
WEBDAV Working Group Y.Y. Goland, Microsoft

INTERNET DRAFT E.J. Whitehead, Jr., UC Irvine
<draft-ietf-webdav-protocol-05> A. Faizi, Netscape
 S.R. Carter, Novell
 D. Jensen, Novell
Expires April, 1998 November 19, 1997

Extensions for Distributed Authoring on the World Wide Web -- WEBDAV

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or made obsolete by other
 documents at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress".

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited. Please send comments to
 the Distributed Authoring and Versioning (WEBDAV) working group at
 <w3c-dist-auth@w3.org>, which may be joined by sending a message
 with subject "subscribe" to <w3c-dist-auth-request@w3.org>.

 Discussions of the WEBDAV working group are archived at
 <URL:http://www.w3.org/pub/WWW/Archives/Public/w3c-dist-auth>.

Abstract

 This document specifies a set of methods, headers, and content-types
 ancillary to HTTP/1.1 for the management of resource properties,
 creation and management of resource collections, namespace
 manipulation, resource locking (collision avoidance), and efficient
 transmission of resource changes.

Changes

1.1. Changes since draft-ietf-webdav-protocol-04.txt

 [Editor's note: This section will not appear in the final form of
 this document. Its purpose is to provide a concise list of changes

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-05
https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-04.txt

 from the previous revision of the draft for use by reviewers.]

 Added this change section.
INTERNET-DRAFT WebDAV November 19, 1997

 Removed scoping for namespaces so the namespace for
 every element is explicitly stated.

 Changed the syntax from <?XML:Namespace.../> to <?namespace...?>.

 Removed propfindresult, this was left over from the old search
 format.

 Changed all the DAV XML element names to lower case.

 Changed the property format to use Name and Namespace rather than
 name and schema.

 Removed proploc attribute and removed section on GETting, DELETEing,
 and PUTing properties since we do not provide a mechanism for
 getting a URI for properties. Also removed the requirement that
 properties be URI addressable.

 Removed quoted string choice from owner header, it is just XML.

 Made all the HTTP error codes use the same format.

 Changed the name of the create element in PROPPATCH to set, the new
 name seems to cause less confusion.

 Moved all headers in the draft to a single section.

 Deleted the state token section of the draft and moved the state
 token headers to the header section of the draft. Removed the state
 token header.

 Changed the write lock section to state that a Lock-Token request
 header, not a state-token request header, is to be submitted on
 request for write locked resources.

 Created a "generic" XML element section for XML elements that get
 repeatedly re-used throughout the spec. I moved LINK XML element to
 this section.

 Made multistatus and Schema discovery their own level one sections.

 Collected all the properties together.

 Removed all references to the possibility of properties have their
 own URIs. This includes removing the property identifier section.

 Separated the section on web collections and namespaces into two
 separate sections.

 Collected all the new response codes together into their own
 section.
INTERNET-DRAFT WebDAV November 19, 1997

 Changed the XML multiresponse element name to multistatus.

 Added a stand alone section on levels of DAV compliance. I also went
 method by method, property by property, to specify compliance
 requirements.

 Added an introduction.

 Changed all the "True" and "False" to "T" and "F".

 Altered the first two paragraphs of the Property Names section to
 make the relationship between a property's name and its schema a
 little clearer. I also added some text in the same section defining
 a property name as a namespace and element.

 Added a second paragraph to property model for http resources -
 overview. This paragraph clarifies why XML was chosen.

 Added a 409 Conflict error to move to cover attempts to move a
 collection with members.

 Changed the collection requirement to read the collections SHOULD
 end with "/". Also added a SHOULD about returning a location header
 if the client submits a URL for a collection without a trailing "/".

 Moved the owner header into the body due to size concerns.

 Replaced the iscollection xml element with resourcetype.

 Moved the DAV property to the DAV header that is returned with
 OPTIONS.

 Folded the tree draft into this draft. Changed the DELETE, COPY,
 and MOVE sections to include their effect on collections as taken
 from the tree draft. Created a Depth header section and put in the
 general rules that were in the introduction to the tree draft. I
 also added the 102 response and response-status header.

 Removed the versioning section.

 Put all the methods into a single section.

 Replaced the PROPFIND request body with a propfind header. Now the
 response can be cached just using vary.

 Nuked resinfo for INDEX and combined it with multistatus which is
 now used for both INDEX and PROPFIND. Stripped down INDEX as
 agreed.

 Removed the problem definition and proposed solution sections. We
 can always cut and paste them together from the older version if we
 feel we need them but this draft is supposed to be a dry run for
INTERNET-DRAFT WebDAV November 19, 1997

 last call and last call documents do not have problem
 definition/proposed solution sections.

 Killed the section on schema discovery, it is controversial and we
 aren't going to be able to require it. We should specify it in a
 different spec.

 Added a section on notational conventions used within the document.

 Moved the terminology section to the end of the document to provide
 better flow from the high-level introduction to the specific
 introduction sections.

 Increased the numeric value of the 4xx status codes introduced in
 this specification to avoid conflicts with the new revision of the
 HTTP/1.1 specification, which introduces two new 4xx status codes.

 Wrote internationalization concerns section.

 Added XML version number to all examples.
INTERNET-DRAFT WebDAV November 19, 1997

Contents

STATUS OF THIS MEMO...1
ABSTRACT..1
CHANGES...1

1.1. Changes since draft-ietf-webdav-protocol-04.txt..................1
CONTENTS..5
2. INTRODUCTION...8
3. DATA MODEL FOR RESOURCE PROPERTIES.................................9
3.1. The Resource Property Model......................................9
3.2. Existing Metadata Proposals.....................................10
3.3. Properties and HTTP Headers.....................................10
3.4. Property Values...10

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-04.txt

3.5. Property Names..11
4. COLLECTIONS OF WEB RESOURCES......................................11
4.1. Collection Resources..11
4.2. Creation and Retrieval of Collection Resources..................12
4.3. HTTP URL Namespace Model..13
4.4. Source Resources and Output Resources...........................13
5. LOCKING...14

5.1. Exclusive Vs. Shared Locks......................................14
5.2. Required Support..15
5.3. Lock Tokens...16
5.4. opaquelocktoken Lock Token URI Scheme...........................16
5.5. Lock Capability Discovery.......................................16
5.6. Active Lock Discovery...17
6. WRITE LOCK..17
6.1. Methods Restricted by Write Locks...............................17

6.2. Write Locks and Properties......................................17
6.3. Write Locks and Null Resources..................................17
6.4. Write Locks and Collections.....................................18
6.5. Write Locks and COPY/MOVE.......................................18
6.6. Re-issuing Write Locks..18
6.7. Write Locks and The Lock-Token Request Header...................18
7. NOTATIONAL CONVENTIONS..19

8. HTTP METHODS FOR DISTRIBUTED AUTHORING............................19
8.1. PROPFIND..19
8.2. PROPPATCH...23
8.3. MKCOL Method..25
8.4. INDEX Method..26
8.5. DELREF Method...28
8.6. ADDREF Method...28
8.7. GET, HEAD for Collections.......................................29

8.8. POST for Collections..29
8.9. DELETE..29
8.10. PUT..31
INTERNET-DRAFT WebDAV November 19, 1997

8.11. COPY Method..31
8.12. MOVE Method..35
8.13. LOCK Method..38

8.14. UNLOCK Method..42
8.15. PATCH Method...43
9. DAV HEADERS...47
9.1. Collection-Member Header..47
9.2. DAV Header..47

9.3. Depth Header..47
9.4. Destination Header..48
9.5. Destroy Header..48

9.6. Enforce-Live-Properties Header..................................49
9.7. If-None-State-Match...49
9.8. If-State-Match..50
9.9. Lock-Info Request Header..50
9.10. Lock-Token Request Header......................................51
9.11. Lock-Token Response Header.....................................51
9.12. Overwrite Header...52

9.13. Propfind Request Header..52
9.14. Status-URI Response Header.....................................52
9.15. Timeout Header...52
10. RESPONSE CODE EXTENSIONS TO RFC 2068.............................54
10.1. 102 Processing...54
10.2. 207 Multi-Status...54
10.3. 418 Unprocessable Entity.......................................54
10.4. 419 Insufficient Space on Resource.............................54

10.5. 420 Method Failure...54
11. MULTI-STATUS RESPONSE..54
11.1. multistatus XML Element..55
11.2. response XML Element...55
11.3. status XML Element...55
11.4. responsedescription XML Element................................55
12. GENERIC DAV XML ELEMENTS...55

12.1. href XML Element...56
12.2. link XML Element...56
12.3. prop XML element...57
13. DAV PROPERTIES...57
13.1. creationdate Property..57
13.2. displayname Property...57
13.3. get-content-language Property..................................58
13.4. get-content-length Property....................................58

13.5. get-content-type Property......................................58
13.6. get-etag Property..58
13.7. get-last-modified Property.....................................59
13.8. index-content-language Property................................59
INTERNET-DRAFT WebDAV November 19, 1997

13.9. index-content-length Property..................................59
13.10. index-content-type Property...................................59
13.11. index-etag Property...59

13.12. index-last-modified Property..................................60

https://datatracker.ietf.org/doc/html/rfc2068

13.13. lockdiscovery Property..60
13.14. resourcetype Property...62
13.15. Source Link Property Type.....................................62
13.16. supportedlock Property..63
14. DAV COMPLIANCE LEVELS..64
14.1. Level 1..64
14.2. Level 2..64

15. INTERNATIONALIZATION SUPPORT.....................................65
16. SECURITY CONSIDERATIONS..66
17. TERMINOLOGY..66
18. COPYRIGHT..66
19. ACKNOWLEDGEMENTS...67
20. REFERENCES...69
21. AUTHORS' ADDRESSES...71
INTERNET-DRAFT WebDAV November 19, 1997

2. Introduction

 This document describes an extension to the HTTP/1.1 protocol that
 allows clients to perform remote web content authoring operations.
 This extension provides a coherent set of methods, headers, request
 entity body formats, and response entity body formats that provide
 operations for:

 Properties: The ability to create, remove, and query information
 about Web pages, such as its author, creation date, etc. Also, the
 ability to link pages of any media type to related pages.

 Collections: The ability to create sets of related documents, and to
 receive a listing of pages at a particular hierarchy level (like a
 directory listing in a file system).

 Locking: The ability to keep more than one person from working on a
 document at the same time. This prevents the "lost update problem"
 in which modifications are lost as first one author, then another
 writes their changes without merging the other author's changes

 Namespace Operations: The ability to copy and move Web resources

 Efficient Update: The ability to send changes which are proportional
 to the size of the change rather than retransmitting the entire
 resource.

 Requirements and rationale for these operations are described in a
 companion document, "Requirements for a Distributed Authoring and
 Versioning Protocol for the World Wide Web" [Slein et al., 1997].

 The sections below provide a detailed introduction to resource
 properties (Section 3), collections of resources (Section 4), and

 locking operations (Section 5). These sections introduce the
 abstractions manipulated by the WebDAV-specific HTTP methods
 described in Section 8, "HTTP Methods for Distributed Authoring".

 In HTTP/1.1, method parameter information was exclusively encoded in
 HTTP headers. Unlike HTTP/1.1, WebDAV, encodes method parameter
 information either in an Extensible Markup Language (XML) [Bray,
 Sperberg-McQueen, 1997] request entity body, or in an HTTP header.
 The use of XML to encode method parameters was motivated by the
 ability to add extra XML elements to existing structures, providing
 extensibility, and by XML's ability to encode information in ISO
 10646 character sets, providing internationalization support. As a
 rule of thumb, parameters are encoded in XML entity bodies when they
 have unbounded length, or when they may be shown to a human user and
 hence require encoding in an ISO 10646 character set. Otherwise,
 parameters are encoded within an HTTP header. Section 9 describes
 the new HTTP headers used with WebDAV methods.
INTERNET-DRAFT WebDAV November 19, 1997

 In addition to encoding method parameters, XML is used in WebDAV to
 encode the responses from methods, providing the extensibility and
 internationalization advantages of XML for method output, as well as
 input. XML elements used in this specification are defined in

Section 12.

 While the response codes provided by HTTP/1.1 are sufficient to
 describe the preponderance of error conditions encountered by WebDAV
 methods, there are some errors that do not fall neatly into the
 existing categories. New status codes developed for the WebDAV
 methods are defined in Section 10. Since some WebDAV methods may
 operate over many resources, the multiresponse status type has been
 introduced to return status information for multiple resources.
 Multiresponse status is described in Section 11.

 The properties mechanism is employed by WebDAV to store information
 about the current state of the resource. For example, when a lock
 is taken out on a resource, a lock information property describes
 the current state of the lock. Section 13 defines the properties
 used within the WebDAV specification.

 Finishing off the specification are sections on what it means to be
 compliant with this specification (Section 14), on
 internationalization support (Section 15), and on security (Section

16).

3. Data Model for Resource Properties

3.1. The Resource Property Model

 Properties are pieces of data that describe the state of a resource.
 Properties are data about data.

 Properties are used in distributed authoring environments to provide
 for efficient discovery and management of resources. For example, a
 'subject' property might allow for the indexing of all resources by
 their subject, and an 'author' property might allow for the
 discovery of what authors have written which documents.

 The DAV property model consists of name/value pairs. The name of a
 property identifies the property's syntax and semantics, and
 provides an address by which to refer to that syntax and semantics.

 There are two categories of properties: "live" and "non-live". A
 live property has its syntax and semantics enforced by the server.
 This represents the two cases of a) the value of a property is read-
 only, maintained by the server, and b) the value of the property is
 maintained by the client, but server performs syntax checking on
 submitted values. A non-live property has its syntax and semantics
 enforced by the client; the server merely records the value of the
 property verbatim.
INTERNET-DRAFT WebDAV November 19, 1997

3.2. Existing Metadata Proposals

 Properties have long played an essential role in the maintenance of
 large document repositories, and many current proposals contain some
 notion of a property, or discuss web metadata more generally. These
 include PICS [Miller et al., 1996], PICS-NG, the Rel/Rev draft
 [Maloney, 1996], Web Collections, XML [Bray, Sperberg-McQueen,
 1997], several proposals on representing relationships within HTML,
 digital signature manifests (DCMF), and a position paper on Web
 metadata architecture [Berners-Lee, 1997]. Work on PICS-NG and Web
 Collections has been subsumed by the Resource Definition Framework
 (RDF) metadata activity of the World Wide Web Consortium, which
 consists of a network-based data model and an XML representation of
 that model.

 Some proposals come from a digital library perspective. These
 include the Dublin Core [Weibel et al., 1995] metadata set and the
 Warwick Framework [Lagoze, 1996], a container architecture for
 different metadata schemas. The literature includes many examples
 of metadata, including MARC [MARC, 1994], a bibliographic metadata
 format, and RFC 1807 [Lasher, Cohen, 1995], a technical report
 bibliographic format employed by the Dienst system. Additionally,
 the proceedings from the first IEEE Metadata conference describe
 many community-specific metadata sets.

 Participants of the 1996 Metadata II Workshop in Warwick, UK

https://datatracker.ietf.org/doc/html/rfc1807

 [Lagoze, 1996], noted that, "new metadata sets will develop as the
 networked infrastructure matures" and "different communities will
 propose, design, and be responsible for different types of
 metadata." These observations can be corroborated by noting that
 many community-specific sets of metadata already exist, and there is
 significant motivation for the development of new forms of metadata
 as many communities increasingly make their data available in
 digital form, requiring a metadata format to assist data location
 and cataloging.

3.3. Properties and HTTP Headers

 Properties already exist, in a limited sense, in HTTP message
 headers. However, in distributed authoring environments a
 relatively large number of properties are needed to describe the
 state of a resource, and setting/returning them all through HTTP
 headers is inefficient. Thus a mechanism is needed which allows a
 principal to identify a set of properties in which the principal is
 interested and to then set or retrieve just those properties.

3.4. Property Values

 The value of a property is expressed as a well-formed XML document.
INTERNET-DRAFT WebDAV November 19, 1997

 XML has been chosen because it is a flexible, self-describing,
 structured data format that supports rich schema definitions, and
 because of its support for multiple character sets. XML's self-
 describing nature allows any property's value to be extended by
 adding new elements. Older clients will not break because they will
 still have the data specified in the original schema and will ignore
 elements they do not understand. XML's support for multiple
 character sets allows human-readable properties to be encoded and
 read in a character set familiar to the user.

3.5. Property Names

 A property name is a universally unique identifier that is
 associated with a schema that provides information about the syntax
 and semantics of the property.

 Because a property's name is universally unique, clients can depend
 upon consistent behavior for a particular property across multiple
 resources, so long as that property is "live" on the resources in
 question.

 The XML namespace mechanism, which is based on URIs, is used to name
 properties because it provides a mechanism to prevent namespace
 collisions and for varying degrees of administrative control.

 The property namespace is flat; that is, no hierarchy of properties
 is explicitly recognized. Thus, if a property A and a property A/B
 exist on a resource, there is no recognition of any relationship
 between the two properties. It is expected that a separate
 specification will eventually be produced which will address issues
 relating to hierarchical properties.

 Finally, it is not possible to define the same property twice on a
 single resource, as this would cause a collision in the resource's
 property namespace.

4. Collections of Web Resources

 This section provides a description of a new type of Web resource,
 the collection, and discusses its interactions with the HTTP URL
 namespace. The purpose of a collection resource is to model
 collection-like objects (e.g., filesystem directories) within a
 server's namespace.

 All DAV compliant resources MUST support the HTTP URL namespace
 model specified herein.

4.1. Collection Resources

 A collection is a resource whose state consists of an unordered list
 of internal members, an unordered list of external members, and a
INTERNET-DRAFT WebDAV November 19, 1997

 set of properties. An internal member resource MUST have a URI that
 is immediately relative to the base URI of the collection, that is,
 a relative URI in which "../" is illegal, which MUST begin with "./"
 and which SHOULD contain a "/" at the end of the URI if the internal
 member resource is itself a collection.

 An external member resource MUST be an absolute URI that is not an
 internal URI. Any given internal or external URI MUST only belong
 to the collection once, i.e., it is illegal to have multiple
 instances of the same URI in a collection. Properties defined on
 collections behave exactly as do properties on non-collection
 resources.

 There is a standing convention that when a collection is referred to
 by its name without a trailing slash, the trailing slash is
 automatically appended. Due to this, a resource MAY accept a URI
 without a trailing "/" to point to a collection. In this case it
 SHOULD return a location header in the response pointing to the URL
 ending with the "/". For example, if a client performs an INDEX on

http://foo.bar/blah (no trailing slash), the resource
http://foo.bar/blah/ (trailing slash) MAY respond as if the

http://foo.bar/blah
http://foo.bar/blah/

 operation were invoked on it, and SHOULD return a location header
 with http://foo.bar/blah/ in it.

4.2. Creation and Retrieval of Collection Resources

 This document specifies the MKCOL method to create new collection
 resources, rather than using the existing HTTP/1.1 PUT or POST
 method, for the following reasons

 In HTTP/1.1, the PUT method is defined to store the request body at
 the location specified by the Request-URI. While a description
 format for a collection can readily be constructed for use with PUT,
 the implications of sending such a description to the server are
 undesirable. For example, if a description of a collection that
 omitted some existing resources were PUT to a server, this might be
 interpreted as a command to remove those members. This would extend
 PUT to perform DELETE functionality, which is undesirable since it
 changes the semantics of PUT, and makes it difficult to control
 DELETE functionality with an access control scheme based on methods.

 While the POST method is sufficiently open-ended that a _create a
 collection_ POST command could be constructed, this is undesirable
 because it would be difficult to separate access control for
 collection creation from other uses of POST.

 This document specifies the INDEX method for listing the contents of
 a collection, rather than relying on the existing HTTP/1.1 GET
 method. This is to avoid conflict with the de-facto standard
 practice of redirecting a GET request on a directory to its
 index.html resource.
INTERNET-DRAFT WebDAV November 19, 1997

 The exact definition of the behavior of GET and PUT on collections
 is defined later in this document.

4.3. HTTP URL Namespace Model

 The HTTP URL Namespace is a hierarchical namespace where the
 hierarchy is delimited with the "/" character. DAV compliant
 resources MUST maintain the consistency of the HTTP URL namespace.
 Any attempt to create a resource (excepting the root member of a
 namespace) that would not be the internal member of a collection
 MUST fail. For example, if the collection http://www.foo.bar.org/a/

exists, but http://www.foo.bar.org/a/b/does not exist, an attempt to
 create http://www.foo.bar.org/a/b/c must fail.

4.4. Source Resources and Output Resources

http://foo.bar/blah/
http://www.foo.bar.org/a/exists
http://www.foo.bar.org/a/exists
http://www.foo.bar.org/a/b/does
http://www.foo.bar.org/a/b/c

 For many resources, the entity returned by a GET method exactly
 matches the persistent state of the resource, for example, a GIF
 file stored on a disk. For this simple case, the URL at which a
 resource is accessed is identical to the URL at which the source
 (the persistent state) of the resource is accessed. This is also
 the case for HTML source files that are not processed by the server
 prior to transmission.

 However, the server can sometimes process HTML resources before they
 are transmitted as a return entity body. For example, server-side-
 include directives within an HTML file instruct a server to replace
 the directive with another value, such as the current date. In this
 case, what is returned by GET (HTML plus date) differs from the
 persistent state of the resource (HTML plus directive). Typically
 there is no way to access the HTML resource containing the
 unprocessed directive.

 Sometimes the entity returned by GET is the output of a data-
 producing process that is described by one or more source resources
 (that may not even have a location in the URL namespace). A single
 data-producing process may dynamically generate the state of a
 potentially large number of output resources. An example of this is
 a CGI script that describes a "finger" gateway process that maps
 part of the namespace of a server into finger requests, such as

http://www.foo.bar.org/finger_gateway/user@host.

 In the absence of distributed authoring capabilities, it is
 acceptable to have no mapping of source resource(s) to the URI
 namespace. In fact, preventing access to the source resource(s) has
 desirable security benefits. However, if remote editing of the
 source resource(s) is desired, the source resource(s) should be
 given a location in the URI namespace. This source location should
 not be one of the locations at which the generated output is
 retrievable, since in general it is impossible for the server to
 differentiate requests for source resources from requests for
INTERNET-DRAFT WebDAV November 19, 1997

 process output resources. There is often a many-to-many
 relationship between source resources and output resources.

 On WebDAV compliant servers, for all output resources which have a
 single source resource (and that source resource has a URI), the URI
 of the source resource SHOULD be stored in a link on the output
 resource with type http://www.ietf.org/standards/dav/source. Note
 that by storing the source URIs in links on the output resources,
 the burden of discovering the source is placed on the authoring
 client.

http://www.foo.bar.org/finger_gateway/user@host
http://www.ietf.org/standards/dav/source

5. Locking

 The ability to lock a resource provides a mechanism for serializing
 access to that resource. Using a lock, an authoring client can
 provide a reasonable guarantee that another principal will not
 modify a resource while it is being edited. In this way, a client
 can prevent the "lost update" problem.

 This specification allows locks to vary over two client-specified
 parameters, the number of principals involved (exclusive vs. shared)
 and the type of access to be granted. Furthermore, this document
 only provides the definition of locking for one lock access type,
 the write lock. However, the syntax is extensible, and permits the
 eventual specification of other access types.

5.1. Exclusive Vs. Shared Locks

 The most basic form of lock is an exclusive lock. This is a lock
 where the access right in question is only granted to a single
 principal. The need for this arbitration results from a desire to
 avoid having to constantly merge results.

 However, there are times when the goal of a lock is not to exclude
 others from exercising an access right but rather to provide a
 mechanism for principals to indicate that they intend to exercise
 their access right. Shared locks are provided for this case. A
 shared lock allows multiple principals to receive a lock. Hence any
 principal with appropriate access can get the lock.

 With shared locks there are two trust sets that affect a resource.
 The first trust set is created by access permissions. Principals
 who are trusted, for example, may have permission to write the
 resource. Those who are not, don't. Among those who have access
 permission to write the resource, the set of principals who have
 taken out a shared lock also must trust each other, creating a
 (typically) smaller trust set within the access permission write
 set.

 Starting with every possible principal on the Internet, in most
 situations the vast majority of these principals will not have write
INTERNET-DRAFT WebDAV November 19, 1997

 access to a given resource. Of the small number who do have write
 access, some principals may decide to guarantee their edits are free
 from overwrite conflicts by using exclusive write locks. Others may
 decide they trust their collaborators will not overwrite their work
 (the potential set of collaborators being the set of principals who
 have write permission) and use a shared lock, which informs their
 collaborators that a principal is potentially working on the
 resource.

 The WebDAV extensions to HTTP do not need to provide all of the
 communications paths necessary for principals to coordinate their
 activities. When using shared locks, principals may use any out of
 band communication channel to coordinate their work (e.g., face-to-
 face interaction, written notes, post-it notes on the screen,
 telephone conversation, Email, etc.) The intent of a shared lock is
 to let collaborators know who else is potentially working on a
 resource.

 Shared locks are included because experience from web distributed
 authoring systems has indicated that exclusive write locks are often
 too rigid. An exclusive write lock is used to enforce a particular
 editing process: take out exclusive write lock, read the resource,
 perform edits, write the resource, release the lock. This editing
 process has the problem that locks are not always properly released,
 for example when a program crashes, or when a lock owner leaves
 without unlocking a resource. While both timeouts and
 administrative action can be used to remove an offending lock,
 neither mechanism may be available when needed; the timeout may be
 long or the administrator may not be available.

 Despite their potential problems, exclusive write locks are
 extremely useful, since often a guarantee of freedom from overwrite
 conflicts is what is needed. This specification provides both
 exclusive write locks and the less strict mechanism of shared locks.

5.2. Required Support

 A WebDAV compliant server is not required to support locking in any
 form. If the server does support locking it MAY choose to support
 any combination of exclusive and shared locks for any access types.

 The reason for this flexibility is that locking policy strikes to
 the very heart of the resource management and versioning systems
 employed by various storage repositories. These repositories
 require control over what sort of locking will be made available.
 For example, some repositories only support shared write locks while
 others only provide support for exclusive write locks while yet
 others use no locking at all. As each system is sufficiently
 different to merit exclusion of certain locking features, this
 specification leaves locking as the sole axis of negotiation within
 WebDAV.
INTERNET-DRAFT WebDAV November 19, 1997

5.3. Lock Tokens

 A lock token is a URI that identifies a particular lock. A lock
 token is returned by every successful LOCK operation in the lock-
 token response header, and can also be discovered through lock

 discovery on a resource.

 Lock token URIs are required to be unique across all resources for
 all time. This uniqueness constraint allows lock tokens to be
 submitted across resources and servers without fear of confusion.

 This specification provides a lock token URI scheme called
 opaquelocktoken that meets the uniqueness requirements. However
 resources are free to return any URI scheme so long as it meets the
 uniqueness requirements.

5.4. opaquelocktoken Lock Token URI Scheme

 The opaquelocktoken URI scheme is designed to be unique across all
 resources for all time. Due to this uniqueness quality, a client
 MAY submit an opaque lock token in a Lock-Token request header and
 an if-state[-not]-match header on a resource other than the one that
 returned it.

 All resources MUST recognize the opaquelocktoken scheme and, at
 minimum, recognize that the lock token was not generated by the
 resource. Note, however, that resources are not required to
 generate opaquelocktokens in LOCK method responses.

 In order to guarantee uniqueness across all resources for all time
 the opaquelocktoken requires the use of the GUID mechanism.

 Opaquelocktoken generators, however, have a choice of how they
 create these tokens. They can either generate a new GUID for every
 lock token they create, which is potentially very expensive, or they
 can create a single GUID and then add extension characters. If the
 second method is selected then the program generating the extensions
 MUST guarantee that the same extension will never be used twice with
 the associated GUID.

 Opaque-Lock-Token = "opaquelocktoken" ":" GUID [Extension]
 GUID = ; As defined in [Leach, Salz, 1997]
 Extension = *urlc ;urlc is defined in [Berners-Lee et al., 1997]
 (draft-fielding-url-syntax-07.txt)

5.5. Lock Capability Discovery

 Since server lock support is optional, a client trying to lock a
 resource on a server can either try the lock and hope for the best,
 or perform some form of discovery to determine what lock
 capabilities the server supports. This is known as lock capability
 discovery. Lock capability discovery differs from discovery of
INTERNET-DRAFT WebDAV November 19, 1997

 supported access control types, since there may be access control

https://datatracker.ietf.org/doc/html/draft-fielding-url-syntax-07.txt

 types without corresponding lock types. A client can determine what
 lock types the server supports by retrieving the supportedlock
 property.

 Any DAV compliant resource that supports the LOCK method MUST
 support the supportedlock property.

5.6. Active Lock Discovery

 If another principal locks a resource that a principal wishes to
 access, it is useful for the second principal to be able to find out
 who the first principal is. For this purpose the lockdiscovery
 property is provided. This property lists all outstanding locks,
 describes their type, and provides their lock token.

 Any DAV compliant resource that supports the LOCK method MUST
 support the lockdiscovery property.

6. Write Lock

 This section describes the semantics specific to the write access
 type for locks. The write lock is a specific instance of a lock
 type, and is the only lock type described in this specification. A
 DAV compliant resource MAY support the write lock.

6.1. Methods Restricted by Write Locks

 A write lock prevents a principal without the lock from successfully
 executing a PUT, POST, PATCH, PROPPATCH, MOVE, DELETE, MKCOL, ADDREF
 or DELREF on the locked resource. All other current methods, GET in
 particular, function independent of the lock.

 Note, however, that as new methods are created it will be necessary
 to specify how they interact with a write lock.

6.2. Write Locks and Properties

 While those without a write lock may not alter a property on a
 resource it is still possible for the values of live properties to
 change, even while locked, due to the requirements of their schemas.
 Only dead properties and live properties defined to respect locks
 are guaranteed not to change while write locked.

6.3. Write Locks and Null Resources

 It is possible to assert a write lock on a null resource in order to
 lock the name. Please note, however, that locking a null resource
 effectively makes the resource non-null, as the resource now has
 lock related properties defined on it.
INTERNET-DRAFT WebDAV November 19, 1997

6.4. Write Locks and Collections

 A write lock on a collection prevents the addition or removal of
 members of the collection. As a consequence, when a principal
 issues a request to create a new internal member of a collection
 using PUT or POST, or to remove an existing internal member of a
 collection using DELETE, this request MUST fail if the principal
 does not have a write lock on the collection.

 However, if a write lock request is issued to a collection
 containing internal member resources that are currently locked in a
 manner which conflicts with the write lock, the request MUST fail
 with a 409 Conflict status code.

6.5. Write Locks and COPY/MOVE

 The owner of a write lock MUST NOT execute a MOVE method on a
 resource he has locked. This specification intentionally does not
 define what happens if a MOVE method request is made on a locked
 resource by the lock's owner.

 A COPY method invocation MUST NOT duplicate any write locks active
 on the source.

6.6. Re-issuing Write Locks

 If a principal already owns a write lock on a resource, any future
 requests for the same type of write lock, on the same resource,
 while the principal's previous write lock is in effect, MUST result
 in a successful response with the same lock token as provided for
 the currently existing lock. Two lock requests are defined to be
 identical if their Lock-Info headers are identical.

6.7. Write Locks and The Lock-Token Request Header

 If a user agent is not required to have knowledge about a lock when
 requesting an operation on a locked resource, the following scenario
 might occur. Program A, run by User A, takes out a write lock on a
 resource. Program B, also run by User A, has no knowledge of the
 lock taken out by Program A, yet performs a PUT to the locked
 resource. In this scenario, the PUT succeeds because locks are
 associated with a principal, not a program, and thus program B,
 because it is acting with principal A's credential, is allowed to
 perform the PUT. However, had program B known about the lock, it
 would not have overwritten the resource, preferring instead to
 present a dialog box describing the conflict to the user. Due to
 this scenario, a mechanism is needed to prevent different programs
 from accidentally ignoring locks taken out by other programs with
 the same authorization.
INTERNET-DRAFT WebDAV November 19, 1997

 In order to prevent these collisions the lock token request header
 is introduced. Please refer to the Lock Token Request Header
 section for details and requirements.

6.7.1. Write Lock Token Example

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html
 Lock-Token: <opaquelocktoken:123AbcEfg1284h23h2>
 <opaquelocktoken:AAAASDFcalkjfdas12312>

 HTTP/1.1 200 OK

 In this example, both the source and destination are locked so two
 lock tokens must be submitted. If only one of the two resources was
 locked, then only one token would have to be submitted.

7. Notational Conventions

 Since this document describes a set of extensions to the HTTP/1.1
 protocol, the augmented BNF used herein to describe protocol
 elements is exactly the same as described in Section 2.1 of RFC

2068, _Hypertext Transfer Protocol -- HTTP/1.1_ [Fielding et al.,
 1997]. Since this augmented BNF uses the basic production rules
 provided in Section 2.2 of RFC 2068, these rules apply to this
 document as well.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [Bradner,
 1997].

8. HTTP Methods for Distributed Authoring

8.1. PROPFIND

 The PROPFIND method retrieves properties defined on the Request-URI,
 if it is a non-collection resource, or on the Request-URI and
 potentially its member resources, if the resource is a collection.
 All DAV compliant resources MUST support the PROPFIND method.

 A client MAY submit a Depth header with a PROPFIND on a collection
 with a value of "0", "1" or "infinity". DAV compliant servers MUST
 support the "0", "1" and "infinity" behaviors. By default, the

http://www.ics.uci.edu/users/f/fielding/index.html
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2068#section-2.2
https://datatracker.ietf.org/doc/html/rfc2119

 PROPFIND method on a collection without a Depth header MUST act as
 if a Depth = infinity header was included.
INTERNET-DRAFT WebDAV November 19, 1997

 A client MUST submit a Propfind request header describing what
 information is being requested. It is possible to request
 particular property values, all property values, or a list of the
 names of the resource's properties.

 The response is a text/xml message body that contains a multistatus
 XML element that describes the results of the attempts to retrieve
 the various properties. If a property was successfully retrieved
 then its value MUST be returned in a prop XML element. If the scope
 of PROPFIND covers more than a single resource, as is the case with
 Depth values of "1" and "infinity", each response XML element MUST
 contain an href XML element which identifies the resource on which
 the properties in the prop XML element are defined. In the case of
 allprop and propname, if a principal does not have the right to know
 if a particular property exists, an error MUST NOT be returned. The
 results of this method SHOULD NOT be cached.

8.1.1. Example: Retrieving Named Properties

 PROPFIND /files/ HTTP/1.1
 Host: www.foo.bar
 Depth: 0
 Propfind: <http://www.foo.bar/boxschema/bigbox> <http://www.foo.bar/

boxschema/author> <http://www.foo.bar/boxschema/DingALing> <http://w
ww.foo.bar/boxschema/Random>

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href ="http://www.ietf.org/standards/dav/" AS = "D"?>
 <?namespace href = "http://www.foo.bar/boxschema" AS = R"?>
 <D:multistatus>
 <D:response>
 <D:prop>
 <R:bigbox>
 <R:BoxType>Box type A</R:BoxType>
 </R:bigbox>
 <R:author>
 <R:Name>J.J. Dingleheimerschmidt</R:Name>
 </R:author>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:response>

http://www.foo.bar/boxschema/bigbox
http://www.foo.bar/boxschema/author
http://www.foo.bar/boxschema/author
http://www.foo.bar/boxschema/DingALing
http://www.foo.bar/boxschema/Random
http://www.foo.bar/boxschema/Random

 <D:response>
 <D:prop><R:DingALing/><R:Random/></D:prop>
 <D:status>HTTP/1.1 403 Forbidden</D:status>
 <D:responsedescription> The user does not have access to the
 DingALing property.
 </D:responsedescription>
 </D:response>
INTERNET-DRAFT WebDAV November 19, 1997

 <D:responsedescription> There has been an access violation error.
 </D:responsedescription>
 </D:multistatus>

 In this example, PROPFIND is executed on the collection
http://www.foo.bar/files/. The specified depth is zero, hence the

 PROPFIND applies only to the collection itself, and not to any of
 its members. The Propfind header specifies the name of four
 properties whose values are being requested. In this case only two
 properties were returned, since the principal issuing the request
 did not have sufficient access rights to see the third and fourth
 properties.

8.1.2. Example: Using allprop to Retrieve All Properties

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Depth: 1
 Propfind: allprop

 HTTP/1.1 200 OK
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" As = "S"?>
 <?namespace href = "http://www.foo.bar/boxschema/" AS = R"?>
 <S:multistatus>
 <S:response>
 <S:href>http://www.foo.bar/container/</S:href>
 <S:prop>
 <R:bigbox>
 <R:BoxType>Box type A</R:BoxType>
 </R:bigbox>
 <R:author>
 <R:Name>Hadrian</R:Name>
 </R:author>
 </S:prop>
 <S:status>HTTP 1.1 200 OK</S:status>

http://www.foo.bar/files/

 </S:response>
 <S:response>
 <S:href>http://www.foo.bar/container/index.html</S:href>
 <S:prop>
 <R:bigbox>
 <R:BoxType>Box type B</R:BoxType>
 </R:bigbox>
 </S:prop>
 <S:status>HTTP 1.1 200 OK</S:status>
 </S:response>
 </S:multistatus>
INTERNET-DRAFT WebDAV November 19, 1997

 In this example, PROPFIND was invoked on the resource
http://www.foo.bar/container/ with a Depth header of 1, meaning the

 request applies to the resource and its children, and a Propfind
 header of "allprop", meaning the request should return the name and
 value of all properties defined on each resource.

 The resource http://www.foo.bar/container/ has two properties
 defined on it, named http://www.foo.bar/boxschema/bigbox, and

http://www.foo.bar/boxschema/author, while resource
http://www.foo.bar/container/index.html has only a single resource

 defined on it, named http://www.foo.bar/boxschema/bigbox, another
 instance of the "bigbox" property type.

8.1.3. Example: Using propname to Retrieve all Property Names

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Propfind: propname

 HTTP/1.1 200 OK
 Content-Type: text/xml
 Content-Length: xxxx

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" As = "D"?>
 <?namespace href = "http://www.foo.bar/boxschema/" AS = "R"?>
 <D:multistatus>
 <D:response>
 <D:href>http://www.foo.bar/container/</D:href>
 <D:prop>
 <R:bigbox/>
 <R:author/>
 </D:prop>
 <D:status>HTTP 1.1 200 OK</D:status>
 </D:response>
 <D:response>

http://www.foo.bar/container/
http://www.foo.bar/container/
http://www.foo.bar/boxschema/bigbox
http://www.foo.bar/boxschema/author
http://www.foo.bar/container/index.html
http://www.foo.bar/boxschema/bigbox

 <D:href>http://www.foo.bar/container/index.html</D:href>
 <D:prop>
 <R:bigbox/>
 </D:prop>
 <D:status>HTTP 1.1 200 OK</D:status>
 </D:response>
 </D:multistatus>

 In this example, PROPFIND is invoked on the collection resource
http://www.foo.bar/container/, with a Propfind header set to

 "propname", meaning the name of all properties should be returned.
 Since no depth header is present, it assumes its default value of
 "infinity", meaning the name of the properties on the collection and
 all its progeny should be returned.
INTERNET-DRAFT WebDAV November 19, 1997

 Consistent with the previous example, resource
http://www.foo.bar/container/ has two properties defined on it,
http://www.foo.bar/boxschema/bigbox, and
http://www.foo.bar/boxschema/author. The resource
http://www.foo.bar/container/index.html, a member of the "container"

 collection, has only one property defined on it,
http://www.foo.bar/boxschema/bigbox.

8.2. PROPPATCH

 The PROPPATCH method processes instructions specified in the request
 body to set and/or remove properties defined on the resource
 identified by Request-URI.

 All DAV compliant resources MUST support the PROPPATCH method and
 MUST process instructions that are specified using the
 propertyupdate, set, and remove XML elements of the DAV schema.
 Execution of the directives in this method is, of course, subject to
 access control constraints. DAV compliant resources MUST support
 the setting of arbitrary dead properties.

 The request message body of a PROPPATCH method MUST contain at least
 one propertyupdate XML element. Instruction processing MUST occur
 in the order instructions are received (i.e., from top to bottom),
 and MUST be performed atomically.

8.2.1. propertyupdate XML element

 Name: propertyupdate
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To contain a request to alter the properties on a
 resource.

http://www.foo.bar/container/
http://www.foo.bar/container/
http://www.foo.bar/boxschema/bigbox
http://www.foo.bar/boxschema/author
http://www.foo.bar/container/index.html
http://www.foo.bar/boxschema/bigbox
http://www.ietf.org/standards/dav/

 Parent: None
 Values= 1*(set | remove)
 Description: This XML element is a container for the information
 required to modify the properties on the resource. This XML element
 is multi-valued.

8.2.2. set XML element

 Name: set
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To set the DAV properties specified inside the set XML
 element.
 Parent: propertyupdate
 Values= prop
 Description: This XML element MUST contain only a prop XML element.
 The elements contained by prop specify the name and value of
 properties that are set on the Request-URI. If a property already
 exists then its value is replaced.
INTERNET-DRAFT WebDAV November 19, 1997

8.2.3. remove XML element

 Name: remove
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To remove the DAV properties specified inside the remove
 XML element.
 Parent: propertyupdate
 Values= prop
 Description: Remove specifies that the properties specified in prop
 should be removed. Specifying the removal of a property that does
 not exist is not an error. All the elements in prop MUST be empty,
 as only the names of properties to be removed are required.

8.2.4. Response Codes

 200 OK - The command succeeded. As there can be a mixture of sets
 and removes in a body, a 201 Create seems inappropriate.

 403 Forbidden - The client, for reasons the server chooses not to
 specify, cannot alter one of the properties.

 405 Conflict - The client has provided a value whose semantics are
 not appropriate for the property. This includes trying to set read-
 only properties.

 413 Request Entity Too Long - If a particular property is too long
 to be recorded then a composite XML error will be returned
 indicating the offending property.

8.2.5. Example

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

 PROPPATCH /bar.html HTTP/1.1
 Host: www.foo.com
 Content-Type: text/xml
 Content-Length: xxxx

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" AS = "D"?>
 <?namespace href = "http://www.w3.com/standards/z39.50/" AS = "Z"?>
 <D:propertyupdate>
 <D:set>
 <D:prop>
 <Z:authors>
 <Z:Author>Jim Whitehead</Z:Author>
 <Z:Author>Roy Fielding</Z:Author>
 </Z:authors>
 </D:prop>
 </D:set>
 <D:remove>
 <D:prop><Z:Copyright-Owner/></D:prop>
 </D:remove>
 </D:propertyupdate>
INTERNET-DRAFT WebDAV November 19, 1997

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href="http://www.ietf.org/standards/dav/" AS = "D"?>
 <?namespace href="http://www.w3.com/standards/z39.50/" AS = "Z"?>
 <D:multistatus>
 <D:response>
 <D:prop><Z:Authors/></D:prop>
 <D:status>HTTP/1.1 420 Method Failure</D:status>
 </D:response>
 <D:response>
 <D:prop><Z:Copyright-Owner/></D:prop>
 <D:status>HTTP/1.1 409 Conflict</D:status>
 </D:response>
 <D:responsedescription> Copyright Owner can not be deleted or
 altered.</D:responsedescription>
 </D:multistatus>

 In this example, the client requests the server to set the value of
 the http://www.w3.com/standards/z39.50/Authors property, and to
 remove the property http://www.w3.com/standards/z39.50/Copyright-

http://www.w3.com/standards/z39.50/Authors
http://www.w3.com/standards/z39.50/Copyright-Owner

Owner. Since the Copyright-Owner property could not be removed, no
 property modifications occur. The Method Failure response code for
 the Authors property indicates this action would have succeeded if
 it were not for the conflict with removing the Copyright-Owner
 property.

8.3. MKCOL Method

 The MKCOL method is used to create a new collection. All DAV
 compliant resources MUST support the MKCOL method.

8.3.1. Request

 MKCOL creates a new collection resource at the location specified by
 the Request-URI. If the Request-URI exists, then MKCOL must fail.
 During MKCOL processing, a server MUST make the Request-URI a member
 of its parent collection. If no such ancestor exists, the method
 MUST fail. When the MKCOL operation creates a new collection
 resource, all ancestors MUST already exist, or the method MUST fail
 with a 409 Conflict status code. For example, if a request to
 create collection /a/b/c/d/ is made, and neither /a/b/ nor /a/b/c/
 exists, the request MUST fail.

 When MKCOL is invoked without a request body, the newly created
 collection has no members.
INTERNET-DRAFT WebDAV November 19, 1997

 A MKCOL request message MAY contain a message body. The behavior of
 a MKCOL request when the body is present is limited to creating
 collections, members of a collection, bodies of members and
 properties on the collections or members. If the server receives a
 MKCOL request entity type it does not support or understand it MUST
 respond with a 415 Unsupported Media Type status code. The exact
 behavior of MKCOL for various request media types is undefined in
 this document, and will be specified in separate documents.

8.3.2. Response Codes

 Responses from a MKCOL request are not cacheable, since MKCOL has
 non-idempotent semantics.

 201 Created - The collection or structured resource was created in
 its entirety.

 403 Forbidden - This indicates at least one of two conditions: 1)
 The server does not allow the creation of collections at the given
 location in its namespace, and 2) The parent collection of the
 Request-URI exists but cannot accept members.

 405 Method Not Allowed - MKCOL can only be executed on a

http://www.w3.com/standards/z39.50/Copyright-Owner

 deleted/non-existent resource.

 409 Conflict - A collection cannot be made at the Request-URI until
 one or more intermediate collections have been created.

 415 Unsupported Media Type- The server does not support the request
 type of the body.

 419 Insufficient Space on Resource - The resource does not have
 sufficient space to record the state of the resource after the
 execution of this method.

8.3.3. Example

 This example creates a collection called /webdisc/xfiles/ on the
 server www.server.org.

 MKCOL /webdisc/xfiles/ HTTP/1.1
 Host: www.server.org

 HTTP/1.1 201 Created

8.4. INDEX Method

 The INDEX method is used to enumerate the members of a resource.
 All DAV compliant resources MUST support the INDEX method if they
 have members.
INTERNET-DRAFT WebDAV November 19, 1997

8.4.1. The Request

 For a collection, INDEX MUST return a list of its members. All
 WebDAV compliant resources MUST support the text/xml response entity
 described below. The INDEX result for a collection MAY also return
 a list of the members of child collections, to any depth.

 Collections that respond to an INDEX method with a text/xml entity
 MUST contain a single multistatus XML element which contains a
 response XML element for each member.

 A resource that supports INDEX MUST return the resourcetype property
 for each member.

 Note that the prop XML element MAY contain additional properties.

8.4.2. Example

 INDEX /user/yarong/dav_drafts/ HTTP/1.1
 Host: www.microsoft.com

 HTTP/1.1 200 OK
 Content-Type: text/xml
 Content-Length: xxx
 Last-Modified: Thu, 11 Sep 1997 23:45:12 GMT
 ETag: _fooyyybar_

 <?XML version="1.0">
 <?namespace href = _http://www.ietf.org/standards/dav/_ as = _D_?>
 <D:multistatus>
 <D:response>
 <D:href>http://www.microsoft.com/user/yarong/dav_drafts/
 </D:href>
 <D:prop>
 <D:resourcetype>
 <D:collection/>
 </D:resourcetype>
 </D:prop>
 <D:status>HTTP 1.1 200 OK</D:status>
 </D:response>
 <D:response>
 <D:href>

http://www.microsoft.com/user/yarong/dav_drafts/base
 </D:href>
 <D:prop>
 <D:resourcetype/>
 </D:prop>
 <D:status>HTTP 1.1 200 OK</D:status>
 </D:response>
 </D:multistatus>
INTERNET-DRAFT WebDAV November 19, 1997

8.5. ADDREF Method

 The ADDREF method is used to add external members to a resource.
 All DAV compliant collection resources MUST support the ADDREF
 method. All other DAV compliant resources MAY support the ADDREF
 method as appropriate.

8.5.1. The Request

 The ADDREF method adds the URI specified in the Collection-Member
 header as an external member to the collection specified by the
 Request-URI. The value in the Collection-Member header MUST be an
 absolute URI meeting the requirements of an external member URI.

 It is not an error if the URI specified in the Collection-Member
 header already exists as an external member of the collection.
 However, after processing the ADDREF there MUST be only one instance

http://www.microsoft.com/user/yarong/dav_drafts/base

 of the URI in the collection. If the URI specified in the
 Collection-Member header already exists as an internal member of the
 collection, the ADDREF method MUST fail with a 412 Precondition
 Failed status code.

8.5.2. Example

 ADDREF /~ejw/dav/ HTTP/1.1
 Host: www.ics.uci.edu
 Collection-Member: http://www.ietf.org/standards/dav/

 HTTP/1.1 200 OK

 This example adds the URI http://www.ietf.org/standards/dav/ as an
 external member resource of the collection

http://www.ics.uci.edu/~ejw/dav/.

8.6. DELREF Method

 The DELREF method is used to remove external members from a
 resource. All DAV compliant collection resources MUST support the
 DELREF method. All other DAV compliant resources MUST support the
 DELREF method only if they support the ADDREF method.

8.6.1. The Request

 The DELREF method removes the URI specified in the Collection-Member
 header from the collection specified by the Request-URI.

 DELREFing a URI which is not a member of the collection is not an
 error. DELREFing an internal member MUST fail with a 412
 Precondition Failed status code.
INTERNET-DRAFT WebDAV November 19, 1997

8.6.2. Example

 DELREF /~ejw/dav/ HTTP/1.1
 Host: www.ics.udi.edu
 Collection-Member: http://www.ietf.org/standards/dav/

 HTTP/1.1 200 OK

 This example removes the URI http://www.ietf.org/standards/dav/, an
 external member resource, from the collection

http://www.ics.uci.edu/~ejw/dav/.

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ics.uci.edu/~ejw/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ics.uci.edu/~ejw/dav/

8.7. GET, HEAD for Collections

 The semantics of GET are unchanged when applied to a collection,
 since GET is defined as, _retrieve whatever information (in the form
 of an entity) is identified by the Request-URI_ [Fielding et al.,
 1997]. GET when applied to a collection MAY return the contents of
 an _index.html_ resource, a human-readable view of the contents of
 the collection, or something else altogether, and hence it is
 possible the result of a GET on a collection will bear no
 correlation to the state of the collection.

 Similarly, since the definition of HEAD is a GET without a response
 message body, the semantics of HEAD are unmodified when applied to
 collection resources.

8.8. POST for Collections

 Since by definition the actual function performed by POST is
 determined by the server and often depends on the particular
 resource, the behavior of POST when applied to collections cannot be
 meaningfully modified because it is largely undefined. Thus the
 semantics of POST are unmodified when applied to a collection.

8.9. DELETE

8.9.1. DELETE Method for Non-Collection Resources

 If the DELETE method is issued to a non-collection resource which is
 an internal member of a collection, then during DELETE processing a
 server MUST remove the Request-URI from its parent collection. A
 server MAY remove the URI of a deleted resource from any collections
 of which the resource is an external member.

8.9.2. DELETE for Collections
INTERNET-DRAFT WebDAV November 19, 1997

 The DELETE method on a collection MUST act as if a Depth = Infinity
 header was used on it. A client MUST NOT submit a Depth header on a
 DELETE on a collection with any value but Infinity.

 DELETE instructs that the collection specified in the request-URI,
 the records of its external member resources, and all its internal
 member resources, are to be deleted.

 If any member cannot be deleted then all of the member's progeny
 MUST NOT be deleted, so as to maintain the namespace.

 Any headers included with DELETE MUST be applied in processing every
 resource to be deleted. In this case, a header of special interest

 is the Destroy header, which specifies the method to be used to
 delete all resources in the scope of the DELETE.

 When the DELETE method has completed processing it MUST return a
 consistent namespace.

 The response SHOULD be a Multi-Status response that describes the
 result of the DELETE on each affected resource.

8.9.2.1. Example

 DELETE /container/ HTTP/1.1
 Host: www.foo.bar
 Destroy: NoUndelete

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" As = "d"?>
 <d:multistatus>
 <d:response>
 <d:href>http://www.foo.bar/container/resource1</d:href>
 <d:href>http://www.foo.bar/container/resource2</d:href>
 <d:status>HTTP/1.1 200 OK</d:status>
 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/container/</d:href>
 <d:status>HTTP/1.1 420 Method Failure</d:status>
 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/container/resource3</d:href>
 <d:status>HTTP/1.1 412 Precondition Failed</d:status>
 </d:response>
 </d:multistatus>
INTERNET-DRAFT WebDAV November 19, 1997

 In this example the attempt to delete
http://www.foo.bar/container/resource3 failed because the server was

 unable to guarantee that resource3 would not be able to be
 undeleted. Consequently, the attempt to delete

http://www.foo.bar/container/ also failed, but resource1 and
 resource2 were deleted. Even though a Depth header has not been
 included, a depth of infinity is assumed because the method is on a
 collection. As this example illustrates, DELETE processing need not
 be atomic.

8.10. PUT

http://www.foo.bar/container/resource3
http://www.foo.bar/container/

8.10.1. PUT for Non-Collection Resources

 A PUT performed on an existing resource replaces the GET response
 entity of the resource. Properties defined on the resource MAY be
 recomputed during PUT processing. For example, if a server
 recognizes the content type of the request body, it may be able to
 automatically extract information that could be profitably exposed
 as properties.

 A PUT that would result in the creation of a resource without an
 appropriately scoped parent collection MUST fail with a 405 Method
 Not Allowed.

8.10.2. PUT for Collections

 As defined in the HTTP/1.1 specification [Fielding et al., 1997],
 the "PUT method requests that the enclosed entity be stored under
 the supplied Request-URI." Since submission of an entity
 representing a collection would implicitly encode creation and
 deletion of resources, this specification intentionally does not
 define a transmission format for creating a collection using PUT.
 Instead, the MKCOL method is defined to create collections. If a
 PUT is invoked on a collection resource it MUST fail.

 When the PUT operation creates a new non-collection resource all
 ancestors MUST already exist. If all ancestors do not exist, the
 method MUST fail with a 409 Conflict status code. For example, if
 resource /a/b/c/d.html is to be created and /a/b/c/ does not exist,
 then the request must fail.

8.11. COPY Method

 The COPY method creates a duplicate of the specified resource. All
 DAV compliant resources MUST support the COPY method.

 Support for the COPY method does not guarantee the ability to copy a
 resource. For example, separate programs may control resources on
 the same server. As a result, it may not even be possible to copy a
 resource to a location that appears to be on the same server.
INTERNET-DRAFT WebDAV November 19, 1997

8.11.1. The Request

 The COPY method creates a duplicate of the source resource, given by
 the Request-URI, in the destination resource, given by the
 Destination header. The Destination header MUST be present. The
 exact behavior of the COPY method depends on the type of the source
 resource.

8.11.1.1. COPY for HTTP/1.1 resources

 When the source resource is not a collection the body of the
 destination resource MUST be octet-for-octet identical to the body
 of the source resource. Alterations to the destination resource do
 not modify the source resource. Alterations to the source resource
 do not modify the destination resource. Thus, all copies are
 performed _by-value_.

 All properties on the source resource MUST be duplicated on the
 destination resource, subject to modifying headers, following the
 definition for copying properties.

8.11.1.2. COPY for Properties

 The following section defines how properties on a resource are
 handled during a COPY operation.

 Live properties SHOULD be duplicated as identically behaving live
 properties at the destination resource. Since they are live
 properties, the server determines the syntax and semantics of these
 properties. Properties named by the Enforce-Live-Properties header
 MUST be live on the destination resource, or the method MUST fail.
 If a property is not named by Enforce-Live-Properties and cannot be
 copied live, then its value MUST be duplicated, octet-for-octet, in
 an identically named, dead property on the destination resource.

 If a property on the source already exists on the destination
 resource and the Overwrite header is set to "T" then the property at
 the destination MUST be overwritten with the property from the
 source. If the Overwrite header is "F" and the previous situation
 exists, then the COPY MUST fail with a 409 Conflict.

8.11.1.3. COPY for Collections

 The COPY method on a collection without a Depth header MUST act as
 if a Depth = infinity header was included. A client MAY submit a
 Depth header on a COPY on a collection with a value of "0" or
 "infinity". DAV compliant servers MUST support the "0" and
 "infinity" behaviors.

 A COPY of depth infinity instructs that the collection specified in
 the Request-URI, the records of its external member resources, and
INTERNET-DRAFT WebDAV November 19, 1997

 all its internal member resources, are to be copied to a location
 relative to the Destination header.

 A COPY of depth "0" only instructs that the collection, the
 properties, and its external members, not its internal members, are

 to be copied.

 Any headers included with a COPY are to be applied in processing
 every resource to be copied.

 The exception to this rule is the Destination header. This header
 only specifies the destination for the Request-URI. When applied to
 members of the collection specified in the request-URI the value of
 Destination is to be modified to reflect the current location in the
 hierarchy. So, if the request-URI is "a" and the destination is "b"
 then when a/c/d is processed it MUST use a destination of b/c/d.

 When the COPY method has completed processing it MUST have created a
 consistent namespace at the destination. Thus if it is not possible
 to COPY a collection with internal members, the internal members may
 still be copied but a collection will have to be created at the
 destination to contain them.

 The response is a Multi-Status response that describes the result of
 the COPY on each affected resource. The response is given for the
 resource that was to be copied, not the resource that was created as
 a result of the copy. In other words, each entry indicates whether
 the copy on the resource specified in the href succeeded or failed
 and why.

 The exception to this rule is for errors that occurred on the
 destination. For example, if the destination was locked the
 response would indicate the destination URL and a 421 Destination
 Locked error.

8.11.1.4. Type Interactions

 If the destination resource identifies a collection and the
 Overwrite header is _T_, prior to performing the copy the server
 MUST perform a DELETE operation on the collection.

8.11.2. Response Codes

 200 OK - The source resource was successfully copied to a pre-
 existing destination resource.

 201 Created - The source resource was successfully copied. The copy
 operation resulted in the creation of a new resource.

 412 Precondition Failed - This status code MUST be returned if the
 server was unable to maintain the liveness of the properties listed
INTERNET-DRAFT WebDAV November 19, 1997

 in the Enforce-Live-Properties header, or if the Overwrite header is
 "F", and the state of the destination resource is non-null.

 419 Insufficient Space on Resource - The destination resource does
 not have sufficient space to record the state of the resource after
 the execution of this method.

 421 Destination Locked _ The destination resource was locked and
 either a valid Lock-Token header was not submitted, or the Lock-
 Token header identifies a lock held by another principal.

 500 Server Error - The resource was in such a state that it could
 not be copied. This may occur if the Destination header specifies a
 resource that is outside the namespace the resource is able to
 interact with.

8.11.3. Overwrite Example

 This example shows resource
http://www.ics.uci.edu/~fielding/index.html being copied to the

 location http://www.ics.uci.edu/users/f/fielding/index.html. The
 contents of the destination resource were overwritten, if non-null.

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html

 HTTP/1.1 200 OK

8.11.4. No Overwrite Example

 The following example shows the same copy operation being performed,
 except with the Overwrite header set to _F._ A response of 412
 Precondition Failed is returned because the destination resource has
 a non-null state.

 COPY /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html
 Overwrite: _F_

 HTTP/1.1 412 Precondition Failed

8.11.5. Collection Example

 COPY /container/ HTTP/1.1
 Host: www.foo.bar
 Destination: http://www.foo.bar/othercontainer/
 Enforce-Live-Properties: *
 Depth: Infinity
INTERNET-DRAFT WebDAV November 19, 1997

http://www.ics.uci.edu/~fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.foo.bar/othercontainer/

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" As = "d"?>
 <d:multistatus>
 <d:response>
 <d:href>http://www.foo.bar/othercontainer/resource1</d:href>
 <d:href>http://www.foo.bar/othercontainer/resource2</d:href>
 <d:href>http://www.foo.bar/othercontainer/</d:href>
 <d:href>http://www.foo.bar/othercontainer/R2/D2</d:href>
 <d:status>HTTP/1.1 201 Created</d:status>
 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/othercontainer/R2/</d:href>
 <d:status>HTTP/1.1 412 Precondition Failed</d:status>
 </d:response>
 </d:multistatus>

 The Depth header is unnecessary as the default behavior of COPY on a
 collection is to act as if a "Depth: Infinity" header had been
 submitted. In this example most of the resources, along with the
 collection, were copied successfully. However the collection R2
 failed, most likely due to a problem with enforcing live properties.
 R2's member D2 was successfully copied. As a result a collection
 was created at www.foo.bar/othercontainer/R2 to contain D2.

8.12. MOVE Method

 The move operation on a resource is the logical equivalent of a copy
 followed by a delete, where the actions are performed atomically.
 All DAV compliant resources MUST support the MOVE method.

 However, support for the MOVE method does not guarantee the ability
 to move a resource to a particular destination. For example,
 separate programs may actually control different sets of resources
 on the same server. Therefore, it may not even be possible to move
 a resource within a namespace that appears to belong to the same
 server.

8.12.1. The Request

 If a resource exists at the destination, the destination resource
 will be DELETEd as a side effect of the MOVE operation, subject to
 the restrictions of the Overwrite header.

8.12.2. MOVE for Collections

 MOVE instructs that the collection specified in the Request-URI, the
 records of its external member resources, and all its internal
INTERNET-DRAFT WebDAV November 19, 1997

 member resources, are to be moved to a location relative to the
 Destination header.

 The MOVE method on a collection MUST act as if a Depth "infinity"
 header was used on it. A client MUST NOT submit a Depth header on a
 MOVE on a collection with any value but "infinity".

 Any headers included with MOVE are to be applied in processing every
 resource to be moved.

 The exception to this rule is the Destination header. The behavior
 of this header is the same as given for COPY on collections.

 When the MOVE method has completed processing it MUST have created a
 consistent namespace on both the source and destination, creating
 collections at the source or destination as necessary.

 As specified in the definition of MOVE, a MOVE of a collection over
 another collection causes the destination collection and all its
 members to be deleted.

 The response is a Multi-Status response that describes the result of
 the MOVE on each effected resource. The response is given for the
 resource that was to be moved, not the resource that was created as
 a result of the move. In other words, each entry indicates whether
 the move on the resource specified in the href succeeded or failed
 and why.

 The exception to this rule is for errors that occurred on the
 destination. For example, if the destination was locked the
 response would indicate the destination URL and a 421 Destination
 Locked error.

8.12.3. Response Codes

 200 OK - The move operation was successful.

 409 Conflict _ The MOVE was attempted on a collection with members.
 While the COPY part of this operation could succeed the DELETE could
 not. Therefore the MOVE MUST fail.

 412 Precondition Failed - This status code MUST be returned if the
 server was unable to maintain the liveness of the properties listed
 in the Enforce-Live-Properties header, or if the Overwrite header is
 "F", and the state of the destination resource is non-null.

 421 Destination Locked - The destination resource was locked and
 either a valid Lock-Token header was not submitted, or the Lock-
 Token header identifies a lock held by another principal.

 502 Bad Gateway - This may occur when the destination is

 o
 n another
 server and the destination server refuses to accept the resource
INTERNET-DRAFT WebDAV November 19, 1997

8.12.4. Overwrite Example

 This example shows resource
http://www.ics.uci.edu/~fielding/index.html being moved to the

 location http://www.ics.uci.edu/users/f/fielding/index.html. The
 contents of the destination resource were overwritten, if non-null.

 MOVE /~fielding/index.html HTTP/1.1
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html

 HTTP/1.1 200 OK

8.12.5. Collection Example

 MOVE /container/ HTTP/1.1
 Host: www.foo.bar
 Destination: http://www.foo.bar/othercontainer/
 Enforce-Live-Properties: *
 Overwrite: False
 Lock-Token: <OpaqueLockToken:xxxx> <OpaqueLockToken:xxxx>

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" As = "D"?>
 <d:multistatus>
 <d:response>
 <d:href>http://www.foo.bar/container/resource1</d:href>
 <d:href>http://www.foo.bar/container/resource2</d:href>
 <d:href>http://www.foo.bar/container/</d:href>
 <d:href>http://www.foo.bar/container/C2/R2</d:href>
 <d:status>HTTP/1.1 201 Created</d:status>

http://www.ics.uci.edu/~fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.ics.uci.edu/users/f/fielding/index.html
http://www.foo.bar/othercontainer/

 </d:response>
 <d:response>
 <d:href>http://www.foo.bar/container/C2</d:href>
 <d:status>HTTP/1.1 420 Method Failure</d:status>
 <d:response>
 <d:href>http://www.foo.bar/othercontainer/C2</d:href>
 <d:status>HTTP/1.1 409 Conflict</d:status>
 </d:response>
 </d:multistatus>

 In this example the client has submitted a number of lock tokens
 with the request. A lock token will need to be submitted for every
 resource, both source and destination, anywhere in the scope of the
INTERNET-DRAFT WebDAV November 19, 1997

 method, that is locked. In this case the proper lock token was not
 submitted for the destination http://www.foo.bar/othercontainer/C2.
 This means that the resource continer/c2 could not be moved,
 although its child container/C2/R2 could be moved.

8.13. LOCK Method

 The following sections describe the LOCK method, which is used to
 take out a lock of any access type. These sections on the LOCK
 method describe only those semantics that are specific to the LOCK
 method and are independent of the access type of the lock being
 requested. Once the general LOCK method has been described,
 subsequent sections describe the semantics of the "write" access
 type, and the write lock.

8.13.1. Operation

 A LOCK method invocation creates the lock specified by the Lock-Info
 header on the Request-URI. Lock method requests SHOULD have a XML
 request body which contains an Owner XML element for this lock
 request. The LOCK request MAY have a Timeout header.

 A successful response to a lock invocation MUST include Lock-Token
 and Timeout headers. Clients MUST assume that locks may arbitrarily
 disappear at any time, regardless of the value given in the Timeout
 header. The Timeout header only indicates the behavior of the
 server if "extraordinary" circumstances do not occur. For example,
 an administrator may remove a lock at any time or the system may
 crash in such a way that it loses the record of the lock's
 existence. The response MUST also contain the value of the
 lockdiscovery property in a prop XML element.

8.13.2. The Effect of Locks on Properties and Collections

 By default the scope of a lock is the entire state of the resource,

http://www.foo.bar/othercontainer/C2

 including its body and associated properties. As a result, a lock
 on a resource also locks the resource's properties, and a lock on a
 property may lock a property's resource or may restrict the ability
 to lock the property's resource. Only a single lock token MUST be
 used when a lock extends to cover both a resource and its
 properties. Note that certain lock types MAY override this
 behavior.

 For collections, a lock also affects the ability to add or remove
 members. The nature of the effect depends upon the type of access
 control involved.

8.13.3. Locking Replicated Resources

 Some servers automatically replicate resources across multiple URLs.
 In such a circumstance the server MAY only accept a lock on one of
INTERNET-DRAFT WebDAV November 19, 1997

 the URLs if the server can guarantee that the lock will be honored
 across all the URLs.

8.13.4. Locking Multiple Resources

 The LOCK method supports locking multiple resources simultaneously
 by allowing for the listing of several URIs in the LOCK request.
 These URIs, in addition to the Request-URI, are then to be locked as
 a result of the LOCK method's invocation. When multiple resources
 are specified the LOCK method only succeeds if all specified
 resources are successfully locked.

 The Lock-Tree option of the lock request specifies that the resource
 and all its internal children (including internal collections, and
 their internal members) are to be locked. This is another mechanism
 by which a request for a lock on multiple resources can be
 specified.

 Currently existing locks can not be extended to cover more or less
 resources, and any request to expand or contract the number of
 resources in a lock MUST fail with a 409 Conflict status code. So,
 for example, if resource A is exclusively write locked and then the
 same principal asks to exclusively write lock resources A, B, and C,
 the request will fail as A is already locked and the lock can not be
 extended.

 A successful result will return a single lock token which represents
 all the resources that have been locked. If an UNLOCK is executed
 on this token, all associated resources are unlocked.

 If the lock cannot be granted to all resources, a 409 Conflict
 status code MUST be returned with a response entity body containing

 a multistatus XML element describing which resource(s) prevented the
 lock from being granted.

8.13.5. Interaction with other Methods

 The interaction of a LOCK with various methods is dependent upon the
 lock type. However, independent of lock type, a successful DELETE
 of a resource MUST cause all of its locks to be removed.

8.13.6. Lock Compatibility Table

 The table below describes the behavior that occurs when a lock
 request is made on a resource.

 Current lock state/ Shared Lock Exclusive
 Lock request Lock
 None True True
 Shared Lock True False
 Exclusive Lock False False*
INTERNET-DRAFT WebDAV November 19, 1997

 Legend: True = lock MAY be granted. False = lock MUST NOT be
 granted. *=if the principal requesting the lock is the owner of the
 lock, the lock MAY be regranted.

 The current lock state of a resource is given in the leftmost
 column, and lock requests are listed in the first row. The
 intersection of a row and column gives the result of a lock request.
 For example, if a shared lock is held on a resource, and an
 exclusive lock is requested, the table entry is _false_, indicating
 the lock must not be granted.

 If an exclusive or shared lock is re-requested by the principal who
 owns the lock, the lock MUST be regranted. If the lock is
 regranted, the same lock token that was previously issued MUST be
 returned.

8.13.7. Owner XML Element

 Name: owner
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Provide information about the principal taking out a
 lock.
 Parent: Any
 Values: XML Elements
 Descripton: The Owner XML element provides information sufficient
 for either directly contacting a principal (such as a telephone
 number or Email URI), or for discovering the principal (such as the

http://www.ietf.org/standards/dav/

 URL of a homepage) who owns a lock.

8.13.8. Lock Response

 A successful lock response MUST contain a Lock-Token response
 header, a Timeout header and a prop XML element in the response body
 which contains the value of the lockdiscovery property.

8.13.9. Response Codes

 409 Conflict - The resource is locked, so the method has been
 rejected.

 412 Precondition Failed - The included Lock-Token was not
 enforceable on this resource or the server could not satisfy the
 request in the Lock-Info header.

8.13.10. Example - Simple Lock Request

 LOCK /workspace/webdav/proposal.doc HTTP/1.1
 Host: webdav.sb.aol.com
 Lock-Info: LockType=Write LockScope=Exclusive
 Timeout: Infinite; Second-4100000000
 Content-Type: text/xml
INTERNET-DRAFT WebDAV November 19, 1997

 Content-Length: xyz

 <?XML version="1.0">
 <?namespace href="http://www.ietf.org/standards/dav/" AS = "D"?>
 <D:owner>
 <D:href>http://www.ics.uci.edu/~ejw/contact.html</D:href>
 </D:owner>

 HTTP/1.1 200 OK
 Lock-Token: opaquelocktoken:xyz122393481230912asdfa09s8df09s7df
 Timeout: Second-604800
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href ="http://www.ietf.org/standards/dav/" AS = "D"?>
 <D:prop>
 <D:lockdiscovery>
 <D:activelock>
 <D:locktype>write</D:locktype>
 <D:lockscope>exclusive</D:lockscope>
 <D:addlocks/>
 <D:owner>

 <D:href>
http://www.ics.uci.edu/~ejw/contact.html

 </D:href>
 </D:owner>
 <D:timeout>Second-604800</D:timeout>
 <D:locktoken>
 <D:href>
 opaquelocktoken:xyz122393481230912asdfa09s8df09s7df
 </D:href>
 </D:locktoken>
 </D:activelock>
 </D:lockdiscovery>
 </D:prop>

 This example shows the successful creation of an exclusive write
 lock on resource

http://webdav.sb.aol.com/workspace/webdav/proposal.doc. The
 resource http://www.ics.uci.edu/~ejw/contact.html contains contact
 information for the owner of the lock. The server has an activity-

 based timeout policy in place on this resource, which causes the
 lock to automatically be removed after 1 week (604800 seconds). The
 response has a Lock-Token header that gives the lock token URL that
 uniquely identifies the lock created by this lock request.

8.13.11. Example - Multi-Resource Lock Request

 LOCK /workspace/webdav/proposal.doc HTTP/1.1
 Host: webdav.sb.aol.com
INTERNET-DRAFT WebDAV November 19, 1997

 Lock-Info: LockType=Write LockScope=Exclusive
 Addlocks=<http://webdav.sb.aol.com/workspace/><http://foo.bar/blah>
 Timeout: Infinite, Second-4100000000

 <?XML version="1.0">
 <?namespace href="http://www.ietf.org/standards/dav/" AS = "D"?>
 <D:href>http://www.ics.uci.edu/~ejw/contact.html<D:href>

 HTTP/1.1 409 Conflict
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" As = "D"?>
 <D:multistatus>
 <D:response>
 <D:href>

http://webdav.sb.aol.com/workspace/webdav/proposal.doc

http://www.ics.uci.edu/~ejw/contact.html
http://webdav.sb.aol.com/workspace/webdav/proposal.doc
http://www.ics.uci.edu/~ejw/contact.html
http://webdav.sb.aol.com/workspace/
http://foo.bar/blah
http://webdav.sb.aol.com/workspace/webdav/proposal.doc

 </D:href>
 <D:href>

http://webdav.sb.aol.com/workspace/webdav/
 </D:href>
 <D:status>HTTP/1.1 202 Accepted</D:status>
 </D:response>
 <D:response>
 <D:href>http://foo.bar/blah</D:href>
 <D:status>HTTP/1.1 403 Forbidden</D:status>
 </D:response>
 </D:multistatus>

 This example shows a request for an exclusive write lock on three
 resources, http://webdav.sb.aol.com/workspace/webdav/proposal.doc,

http://webdav.sb.aol.com/workspace/, and http://foo.bar/blah. In
 this request, the client has specified that it desires an infinite
 length lock, if available, otherwise a timeout of 4.1 billion
 seconds, if available. The Owner header field specifies the web
 address for contact information for the principal taking out the
 lock.

 This lock request has failed, because the server rejected the lock
 request for http://foo.bar/blah. The 409 Conflict status code
 indicates that the server was unable to satisfy the request because
 there is a conflict between the state of the resources and the
 operation named in the request. Within the multistatus, the 202
 Accepted status code indicates that the lock method was accepted by
 the resources, and would have been completed if all resources named
 in the request were able to be locked. The 403 Forbidden status
 code indicates that the server does not allow lock requests on this
 resource.

8.14. UNLOCK Method
INTERNET-DRAFT WebDAV November 19, 1997

 The UNLOCK method removes the lock identified by the lock token in
 the Lock-Token header from the Request-URI, and all other resources
 included in the lock.

 Any DAV compliant resource which supports the LOCK method MUST
 support the UNLOCK method.

8.14.1. Example

 UNLOCK /workspace/webdav/info.doc HTTP/1.1
 Host: webdav.sb.aol.com
 Lock-Token:opaquelocktoken:123AbcEfg1284h23h2

 HTTP/1.1 200 OK

http://webdav.sb.aol.com/workspace/webdav/
http://webdav.sb.aol.com/workspace/webdav/proposal.doc
http://webdav.sb.aol.com/workspace/
http://foo.bar/blah
http://foo.bar/blah

 In this example, the lock identified by the lock token
 "opaquelocktoken:123AbcEfg1284h23h2" is successfully removed from
 the resource http://webdav.sb.aol.com/workspace/webdav/info.doc. If
 this lock included more than just one resource, the lock was removed
 from those resources as well.

8.15. PATCH Method

 The PATCH method is used to modify parts of the entity returned in
 the response to a GET method. DAV compliant resources MAY support
 the PATCH method.

8.15.1. The Request

 The request entity of the PATCH method contains a list of
 differences between the resource identified by the Request-URI and
 the desired content of the resource after the PATCH action has been
 applied. The list of differences is in a format defined by the
 media type of the entity (e.g., "application/diff") and must include
 sufficient information to allow the server to convert the original
 version of the resource to the desired version. Processing
 performed by PATCH is atomic. Hence all changes MUST be
 successfully executed or the method fails. PATCH MUST fail if
 executed on a non-existent resource; i.e., PATCH does not create a
 resource as a side effect.

 If the request appears (at least initially) to be acceptable, the
 server MUST transmit an interim 100 response message after receiving
 the empty line terminating the request headers and continue
 processing the request. Since the semantics of PATCH are non-
 idempotent, responses to this method are not cacheable.

 While server support for PATCH is optional, if a server does support
 PATCH, it MUST support at least the text/xml diff format defined
INTERNET-DRAFT WebDAV November 19, 1997

 below. Support for the VTML difference format [VTML] is
 recommended, but not required.

8.15.2. text/xml elements for PATCH

 The resourceupdate XML element contains a set of XML sub-entities
 that describe modification operations. The name and meaning of
 these XML elements are given below. Processing of these directives
 MUST be performed in the order encountered within the XML document.
 A directive operates on the resource as modified by all previous
 directives (executed in sequential order). The length of the
 resource MAY be extended or reduced by a PATCH.

http://webdav.sb.aol.com/workspace/webdav/info.doc

 The changes specified by the resourceupdate XML element MUST be
 executed atomically.

8.15.2.1. resourceupdate XML Element

 Name: resourceupdate
 Namespace: http://www.ietf.org/standards/dav/patch/
 Purpose: Contains an ordered set of changes to a non-collection,
 non-property resource.
 Parent: None
 Value= *(insert | delete | replace)

8.15.2.2. insert XML Element

 Name: insert
 Namespace: http://www.ietf.org/standards/dav/patch/
 Purpose: Insert the XML element's contents starting at the
 specified octet.
 Parent: resourceupdate
 Value: The insert XML element MUST contain an octet-range XML
 attribute that specifies an octet position within the body of a
 resource. A value of _end_ specifies the end of the resource. The
 body of the insert XML element contains the octets to be inserted.

 Please note that in order to protect the white space contained in
 this XML element the following attribute/value MUST be included in
 the element: XML-SPACE = "PRESERVE". This attribute is defined in
 the XML specification [Bray, Sperberg-McQueen, 1997].

8.15.2.3. delete XML Element

 Name: delete
 Namespace: http://www.ietf.org/standards/dav/patch/
 Purpose: Removes the specified range of octets.
 Parent: resourceupdate
 Value: The delete XML element MUST contain an octet-range XML
 attribute.
INTERNET-DRAFT WebDAV November 19, 1997

 Discussion: The octets that are deleted are removed, which means the
 resource is collapsed and the length of the resource is decremented
 by the size of the octet range. It is not appropriate to replace
 deleted octets with zeroed-out octets, since zero is a valid octet
 value.

8.15.2.4. replace XML Element

 Name: replace
 Namespace: http://www.ietf.org/standards/dav/patch/

http://www.ietf.org/standards/dav/patch/
http://www.ietf.org/standards/dav/patch/
http://www.ietf.org/standards/dav/patch/
http://www.ietf.org/standards/dav/patch/

 Purpose: Replaces the specified range of octets with the contents
 of the XML element. If the number of octets in the XML element is
 different from the number of octets specified, the update MUST be
 rejected.
 Parent: resourceupdate
 Value: The replace XML element MUST contain an octet-range XML
 attribute. The contents of the entity are the replacement octets.

 Please note that in order to protect the white space contained in
 this XML element the following attribute/value MUST be included in
 the element: XML-SPACE = "PRESERVE"
 .

 This attribute is defined in the
 XML specification [Bray, Sperberg-McQueen, 1997].

8.15.2.5. octet-range Attribute

 Name: octet-range
 Namespace: http://www.ietf.org/standards/dav/patch/
 Purpose: Specifies a range of octets that the enclosing property
 affects.
 Parent: insert | delete | replace
 Value: number [_-_ (number | _end_)]
 Number = 1*Digit

 Description: Octet numbering begins with 0. If the octet contains a
 single number then the operation is to begin at that octet and to
 continue for a length specified by the operation. In the case of a
 delete, this would mean to delete a single octet. In the case of an
 insert this would mean to begin the insertion at the specified octet
 and to continue for the length of the included value, extending the
 resource if necessary. In the case of replace, the replace begins
 at the specified octet and overwrites all that follow to the length
 of the included value.

8.15.3. Response Codes

 200 OK - The request entity body was processed without error,
 resulting in an update to the state of the resource.

 409 Conflict - If the update information in the request message body
 does not make sense given the current state of the resource (e.g.,
 an instruction to delete a non-existent line), this status code MAY
 be returned.
INTERNET-DRAFT WebDAV November 19, 1997

 415 Unsupported Media Type - The server does not support the content
 type of the update instructions in the request message body.

http://www.ietf.org/standards/dav/patch/

 418 Unprocessable Entity - The entity body submitted with the PATCH
 was not understood by the resource.

 419 Insufficient Space on Resource - The resource does not have
 sufficient space to record the state of the resource after the
 execution of this method.

8.15.4. HTML file modification Example

 The following example shows a modification of the title and contents
 of the HTML resource http://www.example.org/hello.html.

 Before:
 <HTML>
 <HEAD>
 <TITLE>Hello world HTML page</TITLE>
 </HEAD>
 <BODY>
 <P>Hello, world!</P>
 </BODY>
 </HTML>

 PATCH Request: Response:

 PATCH hello.html HTTP/1.1
 Host: www.example.org
 Content-Type: text/xml
 Content-Length: xxx

 HTTP/1.1 100 Continue

 <?XML version="1.0">
 <?namespace href = _http://www.ietf.org/standards/dav/patch/_ AS =
 D?>
 <D:resourceupdate>
 <D:replace XML-SPACE = "PRESERVE">
 <D:octet-range>14</D:octet-range>&003CTITLE&003ENew
 Title&003C/TITLE&003E</D:replace>
 <D:delete><D:octet-range>38-50</D:octet-range></D:delete>
 <D:insert XML-SPACE = "PRESERVE"><D:octet-range>86</D:octet-
 range>&003CP&003ENew paragraph&003C/P&003E</D:insert>
 </D:resourceupdate>

 HTTP/1.1 200 OK

 After:
 <HTML>
INTERNET-DRAFT WebDAV November 19, 1997

 <HEAD>
 <TITLE>New Title</TITLE>
 </HEAD>
 <BODY>
 <P>Hello, world!</P>
 <P>New paragraph</P>
 </BODY>
 </HTML>

9. HTTP Headers for Distributed Authoring

9.1. Collection-Member Header

 CollectionMember = "Collection-Member" ":" URI ; URI is defined in
section 3.2.1 of [Fielding et al., 1997]

 The Collection-Member header specifies the URI of an external
 resource to be added/deleted to/from a collection.

9.2. DAV Header

 DAV = "DAV" ":" ("1" | "2" | extend)

 This header indicates that the resource supports the DAV schema and
 protocol to the level indicated. All DAV compliant resources MUST
 return the DAV header on all OPTIONS responses.

9.3. Depth Header

 Depth = "Depth" ":" ("0" | "1" | "infinity")

 The Depth header is used with methods executed on collections to
 indicate whether the method is to be applied only to the collection
 (Depth = 0), to the collection and its immediate children, (Depth =
 1), or the collection and all its progeny (Depth = infinity). Note
 that Depth = 1 and Depth = infinity behavior only applies to
 internal member resources, and not to external member resources.

 The Depth header is only supported if a method's definition
 explicitly provides for such support.

 The following rules are the default behavior for any method that
 supports the depth header. A method MAY override these defaults by
 defining different behavior in its definition.

 Methods which support the depth header MAY choose not to support all
 of the header's values and MAY define, on a case by case basis, the
 behavior of the method on a collection if a depth header is not
 present. For example, the MOVE method only supports Depth = infinity
 and if a depth header is not present will act as if a Depth =

 infinity header had been applied.
INTERNET-DRAFT WebDAV November 19, 1997

 Clients MUST NOT rely upon methods executing on members of their
 hierarchies in any particular order or the execution being atomic.
 Note that methods MAY provide guarantees on ordering and atomicity.

 Upon execution, a method with a depth header will perform as much of
 its assigned task as possible and then return a response specifying
 what it was able to accomplish and what it failed to do.

 So, for example, an attempt to COPY a hierarchy may result in some
 of the members being copied and some not.

 Any headers on a method with a depth header MUST be applied to all
 resources in the scope of the method. For example, an if-match
 header will have its value applied against every resource in the
 method's scope and will cause the method to fail if the header fails
 to match.

 If a resource, source or destination, within the scope of the method
 is locked in such a way as to prevent the successful execution of
 the method, then the lock token for that resource MUST be submitted
 with the request in the Lock-Token request header.

9.4. Destination Header

 Destination = "Destination" ":" URI

 The Destination header specifies a destination resource for methods
 such as COPY and MOVE, which take two URIs as parameters.

9.5. Destroy Header

 DestroyHeader = "Destroy" ":" #Choices

 Choices = "VersionDestroy" | "NoUndelete" | "Undelete" | extend

 Extend = RFC-Reg | Coded-URL

 RFC-Req = Token ; This is a token value (defined in section 2.2 of
 [Fielding et al., 1997]) that has been published as an RFC.

 Coded-URL = "<" URI ">"

 When deleting a resource the client often wishes to specify exactly
 what sort of delete should be performed. The Destroy header, used
 with the Mandatory header, allows the client to specify the end
 result it desires. The Destroy header is specified as follows:

 The Undelete token requests that, if possible, the resource should
 be left in a state such that it can be undeleted. The server is not
 required to honor this request.
INTERNET-DRAFT WebDAV November 19, 1997

 The NoUndelete token requests that the resource MUST NOT be left in
 a state such that it can be undeleted.

 The VersionDestroy token includes the functionality of the
 NoUndelete token and extends it to include having the server remove
 all versioning references to the resource that it has control over.

9.6. Enforce-Live-Properties Header

 EnforceLiveProperties = "Enforce-Live-Properties_ _:" (_*_ | "Omit"
 | 1*(Property-Name))

 Property-Name = Coded-URL

 The Enforce-Live-Properties header specifies properties that MUST be
 live after they are copied (moved) to the destination resource of
 a copy (or move). If the value _*_ is given for the header, then it
 designates all live properties on the source resource. If the value
 is "Omit" then the server MUST NOT duplicate on the destination
 resource any properties that are defined on the source resource. If
 this header is not included then the server is expected to act as

 defined by the default property handling behavior of the associated
 method.

9.7. If-None-State-Match

 If-None-State-Match = "If-None-State-Match" ":" 1#Coded-URL

 The If-None-State-Match header is intended to have similar
 functionality to the If-None-Match header defined in section 14.26
 of RFC 2068. However the if-none-state-match header is intended for
 use with any URI which represents state information about a
 resource, referred to as a state token. A typical example is a lock
 token.

 If any of the state tokens identifies the current state of the
 resource, the server MUST NOT perform the requested method.
 Instead, if the request method was GET, HEAD, INDEX, or PROPFIND,
 the server SHOULD respond with a 304 Not Modified response,
 including the cache-related entity-header fields (particularly ETag)
 of the current state of the resource. For all other request
 methods, the server MUST respond with a status of 412 Precondition
 Failed.

https://datatracker.ietf.org/doc/html/rfc2068#section-14.26
https://datatracker.ietf.org/doc/html/rfc2068#section-14.26

 If none of the state tokens identifies the current state of the
 resource, the server MAY perform the requested method.

 If any of the tokens is not recognized then the method MUST fail
 with a 412 Precondition Failed.
INTERNET-DRAFT WebDAV November 19, 1997

 Note that the "AND" and "OR" keywords specified with the If-State-
 Match header are intentionally not defined for If-None-State-Match,
 because this functionality is not required.

9.8. If-State-Match

 If-State-Match = "If-State-Match" ":" ("AND" | "OR") 1#Coded-URL

 The If-State-Match header is intended to have similar functionality
 to the If-Match header defined in section 14.25 of RFC 2068.
 However the If-State-Match header is intended for use with any URI
 which represents state information about a resource. A typical
 example is a lock token.

 If the AND keyword is used and all of the state tokens identify the
 state of the resource, then the server MAY perform the requested
 method. If the OR keyword is used and any of the state tokens
 identifies the current state of the resource, then the server MAY
 perform the requested method. If the keyword requirement for the
 the keyword used is not met, the server MUST NOT perform the
 requested method, and MUST return a 412 Precondition Failed
 response.

 If any of the tokens is not recognized then the method MUST fail
 with a 412 Precondition Failed.

9.9. Lock-Info Request Header

 LockInfo = "Lock-Info" ":" DAVLockType SP DAVLockScope [SP
 AdditionalLocks] [SP Lock-Tree]
 DAVLockType = "LockType" "=" DAVLockTypeValue
 DAVLockTypeValue = ("Write" | Extend)
 DAVLockScope = "LockScope" "=" DAVLockScopeValue
 DAVLockScopeValue = ("Exclusive" |"Shared" | Extend)
 AdditionalLocks = "AddLocks" "=" 1*("<" URI ">")
 Lock-Tree = "Lock-Tree" "=" ("T" | "F")

 The Lock-Info request header specifies the scope and type of a lock
 for a LOCK method request. The syntax specification below is
 extensible, allowing new type and scope identifiers to be added.

 The LockType field specifies the access type of the lock. At

https://datatracker.ietf.org/doc/html/rfc2068#section-14.25

 present, this specification only defines one lock type, the "Write"
 lock. The LockScope field specifies whether the lock is an
 exclusive lock, or a shared lock. The AddLocks field specifies
 additional URIs, beyond the Request-URI, to which the lock request
 applies. The LockTree field is used to specify recursive locks. If
 the LockTree field is "T", the lock request applies to the hierarchy
 traversal of the internal member resources of the Request-URI, and
 the AddLocks URIs, inclusive of the Request-URI and the AddLocks
 URIs. It is not an error if LockTree is "T", and the Request-URI or
 the AddLocks URIs have no internal member resources. By default,
INTERNET-DRAFT WebDAV November 19, 1997

 the value of LockTree is "F", and this field MAY be omitted when its
 value is "F".

9.10. Lock-Token Request Header

 Lock-Token = "Lock-Token" ":" 1#Coded-URL

 The Lock-Token request header, containing a lock token owned by the
 requesting principal, is used by the principal to indicate that the
 principal is aware of the existence of the lock specified by the
 lock token.

 If the following conditions are met:

 1) The method is restricted by a lock type that requires the
 submission of a lock token, such as a write lock,
 2) The user-agent has authenticated itself as a principal,
 3) The user-agent is submitting a method request to a resource on
 which the principal owns a write lock,

 Then:

 1) The method request MUST include a Lock-Token header with the lock
 token, or,
 2) The method MUST fail with a 409 Conflict status code.

 If multiple resources are involved with a method, such as a COPY or
 MOVE method, then the lock tokens, if any, for all involved
 resources, MUST be included in the Lock-Token request header.

 For example, Program A, used by user A, takes out a write lock on a
 resource. Program A then makes a number of PUT requests on the
 locked resource. All the requests contain a Lock-Token request
 header that includes the write lock state token. Program B, also
 run by User A, then proceeds to perform a PUT to the locked
 resource. However, program B was not aware of the existence of the
 lock and so does not include the appropriate Lock-Token request
 header. The method is rejected even though principal A is

 authorized to perform the PUT. Program B can, if it so chooses, now
 perform lock discovery and obtain the lock token. Note that
 programs A and B can perform GETs without using the Lock-Token
 header because the ability to perform a GET is not affected by a
 write lock.

 Having a lock token provides no special access rights. Anyone can
 find out anyone else's lock token by performing lock discovery.
 Locks are to be enforced based upon whatever authentication
 mechanism is used by the server, not based on the secrecy of the
 token values.

9.11. Lock-Token Response Header
INTERNET-DRAFT WebDAV November 19, 1997

 Lock-Token = "Lock-Token" ":" Coded-URL

 If a resource is successfully locked then a Lock-Token header will
 be returned containing the lock token that represents the lock.

9.12. Overwrite Header

 Overwrite = "Overwrite" ":" ("T" | "F")

 The Overwrite header specifies whether the server should overwrite
 the state of a non-null destination resource during a COPY or MOVE.
 A value of _F_ states that the server MUST NOT perform the COPY or
 MOVE operation if the state of the destination resource is non-null.
 By default, the value of Overwrite is _T,_ and a client MAY omit
 this header from a request when its value is _T._ While the
 Overwrite header appears to duplicate the functionality of the If-
 Match: * header of HTTP/1.1, If-Match applies only to the Request-
 URI, and not to the Destination of a COPY or MOVE.

 If a COPY or MOVE is not performed due to the value of the Overwrite
 header, the method MUST fail with a 409 Conflict status code.

9.13. Propfind Request Header

 Propfind = "Propfind" ":" ("allprop" | "propname" | RFC-Reg |
 1*(Property-Name))

 The Propfind header is used to specify which properties are to be
 returned in a PROPFIND method. The properties are identified by
 their URIs. Two special tokens are defined for use with the
 Propfind header, allprop and propname. The allprop token specifies
 that all property names and values on the resource are to be
 returned. The propname token specifies that only a list of property
 names on the resource are to be returned.

9.14. Status-URI Response Header

 The Status-URI response header MAY be used with the 102 Processing
 response code to inform the client as to the status of a method.

 Status-URI = "Status-URI" ":" *(Status-Code "<" URI ">") ; Status-
 Code is defined in 6.1.1 of [Fielding et al., 1997]

 The URIs listed in the header are source resources which have been
 affected by the outstanding method. The status code indicates the
 resolution of the method on the identified resource. So, for
 example, if a MOVE method on a collection is outstanding and a 102
 "Processing" response with a Status-URI response header is returned,
 the included URIs will indicate resources that have had move
 attempted on them and what the result was.

9.15. Timeout Header
INTERNET-DRAFT WebDAV November 19, 1997

 TimeOut = "Timeout" ":" 1#TimeType
 TimeType = ("Second-" DAVTimeOutVal | "Infinite" | Other)
 DAVTimeOutVal = 1*digit
 Other = Extend field-value ; See section 4.2 of RFC 2068

 Clients MAY include Timeout headers in their LOCK requests.
 However, the server is not required to honor or even consider these
 requests. Clients MUST NOT submit a Timeout request header with any
 method other than a LOCK method.

 A Timeout request header MUST contain at least one TimeType and MAY
 contain multiple TimeType entries. The purpose of listing multiple
 TimeType entries is to indicate multiple different values and value
 types that are acceptable to the client. The client lists the
 TimeType entries in order of preference.

 The Timeout response header MUST use a Second value, Infinite, or a
 TimeType the client has indicated familiarity with. The server MAY
 assume a client is familiar with any TimeType submitted in a Timeout
 header.

 The _Second_ TimeType specifies the number of seconds that MUST
 elapse between granting of the lock at the server, and the automatic
 removal of the lock. A server MUST not generate a timeout value for
 Second greater than 2^32-1.

 The timeout counter is restarted any time an owner of the lock sends
 a method to any member of the lock, including unsupported methods,
 or methods which are unsuccessful. It is recommended that the HEAD
 method be used when the goal is simply to restart the timeout

https://datatracker.ietf.org/doc/html/rfc2068#section-4.2

 counter.

 If the timeout expires then the lock is lost. Specifically the
 server SHOULD act as if an UNLOCK method was executed by the server
 on the resource using the lock token of the timed-out lock,
 performed with its override authority. Thus logs should be updated
 with the disposition of the lock, notifications should be sent,
 etc., just as they would be for an UNLOCK request.

 Servers are advised to pay close attention to the values submitted
 by clients, as they will be indicative of the type of activity the
 client intends to perform. For example, an applet running in a
 browser may need to lock a resource, but because of the instability
 of the environment within which the applet is running, the applet
 may be turned off without warning. As a result, the applet is
 likely to ask for a relatively small timeout value so that if the
 applet dies, the lock can be quickly harvested. However, a document
 management system is likely to ask for an extremely long timeout
 because its user may be planning on going off-line.
INTERNET-DRAFT WebDAV November 19, 1997

10. Response Code Extensions to HTTP/1.1

 The following response codes are added to those defined in HTTP/1.1
 [Fielding et al., 1997].

10.1. 102 Processing

 Methods can potentially take a long period of time to process,
 especially methods that support the Depth header. In such cases the
 client may time-out the connection while waiting for a response. To
 prevent this the server MAY return a 102 response code to indicate
 to the client that the server is still processing the method.

 If a method is taking longer than 20 seconds (a reasonable, but
 arbitrary value) to process the server SHOULD return a 102
 "Processing" response.

10.2. 207 Multi-Status

 The response requires providing status for multiple independent
 operations.

10.3. 418 Unprocessable Entity

 The server understands the content type of the request entity, but
 was unable to process the contained instructions.

10.4. 419 Insufficient Space on Resource

 The resource does not have sufficient space to record the state of
 the resource after the execution of this method.

10.5. 420 Method Failure

 The method was not executed on a particular resource within its
 scope because some part of the method's execution failed causing the
 entire method to be aborted. For example, if a resource could not
 be moved as part of a MOVE method, all the other resources would
 fail with a 420 Method Failure.

10.6. 421 Destination Locked

 The destination resource of a method is locked, and either the
 request did not contain a valid Lock-Info header, or the Lock-Info
 header identifies a lock held by another principal.

11. Multi-Status Response

 The default 207 Multi-Status response body is a text/xml HTTP entity
 that contains a single XML element called multistatus, which
 contains a set of XML elements called response, one for each 200,
INTERNET-DRAFT WebDAV November 19, 1997

 300, 400, and 500 series status code generated during the method
 invocation. 100 series status codes MUST NOT be recorded in a
 response XML element.

11.1. multistatus XML Element

 Name: multistatus
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains multiple response messages.
 Parent: Any
 Value: 1*response [responsedescription]
 Description: The responsedescription at the top level is used to
 provide a general message describing the overarching nature of the
 response. If this value is available an application MAY use it
 instead of presenting the individual response descriptions contained
 within the responses.

11.2. response XML Element

 Name: response
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Holds a single response
 Parent: multistatus
 Value: href [prop] status [responsedescription]
 Description: Prop MUST contain one or more empty XML elements

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

 representing the names of properties. Multiple properties may be
 included if the same response applies to them all. If href is used
 then the response refers to a problem with the referenced resource,
 not a property.

11.3. status XML Element

 Name: status
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Holds a single HTTP status-line
 Parent: response
 Value: status-line ;status-line defined in [Fielding et al.,
 1997]

11.4. responsedescription XML Element

 Name: responsedescription
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains a message that can be displayed to the user
 explaining the nature of the response.
 Parent: multistatus | response
 Value: Any
 Description: This XML element provides information suitable to be
 presented to a user.

12. Generic DAV XML Elements
INTERNET-DRAFT WebDAV November 19, 1997

12.1. href XML Element

 Name: href
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To identify that the content of the element is a URI.
 Parent: Any
 Value: URI ; See section 3.2.1 of [Fielding et al., 1997]

12.2. link XML Element

 Name: link
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To identify a property as a link and to contain the
 source and destination of that link.
 Values= 1*src 1*dst
 Description: Link is used to provide the sources and destinations of
 a link. The type of the property containing the link XML element
 provides the type of the link. Link is a multi-valued element, so
 multiple Links may be used together to indicate multiple links with
 the same type.

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

12.2.1. src XML Element

 Name: src
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To indicate the source of a link.
 Parent: link
 Values= URI

12.2.2. dst XML Element

 Name: dst
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To indicate the destination of a link
 Parent: link
 Values= URI

12.2.3. Example

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" AS = "D"?>
 <?namespace href = "http://www.foocorp.com/Project/" AS = "F"?>
 <D:prop>
 <D:Source>
 <D:link>
 <F:projfiles>Source</F:projfiles>
 <D:src>http://foo.bar/program</D:src>
 <D:dst>http://foo.bar/src/main.c</D:dst>
 </D:link>
 <D:link>
 <F:projfiles>Library</F:projfiles>
INTERNET-DRAFT WebDAV November 19, 1997

 <D:src>http://foo.bar/program</D:src>
 <D:dst>http://foo.bar/src/main.lib</D:dst>
 </D:link>
 <D:link>
 <F:projfiles>Makefile</F:projfiles>
 <D:src>http://foo.bar/program</D:src>
 <D:dst>http://foo.bar/src/makefile</D:dst>
 </D:link>
 </D:Source>
 </D:prop>

 In this example the resource http://foo.bar/program has a source
 property that contains three links. Each link contains three
 elements, two of which, src and dst, are part of the DAV schema
 defined in this document, and one which is defined by the schema

http://www.foocorp.com/project/ (Source, Library, and Makefile). A
 client which only implements the elements in the DAV spec will not

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://foo.bar/program
http://www.foocorp.com/project/

 understand the foocorp elements and will ignore them, thus seeing
 the expected source and destination links. An enhanced client may
 know about the foocorp elements and be able to present the user with
 additional information about the links. This example demonstrates
 the power of XML markup that allows for element values to be
 enhanced without breaking older clients.

12.3. prop XML element

 Name: prop
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains properties related to a resource.
 Parent: Any
 Values: XML Elements
 Description: The prop XML element is a generic container for
 properties defined on resources. All elements inside prop MUST
 define properties related to the resource. No other elements may be
 used inside of a prop element.

13. DAV Properties

13.1. creationdate Property

 Name: creationdate
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: The time and date the resource was created.
 Value: The time and date MUST be given in ISO 8601 format
 [ISO8601]
 Description: This property SHOULD be defined on all DAV compliant
 resources. If present, it contains a timestamp of the moment when
 the resource was created (i.e., the moment it had non-null state).

13.2. displayname Property
INTERNET-DRAFT WebDAV November 19, 1997

 Name: displayname
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: A name for the resource that is suitable for
 presentation to a user.
 Value: Any valid XML character data (as defined in [Bray,
 Sperberg-McQueen, 1997])
 Description:This property SHOULD be defined on all DAV compliant
 resources. If present, the property contains a description of the
 resource that is suitable for presentation to a user.

13.3. get-content-language Property

 Name: get-content-language
 Namespace: http://www.ietf.org/standards/dav/

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

 Purpose: Contains the Content-Language header returned by a GET
 without accept headers. If no Content-Language header is available,
 this property MUST NOT exist.
 Value: language-tag ;language-tag is defined in section 14.13
 of RFC 2068

13.4. get-content-length Property

 Name: get-content-length
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the Content-Length header returned by a GET
 without accept headers. If no Content-Length header is available,
 this property MUST NOT exist.
 Value: content-length ; see section 14.14 of RFC 2068

13.5. get-content-type Property

 Name: get-content-type
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the Content-Type header returned by a GET
 without accept headers. If no Content-Type header is available,
 this property MUST NOT exist.
 Value: media-type ; defined in Section 3.7 of [Fielding et
 al., 1997]

13.6. get-etag Property

 Name: get-etag
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the ETag header returned by a GET without
 accept headers. If no ETag header is available, this property MUST
 NOT exist.
 Value: entity-tag ; defined in Section 3.11 of [Fielding et
 al., 1997]
 Description:Note that the ETag on some resource may reflect changes
 in any part of the state of the resource, not necessarily just a
 change to the response to the GET method. For example, a change in
 the ACL may cause the ETag to change.
INTERNET-DRAFT WebDAV November 19, 1997

13.7. get-last-modified Property

 Name: get-last-modified
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the Last-Modified header returned by a GET
 method without accept headers. If no Last-Modified header is
 available, this property MUST NOT exist.
 Value: HTTP-date ; defined in Section 3.3.1 of [Fielding et
 al., 1997]

https://datatracker.ietf.org/doc/html/rfc2068#section-14.13
https://datatracker.ietf.org/doc/html/rfc2068#section-14.13
http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc2068#section-14.14
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

 Description:Note that the last-modified date on some resource may
 reflect changes in any part of the state of the resource, not
 necessarily just a change to the response to the GET method. For
 example, a change in a property may cause the last-modified date to
 change.

13.8. index-content-language Property

 Name: index-content-language
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the Content-Language header returned by an
 INDEX without accept headers. If no Content-Language header is
 available, this property MUST NOT exist.
 Value: language-tag ;language-tag is defined in section 14.13
 of RFC 2068

13.9. index-content-length Property

 Name: index-content-length
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the Content-Length header returned by an INDEX
 without accept headers. If no Content-Length header is available,
 this property MUST NOT exist.
 Value: content-length ; see section 14.14 of RFC 2068

13.10. index-content-type Property

 Name: index-content-type
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the Content-Type header returned by an INDEX
 without accept headers. If no Content-Type header is available,
 this property MUST NOT exist.
 Value: media-type ; defined in Section 3.7 of [Fielding et
 al., 1997]

13.11. index-etag Property

 Name: index-etag
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the ETag header returned by an INDEX without
 accept headers. If no ETag header is available, this property MUST
 NOT exist.
INTERNET-DRAFT WebDAV November 19, 1997

 Value: entity-tag ; defined in Section 3.11 of [Fielding et
 al., 1997]
 Description:Note that the ETag on some resource may reflect changes
 in any part of the state of the resource, not necessarily just a
 change to the response to the INDEX method. For example, a change
 in the ACL may cause the ETag to change.

http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc2068#section-14.13
https://datatracker.ietf.org/doc/html/rfc2068#section-14.13
http://www.ietf.org/standards/dav/
https://datatracker.ietf.org/doc/html/rfc2068#section-14.14
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

13.12. index-last-modified Property

 Name: index-last-modified
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Contains the Last-Modified header returned by an INDEX
 method without accept headers. If no Last-Modified header is
 available, this property MUST NOT exist.
 Value: HTTP-date ; defined in Section 3.3.1 of [Fielding et
 al., 1997]
 Description:Note that the last-modified date on some resource may
 reflect changes in any part of the state of the resource, not
 necessarily just a change to the response to the INDEX method. For
 example, a change in a property may cause the last-modified date to
 change.

13.13. lockdiscovery Property

 Name: lockdiscovery
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To discover what locks are active on a resource
 Values= *activelock
 Description:The lockdiscovery property returns a listing of who has
 a lock, what type of lock he have, the timeout type and the time
 remaining on the timeout, and the associated lock token. The server
 is free to withhold any or all of this information if the requesting
 principal does not have sufficient access rights to see the
 requested data. A server which supports locks MUST provide the
 lockdiscovery property on any resource with locks on it.

13.13.1. activelock XML Element

 Name: activelock
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: A multivalued XML element that describes a particular
 active lock on a resource
 Parent: lockdiscovery
 Values= locktype lockscope [addlocks] owner timeout locktoken

13.13.2. owner XML Element

 Name: owner
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Returns owner information
 Parent: activelock
 Values= XML:REF | *PCDATA
INTERNET-DRAFT WebDAV November 19, 1997

13.13.3. timeout XML Element

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

 Name: timeout
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Returns information about the timeout associated with
 the lock
 Parent: activelock
 Values= TimeType

13.13.4. addlocks XML Element

 Name: addlocks
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Lists additional resources associated with this lock, if
 any.
 Parent: activelock
 Values= 1*href

13.13.5. locktoken XML Element

 Name: locktoken
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Returns the lock token
 Parent: activelock
 Values= href
 Description:The href contains a Lock-Token-URL.

13.13.6. Example

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
 Content-Length: xxxx
 Content-Type: text/xml

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" AS = "D"?>
 <D:propfind>
 <D:prop><lockdiscovery/></D:prop>
 </D:propfind>

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href ="http://www.ietf.org/standards/dav/" AS = "D"?>
 <D:multistatus>
 <D:response>
 <D:prop>
 <D:lockdiscovery>
 <D:activelock>
INTERNET-DRAFT WebDAV November 19, 1997

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

 <D:locktype>write</D:locktype>
 <D:lockscope>exclusive</D:lockscope>
 <D:addlocks>
 <D:href>http://foo.com/doc/</D:href>
 </D:addlocks>
 <D:owner>Jane Smith</D:owner>
 <D:timeout>Infinite</D:timeout>
 <D:locktoken>
 <D:href>iamuri:unique!!!!!</D:href>
 </D:locktoken>
 </D:activelock>
 </D:lockdiscovery>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:response>
 </D:multistatus>

 This resource has a single exclusive write lock on it, with an
 infinite timeout. This same lock also covers the resource

http://foo.com/doc/.

13.14. resourcetype Property

 Name: resourcetype
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: This property contains a series of XML elements that
 specify information regarding the nature of the resource. This
 specification only defines a single value, collection.
 Value: XML elements
 Description:This property MUST be defined on all DAV compliant
 resources. The default value is empty.

13.14.1. collection XML Element

 Name: collection
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Identifies the associated resource as a collection.
 Collection resources MUST define this value with the resourcetype
 property.
 Parent: resourcetype
 Values: None

13.15. Source Link Property Type

 Name: source
 Namespace: http://www.ietf.org/standards/dav/link/
 Purpose: The destination of the source link identifies the
 resource that contains the unprocessed source of the link's source.
 Parent: None

http://foo.com/doc/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/link/

 Value: An XML document with zero or more link XML elements.
INTERNET-DRAFT WebDAV November 19, 1997

 Discussion: The source of the link (src) is typically the URI of the
 output resource on which the link is defined, and there is typically
 only one destination (dst) of the link, which is the URI where the
 unprocessed source of the resource may be accessed. When more than

 one link destination exists, this specification asserts no policy on
 ordering.

13.16. supportedlock Property

 Name: supportedlock
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: To provide a listing of the lock capabilities supported
 by the resource.
 Values: An XML document containing zero or more LockEntry XML
 elements.
 Description:The supportedlock property of a resource returns a
 listing of the combinations of scope and access types which may be
 specified in a lock request on the resource. Note that the actual
 contents are themselves controlled by access controls so a server is
 not required to provide information the client is not authorized to
 see. If supportedlock is available on _*_ then it MUST define the
 set of locks allowed on all resources on that server.

13.16.1. lockentry XML Element

 Name: lockentry
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Defines a DAVLockType/LockScope pair that may be legally
 used with a LOCK on the specified resource.
 Parent: supportedlock
 Values= locktype lockscope

13.16.2. locktype XML Element

 Name: locktype
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Lists a DAVLockType
 Parent: lockentry
 Values= DAVLockTypeValue

13.16.3. lockscope XML Element

 Name: lockscope
 Namespace: http://www.ietf.org/standards/dav/
 Purpose: Lists a DAVLockScope
 Parent: lockentry

http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/
http://www.ietf.org/standards/dav/

 Values: DAVLockScopeValue

13.16.4. Example

 PROPFIND /container/ HTTP/1.1
 Host: www.foo.bar
INTERNET-DRAFT WebDAV November 19, 1997

 Content-Length: xxxx
 Content-Type: text/xml

 <?XML version="1.0">
 <?namespace href = "http://www.ietf.org/standards/dav/" AS = "D"?>
 <D:propfind>
 <D:prop><supportedlock/></D:prop>
 </D:propfind>

 HTTP/1.1 207 Multi-Status
 Content-Type: text/xml
 Content-Length: xxxxx

 <?XML version="1.0">
 <?namespace href ="http://www.ietf.org/standards/dav/" AS = "D"?>
 <D:multistatus>
 <D:response>
 <D:prop>
 <D:supportedlock>
 <D:LockEntry>
 <D:locktype>Write</D:locktype>
 <D:lockscope>Exclusive</D:lockscope>
 </D:LockEntry>
 <D:LockEntry>
 <D:locktype>Write</D:locktype>
 <D:lockscope>Shared</D:lockscope>
 </D:LockEntry>
 </D:supportedlock>
 </D:prop>
 <D:status>HTTP/1.1 200 OK</D:status>
 </D:response>
 </D:multistatus>

14. DAV Compliance Levels

 A DAV compliant resource can choose from two levels of compliance.
 A client can discover which level a resource supports by executing
 OPTIONS on the resource, and examining the "DAV" header which is
 returned.

 Since this document describes extensions to the HTTP/1.1 protocol,
 minimally all DAV compliant resources, clients, and proxies MUST be
 compliant with RFC 2068 [Fielding et al., 1997].

14.1. Level 1

 A level 1 compliant resource MUST meet all "MUST" requirements in
 all sections of this document.

14.2. Level 2
INTERNET-DRAFT WebDAV November 19, 1997

 A level 2 compliant resource MUST meet all level 1 requirements and
 support the supportedlock property as well as the LOCK method.

15. Internationalization Considerations

 In the realm of internationalization issues, this specification is
 substantively in compliance with the IETF Character Set Policy
 [Alvestrand, 1997]. In this specification, human-readable fields can
 be found in either the value of a property, or in an error message
 returned in a response entity body. In both cases, the human-
 readable content is encoded using XML, which has explicit provisions
 for character set tagging and encoding, and requires by default that
 XML processors read XML elements encoded using the UTF-8 and UCS-2
 encodings of the ISO 10646 basic multilingual plane. Furthermore,
 XML contains provisions for encoding XML elements using other
 encoding schemes, notable among them UCS-4, which permits encoding
 of characters from any ISO 10646 character plane.

 The default character set encoding for XML data in this
 specification, and in general, is UTF-8. WebDAV compliant
 applications MUST support the UTF-8 and UCS-2 character set
 encodings for XML elements, and SHOULD support the UCS-4 encoding.
 The XML character set encoding declaration for each supported
 character set MUST also be supported, since it is by using this
 encoding declaration that an XML processor determines the encoding
 of an element.

 XML also provides language tagging capability which provides the
 ability to specify the language of the contents of a particular XML
 element. Although XML, and hence WebDAV, does not use RFC 1766
 language tags for its language names, the benefit of using standard
 XML in this context outweighs the advantage of using RFC 1766
 language tags.

 Names used within this specification fall into two categories: names
 specific to protocol elements such as methods and headers, names of
 XML elements, and names of properties. Naming of protocol elements

https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1766

 follows the precedent of HTTP, using English names encoded in
 USASCII for methods and headers. Since these protocol elements are
 not visible to users, and are in fact simply long token identifiers,
 they do not need to support encoding in multiple character sets.
 Similarly, though the names of XML elements used in this
 specification are English names encoded in UTF-8, these names are
 not visible to the user, and hence do not need to support multiple
 character set encodings.

 The name of a property defined on a resource is a URI. Although
 some applications (e.g., a generic property viewer) will display
 property URIs directly to their users, it is expected that the
 typical application will use a fixed set of properties, and will
 provide a mapping from the property name URI to a human-readable
INTERNET-DRAFT WebDAV November 19, 1997

 field when displaying the property name to a user. It is only in
 the case where the set of properties is not known ahead of time that
 an application need display a property name URI to a user. We
 recommend that applications provide human-readable property names
 wherever feasible.

 For error reporting, we follow the convention of HTTP/1.1 status
 codes, including with each status code a short, English description
 of the code (e.g., 421 Destination Locked). While the possibility
 exists that a poorly crafted user agent would display this message
 to a user, internationalized applications will ignore this message,
 and display an appropriate message in the user's language and
 character set.

 Since interoperation of clients and servers does not require locale
 information, this specification does not specify any mechanism for
 transmission of this information.

16. Security Considerations
 [TBD]

17. Terminology

 Collection - A resource that contains member resources.

 Member Resource - A resource contained by a collection. There are
 two types of member resources: external and internal.

 Internal Member Resource _ A member resource of a collection whose
 URI is relative to the URI of the collection.

 External Member Resource - A member resource of a collection with an

 absolute URI that is not relative to its parent's URI.

 Property - A name/value pair that contains descriptive information
 about a resource.

 Live Property _ A property whose semantics and syntax are enforced
 by the server. For example, a live "content-length" property would
 have its value, the length of the entity returned by a GET request,
 automatically calculated by the server.

 Dead Property _ A property whose semantics and syntax are not
 enforced by the server. The server only records the value of a dead
 property; the client is responsible for maintaining the consistency
 of the syntax and semantics of a dead property.

18. Copyright
INTERNET-DRAFT WebDAV November 19, 1997

 The following copyright notice is copied from RFC 2026 chapter 10.4,
 and describes the applicable copyright for this document

 Copyright (C) The Internet Society November 19, 1997. All Rights
 Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/rfc2026

19. Acknowledgements

 A specification such as this thrives on piercing critical review and
 withers from apathetic neglect. The authors gratefully acknowledge
 the contributions of the following people, whose insights were so
 valuable at every stage of our work.

 Terry Allen, Harald Alvestrand, Alan Babich, Dylan Barrell, Bernard
 Chester, Tim Berners-Lee, Dan Connolly, Jim Cunningham, Ron Daniel,
 Jr., Jim Davis, Keith Dawson, Mark Day, Martin Duerst, David Durand,
 Lee Farrell, Chuck Fay, Roy Fielding, Mark Fisher, Alan Freier,
 George Florentine, Jim Gettys, Phill Hallam-Baker, Dennis Hamilton,
 Steve Henning, Alex Hopmann, Andre van der Hoek, Ben Laurie, Paul
 Leach, Ora Lassila, Karen MacArthur, Steven Martin, Larry Masinter,
 Michael Mealling, Keith Moore, Henrik Nielsen, Kenji Ota, Bob
 Parker, Glenn Peterson, Jon Radoff, Saveen Reddy, Henry Sanders,
 Christopher Seiwald, Judith Slein, Mike Spreitzer, Einar Stefferud,
 Ralph Swick, Kenji Takahashi, Richard N. Taylor, Robert Thau, John
 Turner, Sankar Virdhagriswaran, Fabio Vitali, Gregory Woodhouse, and
 Lauren Wood.
INTERNET-DRAFT WebDAV November 19, 1997

 One from this list deserves special mention. The contributions by
 Larry Masinter have been invaluable, both in helping the formation
 of the working group and in patiently coaching the authors along the
 way. In so many ways he has set high standards we have toiled to
 meet.
INTERNET-DRAFT WebDAV November 19, 1997

20. References

 [Alvestrand, 1997] H. T. Alvestrand, "IETF Policy on Character Sets
 and Languages." Internet-draft, work-in-progress.

ftp://ds.internic.net/internet-drafts/draft-alvestrand-charset-
policy-02.txt

 [Berners-Lee, 1997] T. Berners-Lee, "Metadata Architecture."
 Unpublished white paper, January 1997.

http://www.w3.org/pub/WWW/DesignIssues/Metadata.html.

 [Bradner, 1997] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels." RFC 2119, BCP 14. Harvard University. March,
 1997.

 [Bray, Sperberg-McQueen, 1997] T. Bray, C. M. Sperberg-McQueen,
 "Extensible Markup Language (XML): Part I. Syntax", WD-xml-
 lang.html, http://www.w3.org/pub/WWW/TR/WD-xml-lang.html.

ftp://ds.internic.net/internet-drafts/draft-alvestrand-charset-policy-02.txt
ftp://ds.internic.net/internet-drafts/draft-alvestrand-charset-policy-02.txt
http://www.w3.org/pub/WWW/DesignIssues/Metadata.html
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
http://www.w3.org/pub/WWW/TR/WD-xml-lang.html

 [Fielding et al., 1997] R. Fielding, J. Gettys, J. Mogul, H.
 Frystyk, T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1."

RFC 2068. U.C. Irvine, DEC, MIT/LCS. January, 1997.
ftp://ds.internic.net/rfc/rfc2068.txt

 [Lasher, Cohen, 1995] R. Lasher, D. Cohen, "A Format for
 Bibliographic Records," RFC 1807. Stanford, Myricom. June, 1995.

ftp://ds.internic.net/rfc/rfc1807.txt

 [Leach, Salz, 1997] P. J. Leach, R. Salz, "UUIDs and GUIDs."
 Internet-draft (expired), work-in-progress, February, 1997.

http://www.internic.net/internet-drafts/draft-leach-uuids-guids-
00.txt

 [Maloney, 1996] M. Maloney, "Hypertext Links in HTML." Internet
 draft (expired), work-in-progress, January, 1996.

 [MARC, 1994] Network Development and MARC Standards, Office, ed.
 1994. "USMARC Format for Bibliographic Data", 1994. Washington, DC:
 Cataloging Distribution Service, Library of Congress.

 [Miller et al., 1996] J. Miller, T. Krauskopf, P. Resnick, W.
 Treese, "PICS Label Distribution Label Syntax and Communication
 Protocols" Version 1.1, W3C Recommendation REC-PICS-labels-961031.

http://www.w3.org/pub/WWW/TR/REC-PICS-labels-961031.html.

 [Slein et al., 1997] J. A. Slein, F. Vitali, E. J. Whitehead, Jr.,
 D. Durand, "Requirements for Distributed Authoring and Versioning
 Protocol for the World Wide Web." RFC XXXX. Xerox, Univ. of Bologna,
 U.C. Irvine, Boston Univ. YYY, 1997.

ftp://ds.internic.net/rfc/rfcXXXX.txt
INTERNET-DRAFT WebDAV November 19, 1997

 [WebDAV, 1997] WEBDAV Design Team. "A Proposal for Web Metadata
 Operations." Unpublished manuscript.

http://www.ics.uci.edu/~ejw/authoring/proposals/metadata.html

 [Weibel et al., 1995] S. Weibel, J. Godby, E. Miller, R. Daniel,
 "OCLC/NCSA Metadata Workshop Report."

http://purl.oclc.org/metadata/dublin_core_report.

 [Yergeau, 1997] F. Yergeau, "UTF-8, a transformation format of
 Unicode and ISO 10646", Internet Draft, work-in-progress, draft-

yergeau-utf8-rev-00.txt, http://www.internic.net/internet-
drafts/draft-yergeau-utf8-rev-00.txt.

INTERNET-DRAFT WebDAV November 19, 1997

21. Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc2068
ftp://ds.internic.net/rfc/rfc2068.txt
https://datatracker.ietf.org/doc/html/rfc1807
ftp://ds.internic.net/rfc/rfc1807.txt
http://www.internic.net/internet-drafts/draft-leach-uuids-guids-00.txt
http://www.internic.net/internet-drafts/draft-leach-uuids-guids-00.txt
http://www.w3.org/pub/WWW/TR/REC-PICS-labels-961031.html
ftp://ds.internic.net/rfc/rfcXXXX.txt
http://www.ics.uci.edu/~ejw/authoring/proposals/metadata.html
http://purl.oclc.org/metadata/dublin_core_report
https://datatracker.ietf.org/doc/html/draft-yergeau-utf8-rev-00.txt
https://datatracker.ietf.org/doc/html/draft-yergeau-utf8-rev-00.txt
http://www.internic.net/internet-drafts/draft-yergeau-utf8-rev-00.txt
http://www.internic.net/internet-drafts/draft-yergeau-utf8-rev-00.txt

 Y. Y. Goland
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052-6399
 Email: yarong@microsoft.com

 E. J. Whitehead, Jr.
 Dept. Of Information and Computer Science
 University of California, Irvine
 Irvine, CA 92697-3425
 Email: ejw@ics.uci.edu

 A. Faizi
 Netscape
 685 East Middlefield Road
 Mountain View, CA 94043
 Email: asad@netscape.com

 S. R. Carter
 Novell
 1555 N. Technology Way
 M/S ORM F111
 Orem, UT 84097-2399
 Email: srcarter@novell.com

 D. Jensen
 Novell
 1555 N. Technology Way
 M/S ORM F111
 Orem, UT 84097-2399
 Email: dcjensen@novell.com

