
 INTERNET-DRAFT Jim Amsden, IBM
draft-ietf-webdav-version-goals-01.txt Chris Kaler, Microsoft

 J. Stracke, Netscape

 Expires December 26, 1999 June 26, 1999

Goals for Web Versioning

 Status of this Memo
 This document is an Internet-Draft and is in full conformance with all
 provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering Task
 Force (IETF), its areas, and its working groups. Note that other groups
 may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference material
 or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract
 Versioning and configuration management are important features for
 controlling the evolution of remotely authored Web content. Parallel
 development leverages versioning capability to allow multiple authors to
 simultaneously author Web content. These functions form a basis for
 flexible, scaleable distributed authoring. This document describes a set
 of scenarios, functional, and non-functional requirements for web
 versioning extensions to the WebDAV protocol. It supersedes the
 versioning-related goals of [WEBDAV-GOALS].

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-version-goals-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Amsden, Kaler, Stracke. [Page 1]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 Table of Contents

1 INTRODUCTION ...2
1.1 Definitions ...4
1.2 Storyboards ...6
1.3 Goals ..14
1.4 Rationale ..23
1.5 Non-goals ..24
1.6 Security Considerations25
1.7 References ...25
1.8 Open Issues ..25

1 INTRODUCTION

 Versioning, parallel development, and configuration management are
 important features for remote authoring of Web content. Version
 management is concerned with tracking and accessing the history of
 important states of a single Web resource, such as a standalone Web
 page. Parallel development provides additional resource
 availability in multi-user, distributed environments and lets
 authors make changes on the same resource at the same time, and
 merge those changes at some later date. Configuration management
 addresses the problems of tracking and accessing multiple
 interrelated resources over time as sets of resources, not simply
 individual resources. Traditionally, artifacts of software
 development, including code, design, test cases, requirements, help
 files, and more have been a focus of configuration management. Web
 sites, comprised of multiple inter-linked resources (HTML,
 graphics, sound, CGI, and others), are another class of complex
 information artifacts that benefit from the application of
 configuration management.

 The WebDAV working group originally focused exclusively on defining
 version management capabilities for remote authoring applications
 and group consensus on these features is reflected in [WEBDAV-
 GOALS]. However, as the WebDAV working group has constructed
 protocols for versioning functionality, it has become clear that
 while versioning functionality alone is useful for a range of
 content authoring scenarios involving one, or a small set of
 resources, versioning alone is insufficient for managing larger
 sets of content. Protocol support for parallel development and
 simple remote configuration management of Web resources provides
 functionality for managing larger sets of interrelated content
 developed by multiple users at different locations.

 This document contains a set of scenarios and a list of the

 functional and non-functional goals for versioning, parallel
 development, and configuration management of Web resources. It
 replaces the existing functional goals for versioning capability
 described in [WEBDAV-GOALS], section 5.9. These scenarios and goals
 are used to develop a model of WebDAV versioning, which in turn is
 used to develop the protocol that implements it.

Clemm, Kaler, et. al. [Page 2]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 Version management is always a tradeoff between the goals for
 maximum data integrity, maximum data availability, and ease of use.
 It is relatively easy to specify a design that satisfies any two of
 these goals, but this is often at the expense of the third. For
 example, data availability and ease of use are easy to accomplish
 using authoring servers that compromise data integrity by following
 a last writer wins policy. In contrast, high data integrity and
 availability are possible using branch and merge systems, but at
 the cost of ease of use due to difficult merges. The requirements
 for WebDAV versioning are based on compromises between these
 conflicting goals. WebDAV versioning specifies a set of mechanisms
 that can be exploited to support a variety of policies allowing
 client applications and users to find a balance appropriate to
 their needs.

Clemm, Kaler, et. al. [Page 3]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

1.1 Definitions

 1. A basic resource is a resource that is not a collection or
 reference, i.e., an HTTP/1.1 resource.

 2. A versioned resource is an abstraction for a resource which is
 subject to version control, a resource having a set of
 revisions, relationships between those revisions, revision
 names, and named branches that track the evolution of the
 resource.

 3. A revision is a particular version of a versioned resource. An
 immutable revision is a revision that once created, can never
 be changed without creating a new revision. A mutable revision
 is a revision that can change without creating a new version.

 4. A working resource is an editable resource derived from a
 revision of a versioned resource by checking out the revision.
 A working resource can become a new revision, or overwrite an
 existing mutable revision on check in.

 5. A initial revision is the first revision of a versioned
 resource and has no predecessors within the versioned
 resource.

 6. A revision name is a unique name that can be used to refer to
 a revision of a versioned resource. There are two types of
 revision names, revision identifiers or labels as described
 below.

 7. A revision identifier (or revision ID) is a revision name
 which uniquely and permanently identifies a revision of a
 versioned resource. Revision identifiers are assigned by the
 server when the revision is created and cannot be changed
 later to refer to a different revision.

 8. A label is a revision name which uniquely, but not necessarily
 permanently identifies a revision of a versioned resource. A
 label may be assigned to a revision, and may be changed to
 refer to a different revision at some later time. The same
 label may be assigned to many different versioned resources.

 9. A predecessor of a revision is a revision from which this
 revision is created. A successor of a revision is a revision
 derived from this revision. A revision may have one
 predecessor and multiple successors. The is-derived-from

 relationships between revisions of a versioned resource form a
 tree.

 10. The merge-predecessors of a revision are those revisions
 that have been merged with this revision.

Clemm, Kaler, et. al. [Page 4]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 11. A revision history is a concrete representation of the
 elements of a versioned resource including all predecessor and
 successor relationships, revision names, activities, etc.

 12. A line-of-descent is a sequence of revisions connected by
 successor/predecessor relationships from the initial revision
 to a specific revision.

 13. An activity is a resource referring to a named set of
 revisions that correspond to some unit of work or conceptual
 change. Activities are created by authors and are used to
 organize related changes to resources, and to provide a basis
 for parallel development and merging concurrent changes to the
 same resource. An activity can contain revisions of multiple
 versioned resources, and/or multiple revisions of the same
 versioned resource along a single line-of-descent. In each
 activity, it is possible to refer to the latest revision of a
 versioned resource in that activity.

 14. A workspace is a resource that is used to determine what
 revision of a versioned resource should be accessed when the
 resource is referenced without a particular revision name.
 When a user agent accesses a versioned resource, a workspace
 may be specified to determine the specific revision that is
 the target of the request. A workspace contains a version
 selection rule that is applied when the workspace is used in
 conjunction with the URI for a versioned resource to perform
 URL mapping and select a specific revision.

 15. A revision selection rule specifies what revision of a
 versioned resource should be selected. WebDAV defines
 selection rules that allow a revision to be selected based on
 its checked out status, revision name, activity name,
 configuration name, or the latest revision. Servers may
 support additional selection rules.

 16. A conflict report lists all revisions that must be merged
 when an activity is merged into a workspace. If the merge
 source activity specifies a resource that is a predecessor or
 successor of the revision selected by the current workspace,
 then there is no conflict. The merged workspace will pick the
 revision already in the workspace if the merge source
 specifies a predecessor, otherwise it will pick the successor
 specified by the merge source. Conflicts result when the merge
 source activity picks a revision on a different line-of-
 descent than that selected by workspace. Conflicts are
 resolved by merging resources together into the workspace.
 This creates a new revision that has multiple predecessors and

 contains the changes from both merge source and the current
 workspace revisions.

 17. A configuration is a named set of related resources where
 each member refers to a specific revision of a versioned
 resource. A configuration is a specific instance of a set of

Clemm, Kaler, et. al. [Page 5]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 versioned resources. Configurations are similar to
 activities, but play a different role. A workspace with its
 current activity and version selection rule specifies what a
 client can see. An activity is associated with work in
 progress and encapsulates a set of related changes to multiple
 versioned resources. Creating separate activities allows
 developers to work in parallel on the same resources, and to
 reconcile conflicts through merging activities. Configurations
 represent a persistent selection of revisions of versioned
 resources for organization and distribution. Configurations
 can be versioned resources, activities cannot.

 18. The checkout paradigm is the process by which updates are
 made to versioned resources. A resource is checked out
 thereby creating a working resource. The working resource is
 updated or augmented as desired, and then checked in to make
 it part of the version history of the resource.

1.2 Storyboards

 This section provides an example usage scenario that provides a
 context for explaining the definitions above, and for exploring and
 validating the goals given in the rest of this document. The
 example consists of a fictitious company, Acme Web Solutions that
 is developing a typical Web e-business application. To provide for
 the broadest coverage, the scenarios start with a non-existent
 resource typical of web applications, and follow its life cycle
 through development and multiple deployments. Other resources would
 likely have similar life cycles.

 Acme Web Solutions (AWS) has developed a web-grocery store called
 WGS. The application consists of a number of HTML pages, some Java
 applets, some Java Server Pages (JSP) and a number of Java servlets
 that access a DB2 database.

 AWS has decided to develop a new generation of its flagship WGS
 product to include maintenance of customer profile information, and
 active (push) marketing of product specials to interested customers
 using Channel Definition Format (CDF). The new product will be
 called Active Grocery Store or AGS. Customers who are interested in
 receiving information on specials will indicate that interest by
 subscribing to various CDF channels targeting pre-defined or user-
 specified product groupings. Since AGS represents significant new
 revenue potential for grocery stores, AWS has decided to sell it as
 a separate product from WGS, and at a relatively high price. WGS
 will still be available without AGS as a lower-cost, entry-level
 solution for smaller stores, or stores just getting into e-business

 solutions.

 AGS is a typical Web application development project that will
 require changes to existing resources in AWS as well as adding new
 resources. These new resources will also be HTML pages, applets,
 JSPs, servlets, etc. WGS is an active project sold to current

Clemm, Kaler, et. al. [Page 6]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 customers with a maintenance contract. It has on-going updates that
 are unrelated to the new AGS system, but may need to be included in
 the AGS system. These include bug fixes or minor new functional
 improvements. Since AGS is based on WGS, but both can evolve and be
 sold separately, it is necessary to maintain versions of resources
 used by both. This will require AWS developers to specify a
 configuration of versioned resources corresponding to each product.
 As the products evolve over time, these configurations will be
 versioned resources themselves, each representing a new release of
 their associated product, WGS, AGS, or both.

 The AWS development organization consists of a large number of
 developers across a variety of disciplines including webmasters,
 Java developers, relational database developers, HTML page editors,
 graphics artists, etc. All of these developers contribute to the
 development of the WGS and AGS products, often working in parallel
 on the same resource for different purposes. For example, a WGS
 developer may be editing an HTML page to fix a usability problem
 while an AGS developer is working on the same page to add the new
 AGS functions. This will require coordination of their activities
 to provide maximum availability of these shared resources while at
 the same time ensuring the integrity of the updates. The AWS
 development team has decided to allow parallel development and
 resolve multiple concurrent updates through branching and merging
 of the resource version graph. This adds complexity to the
 development project as well as some risk due to inaccurate merges,
 but AWS has decided it cannot be competitive in the Web world if
 all development must be serialized on shared resources as this
 would significantly slow product development.

 The following scenarios trace the life cycle of a typical Web
 resource from conception to product deployment and maintenance.
 Each scenario exposes some aspect of WebDAV and its use of the
 versioning, parallel development and configuration management
 definitions and goals specified in this document. In the scenarios
 below, it is assumed that all developers have access to a Web
 WorkBench (WB) application that provides client access to a WebDAV
 server called DAVServer. It is further assumed that both the client
 and server provide level 2 WebDAV services plus advanced
 collections, versioning, parallel development, and configuration
 management.

 There is a goal that WebDAV versioning will support perhaps
 multiple levels of versioning from none (existing WebDAV
 specification), simple linear versioning, support for parallel
 development, and through to configuration management. The scenarios
 below should follow this progression from simple to complex in
 order to help expose logical points for leveling the protocol

 functionality. However, the intent of this document is to at least
 expose the complete goals for full WebDAV versioning support in
 order to ensure down-levels are a consistent subset. The exact
 contents of down-level servers and the number of levels will be
 determined later during protocol development.

Clemm, Kaler, et. al. [Page 7]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

1.2.1.1 Resource Creation

 The AGS project team held a design meeting to determine the work
 products required to support the AGS project, its integration with
 the WGS application, and to assign these work products to
 developers. Various analysis and design techniques can be used to
 discover the required work products, but this is beyond the scope
 of WebDAV. At the end of the meeting, webmaster Joe was assigned to
 develop the new welcome page, index.html, for the AGS project. This
 page will be the initial page used to navigate the AGS application,
 and is the first page seen by users. It is a new page that will not
 replace the WGS welcome page, but will contain a reference to it.

 Joe uses WB to create a new collection, http://aws/ags/, and the
 new index.html page in the collection http://aws/ags/index.html.
 Neither the parent collection, nor index.html are versioned
 resources at this point. A WebDAV MKCOL is used to create the
 collection, and a PUT is used to create the initial, empty
 resource.

1.2.1.2 Resource Editing

 Joe uses WB to GET the resource and edit it with his favorite HTML
 editor. Each save by the HTML editor does a PUT to the DAVServer,
 overwriting its current contents. No new versions are created. Joe
 may also use WB to get and set properties of index.html using
 PROPFIND and PROPPATCH. Joe does not need to lock index.html
 because he is the only developer working on it at this time. He
 could however lock the resource to ensure no one else could make
 any changes he is not aware of.

1.2.1.3 Creating a Versioned Resource

 At some point, Joe decides preliminary editing on index.html is
 complete, and he needs to make a stable version available to other
 developers who need it for integration testing, etc. Joe however
 wants to ensure that no other developers make changes to index.html
 that he cannot back out, as he is the webmaster responsible for the
 resource. So Joe uses the WB to make index.html which causes
 DAVServer to create a versioned resource, and make the initial
 version Joe's index.html. At this point, Joe's index.html is
 immutable, it cannot be changed by anyone, including Joe, and
 remains in the repository until the versioned resource is deleted.

1.2.1.4 Labeling a Version

http://aws/ags/
http://aws/ags/index.html

 When DAVServer created the versioned resource corresponding to
 index.html, it gave the initial version a revision id,
 "102847565". This revision name is automatically assigned by the
 server, and cannot be changed or assigned to any other version.
 This revision name acts as the unique identifier for this version

Clemm, Kaler, et. al. [Page 8]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 of versioned resource index.html. The AGS development team has
 decided that a revision label _initial_ will identify the initial
 version of all resources. This ensures they stand out and can be
 easily accessed without remembering some opaque revision id. Joe
 uses WB to set the label on the initial version to "initial" in
 order to identify the version with this more meaningful name.

1.2.1.5 Accessing Versioned Resources

 Fred wants to access Joe's initial version of index.html. So he
 uses URL http://aws/ags/index.html to get the contents of the
 resource and notices he does get the right version, because it was
 selected by the default workspace. That is, when Fred accessed URL

http://aws/ags/index.html, he did so without specifying a
 workspace. So the default workspace was used, and the default
 workspace always uses "latest" in its version selection rule. But
 Fred wants to be more cautions. He wants to be sure that he
 continues to get version labeled "initial", even if the latest
 version changes as the result of new changes Joe may check in. So
 Fred creates a workspace called "initialws", and sets the version
 selection rule to be the revision labeled "initial". Then Fred
 always accesses index.html with its URL and the initialws workspace
 to be sure he gets the specific version he needs. The workspace
 also ensures he gets the revision named _initial_ of all other
 versioned resources as well, ensuring a consistent set of
 revisions.

 Later that week, there have been a number of changes to index.html,
 and Fred wants to just take a quick look at an old version to
 remember how the page used to look. Fred's workspace is currently
 selecting the latest version, and he doesn't want to change his
 workspace just to look at some other revision. So Fred uses his
 WebDAV client to access index.html using label _initial_, or
 revision id 32345 to override the workspace selection and get the
 initial revision.

1.2.1.6 Creating a New Revision

 A week later, a number of developers have noticed that index.html
 is missing both important references to their pages as well as hot
 images for navigation. They send email to Joe specifying their new
 requirements. Joe now wants to make changes to index.html and
 create a new revision. He wants to retain the old revision, just in
 case the requirements he was given were incorrect and need to be
 backed out, and to allow developers using the old revision to
 continue their work. To do this, Joe uses the WB to check out

http://aws/ags/index.html
http://aws/ags/index.html

 index.html and create a new working resource. Joe can now access
 the working resource because working resources are always visible
 from the workspace in which they were checked out.

 As before, Joe uses the WB and HTML editor to GET the working
 resource and PUT updates. Each PUT replaces the contents of the

Clemm, Kaler, et. al. [Page 9]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 working resource with changes made by the HTML editor, no new
 revision is created. When Joe is finished making edits to support
 the new requirements, he checks the working resource back in,
 making a new revision.

1.2.1.7 Editing a Mutable Revision

 John was assigned to write a high level marketing document,
 ags.html that provided an overall description of the AGS
 application. Since most changes to this document have no effect on
 the rest of AGS, John decides to allow revisions of ags.html to be
 overwriteable. This is so simple spelling and grammar errors can be
 fixed without requiring the creation of a new revision. John still
 wants to create revisions whenever some significant new feature is
 added to AGS so the old descriptions are available to customers who
 don't upgrade.

 John creates resource ags.html, edits it a number of times, and
 then checks it in to create a versioned resource.

 Later on, a new feature is added and John checks out ags.html to
 create a new revision, makes his edits, and checks it back in,
 creating a new revision. Three days later, John notices a spelling
 mistake in the first revision that he corrected in the new
 revision, but users of the old revision would like the correction
 made for their users too. So John again checks out the old revision
 creating a new working resource, fixes the spelling mistake, and
 then checks the working resource back in. However in this case,
 John selects check in in-place in order to overwrite the old
 revision with the corrected revision. Now all users of the old
 revision will see the correction. This revision is now marked as
 mutable since it has been changed.

 Six months later, there have been a number of complaints about
 ags.html presenting misleading product information that has
 resulted in unhappy customers. There's even talk of lawsuits. So
 John hurriedly updates ags.html and checks in the new version as
 immutable so that in case there is a suit, he can prove that
 customers had access to his updated version. Now any changes can be
 made by creating new immutable revisions without ever worrying
 about loosing old version.

 A year later, things have cooled down, and John decides its OK to
 allow mutable revisions again. On his last change he checked
 ags.html in as a mutable revision allowing subsequent changes to be
 done without creating new versions. At the same time, the revision
 history of the immutable revisions is preserved just in case that

 pesky customer re-appears.

Clemm, Kaler, et. al. [Page 10]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

1.2.1.8 Parallel Development with Activities

 Two weeks later, there is a major redesign of AGS that results in a
 lot of changes to index.html. Again, Joe checks out the resource
 creating a new working resource. But it is taking Joe a long time
 to finish all the edits, and in the meantime, graphics artist Jane
 wants to update index.html with references to the new images that
 resulted from the AGS redesign. Jane attempts to check out
 index.html, but WB informs her that Joe already has it checked out
 and refuses the request. She checks with Joe, and since they are
 both working on different aspects of index.html, Joe feels it would
 be fine for Jane to do her work in parallel with his, and then he
 will merge her changes with his to finish the required updates.
 Jane creates a new activity called "images_updates", uses it to set
 the activity of her workspace, and again attempts the checkout.
 This time the checkout succeeds, and a new working resource is
 created for index.html in the images_updates activity. Now any
 changes that Jane makes to images.html are completely independent
 of changes Joe makes to the same resource, but in a different
 activity. Note that Joe did not create an activity when he checked
 out index.html. Instead, the default activity "mainline" was used.
 Jane couldn't checkout index.html without specifying a different
 activity because a resource can only be checked out once in a given
 activity. She also couldn't make any changes until the resource is
 checked out as checked in revisions are read-only.

 After making her edits, she checks index.html back in, which
 creates a new revision in the images_updates activity.

1.2.1.9 Merging Activities

 Project management practice dictates that at various times during
 the development project, usually every few days or at specific
 project milestones, the updates from any parallel activities should
 be merged in order to integrate the changes and produce instances
 of the products suitable for testing. This avoids the risk of
 revisions of shared resources diverging wildly, and thereby
 decreases the likelihood of difficult or inaccurate merges. It also
 encourages communication within the development organization and
 avoids "big-bang" integration points late in the development cycle.
 This enhances the stability of the products and helps ensure a
 deterministic, controllable development process. It also allows
 early product testing and better feedback to developers.

 Joe has finally finished his changes to image.html, and is ready to
 incorporate the changes from Jane's images_update activity to get
 the new images. Before doing so, Joe checks his updates into

 revision "r0.2" so if he does something wrong when doing the merge,
 he can recover and try again. Now Joe specifies in his workspace
 that he wishes to merge the "image_updates" activity into his
 workspace. He then can obtain a conflict report from his workspace
 that indicates that the resource index.html requires a merge. He
 then issues a merge request for index.html. This checks out the

Clemm, Kaler, et. al. [Page 11]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 resource in the mainline activity (the activity in Joe's
 workspace), and registers a merge from the latest revision in the
 image_updates activity to the working resource. This working
 resource now has two predecessors, r0.2 and the image_updates
 revision. Joe then uses the differencing capability in his HTML
 editor to find the differences between his revision and Jane's, and
 to apply Jane's changes as appropriate.

 The HTML editor Joe uses is WebDAV versioning aware, and does a 3-
 way merge by accesses the closest common ancestor in the revision
 history in order to help with the merge process. Joe notices that
 most of Jane's changes do not conflict with his as they are in
 different places in the resource, but there are a number of places
 where he added new functions that do not have images as Jane didn't
 know they were there. He notes these and either fixes them himself,
 or sends email to Jane so she can fix them in another revision.
 Once the changes are complete, Joe checks in the merged revision.
 Jane is free to continue making updates in her image_updates
 activity, and these changes can be merged in again later.

1.2.1.10 Creating a Configuration

 At some point, enough of the work products of the AGS application
 are sufficiently complete and stable that AWS wants to distribute
 an alpha release. To do this, Joe uses WB to create a configuration
 named "alphaRelease" that will contain a consistent set of
 compatible work product revisions. This configuration will contain
 all revisions currently selected by Joe's workspace. If any working
 resources exist in Joe's workspace, the request to create a
 configuration fails, with an error message indicating that the
 failure is due to the presence of checked-out resources in Joe's
 workspace.

 When Jane is ready to see the alphaRelease, she modifies the
 revision selection rules of her workspace to select this new
 configuration. Any conflicts between this new configuration and her
 current activity requiring merges would be noted in the "conflicts"
 report of her workspace, which Jane could then resolve with the
 "merge" operation.

 Each release of AGS consists of new resources and updated revisions
 of existing resources. To simplify creating a new configuration for
 each new release, Joe can make the AGS configuration a versioned
 resource. For release 1 of AGS, Joe uses a configuration called
 AGS, and labels it R1. For release 2, he checks out version R1 of
 configuration AGS, and adds, removes, or changes the revisions of
 versioned resources in the configuration, then checks in the

 configuration and labeling it R2.

Clemm, Kaler, et. al. [Page 12]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

1.2.1.11 Getting the Revision History of a Versioned Resource

 In order to determine what revision should be included in the
 alphaRelease configuration, Joe must examine the revision history
 of resource index.html. He does this by requesting the revision
 history of index.html and receives an XML document describing all
 the revisions including their revision id, labels, descriptions,
 successors, predecessor, and merge predecessors. Joe uses an XML
 enabled browser and an XSL style sheet to view the revision
 history.

1.2.1.12 Accessing Resources by Non-versioning Aware Clients

 Fred belongs to a different company, and does not have any WebDAV
 versioning aware tools. However, he is an excellent graphics
 artist, and has been asked to look over a particular image file,
 logo.gif. So Fred uses his image editing tool to get a copy of
 logo.gif. Because his editing tool is not versioning aware, he
 cannot specify a particular version, either with a revision name or
 by using a workspace. However, the WebDAV server provides a default
 workspace that selects the latest revision when no label or
 workspace is specified on a request.

1.2.1.13 Updating Resources by Non-versioning Aware Clients

 Fred has provided his review to Jane and Joe, and they decide he
 should be allowed to update the image in logo.gif. Fred then edits
 the image in his image editing tool, and attempts to save it on the
 DAVServer. Again, the editing tool does not specify a workspace, or
 activity, nor can Fred check out the resource before attempting the
 save. Joe realizes Fred must be able to change the resource, so he
 enables automatic versioning in logo.gif. Then when Fred attempts
 to update the resource, the server automatically checks out the
 resource, does the put, and then checks it back in, all in the
 context of the default workspace.

 If someone else had the resource already checked out, then Fred's
 save would have failed because the automatic check out would have
 failed.

 There are some potential problems with using non-versioning aware
 clients this way. If Fred got a copy of the resource, and then Jane
 checked it out, made changes, and then checked it back in, when
 Fred does his save, Jane's changes will be lost. The changes will
 appear in a previous revision, but they may have been in the same
 activity, and there would be no indication that a merge needs to be
 done in order to pick up both changes. To avoid this problem Joe

 could change the activity in the default workspace so that all
 changes done by non-versioning aware clients are done in a separate
 activity. This would allow Joe to control when these changes were
 merged back into other activities.

Clemm, Kaler, et. al. [Page 13]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

1.2.1.14 Freezing an Activity

 Joe has decided that the imageUpdates activity should no longer be
 used once all the changes in that activity have been merged into
 the mainline activity. To enforce this, Joe locks the activity.
 Then when Jane attempts to edit index.html in her imageUpdates
 activity, the checkout fails as the activity is locked.

1.2.1.15 Preventing Parallel Development

 Joe is responsible for another resource, getPreferences.shtml that
 he wants complete control over. He does not want to allow anyone
 else to ever make changes to this resource in any activity. To
 enforce this, Joe indicates getPreferences.shtml does not support
 multiple activities, and he checks it out to make sure no-one else
 can make any changes. Then when Jane attempts to checkout
 getPreferences.shtml in the imageUpdates activity, the checkout
 fails indicating that resource does not support parallel
 development.

1.3 Goals

 This section defines the goals addressed by the protocol to support
 versioning, parallel development, and configuration management.
 These goals are derived from the desire to support the scenarios
 above. Each goal is followed by a short description of its
 rationale to aid in understanding the goal, and to provide
 motivation for why it was included.

 1. Versioning aware and non-versioning aware clients must be able to
 inter-operate. Non-versioning aware clients will not be able to
 perform all versioning operations, but will, at a minimum, be
 capable of authoring resources under version control and be
 capable of creating new revisions while implicitly maintaining
 versioning semantics. Non-versioning aware clients are HTTP/1.1
 and versioning unaware WebDAV clients.

 Versioning and configuration management adds new capabilities to
 WebDAV servers. These servers should still be responsive to non-
 versioning aware clients in such a way that these clients retain
 their capabilities in a manner that is consistent with the
 versioning rules, and the capabilities those clients would have
 had on a non-versioning server. For example, non-versioning aware
 clients should be able to GET the contents of a versioned
 resource without specifying a revision and get some well-defined
 default revision. A non-versioning aware client should be able to
 PUT to a versioned resource and have a new revision be

 automatically created. The PUT must be done by doing an implicit
 checkout, PUT, and checkin in order to maintain versioning
 semantics and avoid lost updates. A subsequent GET on the same
 versioned resource by this client should return the new revision.
 The server should be able to be configured so that these non-

Clemm, Kaler, et. al. [Page 14]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 versioning aware client updates are placed in a different
 activity, or perhaps disallowed.

 2. It must be possible to version resources of any media or content
 type.

 The versioning semantics of the protocol must not depend on the
 media type of the resource or versioning would have limited
 applicability, and client applications would become more complex.

 3. Every revision of a versioned resource must itself be a resource,
 with its own URI.

 See section 5.9.2.2 of [WEBDAV-GOALS]. This goal has two
 motivations. First, to permit revisions to be referred to, so
 that (for example) a document comparing two revisions can include
 a link to each. Second, revisions can be treated as resources for
 the purposes of DAV methods such as PROPFIND.

 4. It must be possible to prevent lost updates by providing a
 protocol that reserves a revision of a resource while it is being
 updated and preventing other users from updating the same
 revision at the same time in uncontrolled ways.

 5. It must be possible to reserve the same revision more than once
 at the same time, and to have multiple revisions of the same
 versioned resource reserved at the same time.

 6. It should be possible for a client to specify meaningful labels
 to apply to individual revisions, and to change a label to refer
 to a different revision.

 Although the server assigns unique revision IDs, human-meaningful
 aliases are often useful. For example, a label called
 "CustomerX" could be assigned to the latest revision of a
 document which has been delivered to customer X. When X calls to
 inquire about the document, the author(s) can simply refer to the
 label, rather than maintaining a separate database of which
 revisions have been shipped to which customers.

 7. It must be possible to use the same label for different versioned
 resources.

 This allows authors to indicate that revisions of different
 resources are somehow related or consistent at some point in
 time. Configurations formalize this relationship.

 8. The labels and revision IDs within a revision history are names
 in a common namespace, in which each name must be unique. The

 server may partition this namespace syntactically, in order to
 distinguish labels from IDs. The server enforces uniqueness for
 these labels.

 This means the same label cannot apply to multiple revisions, the

Clemm, Kaler, et. al. [Page 15]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 same revision ID cannot apply to multiple revisions, and no label
 can also be a revision ID or vice versa. This is required so
 that a label, when applied to a versioned resource, refers to one
 and only one revision, and all revision names for a versioned
 resource are unique. To enforce uniqueness, a server will have to
 reject labels that it might eventually use as revision IDs. The
 simplest way to do this is to partition the namespace.

 9. Given a URI to a versioned resource, and a revision name, it must
 be possible for a client to obtain a URI that refers to that
 revision, and to access the revision.

 This allows specific revisions of a resource to be accessed given
 the URI of the versioned resource and a revision name.

 10. Given a URI to a versioned resource, and a workspace, it must
 be possible for a client access the revision selected by the
 workspace.

 When a user agent accesses a versioned resource, it is necessary
 to provide additional information to specify which revision of
 the versioned resource should be accessed. One way to do this is
 to specify a revision name with the resource URL to select a
 particular revision as specified in the previous goal. However,
 this requires users to add and remember a label for each
 revision, which is inconvenient and does not scale. In addition,
 labels alone don't provide a way of accessing revisions modified
 in an activity, or contained in a configuration. It is possible
 to specify a number of different ways of accessing specific
 revisions using different headers for labels, activities,
 configurations, working revisions, etc., but this leads to a lot
 of complexity in the protocol, and for users. Workspaces provide
 a unified means of specifying how URLs are mapped to specific
 revisions. A workspace contains a revision selection rule that is
 applied when the workspace is used in conjunction with the URLs
 for versioned resources to perform URL mapping to select a
 specific revision. This allows specific revisions of a many,
 related revisions to be accessed through URLs without having to
 specify a specific label for each resource. It also provides a
 means to resolve URLs to particular revisions using more complex
 revision selection rules than a single label including revisions
 modified in an activity or contained in a configuration.

 11. Relative URLs appearing in versioned documents (e.g., HTML and
 XML) which are being edited and/or browsed by a versioning-aware
 client should work correctly.

 Web resources and client applications often refer to other

 resources with relative URLs, an incompletely specified URL that
 is completed by pre-pending some known context that would not
 contain a revision or workspace name. When used with versioned
 resources, these relative URLs may be relative to a versioned
 resource or a particular revision. In this case, the context must

Clemm, Kaler, et. al. [Page 16]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 include sufficient information for the relative URL to be
 resolved to a specific revision.

 12. If the DAV server supports searching, it should be possible to
 narrow the scope of a search to the revisions of a particular
 versioned resource.

 It is often the case that one needs to find, for example, the
 first revision at which a particular phrase was introduced, or
 all the revisions authored by a particular person. Given search
 capabilities for collections, it would be far more sensible to
 leverage those capabilities than to define a separate search
 protocol for revision histories. For example, if the server
 supports [DASL], then the revision histories could be searched
 via DASL operations.

 13. If the DAV server supports searching, revision IDs and label
 names should be searchable.

 This would allow client applications to search for resources that
 have a particular revision name. This goal does not specify that
 any particular search mechanism is implied or needed. It only
 indicates that labels should be available properties that a
 search mechanism could access.

 14. The CM protocol must be an optional extension to the base
 versioning protocol.

 It is expected that servers will want to support versioning
 without supporting configuration management. This goal provides
 the required flexibility.

 15. It must be possible to determine what properties of a checked
 in revision may change without creating a new revision.
 Properties of a checked in revision that cannot change are called
 immutable properties.

 It is anticipated that some properties may be calculated in such
 a way that their values may change even on a revision that is
 checked in. Other properties may change without having any effect
 on the resource itself e.g., review status, approved, etc. This
 results from the fact that properties may be meta-data about a
 resource that is actually not describing the state of the
 resource itself. A client must be able to discover which
 properties might change in order to maintain its state properly.

 16. Revisions are either mutable or immutable. Once an immutable
 revision has been checked in, its contents and immutable
 properties can never be changed. A mutable revision can be

 checked out, updated, and checked back in without creating a new
 revision. It must be possible to determine if a revision is
 mutable or immutable, but the mutability of a revision cannot be
 changed once it has been checked in.

Clemm, Kaler, et. al. [Page 17]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 The concept of mutable revisions is included to support typical
 document management systems that want to track version histories
 while allowing more flexible, less formal versioning semantics.
 Mutable revisions will have some restrictions due to the fact
 that because the revision may change, certain configuration
 management semantics cannot be maintained. For example, a mutable
 revision cannot be a member of a configuration because the
 configuration would not represent a persistent set of revisions.

 17. Each revision may have properties whose values may be changed
 without creating a new revision. The list of these properties
 must be discoverable.

 It is expected that certain live properties whose values are
 calculated by the server may depend on information that is not
 captured in the persistent state of an immutable revision. The
 values of these properties may change from time to time without
 requiring a new revision of the versioned resource. There may
 also be some DAV properties used to support versioning and
 configuration management that may change without requiring a new
 revision.

 18. Revisions and versioned resources can be deleted. Generally
 this is a high-privilege operation. Deleting a revision must
 update its predecessors' successors.

 This goal is included to support generally necessary maintenance
 operations on versioning repositories. It is sometimes the case
 that successors of a revision beyond some point are no longer
 required and can be removed from the repository to reclaim space.
 It may also be the case that a versioned resource is no longer
 used and can be safely deleted. This goal does not intend to
 express any policy for when or under what circumstance revisions
 can be deleted. It only provides a mechanism to support
 particular client or server policies.

 19. Once a revision has been deleted, its ID cannot be reused
 within the same versioned resource.

 In many cases, it is necessary to be able to guarantee (as far as
 possible) that one can retrieve the exact state of a resource at
 a particular point in history, and/or all the states which the
 resource has ever taken on. For example, if a company is sued
 for violating a warranty that the plaintiff read on the company's
 Web site, it might be useful to be able to prove that the
 warranty never contained the provision that the plaintiff says it
 did. Conversely, it may be useful for the plaintiff to be able to
 prove that it did. A revision history where all revisions were

 immutable would provide this sort of ability.

 Of course, DAV cannot preclude the possibility of an out-of-band
 method to change or delete a revision; an implementation may
 provide an administrative interface to do it. But such access
 would at least be limited to trusted administrators.

Clemm, Kaler, et. al. [Page 18]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 It is possible that a versioned resource contained in a
 configuration is deleted, and a new, unrelated versioned resource
 is created using the same URL, and having the same revision id.
 The configuration may incorrectly include this revision.
 Requiring revision Ids to be UUIDs would resolve this issue.

 20. A configuration can only contain immutable revisions.

 This requirement is included in order to retain the usual
 semantics of configurations, and to ensure that a configuration
 can always be recreated. The implication is that unversioned
 resources, working revisions, and mutable revisions cannot be
 members of a configuration.

 21. It must be possible to query a revision history to learn the
 predecessors and successors of a particular revision, activity
 names, the initial and latest revisions, etc.

 If a client wishes to present a user interface for browsing the
 revisions of a particular versioned resource, it must be able to
 read the relationships represented within the version history.

 22. It should be possible to obtain the entire revision history of
 a versioned resource in one operation.

 A client wishing to display a map of the revision history should
 not have to make queries on each individual revision within the
 revision history. It should be able to obtain all the information
 at once, for efficiency's sake.

 23. The protocol support for parallel development through
 activities must be an optional capability.

 Activities support controlled parallel development on the same
 resource, but results in the need to merge multiple changes at
 some later time. This introduces work and the potential for
 errors that some servers may want to avoid by requiring updates
 to be serialized.

 24. The protocol must support the following operations:

 1. Creating and accessing revisions:

 . Create a versioned resource from an unversioned
 resource and set its initial revision to the contents
 of the unversioned resource. This does not imply that
 unversioned resources are required. A server could
 create all resources as versioned resources.

 . Obtain the URI of, or access a revision or a versioned
 resource given the URL for the versioned resource and
 either a revision name, or a workspace

Clemm, Kaler, et. al. [Page 19]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 . Check out a revision in an activity and create a
 working resource

 . Check in a working resource and create either a new
 revision or update the existing revision in place
 creating a mutable revision

 . Cancel a checkout (delete a working resource)

 . Describe a revision with human-readable comments

 . See if a resource is versioned

 . Get the versioning options for a resource

 2. Labels:

 . Apply a label to a particular revision

 . Change the revision to which a label refers

 . Get all the revision names on a particular revision

 . Get the revision history of a resource

 3. Activities:

 . Create and name an activity

 . Checkout a revision in an activity

 . Merge an activity into a workspace

 . Generate and maintain the conflict report for a merge

 . Get a list of the resources modified in an activity

 . Apply a label operation to all resources modified in an
 activity

 4. Configurations:

 . Create a configuration

 . Add/remove revisions from a configuration

 . Access a revision given a configuration name that
 contains it by using a configuration in a version
 selection rule for a workspace

 . Delete a configuration.

 . Determine the differences between two configurations by
 listing the activities in one and not the other.

Clemm, Kaler, et. al. [Page 20]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 Some of these operations come from [WEBDAV-GOALS], section
5.9.1.2. Not all of the operations in that section are

 replicated here; some of them (e.g., locking) fall out naturally
 from the fact that a revision is a resource.

 The protocol must find some balance between allowing versioning
 servers to adopt whatever policies they wish with regard to these
 operations and enforcing enough uniformity to keep client
 implementations simple and interoperable.

 25. For each operation that the protocol defines, the protocol
 must define that operation's interaction with all existing
 [WebDAV] methods on all existing WebDAV resources.

 This goal applies to all HTTP extensions, not just versioning.
 However, versioning, parallel development, and configuration
 management are sufficiently complex and have a broad enough
 effect on other methods to call out this goal specifically.

 26. The protocol should clearly identify the policies that it
 dictates and the policies that are left up to versioning system
 implementers or administrators. A client must be able to discover
 what policies the server supports.

 Many writers have discussed the notion of versioning styles
 (referred to here as versioning policies, to reflect the nature
 of client/server interaction) as one way to think about the
 different policies that versioning systems implement. Versioning
 policies include decisions on the shape of version histories
 (linear or branched), the granularity of change tracking, locking
 requirements made by a server, naming conventions for activities
 and labels, etc.

 27. A client must be able to determine whether a resource is a
 versioned resource, or whether a resource is itself revision of a
 versioned resource.

 A resource may be a simple, non-versioned resource, a versioned
 resource, an immutable revision, a mutable revision, or a working
 resource. A client needs to be able to tell which sort of
 resource it is accessing..

 28. A client must be able to access a versioned resource with a
 simple URL and get some well-defined default revision.

 The server should return a default revision of a resource for
 where no specific revision information is provided. This is one
 of the simplest ways to guarantee non-versioning client
 compatibility. This does not rule out the possibility of a server

 returning an error when no sensible default exists.

 It may also be desirable to be able to refer to other special
 revisions of a versioned resource. For example, there may be a
 current revision for editing that is different from the default

Clemm, Kaler, et. al. [Page 21]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 revision. For a graph with several branches, it may be useful to
 be able to request the tip revision of any branch.

 The association of a workspace with a particular user agent for
 the purposes of applying version selection rules is the
 responsibility of the client application. The server does not
 necessarily maintain this association.

 29. It must be possible, given a reference to a revision of a
 versioned resource, to find out which versioned resource that
 revision belongs to.

 This makes it possible to understand the versioning context of
 the revision. It makes it possible to retrieve a revision history
 for the versioned resource to which it belongs, and to browse the
 revision history. It also supports some comparison operations: It
 makes it possible to determine whether two references designate
 revisions of the same versioned resource.

 30. Versioning functionality may be partitioned into levels. The
 lowest level must provide simple versioning of resources and
 support for labels, checkin, and checkout. Other functions should
 be as orthogonal as possible so that servers have additional
 flexibility in choosing features to implement. Functionality at
 lower levels must be a consistent subset of the functionality at
 higher levels and not introduce special cases, incompatible, or
 redundant functions.

 Servers must provide all the functions defined for a given level
 in order to claim and advertise conformance to that level. A
 server may choose to implement additional features from higher
 levels to support particular business and/or client requirements.
 The OPTIONS method indicates exactly what features are supported
 while the DAV header indicates the supported level clients can
 rely on.

 At a minimum, the following actions are actions are available at
 the basic level:

 . Checkout a revision and receive a way to update the working
 copy

 . Checkin a working copy to create a new revision

 . Cancel an active checkout

 . Optional for server to support multiple checkouts on the same
 resource

 . Labeling of revisions to identify them

 . Access to the linear checkin history of a versioned resource

Clemm, Kaler, et. al. [Page 22]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 31. It must be possible to lock an activity so that no one can
 make further changes in that activity.

 32. It must be possible to indicate that a particular resource
 does not allow parallel development. That is, the resource can
 effectively only be checked out in one activity.

 33. The protocol should be defined in such a way as to minimize
 the adoption barriers for clients and existing repository
 managers. This includes integration with legacy data in
 repository managers supporting the WebDAV protocol.

 34. The server must not require client applications to retain
 state in order to support versioning semantics. That is, a user
 must be able to begin using versioning with one client, and
 continue using versioning on some other client at some other
 time.

 35. It must be possible to discover what resources have changed in
 a workspace from a given point.

 36. Versioned resources, revisions, and activities must have an
 associated URN that is globally unique.

 37. Servers may choose to support only mutable revisions, only
 immutable revisions, or both. Clients must be able to discover
 the support provided by the server.

 38. Activities should be able to be dependent (conceptually
 include) other activities.

 39. Enumeration of versioning resource types should be fast/easy.

1.4 Rationale

 Versioning in the context of the worldwide web offers a variety of
 benefits:

 1. It provides infrastructure for efficient and controlled
 management of large evolving web sites. Modern configuration
 management systems are built on some form of repository that can
 track the revision history of individual resources, and provide
 the higher-level tools to manage those saved versions. Basic
 versioning capabilities are required to support such systems.

 2. It allows parallel development and update of single resources.
 Since versioning systems register change by creating new objects,
 they enable simultaneous write access by allowing the creation of

 variant versions. Many also provide merge support to ease the
 reverse operation.

 3. It provides a framework for coordinating changes to resources.
 While specifics vary, most systems provide some method of

Clemm, Kaler, et. al. [Page 23]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 controlling or tracking access to enable collaborative resource
 development.

 4. It allows browsing through past and alternative versions of a
 resource. Frequently the modification and authorship history of a
 resource is critical information in itself.

 5. It provides stable names that can support externally stored links
 for annotation and link-server support. Both annotation and link
 servers frequently need to store stable references to portions of
 resources that are not under their direct control. By providing
 stable states of resources, version control systems allow not
 only stable pointers into those resources, but also well defined
 methods to determine the relationships of those states of a
 resource.

 6. It allows explicit semantic representation of single resources
 with multiple states. A versioning system directly represents the
 fact that a resource has an explicit history and a persistent
 identity across the various states it has had during the course
 of that history.

1.5 Non-goals

 These non-goals enumerate functionality that the working group has
 explicitly agreed to exclude from this document. They are
 documented here for explanatory purposes.

 1. Revisions in multiple revision histories (see [WEBDAV-GOALS],
 sections 5.9.1.3 and 5.9.2.5). This capability was felt to be
 too rarely useful.

 2. Federated revision histories (that is, revision histories
 which are not stored on a single server). This capability
 would introduce great difficulties. A server implementer who
 needs it can use out-of-band server-to-server communication.
 But, this communication is arguably out of the scope of
 WebDAV, which is a client-to-server protocol. However, the
 protocol shouldn't do anything to preclude federated version
 histories at a later date.

 3. Client-proposed version identifiers (see [WEBDAV-GOALS],
section 5.9.2.8). Labels do the job better.

 4. Change management or change control operations. It is
 envisioned that policies for change management and the
 mechanisms to implement them will be quite variable for the
 number and types of users authoring content for the web.

 Therefore it is important to provide core capabilities for
 versioning, parallel development, and configuration management
 without hindering the policies client applications may choose
 to present to their users. It is intended that WebDAV
 versioning will provide these core capabilities, and that a

Clemm, Kaler, et. al. [Page 24]

INTERNET-DRAFT Goals for Web Versioning May 17, 1999

 variety of change management policies could be implemented on
 these core capabilities by client applications.

 5. Server-to-server communication (e.g., replication) is not
 required.

1.6 Security Considerations

 To be written. It is likely that implementing features to meet the
 goals described here will present few or no new security risks
 beyond those of base DAV. One possible exception is that it may
 become more difficult to hide the contents of a resource when there
 may exist other versions with different access control lists.

1.7 References

 [WEBDAV]Y.Y. Goland, E.J. Whitehead, Jr., A. Faizi, S.R. Carter, D.
 Jensen, "Extensions for Distributed Authoring on the World Wide Web
 -- WEBDAV", Internet-Draft draft-ietf-webdav-protocol-10. Nov.,
 1998
 [WEBDAV-GOALS] J. Slein, F. Vitali, J. Whitehead, D. Durand,
 "Requirements for a Distributed Authoring and Versioning Protocol
 for the World Wide Web", RFC-2291. February 1998.
 [WEBDAV-ACP] J. Slein, J. Davis, A. Babich, J. Whitehead, "WebDAV
 Advanced Collections Protocol", Internet-Draft draft-ietf-webdav-

collection-protocol-02.txt. Nov., 1998.
 [DASL] S. Reddy, D. Jensen, S. Reddy, R. Henderson, J. Davis, A.
 Babich, "DAV Searching & Locating", Internet-Draft draft-reddy-

dasl-protocol-04.txt. Nov., 1998.
 [CVS] http://www.cyclic.com/cyclic-pages/books.html
 [BONSAI] Mozilla.org, http://www.mozilla.org/bonsai.html

1.8 Open Issues

 . The current write up of configurations may need to change as we
 define what a "configuration" is.

https://datatracker.ietf.org/doc/html/draft-ietf-webdav-protocol-10
https://datatracker.ietf.org/doc/html/rfc2291
https://datatracker.ietf.org/doc/html/draft-ietf-webdav-collection-protocol-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-webdav-collection-protocol-02.txt
https://datatracker.ietf.org/doc/html/draft-reddy-dasl-protocol-04.txt
https://datatracker.ietf.org/doc/html/draft-reddy-dasl-protocol-04.txt
http://www.cyclic.com/cyclic-pages/books.html
http://www.mozilla.org/bonsai.html

 Clemm, Kaler, et. al. [Page 25]

