
Network Working Group J. Hodges
Internet-Draft PayPal
Intended status: Standards Track Feb 2013
Expires: August 5, 2013

Web Security Framework: Problem Statement and Requirements
draft-ietf-websec-framework-reqs-00

Abstract

 Web-based malware and attacks are proliferating rapidly on the
 Internet. New web security mechanisms are also rapidly growing in
 number, although in an incoherent fashion. This document provides a
 brief overview of the present situation and the various seemingly
 piece-wise approaches being taken to mitigate the threats. It then
 provides an overview of requirements as presently being expressed by
 the community in various online and face-to-face discussions.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 5, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Hodges Expires August 5, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebSec Framework Reqs Feb 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Where to Discuss This Draft 4

2. Document Conventions . 5
3. Overall Constraints . 5
4. Overall Requirements . 6
5. Vulnerabilities, Attacks, and Threats 8
5.1. Attacks . 8
5.2. Threats . 9

6. Use Cases . 9
7. Detailed Functional Requirements 11
8. Extant Policies to Coalesce 15
9. Example Concrete Approaches 15
10. Security Considerations 15
11. References . 15
12. Informative References . 19
Appendix A. Acknowledgments 21
Appendix B. Discussion References 21
B.1. Source: Attacks and Threats 21
B.2. Source: Policy Expression Syntax [1] 21
B.3. Source: Policy Expression Syntax [2] 22
B.4. Source: Tooling . 22
B.5. Source: Performance 23
B.6. Source: Granularity 23
B.7. Source: Notifications and Reporting 23
B.8. Source: Facilitating Separation of Duties 24
B.9. Source: Hierarchical Policy Application 24

 B.10. Source: Framing Policy Hierarchy, cross-origin,
 granularity . 24

B.11. Source: Policy Delivery [1] 26
B.12. Source: Policy Delivery [2] 26
B.13. Source: Policy Conflict Resolution 27

 Author's Address . 28

Hodges Expires August 5, 2013 [Page 2]

Internet-Draft WebSec Framework Reqs Feb 2013

1. Introduction

 Over the past few years, we have seen a proliferation of AJAX-based
 web applications (AJAX being shorthand for asynchronous JavaScript
 and XML), as well as Rich Internet Applications (RIAs), based on so-
 called Web 2.0 technologies. These applications bring both luscious
 eye-candy and convenient functionality--e.g. social networking--to
 their users, making them quite compelling. At the same time, we are
 seeing an increase in attacks against these applications and their
 underlying technologies [1]. The latter include (but aren't limited
 to) Cross-Site-Request Forgery (CSRF) -based attacks [2], content-
 sniffing cross-site-scripting (XSS) attacks [3], attacks against
 browsers supporting anti-XSS policies [4], clickjacking attacks [5],
 malvertising attacks [6], as well as man-in-the-middle (MITM) attacks
 against "secure" (e.g. Transport Layer Security (TLS/SSL)-based [7])
 web sites along with distribution of the tools to carry out such
 attacks (e.g. sslstrip) [8].

 During the same time period we have also witnessed the introduction
 of new web security indicators, techniques, and policy communication
 mechanisms sprinkled throughout the various layers of the Web and
 HTTP. We have a new cookie security flag called HTTPOnly [9]. We
 have the anti-clickjacking X-Frame-Options HTTP header [10], the
 Strict-Transport-Security HTTP header [RFC6797], anti-CSRF headers
 (e.g. Origin) [12], an anti-sniffing header (X-Content-Type-Options:
 nosniff) [13], various approaches to content restrictions [14] [15]
 and notably Mozilla Content Security Policy (CSP; conveyed via a HTTP
 header) [16], the W3C's Cross-Origin Resource Sharing (CORS; also
 conveyed via a HTTP header) [17], as well as RIA security controls
 such as the crossdomain.xml file used to express a site's Adobe Flash
 security policy [18]. There's also the Application Boundaries
 Enforcer (ABE) [19], included as a part of NoScript [20], a popular
 Mozilla Firefox security extension. Sites can express their ABE
 rule-set at a well-known web address for downloading by individual
 clients [21], similarly to Flash's crossdomain.xml. Amidst this
 haphazard collage of new security mechanisms at least one browser
 vendor has even devised a new HTTP header that disables one of their
 newly created security features: witness the X-XSS-Protection header
 that disables the new anti-XSS features [22] in Microsoft's Internet
 Explorer 8 (IE8).

 Additionally, there are various proposals aimed at addressing other
 facets of inherent web vulnerabilities, for example: JavaScript
 postMessage-based mashup communications [23], hypertext isolation
 techniques [24], and service security policies advertised via the
 Domain Name System (DNS) [25]. Going even further, there are efforts
 to redesign web browser architectures [26], of which Google Chrome
 and IE8 are deployed examples. An even more radical approach is

https://datatracker.ietf.org/doc/html/rfc6797

Hodges Expires August 5, 2013 [Page 3]

Internet-Draft WebSec Framework Reqs Feb 2013

 exhibited in the Gazelle Web Browser [27], which features a browser
 kernel embodied in a multi-principal OS construction providing cross-
 principal protection and fair sharing of all system resources.

 Not to be overlooked is the fact that even though there is a plethora
 of "standard" browser security features--e.g. the Same Origin Policy
 (SOP), network-related restrictions, rules for third-party cookies,
 content-handling mechanisms, etc. [28]--they are not implemented
 uniformly in today's various popular browsers and RIA frameworks
 [29]. This makes life even harder for web site administrators in
 that allowances must be made in site security posture and approaches
 in consideration of which browser a user may be wielding at any
 particular time.

 Although industry and researchers collectively are aware of all the
 above issues, we observe that the responses to date have been issue-
 specific and uncoordinated. What we are ending up with looks perhaps
 similar to Frankenstein's monster [30]--a design with noble intents
 but whose final execution is an almost-random amalgamation of parts
 that do not work well together. It can even cause destruction on its
 own [31].

 Thus, the goal of this document is to define the requirements for a
 common framework expressing security constraints on HTTP
 interactions. Functionally, this framework should be general enough
 that it can be used to unite the various individual solutions above,
 and specific enough that it can address vulnerabilities not addressed
 by current solutions, and guide the development of future mechanisms.

 Overall, such a framework would provide web site administrators the
 tools for managing, in a least privilege [33] manner, the overall
 security characteristics of their web site/applications when realized
 in the context of user agents.

 [[The author(s) understand that many of the references to web
 security issues are now somewhat dated and more recent work has
 appeared in the literature. Suggestions of references to use in
 superseding the ones herein are welcome; references to web security
 survey papers would be good.]]

1.1. Where to Discuss This Draft

 Please disscuss this draft on the websec@ietf.org mailing list
 [WebSec].

Hodges Expires August 5, 2013 [Page 4]

Internet-Draft WebSec Framework Reqs Feb 2013

2. Document Conventions

 NOTE: ..is a note to the reader. These are points that should be
 expressly kept in mind and/or considered.

 [[TODOn: Things to fix (where "n" in "TODOn" is a number). --JeffH]]

 We will also be making use of the WebSec WG issue tracker, so use of
 the TODO marks will evolve accordingly.

3. Overall Constraints

 Regardless of the overall approaches chosen for conveying site
 security policies, we believe that to be deployed at Internet-scale,
 and to be as widely usable as possible for both novice and expert
 alike, the overall solution approach will need to address these three
 points of tension:

 Granularity:

 There has been much debate during the discussion of some policy
 mechanisms (e.g. CSP) as to how fine-grained such mechanisms
 should be. The argument against fine-grained mechanisms is
 that site administrators will cause themselves pain by
 instantiating policies that do not yield the intended results.
 E.g. simply copying the expressed policies of a similar site.
 The claim is that this would occur for various reasons stemming
 from the mechanisms' complexity [34].

 Configurability:

 Not infrequently, the complexity of underlying facilities, e.g.
 in server software, is not well-packaged and thus
 administrators are obliged to learn more about the intricacies
 of these systems than otherwise might be necessary. This is
 sometimes used as an argument for "dumbing down" the
 capabilities of policy expression mechanisms [34].

 Usability:

 Research shows that when security warnings are displayed, users
 are often given too much information as well as being allowed
 to relatively easily bypass the warnings and continue with
 their potentially compromising activity [35] [36] [37] [38]
 [39]. Thus users have become trained to "click through"
 security notifications "in order to get work done", though not
 infrequently rendering themselves insecure and perhaps

Hodges Expires August 5, 2013 [Page 5]

Internet-Draft WebSec Framework Reqs Feb 2013

 compromised [40].

 In the next section we discuss various high-level requirements
 derived with the guidance of the latter tension points.

4. Overall Requirements

 1. Policy conveyance:

 in-band:

 HTTP header(s) are already presently used to convey policy
 to user agents. However, devising generalized, extensible
 HTTP security header(s) such that the on-going "bloat" of
 the number of disjoint HTTP security headers is mitigated,
 is a stated requirement by various parties. Also, then
 there would be a documented framework that can be leveraged
 as new approaches and/or threats emerge.

 It may be reasonable to devise distinct sets of headers to
 convey different classes of policies, e.g., web application
 content policies (such as [W3C.CR-CSP-20121115]) versus web
 application network connection policies (such as
 [RFC6797]).

 out-of-band:

 An out-of-band policy communication mechanism must be
 secure and should have two facets, one for communicating
 securely out-of-band of the HTTP protocol to allow for
 secure client policy store bootstrapping. potential
 approaches are factory-installed web browser configuration,
 site security policy download a la Flash's crossdomain.xml
 and Maone's ABE for Web Authors [21], and DNS-based policy
 advertisement leveraging the security ofthe Secure DNS
 (DNSSEC) [32].

 NOTE: The distinction between in-band and out-of-band signaling
 is difficult to characterize because some seemingly out-
 of-band mechanisms rely on the same protocols (HTTP/HTTPS)
 and infrastructure (e.g., transparent proxy servers) as
 the protocols they ostensibly protect.

 2. Granularity:

 In terms of granularity, vast arrays of stand-alone blog,
 wiki, hosted web account, and other "simple" web sites could

https://datatracker.ietf.org/doc/html/rfc6797

Hodges Expires August 5, 2013 [Page 6]

Internet-Draft WebSec Framework Reqs Feb 2013

 ostensibly benefit from relatively simple, pre-determined
 policies. However, complex sites--e.g. payment, ecommerce,
 software-as-a-service, mashup sites, etc.--often differ in
 various ways, as well as being inherently complex
 implementation-wise. One-size-fits-all policies will
 generally not work well for them.

 Thus, to be effective for a broad array of web site and
 application types, some derived requirements are:

 the policy expression mechanism should fundamentally
 facilitate fine-grained control. For example, CSP
 [W3C.CR-CSP-20121115] offers such control.

 In order to address the less complex needs of the more
 simple classes of web sites, the policy expression
 mechanism should have some facility for enabling "canned
 policy profiles".

 In addition, the configuration facilities of various
 components of the web infrastructure can be enhanced to
 provide an appropriately simple veneer over the complexity.

 3. Configurability:

 With respect to configurability, development effort should be
 applied to creating easy-to-use administrative interfaces
 addressing the simple cases, like those mentioned above, while
 providing advanced administrators the tools to craft and
 manage fine-grained multi-faceted policies. Thus more casual
 or novice administrators can be aided in readily choosing, or
 be provided with, safe default policies while other classes of
 sites have the tools to craft the detailed policies they
 require. Examples of such an approach are Microsoft's
 "Packaging Wizard" [41] that easily auto-generates a quite
 complicated service deployment descriptor on behalf of less
 experienced administrators, and Firefox's simple Preferences
 dialog [42] as compared to its detailed about:config
 configuration editor page [43]. In both cases, simple usage
 by inexperienced users is anticipated and provided for on one
 hand, while complex tuning of the myriad underlying
 preferences is provided for on the other.

 4. Usability:

 Much has been learned over the last few years about what does
 and does not work with respect to security indicators in web
 browsers and web pages, as noted above, these lessons should

Hodges Expires August 5, 2013 [Page 7]

Internet-Draft WebSec Framework Reqs Feb 2013

 be applied to the security indicators rendered by new proposed
 security mechanisms. We believe that in cases of user agents
 venturing into insecure situations, their response should be
 to fail the connections by default without user recourse,
 rather than displaying warnings along with bypass mechanisms,
 as is current practice. For example, the Strict Transport
 Security specification [RFC6797] suggests the former so-called
 "hard-fail" behavior.

5. Vulnerabilities, Attacks, and Threats

 This section enumerates vulnerabilities and attacks of concern, and
 then illustrates plausible threats that could result from
 exploitation of the vulnerabilities. The intent is to illustrate
 threats that ought to be mitigated by a web security policy
 framework.

 The definitions of vulnerability, attack, and threat used in this
 document are based on the definitions from [RFC4949], and are
 paraphrased here as:

 Vulnerability: A flaw or weakness in a system's design,
 implementation, or operation and management that
 could be exploited.

 Attack: An intentional act of vulnerability exploitation,
 usually characterized by one or more of: the method
 or technique used, and/or the point of initiation,
 and/or the method of delivery, etc. For example:
 active attack, passive attack, offline attack,
 Cross-site Scripting (XSS) attack, SQL injection
 attack, etc.

 Threat: Any circumstance or event with the potential to
 adversely affect a system and its user(s) through
 unauthorized access, destruction, disclosure, or
 modification of data, or denial of service.

 See also Appendix B.1 Source: Attacks and Threats.

5.1. Attacks

 These are some of the attacks which are desirable to mitigate via a
 web application security framework (see [WASC-THREAT] for a more
 complete taxonomy of attacks):

https://datatracker.ietf.org/doc/html/rfc6797
https://datatracker.ietf.org/doc/html/rfc4949

Hodges Expires August 5, 2013 [Page 8]

Internet-Draft WebSec Framework Reqs Feb 2013

 1. Cross-site-scripting (XSS) [2] [WASC-THREAT-XSS]

 2. Cross-Site-Request Forgery (CSRF) [WASC-THREAT-CSRF]

 3. Response Splitting [WASC-THREAT-RESP]

 4. User Interface Redressing [UIRedress], aka Clickjacking
 [Clickjacking].

 5. Man-in-the-middle (MITM) attacks against "secure" web
 applications, i.e., ones accessed using TLS/SSL [RFC5246]
 [WASC-THREAT-TLS] [SSLSTRIP].

 6. [[TODO2: more? (e.g. from [WASC-THREAT] ?) --JeffH]]

5.2. Threats

 Via attacks exploiting the vulnerabilities above, an attacker can..

 1. Obtain a victim's confidential web application credentials (e.g.,
 via cookie theft), and use the credentials to impersonate the
 victim and enter into transactions, often with the aim of
 monetizing the transaction results to the attacker's benefit.

 2. Insert themselves as a Man-in-the-Middle (MITM) between victim
 and various services, thus is able to instigate, control,
 intercept, and attempt to monetize various transactions and
 interactions with web applications, to the benefit of the
 attacker.

 3. Enumerate various user agent information stores, e.g. browser
 history, facilitating views of the otherwise confidential habits
 of the victim. This information could possibly be used in
 various offline attacks against the victim directly. E.g.:
 blackmail, denial of services, law enforcement actions, etc.

 4. Use gathered information and credentials to construct and present
 a falsified persona of the victim (e.g. for character
 assassination).

 There is a risk of exfiltration of otherwise confidential victim
 information with all the threats listed above.

6. Use Cases

 This section outlines various example use cases.

https://datatracker.ietf.org/doc/html/rfc5246

Hodges Expires August 5, 2013 [Page 9]

Internet-Draft WebSec Framework Reqs Feb 2013

 1. I'm a web application site administrator. My web app includes
 static user-supplied content (e.g. submitted from user agents via
 HTML FORM + HTTP POST), but either my developers don't properly
 sanitize user-supplied content in all cases or/and content
 injection vulnerabilities exist or materialize (for various
 reasons).

 This leaves my web app vulnerable to cross-site scripting. I
 wish I could set overall web app-wide policies that prevent user-
 supplied content from injecting malicious content (e.g.
 JavaScript) into my web app.

 2. I'm a web application site administrator. My web application is
 intended, and configured, to be uniformly served over HTTPS, but
 my developers mistakenly keep including content via insecure
 channels (e.g. via insecure HTTP; resulting in so-called "mixed
 content").

 I wish I could set a policy for my web app that prevents user
 agents from loading content insecurely even if my web app is
 otherwise telling them to do so.

 3. I'm a web application site administrator. My site has a policy
 that we can only include content from certain trusted providers
 (e.g., our CDN, Amazon S3), but my developers keep adding
 dependencies on origins I don't trust. I wish I could set a
 policy for my site that prevents my web app from accidentally
 loading resources outside my whitelist.

 4. I'm a web application site administrator. I want to ensure that
 my web app is never framed by other web apps.

 5. I'm a developer of a web application which will be included (i.e.
 framed) by third parties within their own web apps. I would like
 to ensure that my web app directs user agents to only load
 resources from URIs I expect it to (possibly even down to
 specific URI paths), without affecting the containing web app or
 any other web apps it also includes.

 6. I'm a web application site administrator. My web app frames
 other web apps whose behavior, properties, and policies are not
 100% known or predictable.

 I need to be able to apply policies that both protect my web app
 from potential vulnerabilities or attacks introduced by the
 framed web apps, and that work to ensure that the desired
 interactions between my web app and the framed apps are securely
 realized.

Hodges Expires August 5, 2013 [Page 10]

Internet-Draft WebSec Framework Reqs Feb 2013

 7. [[TODO3: additional use cases to add? --JeffH]]

7. Detailed Functional Requirements

 Many of the below functional requirements are extracted from a
 discussion on the [public-web-security] mailing list (in early 2011).
 Particular messages are cited inline and appropriate quotes extracted
 and reproduced here. Inline citations are provided for definitions
 of various terms.

 The overall functional requirement categories are:

 1. Policy mechanism scope

 2. Policy expression syntax

 3. Tooling

 4. Performance

 5. Granularity

 6. Notifications and reporting

 7. Facilitating Separation of Duties

 8. Hierarchical Policy Application

 9. Policy Delivery

 10. Policy Conflict Resolution

 [[TODO4: additional functional requirement categories to add?
 --JeffH]]

 These requirements are discussed in more detail below:

 1. Policy mechanism scope and extensibility:

 There is a current proliferation of orthogonal atomic
 mechanisms intended to solve very specific problems. Web
 developers have a hard enough time with security already
 without being expected to master a potentially large number
 of different security mechanisms, each with their own unique
 threat model, implementation and syntax. Not to mention
 trying to figure out how they're expected to interact with
 each other; e.g., how to manage the gaps and intersections

Hodges Expires August 5, 2013 [Page 11]

Internet-Draft WebSec Framework Reqs Feb 2013

 between the models.

 Thus the desire to have an extensible security policy
 mechanism that could evolve as the web evolves, and the
 threats that the web faces also evolve. For example, an
 extensibility model similar to HTML where the security
 protections could grown over time.

 See also Appendix B.2 Source: Policy Expression Syntax [1].

 2. Policy expression syntax:

 The policy expression syntax for a web security framework
 should be declarative [DeclLang] (and extensible, as noted
 above). This is for simplicity sake, as the alternative to
 declarative is procedural/functional, e.g., the class of
 language ECMAscript falls into.

 See also Appendix B.2 Source: Policy Expression Syntax [1],
 and, Appendix B.3 Source: Policy Expression Syntax [2].

 3. Tooling:

 We will need tools to (idealy) analyze a web application and
 generate an initial security policy.

 See also Appendix B.4 Source: Tooling.

 4. Performance:

 Minimizing performance impact is a first-order concern.

 See also Appendix B.5 Source: Performance.

 5. Granularity:

 For example, discriminate between:

 + "inline" script in <head> versus <body>, or not.

 + "inline" script and "src=" loaded script.

 + Classes of "content", e.g. scriptable content, passive
 multimedia, nested documents, etc.

 See also Appendix B.6 Source: Granularity.

Hodges Expires August 5, 2013 [Page 12]

Internet-Draft WebSec Framework Reqs Feb 2013

 6. Notifications and Reporting:

 Convey to the user agent an identifier (e.g. a URI) denoting
 where to send policy violation reports. Could also specify a
 DOM event to be dedicated for this purpose.

 An ability to specify that a origin's policies are to be
 enforced in a "report only" mode will be useful for debugging
 policies as well as site-policy interactions. E.g. for
 answering the question: "does my policy 'break' my site?".

 See also Appendix B.7 Source: Notifications and Reporting.

 7. Facilitating Separation of Duties:

 Specifically, allowing for Web Site operations/deployment
 personnel to apply site policy, rather then having it being
 encoded in the site implementation code by side developers/
 implementors.

 See also Appendix B.8 Source: Facilitating Separation of
 Duties.

 8. Hierarchical Policy Application:

 The notion that policy emitted by the application's source
 origin is able to constrain behavior and policies of
 contained origins.

 See also Appendix B.9 Source: Hierarchical Policy
 Application.

 9. Framing Policy Hierarchy, cross-origin, granularity,
 auditability, roles:

 [[TODO5: Need more fully coalesce the source info from
 appendix into this item. --JeffH]]

 + "Framing" is a client-side instance notion, where
 webapp1's client-side instance (aka "document") loads
 another webapp, "webapp2", into an HTML <IFRAME> element.

 + A webapp may wish to never be framed by another webapp.

 + webapps are denoted by "origins" [RFC6454].

https://datatracker.ietf.org/doc/html/rfc6454

Hodges Expires August 5, 2013 [Page 13]

Internet-Draft WebSec Framework Reqs Feb 2013

 + an origin can emit policy (i.e. from the server-side
 webapp component) to the user agent (i.e. the execution
 environment/container for the client-side webapp
 component) in at least two fashions: HTML element
 attributes, HTTP header fields, ecmascript code. See also
 Paragraph 10.

 + Policy expressed via HTML <IFRAME> elements is "fine-
 grained" because the webapp can control such policies on
 iframe-by-iframe basis. Policies conveyed by HTTP header
 fields applies "document-wide" (i.e., to the webapp
 client-side instance) as a whole.

 + Note that either or both of the "framing" or "framed"
 webapp client-side instance may be an attacker (in which
 case the other webapp client-side instance would be
 considered a "victim" (whether or not its actual
 intentions are malicious or not)).

 See also Appendix B.10 Source: Framing Policy Hierarchy,
 cross-origin, granularity.

 10. Policy Delivery:

 [[TODO6: Need more fully coalesce the source info from
 appendix into this item, and blend/resolve/contrast with
 above item. --JeffH]]

 The web application policy must be communicated by the web
 application to the user agent. There are various approaches
 and they have tradeoffs between security, audience, and
 practicality.

 See also Appendix B.11 Source: Policy Delivery [1], as well
 as, Appendix B.12 Source: Policy Delivery [2].

 11. Policy Conflict Resolution:

 [[TODO7: Need more fully coalesce the source info from
 appendix into this item. --JeffH]]

 What is the model for resolving conflicts between policies
 expressed by "parent" and "child" webapps?

 Should policies conveyed via HTTP header fields (i.e., that
 apply webapp-wide) be handled differently than those
 expressed by webapp client-side instances (e.g., via HTML
 elements and their attributes)?

Hodges Expires August 5, 2013 [Page 14]

Internet-Draft WebSec Framework Reqs Feb 2013

 See also Appendix B.13 Source: Policy Conflict Resolution.

8. Extant Policies to Coalesce

 Presently, this section lists a grab-bag of individually-expressed
 web app security policies which a more general substrate could
 ostensibly encompass (in order to, for example, reduce "header bloat"
 and bytes-on-the-wire issues), as well as reduce functional policy
 duplication/overlap.

 CORS

 XDomainRequest

 toStaticHtml

 innerSafeHtml

 X-Frame-Options

 CSP frame-ancestors

 more?

9. Example Concrete Approaches

 An overall, broad approach (from [0]):

 As for an overall policy mechanism, we observe that leveraging a
 combination of CSP [16] and ABE [19], or their employment in
 tandem, as a starting point for a multi-vendor approach may be
 reasonable. For a near-term policy delivery mechanism, we
 advocate use of both HTTP headers and a policy file at a well-
 known location. Leveraging DNSSEC is attractive in the
 intermediate term, i.e. as it becomes more widely deployed.

10. Security Considerations

 Security considerations go here.

11. References

 [[TODO1: re-code refs into xml and place in proper refs section.
 --JeffH]]

Hodges Expires August 5, 2013 [Page 15]

Internet-Draft WebSec Framework Reqs Feb 2013

 [0] J. Hodges, A. Steingruebl, "The Need for Coherent Web Security
 Policy Framework(s)", Web 2.0 Security & Privacy, Oakland CA, 20 May
 2010. http://w2spconf.com/2010/papers/p11.pdf

 [1] Breach Security, "THE WEB HACKING INCIDENTS DATABASE 2009," Aug.
 2009. http://www.breach.com/resources/whitepapers/downloads/

WP_TheWebHackingIncidents-2009.pdf

 [2] R. Auger, The Cross-Site Request Forgery (CSRF/XSRF) FAQ, 2007.
http://www.cgisecurity.com/articles/csrf-faq.shtml

 [3] A. Barth, J. Caballero, and D. Song, "Secure Content Sniffing for
 Web Browsers--or How to Stop Papers from Reviewing Themselves,"
 Proceedings of the 30th IEEE Symposium on Security & Privacy,
 Oakland, CA: 2009.

 [4] D. Goodin, "Major IE8 flaw makes 'safe' sites unsafe -
 Microsoft's XSS buster busted," The Register, Nov. 2009. http://

www.theregister.co.uk/2009/11/20/internet_explorer_security_flaw/

 [5] J. Grossman, "Clickjacking: Web pages can see and hear you," Oct.
 2008. http://jeremiahgrossman.blogspot.com/2008/10/

clickjacking-web-pages-can-see-and-hear.html

 [6] W. Salusky, Malvertising, 2007.
http://isc.sans.org/diary.html?storyid=3727

 [7] T. Dierks and E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.2," RFC5246, Internet Engineering Task Force, Aug.
 2008. http://www.ietf.org/rfc/rfc5246.txt

 [8] M. Marlinspike, SSLSTRIP, 2009.
http://www.thoughtcrime.org/software/sslstrip/

 [9] Scope of HTTPOnly Cookies.
http://docs.google.com/View?docid=dxxqgkd_0cvcqhsdw

 [10] E. Lawrence, IE8 Security Part VII: ClickJacking Defenses, 2009.
http://blogs.msdn.com/ie/archive/2009/01/27/
ie8-security-part-vii-clickjacking-defenses.aspx

 [11] J. Hodges, C. Jackson, and A. Barth, "Strict Transport
 Security," Work-in-progress, Internet-Draft, Jul. 2010.

http://tools.ietf.org/html/draft-hodges-strict-transport-sec

 [12] A. Barth, C. Jackson, and I. Hickson, "The Web Origin Concept,"
 Internet-Draft, work in progress, Internet Engineering Task Force,
 2009. http://tools.ietf.org/html/draft-abarth-origin

http://w2spconf.com/2010/papers/p11.pdf
http://www.breach.com/resources/whitepapers/downloads/WP_TheWebHackingIncidents-2009.pdf
http://www.breach.com/resources/whitepapers/downloads/WP_TheWebHackingIncidents-2009.pdf
http://www.cgisecurity.com/articles/csrf-faq.shtml
http://www.theregister.co.uk/2009/11/20/internet_explorer_security_flaw/
http://www.theregister.co.uk/2009/11/20/internet_explorer_security_flaw/
http://jeremiahgrossman.blogspot.com/2008/10/clickjacking-web-pages-can-see-and-hear.html
http://jeremiahgrossman.blogspot.com/2008/10/clickjacking-web-pages-can-see-and-hear.html
http://isc.sans.org/diary.html?storyid=3727
https://datatracker.ietf.org/doc/html/rfc5246
http://www.ietf.org/rfc/rfc5246.txt
http://www.thoughtcrime.org/software/sslstrip/
http://docs.google.com/View?docid=dxxqgkd_0cvcqhsdw
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://tools.ietf.org/html/draft-hodges-strict-transport-sec
http://tools.ietf.org/html/draft-abarth-origin

Hodges Expires August 5, 2013 [Page 16]

Internet-Draft WebSec Framework Reqs Feb 2013

 [13] E. Lawrence, IE8 Security Part VI: Beta 2 Update, 2008. http://
blogs.msdn.com/ie/archive/2008/09/02/

 ie8-security-part-vi-beta-2-update.aspx

 [14] G. Markham, Content restrictions, 2007.
http://www.gerv.net/security/content-restrictions/

 [15] T. Jim, N. Swamy, and M. Hicks, "BEEP: Browser-Enforced Embedded
 Policies," Proceedings of the 16th International World Wide Web
 Conference, Banff, Alberta, Canada, 2007.

 [16] B. Sterne, "Content Security Policy (CSP)," 2011. https://
dvcs.w3.org/hg/content-security-policy/raw-file/bcf1c45f312f/

 csp-unofficial-draft-20110303.html

 [17] A.V. Kesteren, "Cross-Origin Resource Sharing (CORS)," Mar.
 2009. http://www.w3.org/TR/2009/WD-cors-20090317/

 [18] Adobe Systems, "Cross-domain policy file specification." http://
learn.adobe.com/wiki/download/attachments/64389123/

 CrossDomain_PolicyFile_Specification.pdf?version=1

 [19] G. Maone, ABE - Application Boundaries Enforcer, 2009.
http://noscript.net/abe/

 [20] G. Maone, NoScript. http://noscript.net/

 [21] G. Maone, ABE for Web Authors, 2009.
http://noscript.net/abe/web-authors.html

 [22] Microsoft, "Event 1046 - Cross-Site Scripting Filter," MSDN
 Library, undated.

http://msdn.microsoft.com/en-us/library/dd565647%28VS.85%29.aspx

 [23] A. Barth, C. Jackson, and W. Li, "Attacks on JavaScript Mashup
 Communication," Proceedings of the Web 2.0 Security and Privacy
 Workshop, 2009.

 [24] M. Ter Louw, P. Bisht, and V. Venkatakrishnan, "Analysis of
 Hypertext Isolation Techniques for XSS Prevention," Proceedings of
 the Web 2.0 Security and Privacy Workshop, 2008 .

 [25] A. Ozment, S.E. Schechter, and R. Dhamija, "Web Sites Should Not
 Need to Rely on Users to Secure Communications," W3C Workshop on
 Transparency and Usability of Web Authentication, 2006.

 [26] C. Reis, A. Barth, and C. Pizano, "Browser Security: Lessons
 from Google Chrome," ACM Queue, 2009, pp. 1-8.

http://blogs.msdn.com/ie/archive/2008/09/02/
http://blogs.msdn.com/ie/archive/2008/09/02/
http://www.gerv.net/security/content-restrictions/
https://dvcs.w3.org/hg/content-security-policy/raw-file/bcf1c45f312f/
https://dvcs.w3.org/hg/content-security-policy/raw-file/bcf1c45f312f/
http://www.w3.org/TR/2009/WD-cors-20090317/
http://learn.adobe.com/wiki/download/attachments/64389123/
http://learn.adobe.com/wiki/download/attachments/64389123/
http://noscript.net/abe/
http://noscript.net/
http://noscript.net/abe/web-authors.html
http://msdn.microsoft.com/en-us/library/dd565647%28VS.85%29.aspx

Hodges Expires August 5, 2013 [Page 17]

Internet-Draft WebSec Framework Reqs Feb 2013

 [27] H.J. Wang, C. Grier, A. Moshchuk, S.T. King, P. Choudhury, and
 H. Venter, "The Multi-Principal OS Construction of the Gazelle Web
 Browser," USENIX Security Symposium, 2009.

 [28] M. Zalewski, Browser Security Handbook.
http://code.google.com/p/browsersec/

 [29] A. Stamos, D. Thiel, and J. Osborne, Living in the RIA World:
 Blurring the Line between Web and Desktop Security, BlackHat
 presentation, iSecPartners, 2008.

https://www.isecpartners.com/files/RIA_World_BH_2008.pdf

 [30] Mary Shelley, "Frankenstein, or The Modern Prometheus," ca.
 1831. http://en.wikipedia.org/wiki/Frankenstein%27s_monster

 [31] D. Goodin, "cPanel, Netgear and Linksys susceptible to nasty
 attack - Unholy Trinity," The Register, 2009.

http://www.theregister.co.uk/2009/08/02/unholy_trinity_csrf/

 [32] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, "DNS
 security introduction and requirements," RFC4033, Internet
 Engineering Task Force, Mar. 2005.

http://www.ietf.org/rfc/rfc4033.txt

 [33] J.H. Saltzer and M.D. Schroeder, "The Protection of Information
 in Computer Systems," Communications of the ACM, vol. 17, Jul. 1974.

 [34] I. Hickson and many others, "Comments on the Content Security
 Policy specification," discussion on mozilla.dev.security newsgroup.

http://groups.google.com/group/mozilla.dev.security/browse_frm/
thread/

 87ebe5cb9735d8ca?tvc=1&
 q=Comments+on+the+Content+Security+Policy+specification

 [35] S. Egelman, L.F. Cranor, and J. Hong, "You've Been Warned: An
 Empirical Study of the Effectiveness of Web Browser Phishing
 Warnings," CHI 2008, April 5 - 10, 2008, Florence, Italy, 2008.

 [36] S.E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, "The
 Emperor's New Security Indicators," Proceedings of the 2007 IEEE
 Symposium on Security and Privacy.

 [37] R. Dhamija and J.D. Tygar, "The Battle Against Phishing: Dynamic
 Security Skins," Proceedings of the 2005 Symposium on Usable Privacy
 and Security (SOUPS).

 [38] J. Sobey, T. Whalen, R. Biddle, P.V. Oorschot, and A.S. Patrick,
 Browser Interfaces and Extended Validation SSL Certificates: An

http://code.google.com/p/browsersec/
https://www.isecpartners.com/files/RIA_World_BH_2008.pdf
http://en.wikipedia.org/wiki/Frankenstein%27s_monster
http://www.theregister.co.uk/2009/08/02/unholy_trinity_csrf/
https://datatracker.ietf.org/doc/html/rfc4033
http://www.ietf.org/rfc/rfc4033.txt
http://groups.google.com/group/mozilla.dev.security/browse_frm/thread/
http://groups.google.com/group/mozilla.dev.security/browse_frm/thread/

Hodges Expires August 5, 2013 [Page 18]

Internet-Draft WebSec Framework Reqs Feb 2013

 Empirical Study, Ottawa, Canada: School of Computer Science, Carleton
 University, 2009.

 [39] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L.F.
 Cranor, "Crying Wolf: An Empirical Study of SSL Warning
 Effectiveness," USENIX Security Symposium, 2009.

 [40] C. Jackson and A. Barth, "ForceHTTPS: Protecting High-Security
 Web Sites from Network Attacks," Proceedings of the 17th
 International World Wide Web Conference (WWW), 2008.

 [41] Microsoft, "Packaging Wizard."
http://msdn.microsoft.com/en-us/library/aa157732(office.10).aspx

 [42] Mozilla, "Options window."
http://support.mozilla.com/en-US/kb/Options+window

 [43] S. Yegulalp, "Hacking Firefox: The secrets of about:config,"
 ComputerWorld, May. 2007. http://www.computerworld.com/s/article/

9020880/Hacking_Firefox_The_secrets_of_about_config

12. Informative References

 [Clickjacking]
 "Clickjacking", Sep 2008,
 <http://www.sectheory.com/clickjacking.htm>.

 [DeclLang]
 "declarative languages", A Dictionary of
 Computing Encyclopedia.com, 2004, <http://

www.encyclopedia.com/doc/1O11-declarativelanguages.html>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
RFC 4949, August 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

 [RFC6797] Hodges, J., Jackson, C., and A. Barth, "HTTP Strict
 Transport Security (HSTS)", RFC 6797, November 2012.

 [SSLSTRIP]
 Marlinspike, M., "SSLSTRIP", 2009,
 <http://www.thoughtcrime.org/software/sslstrip/>.

http://msdn.microsoft
http://support.mozilla
http://www.computerworld.com/s/article/9020880/Hacking_Firefox_The_secrets_of_about_config
http://www.computerworld.com/s/article/9020880/Hacking_Firefox_The_secrets_of_about_config
http://www.sectheory.com/clickjacking.htm
http://www.encyclopedia.com/doc/1O11-declarativelanguages.html
http://www.encyclopedia.com/doc/1O11-declarativelanguages.html
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc6797
http://www.thoughtcrime.org/software/sslstrip/

Hodges Expires August 5, 2013 [Page 19]

Internet-Draft WebSec Framework Reqs Feb 2013

 [UIRedress]
 "Dealing with UI redress vulnerabilities inherent to the
 current web", Sep 2008, <http://lists.whatwg.org/

htdig.cgi/whatwg-whatwg.org/2008-September/016284.html>.

 [W3C.CR-CSP-20121115]
 Sterne, B. and A. Barth, "Content Security Policy 1.0",
 World Wide Web Consortium CR CR-CSP-20121115,
 November 2012,
 <http://www.w3.org/TR/2012/CR-CSP-20121115>.

 [WASC-THREAT]
 Web Application Security Consortium, "The WASC Threat
 Classification v2.0", January 2010,
 <http://projects.webappsec.org/f/WASC-TC-v2_0.pdf>.

 [WASC-THREAT-CSRF]
 Web Application Security Consortium, "Cross Site Request
 Forgery", The WASC Threat Classification v2.0 Reference
 ID: WASC-9, January 2010, <http://projects.webappsec.org/

w/page/13246919/Cross%20Site%20Request%20Forgery>.

 [WASC-THREAT-RESP]
 Web Application Security Consortium, "HTTP Response
 Splitting", The WASC Threat Classification v2.0 Reference
 ID: WASC-25, January 2010, <http://projects.webappsec.org/

w/page/13246931/HTTP%20Response%20Splitting>.

 [WASC-THREAT-TLS]
 Web Application Security Consortium, "Insufficient
 Transport Layer Protection", The WASC Threat
 Classification v2.0 Reference ID: WASC-04, January 2010, <

http://projects.webappsec.org/w/page/13246945/
 Insufficient%20Transport%20Layer%20Protection>.

 [WASC-THREAT-XSS]
 Web Application Security Consortium, "Cross Site
 Scripting", The WASC Threat Classification v2.0 Reference
 ID: WASC-8, January 2010, <http://projects.webappsec.org/

w/page/13246920/Cross%20Site%20Scripting>.

 [WebSec] "Web HTTP Application Security Minus Authentication and
 Transport",
 <https://www.ietf.org/mailman/listinfo/websec>.

 [public-web-security]
 "public-web-security@w3.org: Improving standards and
 implementations to advance the security of the Web.",

http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2008-September/016284.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2008-September/016284.html
http://www.w3.org/TR/2012/CR-CSP-20121115
http://projects.webappsec.org/f/WASC-TC-v2_0.pdf
http://projects.webappsec.org/w/page/13246919/Cross%20Site%20Request%20Forgery
http://projects.webappsec.org/w/page/13246919/Cross%20Site%20Request%20Forgery
http://projects.webappsec.org/w/page/13246931/HTTP%20Response%20Splitting
http://projects.webappsec.org/w/page/13246931/HTTP%20Response%20Splitting
http://projects.webappsec.org/w/page/13246945/
http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting
http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting
https://www.ietf.org/mailman/listinfo/websec

Hodges Expires August 5, 2013 [Page 20]

Internet-Draft WebSec Framework Reqs Feb 2013

 <http://lists.w3.org/Archives/Public/
public-web-security/>.

Appendix A. Acknowledgments

 Text and ideas were prototypically incorporated from various mailing
 list discussions, notably the ones on the [public-web-security]
 mailing list in early 2011, into this document. The authors wish to
 acknowledge and thank these individuals in particular for their tacit
 contributions to this document: Lucas Adamski, Adam Barth, gaz Heyes,
 Andrew Steingruebl, Brandon Sterne, Daniel Veditz, John Wilander.

Appendix B. Discussion References

B.1. Source: Attacks and Threats

 In terms of defining threats in contrast to attacks:

 <"Re: More on XSS mitigation (was Re: XSS mitigation in browsers)"
 (Lucas Adamski). http://lists.w3.org/Archives/Public/

public-web-security/2011Jan/0089.html>

 "... There's a fundamental question about whether we should be
 looking at these problems from an attack vs threat standpoint. An
 attack is [exploitation of, ed.] XSS [or CSRF, or Response
 Splitting, etc.]. A threat is that an attacker could compromise a
 site via content injection to trick the user to disclosing
 confidential information (by injecting a plugin or CSS to steal
 data or fool the user into sending their password to the
 attacker's site). ..."

B.2. Source: Policy Expression Syntax [1]

 In terms of policy expression syntax and extensibility, Lucas Adamski
 supplied this: <"Re: XSS mitigation in browsers" (Lucas Adamski). ht
 tp://lists.w3.org/Archives/Public/public-web-security/2011Jan/
 0066.html>

 "On a conceptual level, I am not really a believer in the current
 proliferation of orthogonal atomic mechanisms intended to solve
 very specific problems. Security is a holistic discipline, and so
 I'm a big supporter of investing in an extensible declarative
 security policy mechanism that could evolve as the web and the
 threats that it faces do. Web developers have a hard enough time
 with security already without being expected to master a
 potentially large number of different security mechanisms, each

http://lists.w3.org/Archives/Public/public-web-security/
http://lists.w3.org/Archives/Public/public-web-security/
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0089
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0089

Hodges Expires August 5, 2013 [Page 21]

Internet-Draft WebSec Framework Reqs Feb 2013

 with their own unique threat model, implementation and syntax.
 Not to mention trying to figure out how they're expected to
 interact with each other... how to manage the gaps and
 intersections between the models."

B.3. Source: Policy Expression Syntax [2]

 In terms of policy expression syntax and extensibility, Adam Barth
 supplied this: <"Re: Scope and complexity (was Re: More on XSS
 mitigation)" (Adam Barth). http://lists.w3.org/Archives/Public/

public-web-security/2011Jan/0108.html>

 "I guess I wish we had an extensibility model more like HTML where
 we could grow the security protections over time. For example, we
 can probably agree that both <canvas> and <video> are great
 additions to HTML that might not have made sense when folks were
 designing HTML 1.0.

 As long as you're not relying on the security policy as a first
 line of defense, the extensibility story for security policies is
 even better than it is with HTML tags. With an HTML tag, you need
 a fall-back for browsers that don't support the tag, whereas with
 a security policy, you'll always have your first line of defense.

 Ideally, we could come up with a policy mechanism that let us nail
 XSS today and that fostered innovation in security for years to
 come. In the short term, you could view the existing CSP features
 (e.g., clickjacking protection) as the first wave of innovation.
 If those pieces are popular, then it should be easy for other
 folks to adopt them."

B.4. Source: Tooling

 In terms of tooling needs, John Wilander supplied this: <"Re: More on
 XSS mitigation" (John Wilander). http://lists.w3.org/Archives/

Public/public-web-security/2011Jan/0082.html>

 "*Developers Will Want a Policy Generator* A key issue for in-the-
 field success of CSP is how to write, generate and maintain the
 policies. Just look at the epic failure of Java security
 policies. The Java policy framework was designed for static
 releases shipped on CDs, not for moving code, added frameworks,
 new framework versions etc. The world of web apps is so dynamic
 I'm still amazed. If anything, for instance messy security
 policies, gets in the way of daily releases it's a no go. At
 least until there's an exploit. Where am I going with this?
 Well, we should implement a PoC *policy generator* and run it on
 some fairly large websites before we nail the standard. There

http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0108
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0108
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0082
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0082

Hodges Expires August 5, 2013 [Page 22]

Internet-Draft WebSec Framework Reqs Feb 2013

 will be subtleties found which we can address and we can bring the
 PoC to production level while the standard is being finalized and
 shipped in browsers. Then we release the policy generator along
 with policy enforcement -- success! "

B.5. Source: Performance

 In terms of performance, John Wilander supplied this: <"Re: More on
 XSS mitigation" (John Wilander). http://lists.w3.org/Archives/

Public/public-web-security/2011Jan/0082.html>

 "*We Mustn't Spoil Performance* Web developers (and browser
 developers) are so hung up on performance that we really need to
 look at what they're up to and make sure we don't spoil things.
 Especially load performance now that it's part of Google's
 rating."

B.6. Source: Granularity

 In terms of granularity, Daniel Veditz supplied this: <"Proposal to
 move the debate forward" (Daniel Veditz). http://lists.w3.org/

Archives/Public/public-web-security/2011Jan/0122.html>

 "We oscillated several times between lumpy and granular. Fewer
 classes (simpler) is always more attractive, easier to explain and
 understand. The danger is that future features then end up being
 added to the existing lumps, possibly enabling things that the
 site isn't aware they need to now filter. It's a constant problem
 as we expand the capabilities of browsers -- sites that used to be
 perfectly secure are suddenly hackable because all the new
 browsers added feature-X."

B.7. Source: Notifications and Reporting

 In terms of notifications and reporting, Brandon Sterne supplied
 this: <"[Content Security Policy] Proposal to move the debate
 forward" (Brandon Sterne). http://lists.w3.org/Archives/Public/

public-web-security/2011Jan/0118.html>

 "...
 3. Violation Reporting
 a. report-uri: URI to which a report will be sent upon policy
 violation
 b. SecurityViolation event: DOM event fired upon policy violations
 ..."

http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0082
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0082
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0122
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0122
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0118
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0118

Hodges Expires August 5, 2013 [Page 23]

Internet-Draft WebSec Framework Reqs Feb 2013

B.8. Source: Facilitating Separation of Duties

 In terms of facilitating separation of duties, Andrew Steingruebl
 supplied this: <"RE: Content Security Policy and iframe@sandbox"
 (Andrew Steingruebl). http://lists.w3.org/Archives/Public/

public-web-security/2011Feb/0050.html>

 "... 2. SiteC is also totally in control of all HTTP headers it
 emits. It could just as easily indicate policy choices for all
 frames via CSP. It could advertise a blanket policy (No JS, No
 ActiveX). Advertising a page-specific, or frame/target specific
 policy is substantially more difficult and probably unwieldy.
 But, depending on how SiteC is configured, setting a global site
 policy via headers offers a potential separation of duties that #1
 does not, it allows website admin to specific things that each web
 developer might not be able to. ..."

B.9. Source: Hierarchical Policy Application

 In terms of hierarchical policy application, Andrew Steingruebl
 supplied this: <"RE: Content Security Policy and iframe@sandbox"
 (Andrew Steingruebl). http://lists.w3.org/Archives/Public/

public-web-security/2011Feb/0048.html>

 "... I could imagine a tweak to CSP wherein CSP would control all
 contents hierarchically. I already spoke to Brandon about it, but
 it was just a quick brainstorm.

 You could imagine revoking permissions in the frame hierarchy and
 not granting them back. This does start to get awfully ugly, but
 just as CSP controls loading policy for itself, it could also
 control loading policy for children, ..."

B.10. Source: Framing Policy Hierarchy, cross-origin, granularity

 In terms of framing policy hierarchy, cross-origin, granularity, Andy
 Steingruebl and Adam Barth supplied this:

 <"Re: Content Security Policy and iframe@sandbox") (Andy
 Steingruebl, Adam Barth) http://lists.w3.org/Archives/Public/

public-web-security/2011Feb/0051.html>

On Sat, Feb 12, 2011 at 9:01 PM, Steingruebl, Andy
 <asteingruebl@paypal-inc.com> wrote:
>> -----Original Message-----
>> From: Adam Barth [mailto:w3c@adambarth.com]

http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0050
http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0050
http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0048
http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0048
http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0051
http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0051

Hodges Expires August 5, 2013 [Page 24]

Internet-Draft WebSec Framework Reqs Feb 2013

>
>> That all sounds very abstract. If you have some concrete examples,
>> that might be more productive to discuss. When enforcing policy
>> supplied by one origin on another origin, we need to be careful to
>> consider the case where the policy providing origin is the attacker
>> and the origin on which the policy is being enforced is the victim.
>
> SiteA wants to make sure it cannot ever be framed. It deploys
X-Frame-Options headers and framebusting JS, and maybe even CSP
frame-ancestors.
>
> SiteB wants to make sure it never loads data from anything other than
SiteB (no non-origin loads). It outputs CSP headers to this effect
>
> SiteC wants to make sure that any content it frames cannot run ActiveX
controls, nor do a 401 authentication. It can't really do this with
current iframe sandboxing, but pretend it could...
>
> SiteC wants to control the behavior of children that it frames. It
needs to advertise this policy to a web browser. It has two choices:
>
> 1. It can do it inline in the HTML it outputs with extra attributes of
the iframe it creates. SiteC is in complete control of the HTML that
creates the iframe. I can impose any policy via sandbox attributes.
Currently for example, it can disable JS in the frame. If it frames
SiteA, SiteA's framebusting JS will never run, but the browser will
respect its X-Frame-Options headers.
>
> 2. SiteC is also totally in control of all HTTP headers it emits. It
could just as easily indicate policy choices for all frames via CSP. It
could advertise a blanket policy (No JS, No ActiveX). Advertising a
page-specific, or frame/target specific policy is substantially more
difficult and probably unwieldy. But, depending on how SiteC is
configured, setting a global site policy via headers offers a potential
separation of duties that #1 does not, it allows website admin to
specific things that each web developer might not be able to.
>
> 3. Because all of Site A,B,C are in different origins, they don't
really have to worry about polluting other origins, but they do have to
worry about problematic behavior such as top-nav, 401-auth popups, etc.
Parents need to constrain certain behavior of things they embed,
according to certain rules of whether the child allows itself to be
framed.
>
> I totally get how existing iframe sandboxing that turns off JS is
problematic for sites [due to] older browsers that don't support
X-Frame-Options. We already have a complicated interaction between
these multiple security controls.

Hodges Expires August 5, 2013 [Page 25]

Internet-Draft WebSec Framework Reqs Feb 2013

>
> Can you give me an example of why my #1/#2 are actually that
different? Whether we control behavior with headers of inline content,
each site is totally responsible for what it emits, and can already
control in some interesting ways the behavior of content it
frames/includes.

In this example, the trade-off for Site C seems to boil down to the
granularity of the policy. Using attributes on a frame is more
fine-grained because Site C can make these decisions on an
iframe-by-iframe basis whereas using a document-wide policy is more
coarse-grained.

Of course, there's a trade-off between different granularities. On
the one hand, fine-grained gives the site more control over how
different iframes behavior. On the other hand, it's much easier to
audit and understand the effects of a coarse-grained policy.

Adam

B.11. Source: Policy Delivery [1]

 In terms of policy delivery, Brandon Sterne supplied this: <"[Content
 Security Policy] Proposal to move the debate forward" (Brandon
 Sterne). http://lists.w3.org/Archives/Public/public-web-security/

2011Jan/0118.html>

 "...
 6. Policy delivery
 a. HTTP header
 b. <meta> (or <link>) tag, to be superseded by header if present
 c. policy-uri: a URI from which the policy will be fetched; can be
 specified in either header or tag
 ..."

B.12. Source: Policy Delivery [2]

 In terms of defining policy delivery, gaz Heyes supplied this: <"Re:
 [Content Security Policy] Proposal to move the debate forward" (gaz
 Heyes). http://lists.w3.org/Archives/Public/public-web-security/

2011Jan/0148.html>

 "...
 a) Policy shouldn't be defined in a http header it's too messy and
 what happens when there's a mistake?

http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0118
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0118
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0148
http://lists.w3.org/Archives/Public/public-web-security/2011Jan/0148

Hodges Expires August 5, 2013 [Page 26]

Internet-Draft WebSec Framework Reqs Feb 2013

 b) As discussed on the list there is no need to have a separate
 method as it can be generated by an attacker. If a policy doesn't
 exist then an attacker can now DOS the web site via meta.

 c) We have a winner, a http header specifying a link to the policy
 file is the way to go IMO, my only problem with it is devs
 implementing it. Yes facebook would and probably twitter would
 but Dave's tea shop wouldn't pay enough money to hire a web dev
 who knew how to implement a custom http header yet they would know
 how to validate HTML. So the question is are we bothered about
 little sites that are likely to have nice tea and XSS holes? If
 so I suggest updating the HTML W3C validator to require a security
 policy to pass validation if not I suggest a policy file delivered
 by http header.
 ..."

B.13. Source: Policy Conflict Resolution

 In terms of defining policy conflict resolution, Andrew Steingruebl
 supplied this: <"RE: Content Security Policy and iframe@sandbox"
 (Andrew Steingruebl). http://lists.w3.org/Archives/Public/

public-web-security/2011Feb/0048.html>

http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0048
http://lists.w3.org/Archives/Public/public-web-security/2011Feb/0048

Hodges Expires August 5, 2013 [Page 27]

Internet-Draft WebSec Framework Reqs Feb 2013

 > -----Original Message-----
 > From: public-web-security-request@w3.org [mailto:public-web-security-
 > request@w3.org] On Behalf Of Adam Barth
 >
 > @sandbox and CSP are very different. The primary difference is who
 > choses the policy. In the case of @sandbox, the embedder chooses
 > the policy. In CSP, the provider of the resource chooses the policy.

 While this is true today, I could imagine a tweak to CSP wherein CSP
 would control all contents hierarchically. I already spoke to Brandon
 about it, but it was just a quick brainstorm.

 You could imagine revoking permissions in the frame hierarchy and not
 granting them back. This does start to get awfully ugly, but just as
 CSP controls loading policy for itself, it could also control loading
 policy for children, right?

 Fundamentally, since the existing security model doesn't really provide
 for strict separation of parent/child (popups, 401's, top-nav) CSP and
 iframe sandbox both try to control the behavior of resources we pull
 from other parties.

 Do we think that these are both special cases of a general security
 policy (my intuition says yes) or that they have some quite orthogonal
 types of security controls that cannot be mixed into a single policy
 declaration?

 One clear problem that comes to mind is that there are policies that
 come from the "child" such as X-Frame-Options that must break the
 ordinary parent/child relationship from a precedence standpoint.

Author's Address

 Jeff Hodges
 PayPal
 2211 North First Street
 San Jose, California 95131
 US

 Email: Jeff.Hodges@PayPal.com

Hodges Expires August 5, 2013 [Page 28]

