
Network Working Group M. Thomson
Internet-Draft Mozilla
Intended status: Standards Track P. Beverloo
Expires: December 20, 2017 Google
 June 18, 2017

Voluntary Application Server Identification (VAPID) for Web Push
draft-ietf-webpush-vapid-03

Abstract

 An application server can use the method described to voluntarily
 identify itself to a push service. This identification information
 can be used by the push service to attribute requests that are made
 by the same application server to a single entity. An application
 server can include additional information that the operator of a push
 service can use to contact the operator of the application server.
 This identification information can be used to restrict the use of a
 push subscription a single application server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 20, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Thomson & Beverloo Expires December 20, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Self Identification June 2017

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Voluntary Identification 3
1.2. Notational Conventions 3

2. Application Server Self-Identification 4
2.1. Application Server Contact Information 4
2.2. Additional Claims . 4
2.3. Cryptographic Agility 5
2.4. Example . 5

3. Vapid Authentication Scheme 6
3.1. Token Parameter (t) 6
3.2. Public Key Parameter (k) 6

4. Subscription Restriction 7
4.1. Creating a Restricted Push Subscription 7
4.2. Using Restricted Subscriptions 8

5. Security Considerations 9
6. IANA Considerations . 9
6.1. Vapid Authentication Scheme Registration 9
6.2. Vapid Authentication Scheme Parameters 10

 6.3. application/webpush-options+json Media Type Registration 10
7. Acknowledgements . 11
8. References . 11
8.1. Normative References 12
8.2. Informative References 13

 Authors' Addresses . 13

1. Introduction

 The Web Push protocol [RFC8030] describes how an application server
 is able to request that a push service deliver a push message to a
 user agent.

 As a consequence of the expected deployment architecture, there is no
 basis for an application server to be known to a push service prior
 to requesting delivery of a push message. Requiring that the push
 service be able to authenticate application servers places an
 unwanted constraint on the interactions between user agents and
 application servers, who are the ultimate users of a push service.
 That constraint would also degrade the privacy-preserving properties
 the protocol provides. For these reasons, [RFC8030] does not define
 a mandatory system for authentication of application servers.

https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc8030

Thomson & Beverloo Expires December 20, 2017 [Page 2]

Internet-Draft Self Identification June 2017

 An unfortunate consequence of this design is that a push service is
 exposed to a greater risk of denial of service attack. While
 requests from application servers can be indirectly attributed to
 user agents, this is not always efficient or even sufficient.
 Providing more information about the application server directly to a
 push service allows the push service to better distinguish between
 legitimate and bogus requests.

 Additionally, this design also relies on endpoint secrecy as any
 application server in possession of the endpoint is able to send
 messages, albeit without payloads. In situations where usage of a
 subscription can be limited to a single application server, the
 ability to associate a subscription with the application server could
 reduce the impact of a data leak.

1.1. Voluntary Identification

 This document describes a system whereby an application server can
 volunteer information about itself to a push service. At a minimum,
 this provides a stable identity for the application server, though
 this could also include contact information, such as an email
 address.

 A consistent identity can be used by a push service to establish
 behavioral expectations for an application server. Significant
 deviations from an established norm can then be used to trigger
 exception handling procedures.

 Voluntarily-provided contact information can be used to contact an
 application server operator in the case of exceptional situations.

 Experience with push service deployment has shown that software
 errors or unusual circumstances can cause large increases in push
 message volume. Contacting the operator of the application server
 has proven to be valuable.

 Even in the absence of usable contact information, an application
 server that has a well-established reputation might be given
 preference over an unidentified application server when choosing
 whether to discard a push message.

1.2. Notational Conventions

 The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
 document. It's not shouting, when they are capitalized, they have
 the special meaning described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Thomson & Beverloo Expires December 20, 2017 [Page 3]

Internet-Draft Self Identification June 2017

 The terms "push message", "push service", "push subscription",
 "application server", and "user agent" are used as defined in
 [RFC8030].

2. Application Server Self-Identification

 Application servers that wish to self-identify generate and maintain
 a signing key pair. This key pair MUST be usable with elliptic curve
 digital signature (ECDSA) over the P-256 curve [FIPS186]. Use of
 this key when sending push messages establishes an identity for the
 application server that is consistent across multiple messages.

 When requesting delivery of a push message, the application includes
 a JSON Web Token (JWT) [RFC7519], signed using its signing key. The
 token includes a number of claims as follows:

 o An "aud" (Audience) claim in the token MUST include the unicode
 serialization of the origin (Section 6.1 of [RFC6454]) of the push
 resource URL. This binds the token to a specific push service.
 This ensures that the token is reusable for all push resource URLs
 that share the same origin.

 o An "exp" (Expiry) claim MUST be included with the time after which
 the token expires. This limits the time over which a token is
 valid. An "exp" claim MUST NOT be more than 24 hours from the
 time of the request.

 This JWT is included in an Authorization header field, using an auth-
 scheme of "vapid". A push service MAY reject a request with a 403
 (Forbidden) status code [RFC7235] if the JWT signature or its claims
 are invalid.

 The JWT MUST use a JSON Web Signature (JWS) [RFC7515]. The signature
 MUST use ECDSA on the NIST P-256 curve [FIPS186] which is identified
 as "ES256" [RFC7518].

2.1. Application Server Contact Information

 If the application server wishes to provide contact details it MAY
 include a "sub" (Subject) claim in the JWT. The "sub" claim SHOULD
 include a contact URI for the application server as either a
 "mailto:" (email) [RFC6068] or an "https:" [RFC2818] URI.

2.2. Additional Claims

 An application server MAY include additional claims using public or
 private names (see Sections 4.2 and 4.3 of [RFC7519]). Since the JWT

https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6454#section-6.1
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc6068
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7519

Thomson & Beverloo Expires December 20, 2017 [Page 4]

Internet-Draft Self Identification June 2017

 is in a header field, the size of additional claims SHOULD be kept as
 small as possible.

2.3. Cryptographic Agility

 The "vapid" authentication scheme is used to identify the specific
 profile of JWT defined in this document. A different authentication
 scheme is needed to update the signature algorithm or other
 parameters. This ensures that existing mechanisms for negotiating
 authentication scheme can be used rather than defining new parameter
 negotiation mechanisms.

2.4. Example

 An application server requests the delivery of a push message as
 described in [RFC8030]. If the application server wishes to self-
 identify, it includes an Authorization header field with credentials
 that use the "vapid" authentication scheme (Section 3).

 POST /p/JzLQ3raZJfFBR0aqvOMsLrt54w4rJUsV HTTP/1.1
 Host: push.example.net
 TTL: 30
 Content-Length: 136
 Content-Encoding: aes128gcm
 Authorization: vapid
 t=eyJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NiJ9.eyJhdWQiOiJodHRwczovL3
 B1c2guZXhhbXBsZS5uZXQiLCJleHAiOjE0NTM1MjM3NjgsInN1YiI6Im1ha
 Wx0bzpwdXNoQGV4YW1wbGUuY29tIn0.i3CYb7t4xfxCDquptFOepC9GAu_H
 LGkMlMuCGSK2rpiUfnK9ojFwDXb1JrErtmysazNjjvW2L9OkSSHzvoD1oA,
 k=BA1Hxzyi1RUM1b5wjxsn7nGxAszw2u61m164i3MrAIxHF6YK5h4SDYic-dR
 uU_RCPCfA5aq9ojSwk5Y2EmClBPs

 { encrypted push message }

 Figure 1: Requesting Push Message Delivery with JWT

 Note that the example header fields in this document include extra
 line wrapping to meet formatting constraints.

 The "t" parameter of the Authorization header field contains a JWT;
 the "k" parameter includes the base64url-encoded key that signed that
 token. The JWT input values and the JWK [RFC7517] corresponding to
 the signing key are shown in Figure 2 with additional whitespace
 added for readability purposes. This JWT would be valid until
 2016-01-23T04:36:08Z [RFC3339].

https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc3339

Thomson & Beverloo Expires December 20, 2017 [Page 5]

Internet-Draft Self Identification June 2017

 JWT header = { "typ": "JWT", "alg": "ES256" }
 JWT body = { "aud": "https://push.example.net",
 "exp": 1453523768,
 "sub": "mailto:push@example.com" }
 JWK = { "crv":"P-256",
 "kty":"EC",
 "x":"DUfHPKLVFQzVvnCPGyfucbECzPDa7rWbXriLcysAjEc",
 "y":"F6YK5h4SDYic-dRuU_RCPCfA5aq9ojSwk5Y2EmClBPs" }

 Figure 2: Decoded Example Values

3. Vapid Authentication Scheme

 A new "vapid" HTTP authentication scheme [RFC7235] is defined. This
 authentication scheme carries a signed JWT, as described in

Section 2, plus the key that signed that JWT.

 This authentication scheme is for origin-server authentication only.
 Therefore, this authentication scheme MUST NOT be used with the
 Proxy-Authenticate or Proxy-Authorization header fields.

 This authentication scheme does not require a challenge. Clients are
 able to generate the Authorization header field without any
 additional information from a server. Therefore, a challenge for
 this authentication scheme MUST NOT be sent in a WWW-Authenticate
 header field.

 Two parameters are defined for this authentication scheme: "t" and
 "k". All unknown or unsupported parameters to "vapid" authentication
 credentials MUST be ignored. The "realm" parameter is ignored for
 this authentication scheme.

 This authentication scheme is intended for use by an application
 server when using the Web Push protocol [RFC8030], but it could be
 used in other contexts if applicable.

3.1. Token Parameter (t)

 The "t" parameter of the "vapid" authentication scheme carries a JWT
 as described in Section 2.

3.2. Public Key Parameter (k)

 In order for the push service to be able to validate the JWT, it
 needs to learn the public key of the application server. A "k"
 parameter is defined for the "vapid" authentication scheme to carry
 this information.

https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc8030

Thomson & Beverloo Expires December 20, 2017 [Page 6]

Internet-Draft Self Identification June 2017

 The "k" parameter includes an elliptic curve digital signature
 algorithm (ECDSA) public key [FIPS186] in uncompressed form [X9.62]
 that is encoded using base64url encoding [RFC7515].

 Note: X9.62 encoding is used over JWK [RFC7517] for two reasons. A
 JWK does not have a canonical form, so X9.62 encoding makes it
 easier for the push service to handle comparison of keys from
 different sources. Secondarily, the X9.62 encoding is also
 considerably smaller.

 Some implementations permit the same P-256 key to be used for signing
 and key exchange. An application server MUST select a different
 private key for the key exchange [I-D.ietf-webpush-encryption] and
 signing the authentication token. Though a push service is not
 obligated to check either parameter for every push message, a push
 service SHOULD reject push messages that have identical values for
 these parameters with a 400 (Bad Request) status code.

4. Subscription Restriction

 The public key of the application server serves as a stable
 identifier for the server. This key can be used to restrict a push
 subscription to a specific application server.

 Subscription restriction reduces the reliance on endpoint secrecy by
 requiring proof of possession to be demonstrated by an application
 server when requesting delivery of a push message. This provides an
 additional level of protection against leaking of the details of the
 push subscription.

4.1. Creating a Restricted Push Subscription

 The user agent includes the public key of the application server when
 requesting the creation of a push subscription. This restricts use
 of the resulting subscription to application servers that are able to
 provide proof of possession for the corresponding private key.

 The public key is then added to the request to create a push
 subscription. The push subscription request is extended to include a
 body. The body of the request is a JSON object as described in
 [RFC7159]. A "vapid" member is added to this JSON object, containing
 the public key on the P-256 curve, encoded in the uncompressed form
 [X9.62] and base64url encoded [RFC7515]. The media type of the body
 is set to "application/webpush-options+json" (see Section 6.3 for
 registration of this media type).

 A push service MUST ignore the body of a request that uses a
 different media type. For the "application/webpush-options+json"

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7515

Thomson & Beverloo Expires December 20, 2017 [Page 7]

Internet-Draft Self Identification June 2017

 media type, a push service MUST ignore any members on this object
 that it does not understand.

 The example in Figure 3 shows a restriction to the key used in
 Figure 1. Extra whitespace is added to meet formatting constraints.

 POST /subscribe/ HTTP/1.1
 Host: push.example.net
 Content-Type: application/webpush-optjons+json;charset=utf-8
 Content-Length: 104

 { "vapid": "BA1Hxzyi1RUM1b5wjxsn7nGxAszw2u61m164i3MrAIxH
 F6YK5h4SDYic-dRuU_RCPCfA5aq9ojSwk5Y2EmClBPs" }

 Figure 3: Example Subscribe Request

 An application might use the Web Push API [API] to provide the user
 agent with a public key.

4.2. Using Restricted Subscriptions

 When a push subscription has been associated with an application
 server, the request for push message delivery MUST include proof of
 possession for the associated private key that was used when creating
 the push subscription.

 A push service MUST reject a message that omits mandatory credentials
 with a 401 (Unauthorized) status code. A push service MAY reject a
 message that includes invalid credentials with a 403 (Forbidden)
 status code. Credentials are invalid if:

 o either the authentication token or public key are not included in
 the request,

 o the signature on the JWT cannot be successfully verified using the
 included public key,

 o the current time is later than the time identified in the "exp"
 (Expiry) claim or more than 24 hours before the expiry time,

 o the origin of the push resource is not included in the "aud"
 (Audience) claim, or

 o the public key used to sign the JWT doesn't match the one that was
 included in the creation of the push subscription.

 A push service MUST NOT forward the JWT or public key to the user
 agent when delivering the push message.

Thomson & Beverloo Expires December 20, 2017 [Page 8]

Internet-Draft Self Identification June 2017

 An application server that needs to replace its signing key needs to
 create a new subscription that is restricted to the updated key.
 Application servers need to remember the key that was used when
 creating a given subscription.

5. Security Considerations

 This authentication scheme is vulnerable to replay attacks if an
 attacker can acquire a valid JWT. Applying narrow limits to the
 period over which a replayable token can be reused limits the
 potential value of a stolen token to an attacker and can increase the
 difficulty of stealing a token.

 An application server might offer falsified contact information. A
 push service operator therefore cannot use the presence of
 unvalidated contact information as input to any security-critical
 decision-making process.

 Validation of a signature on the JWT requires a non-trivial amount of
 computation. For something that might be used to identify legitimate
 requests under denial of service attack conditions, this is not
 ideal. Application servers are therefore encouraged to reuse tokens,
 which permits the push service to cache the results of signature
 validation.

 An application server that changes its signing key breaks linkability
 between push messages that it sends under the different keys. A push
 service that relies on a consistent identity for application servers
 might categorize requests made with new keys differently. Gradual
 migration to a new signing key reduces the chances that requests that
 use the new key will be categorized as abusive.

6. IANA Considerations

 This document registers a new authentication scheme, a registry for
 parameters of that scheme, and media type for push options.

6.1. Vapid Authentication Scheme Registration

 This document registers the "vapid" authentication scheme in the
 "Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry"
 established in [RFC7235].

 Authentication Scheme Name: vapid

 Pointer to specification text: Section 3 of this document

https://datatracker.ietf.org/doc/html/rfc7235

Thomson & Beverloo Expires December 20, 2017 [Page 9]

Internet-Draft Self Identification June 2017

 Notes: This scheme is origin-server only and does not define a
 challenge.

6.2. Vapid Authentication Scheme Parameters

 This document creates a "Vapid Authentication Scheme Parameters"
 registry for parameters to the "vapid" authentication scheme. This
 registry is under the "WebPush Parameters" grouping. The registry
 operates on the "Specification Required" policy [RFC5226].

 Registrations MUST include the following information:

 Parameter Name: A name for the parameter, which conforms to the
 "token" grammar [RFC7230]

 Purpose (optional): A brief identifying the purpose of the
 parameter.

 Specification: A link to the specification that defines the format
 and semantics of the parameter.

 This registry initially contains the following entries:

 +---------------+-------------------------+-------------------------+
 | Parameter | Purpose | Specification |
 | Name | | |
 +---------------+-------------------------+-------------------------+
t	JWT authentication	[[RFC-to-be]], Section
	token	3.1
k	signing key	[[RFC-to-be]], Section
		3.2
 +---------------+-------------------------+-------------------------+

6.3. application/webpush-options+json Media Type Registration

 This document registers the "application/webpush-options+json" media
 type in the "Media Types" registry following the process described in
 [RFC6838].

 Type name: application

 Subtype name: webpush-options+json

 Required parameters: n/a

 Optional parameters: n/a

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc6838

Thomson & Beverloo Expires December 20, 2017 [Page 10]

Internet-Draft Self Identification June 2017

 Encoding considerations: binary

 Security considerations: See [RFC7159] for security considerations
 specific to JSON.

 Interoperability considerations: See [RFC7159] for interoperability
 considerations specific to JSON.

 Published specification: This document.

 Applications that use this media type: Web browsers, via the Web
 Push Protocol [RFC8030].

 Fragment identifier considerations: None, see [RFC7159].

 Additional information:

 Deprecated alias names for this type: n/a

 Magic number(s): n/a

 File extension(s): .json

 Macintosh file type code(s): TEXT

 Person & email address to contact for further information: Martin
 Thomson (martin.thomson@gmail.com)

 Intended usage: LIMITED USE

 Restrictions on usage: For use with the Web Push Protocol [RFC8030].

 Author: See "Authors' Addresses" section of this document.

 Change controller: Internet Engineering Task Force

7. Acknowledgements

 This document would have been much worse than it currently is if not
 for the contributions of Benjamin Bangert, JR Conlin, Chris Karlof,
 Costin Manolache, Adam Roach, and others.

8. References

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc8030

Thomson & Beverloo Expires December 20, 2017 [Page 11]

Internet-Draft Self Identification June 2017

8.1. Normative References

 [FIPS186] National Institute of Standards and Technology (NIST),
 "Digital Signature Standard (DSS)", NIST PUB 186-4 , July
 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <http://www.rfc-editor.org/info/rfc2818>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC6068] Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto'
 URI Scheme", RFC 6068, DOI 10.17487/RFC6068, October 2010,
 <http://www.rfc-editor.org/info/rfc6068>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <http://www.rfc-editor.org/info/rfc6454>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <http://www.rfc-editor.org/info/rfc6838>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <http://www.rfc-editor.org/info/rfc7235>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
http://www.rfc-editor.org/info/rfc2818
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc6068
http://www.rfc-editor.org/info/rfc6068
https://datatracker.ietf.org/doc/html/rfc6454
http://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
http://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
http://www.rfc-editor.org/info/rfc7235

Thomson & Beverloo Expires December 20, 2017 [Page 12]

Internet-Draft Self Identification June 2017

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

 [RFC8030] Thomson, M., Damaggio, E., and B. Raymor, Ed., "Generic
 Event Delivery Using HTTP Push", RFC 8030,
 DOI 10.17487/RFC8030, December 2016,
 <http://www.rfc-editor.org/info/rfc8030>.

 [X9.62] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62 , 1998.

8.2. Informative References

 [API] Beverloo, P., Thomson, M., van Ouwerkerk, M., Sullivan,
 B., and E. Fullea, "Push API", May 2017,
 <https://w3c.github.io/push-api/>.

 [I-D.ietf-webpush-encryption]
 Thomson, M., "Message Encryption for Web Push", draft-

ietf-webpush-encryption-08 (work in progress), February
 2017.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

Authors' Addresses

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7518
http://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc8030
http://www.rfc-editor.org/info/rfc8030
https://w3c.github.io/push-api/
https://datatracker.ietf.org/doc/html/draft-ietf-webpush-encryption-08
https://datatracker.ietf.org/doc/html/draft-ietf-webpush-encryption-08
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc7517
http://www.rfc-editor.org/info/rfc7517

Thomson & Beverloo Expires December 20, 2017 [Page 13]

Internet-Draft Self Identification June 2017

 Peter Beverloo
 Google

 Email: beverloo@google.com

Thomson & Beverloo Expires December 20, 2017 [Page 14]

