locktype>write</locktype>
 <lockscope>exclusive</lockscope>
 <addlocks>
 <HREF>http://foo.com/doc/</HREF>
 </addlocks>
 <owner>Jane Smith</owner>
 <timeout>Infinite</timeout>
 <locktoken>
 <HREF>iamuri:unique!!!!!</HREF>
 </locktoken>
 </activelock>

 </lockdiscovery>
 </Prop>
 <Status>HTTP/1.1 200 Success</Status>
 </Response>
 </D:MultiResponse>

 This resource has a single exclusive write lock on it, with an
 infinite time out. This same lock also covers the resource

http://foo.com/doc/.

6 Version Control

http://foo.com/doc/

 [TBD]

7 Internationalization Support
 [TBD]

8 Security Considerations
 [TBD]

9 Copyright

 Copyright (C) The Internet Society October 13, 1997. All Rights
 Reserved.

 This document and translations of it may be copied and furnished
 to others, and derivative works that comment on or otherwise
 explain it or assist in its implementation may be prepared,
 copied, published and distributed, in whole or in part, without
 restriction of any kind, provided that the above copyright notice
 and this paragraph are included on all such copies and derivative
 works. However, this document itself may not be modified in any
 way, such as by removing the copyright notice or references to
 the Internet Society or other Internet organizations, except as
 needed for the purpose of developing Internet standards in which
 case the procedures for copyrights defined in the Internet
 Standards process must be followed, or as required to translate
 it into languages other than English.

 The limited permissions granted above are perpetual and will not
 be revoked by the Internet Society or its successors or
 assignees.

 This document and the information contained herein is provided on
 an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
 OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

10 Acknowledgements

 Terry Allen, Harald Alvestrand, Alan Babich, Dylan Barrell,
 Bernard Chester, Dan Connolly, Jim Cunningham, Ron Daniel, Jr.,
 Jim Davis, Keith Dawson, Mark Day, Martin Duerst, David Durand,
 Lee Farrell, Chuck Fay, Roy Fielding, Mark Fisher, Alan Freier,
 George Florentine, Jim Gettys, Phill Hallam-Baker, Dennis
 Hamilton, Steve Henning, Alex Hopmann, Andre van der Hoek, Ben
 Laurie, Paul Leach, Ora Lassila, Karen MacArthur, Steven Martin,

 Larry Masinter, Michael Mealling, Keith Moore, Henrik Nielsen,

 Kenji Ota, Bob Parker, Glenn Peterson, Jon Radoff, Saveen Reddy,
 Henry Sanders, Christopher Seiwald, Judith Slein, Mike Spreitzer,
 Einar Stefferud, Ralph Swick, Kenji Takahashi, Robert Thau, John
 Turner, Sankar Virdhagriswaran, Fabio Vitali, Gregory Woodhouse,
 Lauren Wood

11 References

 [Berners-Lee, 1997] T. Berners-Lee, "Metadata Architecture."
 Unpublished white paper, January 1997.

http://www.w3.org/pub/WWW/DesignIssues/Metadata.html.

 [Bradner, 1997] S. Bradner, "Key words for use in RFCs to
 Indicate Requirement Levels." RFC 2119, BCP 14. Harvard
 University. March, 1997.

 [Bray, Sperberg-McQueen, 1997] T. Bray, C. M. Sperberg-McQueen,
 "Extensible Markup Language (XML): Part I. Syntax", WD-xml-
 lang.html, http://www.w3.org/pub/WWW/TR/WD-xml-lang.html.

 [Connolly et al, 1997] D. Connolly, R. Khare, H.F. Nielsen, "PEP
 - an Extension Mechanism for HTTP", Internet draft, work-in-
 progress. draft-ietf-http-pep-04.txt,

ftp://ds.internic.net/internet-drafts/draft-ietf-http-pep-04.txt.

 [Fielding et al., 1997] R. Fielding, J. Gettys, J. Mogul, H.
 Frystyk, T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1." RFC 2068. U.C. Irvine, DEC, MIT/LCS. January, 1997.

ftp://ds.internic.net/rfc/rfc2068.txt

 [Lasher, Cohen, 1995] R. Lasher, D. Cohen, "A Format for
 Bibliographic Records," RFC 1807. Stanford, Myricom. June, 1995.

ftp://ds.internic.net/rfc/rfc1807.txt

 [Maloney, 1996] M. Maloney, "Hypertext Links in HTML." Internet
 draft (expired), work-in-progress, January, 1996.

 [MARC, 1994] Network Development and MARC Standards, Office, ed.
1994. "USMARC Format for Bibliographic Data", 1994. Washington,

 DC: Cataloging Distribution Service, Library of Congress.

 [Miller et al., 1996] J. Miller, T. Krauskopf, P. Resnick, W.
 Treese, "PICS Label Distribution Label Syntax and Communication

http://www.w3.org/pub/WWW/DesignIssues/Metadata.html
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
http://www.w3.org/pub/WWW/TR/WD-xml-lang.html
https://datatracker.ietf.org/doc/html/draft-ietf-http-pep-04.txt
ftp://ds.internic.net/internet-drafts/draft-ietf-http-pep-04.txt
https://datatracker.ietf.org/doc/html/rfc2068
ftp://ds.internic.net/rfc/rfc2068.txt
https://datatracker.ietf.org/doc/html/rfc1807
ftp://ds.internic.net/rfc/rfc1807.txt

 Protocols" Version 1.1, W3C Recommendation REC-PICS-labels-
961031. http://www.w3.org/pub/WWW/TR/REC-PICS-labels-961031.html.

 [Slein et al., 1997] J. A. Slein, F. Vitali, E. J. Whitehead,
 Jr., D. Durand, "Requirements for Distributed Authoring and
 Versioning on the World Wide Web." Internet-draft, work-in-
 progress, draft-ietf-webdav-requirements-04.txt,

ftp://ds.internic.net/internet-drafts/draft-ietf-webdav-
 requirements-04.txt.

 [WebDAV, 1997] WEBDAV Design Team. "A Proposal for Web Metadata
 Operations." Unpublished manuscript.

http://www.ics.uci.edu/~ejw/authoring/proposals/metadata.html

 [Weibel et al., 1995] S. Weibel, J. Godby, E. Miller, R. Daniel,
 "OCLC/NCSA Metadata Workshop Report."

http://purl.oclc.org/metadata/dublin_core_report.

 [Yergeau, 1997] F. Yergeau, "UTF-8, a transformation format of
 Unicode and ISO 10646", Internet Draft, work-in-progress, draft-

 yergeau-utf8-rev-00.txt, http://www.internic.net/internet-
 drafts/draft-yergeau-utf8-rev-00.txt.

12 Authors' Addresses

Y. Y. Goland
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 Email yarong@microsoft.com

E. J. Whitehead, Jr.
 Dept. Of Information and Computer Science
 University of California, Irvine
 Irvine, CA 92697-3425
 Email: ejw@ics.uci.edu

A. Faizi
 Netscape

685 East Middlefield Road
 Mountain View, CA 94043
 Email: asad@netscape.com

S. R Carter
 Novell

http://www.w3.org/pub/WWW/TR/REC-PICS-labels-961031.html
https://datatracker.ietf.org/doc/html/draft-ietf-webdav-requirements-04.txt
ftp://ds.internic.net/internet-drafts/draft-ietf-webdav-
http://www.ics.uci.edu/~ejw/authoring/proposals/metadata.html
http://purl.oclc.org/metadata/dublin_core_report
http://www.internic.net/internet-

1555 N. Technology Way
 M/S ORM F111
 Orem, UT 84097-2399
 Email srcarter@novell.com

D. Jensen
 Novell

1555 N. Technology Way
 M/S ORM F111
 Orem, UT 84097-2399
 Email dcjensen@novell.com

