
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track October 9, 2016
Expires: April 12, 2017

Message Encryption for Web Push
draft-ietf-webpush-encryption-04

Abstract

 A message encryption scheme is described for the Web Push protocol.
 This scheme provides confidentiality and integrity for messages sent
 from an Application Server to a User Agent.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 12, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires April 12, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Web Push Encryption October 2016

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. Push Message Encryption Overview 3
2.1. Key and Secret Distribution 4

3. Push Message Encryption 4
3.1. Diffie-Hellman Key Agreement 4
3.2. Push Message Authentication 5
3.3. Combining Shared and Authentication Secrets 5
3.4. Key Derivation Context 6
3.5. Encryption Summary 6

4. Restrictions on Use of "aesgcm" Content Coding 7
5. Push Message Encryption Example 7
6. IANA Considerations . 8
7. Security Considerations 9
8. References . 9
8.1. Normative References 9
8.2. Informative References 10

Appendix A. Intermediate Values for Encryption 10
 Author's Address . 12

1. Introduction

 The Web Push protocol [I-D.ietf-webpush-protocol] is an intermediated
 protocol by necessity. Messages from an Application Server are
 delivered to a User Agent via a Push Service.

 +-------+ +--------------+ +-------------+
 | UA | | Push Service | | Application |
 +-------+ +--------------+ +-------------+
 | | |
 | Setup | |
 |<====================>| |
 | Provide Subscription |
 |-->|
 | | |
 : : :
 | | Push Message |
 | Push Message |<---------------------|
 |<---------------------| |
 | | |

 This document describes how messages sent using this protocol can be
 secured against inspection, modification and falsification by a Push
 Service.

Thomson Expires April 12, 2017 [Page 2]

Internet-Draft Web Push Encryption October 2016

 Web Push messages are the payload of an HTTP message [RFC7230].
 These messages are encrypted using an encrypted content encoding
 [I-D.ietf-httpbis-encryption-encoding]. This document describes how
 this content encoding is applied and describes a recommended key
 management scheme.

 For efficiency reasons, multiple users of Web Push often share a
 central agent that aggregates push functionality. This agent can
 enforce the use of this encryption scheme by applications that use
 push messaging. An agent that only delivers messages that are
 properly encrypted strongly encourages the end-to-end protection of
 messages.

 A web browser that implements the Web Push API [API] can enforce the
 use of encryption by forwarding only those messages that were
 properly encrypted.

1.1. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting, when they are capitalized, they have
 the special meaning described in [RFC2119].

2. Push Message Encryption Overview

 Encrypting a push message uses elliptic-curve Diffie-Hellman (ECDH)
 [ECDH] on the P-256 curve [FIPS186] to establish a shared secret (see

Section 3.1) and a symmetric secret for authentication (see
Section 3.2).

 A User Agent generates an ECDH key pair and authentication secret
 that it associates with each subscription it creates. The ECDH
 public key and the authentication secret are sent to the Application
 Server with other details of the push subscription.

 When sending a message, an Application Server generates an ECDH key
 pair and a random salt. The ECDH public key is encoded into the "dh"
 parameter of the Crypto-Key header field; the salt is encoded into
 the "salt" parameter of the Encryption header field. The ECDH key
 pair can be discarded after encrypting the message.

 The content of the push message is encrypted or decrypted using a
 content encryption key and nonce that is derived using all of these
 inputs and the process described in Section 3.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc2119

Thomson Expires April 12, 2017 [Page 3]

Internet-Draft Web Push Encryption October 2016

2.1. Key and Secret Distribution

 The application using the subscription distributes the subscription
 public key and authentication secret to an authorized Application
 Server. This could be sent along with other subscription information
 that is provided by the User Agent, such as the push subscription
 URI.

 An application MUST use an authenticated, confidentiality protected
 communications medium for this purpose. In addition to the reasons
 described in [I-D.ietf-webpush-protocol], this ensures that the
 authentication secret is not revealed to unauthorized entities, which
 can be used to generate push messages that will be accepted by the
 User Agent.

 Most applications that use push messaging have a pre-existing
 relationship with an Application Server. Any existing communication
 mechanism that is authenticated and provides confidentiality and
 integrity, such as HTTPS [RFC2818], is sufficient.

3. Push Message Encryption

 Push message encryption happens in four phases:

 o The input keying material used for deriving the content encryption
 keys used for the push message is derived using elliptic-curve
 Diffie-Hellman [ECDH] (Section 3.1).

 o This is then combined with the application secret to produce the
 input keying material used in
 [I-D.ietf-httpbis-encryption-encoding] (Section 3.3).

 o A content encryption key and nonce are derived using the process
 in [I-D.ietf-httpbis-encryption-encoding] with an expanded context
 string (Section 3.4).

 o Encryption or decryption follows according to
 [I-D.ietf-httpbis-encryption-encoding].

 The key derivation process is summarized in Section 3.5.
 Restrictions on the use of the encrypted content coding are described
 in Section 4.

3.1. Diffie-Hellman Key Agreement

 For each new subscription that the User Agent generates for an
 Application, it also generates a P-256 [FIPS186] key pair for use in
 elliptic-curve Diffie-Hellman (ECDH) [ECDH].

https://datatracker.ietf.org/doc/html/rfc2818

Thomson Expires April 12, 2017 [Page 4]

Internet-Draft Web Push Encryption October 2016

 When sending a push message, the Application Server also generates a
 new ECDH key pair on the same P-256 curve.

 The ECDH public key for the Application Server is included in the
 "dh" parameter of the Crypto-Key header field (see Section 6). The
 uncompressed point form defined in [X9.62] (that is, a 65 octet
 sequence that starts with a 0x04 octet) is encoded using base64url
 [RFC7515] to produce the "dh" parameter value.

 An Application combines its ECDH private key with the public key
 provided by the User Agent using the process described in [ECDH]; on
 receipt of the push message, a User Agent combines its private key
 with the public key provided by the Application Server in the "dh"
 parameter in the same way. These operations produce the same value
 for the ECDH shared secret.

3.2. Push Message Authentication

 To ensure that push messages are correctly authenticated, a symmetric
 authentication secret is added to the information generated by a User
 Agent. The authentication secret is mixed into the key derivation
 process described in [I-D.ietf-httpbis-encryption-encoding].

 A User Agent MUST generate and provide a hard to guess sequence of 16
 octets that is used for authentication of push messages. This SHOULD
 be generated by a cryptographically strong random number generator
 [RFC4086].

3.3. Combining Shared and Authentication Secrets

 The shared secret produced by ECDH is combined with the
 authentication secret using HMAC-based key derivation function (HKDF)
 described in [RFC5869]. This produces the input keying material used
 by [I-D.ietf-httpbis-encryption-encoding].

 The HKDF function uses SHA-256 hash algorithm [FIPS180-4] with the
 following inputs:

 salt: the authentication secret

 IKM: the shared secret derived using ECDH

 info: the ASCII-encoded string "Content-Encoding: auth" with a
 terminal zero octet

 L: 32 octets (i.e., the output is the length of the underlying
 SHA-256 HMAC function output)

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc5869

Thomson Expires April 12, 2017 [Page 5]

Internet-Draft Web Push Encryption October 2016

3.4. Key Derivation Context

 The derivation of the content encryption key and nonce uses an
 additional context string.

 The context is comprised of a label of "P-256" encoded in ASCII (that
 is, the octet sequence 0x50, 0x2d, 0x32, 0x35, 0x36), a zero-valued
 octet, the length of the User Agent public key (65 octets) encoded as
 a two octet unsigned integer in network byte order, the User Agent
 public key, the length of the Application Server public key (65
 octets), and the Application Server public key.

 context = label || 0x00 ||
 length(ua_public) || ua_public ||
 length(as_public) || as_public

3.5. Encryption Summary

 This results in a the final content encryption key and nonce
 generation using the following sequence, which is shown here in
 pseudocode with HKDF expanded into separate discrete steps using HMAC
 with SHA-256:

 -- For a User Agent:
 ecdh_secret = ECDH(ua_private, as_public)
 auth_secret = random(16)

 -- For an Application Server:
 ecdh_secret = ECDH(as_private, ua_public)
 auth_secret = <from User Agent>

 -- For both:
 auth_info = "Content-Encoding: auth" || 0x00
 PRK_combine = HMAC-SHA-256(auth_secret, ecdh_secret)
 IKM = HMAC-SHA-256(PRK_combine, auth_info || 0x01)
 context = "P-256" || 0x00 ||
 0x00 || 0x41 || ua_public ||
 0x00 || 0x41 || as_public
 salt = random(16)
 PRK = HMAC-SHA-256(salt, IKM)
 cek_info = "Content-Encoding: aesgcm" || 0x00 || context
 CEK = HMAC-SHA-256(PRK, cek_info || 0x01)[0..15]
 nonce_info = "Content-Encoding: nonce" || 0x00 || context
 NONCE = HMAC-SHA-256(PRK, nonce_info || 0x01)[0..11]

 Note that this omits the exclusive OR of the final nonce with the
 record sequence number, since push messages contain only a single

Thomson Expires April 12, 2017 [Page 6]

Internet-Draft Web Push Encryption October 2016

 record (see Section 4) and the sequence number of the first record is
 zero.

4. Restrictions on Use of "aesgcm" Content Coding

 An Application Server MUST encrypt a push message with a single
 record. This allows for a minimal receiver implementation that
 handles a single record. If the message is 4096 octets or longer,
 the "rs" parameter MUST be set to a value that is longer than the
 encrypted push message length.

 A push service is not required to support more than 4096 octets of
 payload body (see Section 7.2 of [I-D.ietf-webpush-protocol]), which
 equates to 4077 octets of cleartext, so the "rs" parameter can be
 omitted for messages that fit within this limit.

 An Application Server MUST NOT use other content encodings for push
 messages. In particular, content encodings that compress could
 result in leaking of push message contents. The Content-Encoding
 header field therefore has exactly one value, which is "aesgcm".
 Multiple "aesgcm" values are not permitted.

 An Application Server MUST include exactly one entry in the
 Encryption field, and at most one entry having a "dh" parameter in
 the Crypto-Key field. This allows the "keyid" parameter to be
 omitted from both header fields.

 An Application Server MUST NOT include an "aesgcm" parameter in the
 Encryption header field.

 A User Agent is not required to support multiple records. A User
 Agent MAY ignore the "rs" parameter. If a record size is size is
 present, but unchecked, decryption will fail with high probability
 for all valid cases. Decryption will also succeed if the push
 message contains a single record from a longer truncated message.
 Given that an Application Server is prohibited from generating such a
 message, this is not considered a serious risk.

5. Push Message Encryption Example

 The following example shows a push message being sent to a push
 service.

Thomson Expires April 12, 2017 [Page 7]

Internet-Draft Web Push Encryption October 2016

 POST /push/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV HTTP/1.1
 Host: push.example.net
 TTL: 10
 Content-Length: 33
 Content-Encoding: aesgcm
 Encryption: salt="lngarbyKfMoi9Z75xYXmkg"
 Crypto-Key: dh="BNoRDbb84JGm8g5Z5CFxurSqsXWJ11ItfXEWYVLE85Y7
 CYkDjXsIEc4aqxYaQ1G8BqkXCJ6DPpDrWtdWj_mugHU"

 6nqAQUME8hNqw5J3kl8cpVVJylXKYqZOeseZG8UueKpA

 This example shows the ASCII encoded string, "I am the walrus". The
 content body is shown here encoded in URL-safe base64url for
 presentation reasons only. Line wrapping of the "dh" parameter is
 added for presentation purposes.

 Since there is no ambiguity about which keys are being used, the
 "keyid" parameter is omitted from both the Encryption and Crypto-Key
 header fields. The keys shown below use uncompressed points [X9.62]
 encoded using base64url.

 Authentication Secret: R29vIGdvbyBnJyBqb29iIQ
 Receiver:
 private key: 9FWl15_QUQAWDaD3k3l50ZBZQJ4au27F1V4F0uLSD_M
 public key: BCEkBjzL8Z3C-oi2Q7oE5t2Np-p7osjGLg93qUP0wvqR
 T21EEWyf0cQDQcakQMqz4hQKYOQ3il2nNZct4HgAUQU
 Sender:
 private key: nCScek-QpEjmOOlT-rQ38nZzvdPlqa00Zy0i6m2OJvY
 public key: <the value of the "dh" parameter>

 The sender's private key used in this example is "nCScek-QpEjmOOlT-
 rQ38nZzvdPlqa00Zy0i6m2OJvY". Intermediate values for this example
 are included in Appendix A.

6. IANA Considerations

 This document defines the "dh" parameter for the Crypto-Key header
 field in the "Hypertext Transfer Protocol (HTTP) Crypto-Key
 Parameters" registry defined in
 [I-D.ietf-httpbis-encryption-encoding].

 o Parameter Name: dh

 o Purpose: The "dh" parameter contains a Diffie-Hellman share which
 is used to derive the input keying material used in "aesgcm"
 content coding.

 o Reference: this document.

Thomson Expires April 12, 2017 [Page 8]

Internet-Draft Web Push Encryption October 2016

7. Security Considerations

 The security considerations of [I-D.ietf-httpbis-encryption-encoding]
 describe the limitations of the content encoding. In particular, any
 HTTP header fields are not protected by the content encoding scheme.
 A User Agent MUST consider HTTP header fields to have come from the
 Push Service. An application on the User Agent that uses information
 from header fields to alter their processing of a push message is
 exposed to a risk of attack by the Push Service.

 The timing and length of communication cannot be hidden from the Push
 Service. While an outside observer might see individual messages
 intermixed with each other, the Push Service will see what
 Application Server is talking to which User Agent, and the
 subscription that is used. Additionally, the length of messages
 could be revealed unless the padding provided by the content encoding
 scheme is used to obscure length.

8. References

8.1. Normative References

 [ECDH] SECG, "Elliptic Curve Cryptography", SEC 1 , 2000,
 <http://www.secg.org/>.

 [FIPS180-4]
 Department of Commerce, National., "NIST FIPS 180-4,
 Secure Hash Standard", March 2012,
 <http://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.180-4.pdf>.

 [FIPS186] National Institute of Standards and Technology (NIST),
 "Digital Signature Standard (DSS)", NIST PUB 186-4 , July
 2013.

 [I-D.ietf-httpbis-encryption-encoding]
 Thomson, M., "Encrypted Content-Encoding for HTTP", draft-

ietf-httpbis-encryption-encoding-02 (work in progress),
 June 2016.

 [I-D.ietf-webpush-protocol]
 Thomson, M., Damaggio, E., and B. Raymor, "Generic Event
 Delivery Using HTTP Push", draft-ietf-webpush-protocol-10
 (work in progress), September 2016.

http://www.secg.org/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-encryption-encoding-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-encryption-encoding-02
https://datatracker.ietf.org/doc/html/draft-ietf-webpush-protocol-10

Thomson Expires April 12, 2017 [Page 9]

Internet-Draft Web Push Encryption October 2016

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [X9.62] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62 , 1998.

8.2. Informative References

 [API] van Ouwerkerk, M. and M. Thomson, "Web Push API", 2015,
 <https://w3c.github.io/push-api/>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

Appendix A. Intermediate Values for Encryption

 The intermediate values calculated for the example in Section 5 are
 shown here. The following are inputs to the calculation:

 Plaintext: SSBhbSB0aGUgd2FscnVz

 Application Server public key (as_public):
 BNoRDbb84JGm8g5Z5CFxurSqsXWJ11ItfXEWYVLE85Y7
 CYkDjXsIEc4aqxYaQ1G8BqkXCJ6DPpDrWtdWj_mugHU

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
http://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://w3c.github.io/push-api/
https://datatracker.ietf.org/doc/html/rfc2818
http://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230

Thomson Expires April 12, 2017 [Page 10]

Internet-Draft Web Push Encryption October 2016

 Application Server private key (as_private): nCScek-QpEjmOOlT-rQ38nZ
 zvdPlqa00Zy0i6m2OJvY

 User Agent public key (ua_public): BCEkBjzL8Z3C-oi2Q7oE5t2Np-
 p7osjGLg93qUP0wvqR T21EEWyf0cQDQcakQMqz4hQKYOQ3il2nNZct4HgAUQU

 User Agent private key (ua_private):
 9FWl15_QUQAWDaD3k3l50ZBZQJ4au27F1V4F0uLSD_M

 Salt: lngarbyKfMoi9Z75xYXmkg

 Authentication secret (auth_secret): R29vIGdvbyBnJyBqb29iIQ

 Note that knowledge of just one of the private keys is necessary.
 The Application Server randomly generates the salt value, whereas
 salt is input to the receiver.

 This produces the following intermediate values:

 Shared secret (ecdh_secret): RNjC-
 NVW4BGJbxWPW7G2mowsLeDa53LYKYm4-NOQ6Y

 Input keying material (IKM): EhpZec37Ptm4IRD5-jtZ0q6r1iK5vYmY1tZwtN8
 fbZY

 Context for content encryption key derivation:
 Q29udGVudC1FbmNvZGluZzogYWVzZ2NtAFAtMjU2AABB BCEkBjzL8Z3C-
 oi2Q7oE5t2Np-p7osjGLg93qUP0wvqR
 T21EEWyf0cQDQcakQMqz4hQKYOQ3il2nNZct4HgAUQUA
 QQTaEQ22_OCRpvIOWeQhcbq0qrF1iddSLX1xFmFSxPOW
 OwmJA417CBHOGqsWGkNRvAapFwiegz6Q61rXVo_5roB1

 Content encryption key (CEK): AN2-xhvFWeYh5z0fcDu0Ww

 Context for nonce derivation: Q29udGVudC1FbmNvZGluZzogbm9uY2UAUC0yNT
 YAAEEE ISQGPMvxncL6iLZDugTm3Y2n6nuiyMYuD3epQ_TC-pFP
 bUQRbJ_RxANBxqRAyrPiFApg5DeKXac1ly3geABRBQBB
 BNoRDbb84JGm8g5Z5CFxurSqsXWJ11ItfXEWYVLE85Y7
 CYkDjXsIEc4aqxYaQ1G8BqkXCJ6DPpDrWtdWj_mugHU

 Base nonce: JY1Okw5rw1Drkg9J

 When the CEK and nonce are used with AES GCM and the padded plaintext
 of AABJIGFtIHRoZSB3YWxydXM, the final ciphertext is
 6nqAQUME8hNqw5J3kl8cpVVJylXKYqZOeseZG8UueKpA, as shown in the
 example.

Thomson Expires April 12, 2017 [Page 11]

Internet-Draft Web Push Encryption October 2016

Author's Address

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Thomson Expires April 12, 2017 [Page 12]

