websec A. Barth T0C

Internet-Draft Google, Inc.
Intended status: Standards December 30,
Track 2010

Expires: July 3, 2011

The Web Origin Concept
draft-ietf-websec-origin-00

Abstract

This document defines the concept of an "origin", which represents a
web principal. Typically, user agents isolate content retrieved from
different origins to prevent a malicious web site operator from
interfering with the operation of benign web sites. In particular, this
document defines how to compute an origin from a URI, how to serialize
an origin to a string, and an HTTP header, named "Origin", for
indicating which origin caused the user agent to issue a particular
HTTP request.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on July 3, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction
Conventions
2.1. Conformance Criteria
2.2. Syntax Notation
2.3. Terminology
Origin
Comparing Origins
Serializing Origins
5.1. Unicode Serialization of an Origin
5.2. ASCII Serialization of an Origin
The HTTP Origin header
6.1. Syntax
6.2. Semantics
6.3. User Agent Requirements
Privacy Considerations
Security Considerations
IANA Considerations
Implementation Considerations
10.1. IDNA dependency and migration
11. Normative References
Appendix A. Acknowledgements
8 Author's Address

Al

[

@

1. Introduction TOC

User agents interact with content created by a large number of authors.
Although many of those authors are well-meaning, some authors might be
malicious. To the extent that user agents undertake actions based on
content they process, user agent implementors might wish to restrict
the ability of malicious authors to disrupt the confidentiality or
integrity of other content or servers.

As an example, consider an HTTP user agent that renders HTML content
retrieved from various servers. If the user agent executes scripts
contained in those documents, the user agent implementor might wish to
prevent scripts retrieved from a malicious server from reading
documents stored on an honest server, which might, for example, be
behind a firewall.

Traditionally, user agents have divided content according to its
"origin". More specifically, user agents allow content retrieved from

one origin to interact freely with other content retrieved from that
origin, but user agents restrict how that content can interact with
content from another origin.

This document does not describe the restrictions user agents ought to
impose on cross-origin interaction. Instead, this document defines the
origin concept itself in such a way that other specifications, such for
HTTP [cite] or for HTML [cite], can refer to this document for a
precise, common definition of the web origin concept.

Specifically, a user agent can compute the origin of a piece of content
based on the URI from which the user agent retrieved the content. Given
two origins computed in this way, the user agent can compare the
origins to determine if they are "the same", which is useful for
performing some security checks. Finally, given an origin, the user
agent can serialize that origin into either an ASCII or a Unicode
representation.

This document also defines one use of the ASCII serialization: the HTTP
Origin header. An Origin header attached to an HTTP request contains
the ASCII serializations of the origins that caused the user agent to
issue the HTTP request. The Origin header has a number of uses,
including for cross-origin resource sharing [cite].

2. Conventions TOC

2.1. cConformance Criteria TOC

The keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119] (Bradner, S., “Key words for use
in RFCs to Indicate Requirement Levels,” March 1997.).

Requirements phrased in the imperative as part of algorithms (such as
"strip any leading space characters" or "return false and abort these
steps") are to be interpreted with the meaning of the key word ("MUST",
"SHOULD", "MAY", etc) used in introducing the algorithm.

Conformance requirements phrased as algorithms or specific steps can be
implemented in any manner, so long as the end result is equivalent. In
particular, the algorithms defined in this specification are intended
to be easy to understand and are not intended to be performant.

TOC

2.2. Syntax Notation

This specification uses the Augmented Backus-Naur Form (ABNF) notation
of [RFC5234] (Crocker, D., Ed. and P. Overell, “Augmented BNF for
Syntax Specifications: ABNF,” January 2008.).

The following core rules are included by reference, as defined in
[REC5234] (Crocker, D., Ed. and P. Overell, “Augmented BNF for Syntax
Specifications: ABNF,” January 2008.), Appendix B.1: ALPHA (letters),
CR (carriage return), CRLF (CR LF), CTL (controls), DIGIT (decimal
0-9), DQUOTE (double quote), HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line
feed), OCTET (any 8-bit sequence of data), SP (space), HTAB (horizontal
tab), CHAR (any US-ASCII character), VCHAR (any visible US-ASCII
character), and WSP (whitespace).

The OWS (optional whitespace) rule is used where zero or more linear
whitespace characters MAY appear:

ows = *([obs-fold] WSP)
, "optional" whitespace
obs-fold = CRLF

OWS SHOULD either not be produced or be produced as a single SP
character.

2.3. Terminology TOC

The terms user agent, client, server, proxy, and origin server have the
same meaning as in the HTTP/1.1 specification ([RFC2616] (Fielding, R.,
Gettys, J., Moqul, J., Frystyk, H., Masinter, L., Leach, P., and T.
Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.),
Section 1.3).

A globally unique identifier is a value which is different from all
other previously existing values. For example, a sufficiently long
random string is likely to be a globally unique identifier.

A idna-canonicalization host name is the string generated by the
following algorithm:

1. Convert the host name to a sequence of NR-LDH labels (see
Section 2.3.2.2 of [RFC5890] (Klensin, J., “Internationalized
Domain Names for Applications (IDNA): Definitions and Document
Framework,” August 2010.)) and/or A-labels according to the
appropriate IDNA specification [RFC5891] (Klensin, J.,
“Internationalized Domain Names in Applications (IDNA):
Protocol,” August 2010.) or [RFC3490] (Faltstrom, P., Hoffman,
P., and A. Costello, “Internationalizing Domain Names in
Applications (IDNA),” March 2003.) (see Section 10.1 (IDNA
dependency and migration) of this specification)

2. Convert the labels to lower case.
3. Concatenate the labels, separating each label from the next
with a %x2E (".") character.
3. Origin TOC

An origin represents a web principal. Typically, user agents determine
the origin of a piece of content from the URI from which they retrieved
the content. In this section, we define how to compute an origin from a

URI.

The origin of a URI is the value computed by the following algorithm:

1.

If the URI does not use a server-based naming authority, or if
the URI is not an absolute URI, then return a globally unique
identifier.

Let uri-scheme be the scheme component of the URI, converted to
lowercase.

If the implementation doesn't support the protocol given by
uri-scheme, then return a globally unique identifier.

If uri-scheme is "file", the implementation MAY return an
implementation-defined value.

1. NOTE: Historically, user agents have granted content from
the file scheme a tremendous number of privileges.
However, granting all local files such wide privileges can
lead to privilege escalation attacks. Some user agents
have had success granting local files directory-based
privileges, but this approach has not been widely adopted.
Other user agent use a globally unique identifier each
file URI, which is the most secure option.

Let uri-host be the idna-canonicalization of the host component
of the URI.

If there is no port component of the URI:

1. Let uri-port be the default port for the protocol given by
uri-scheme.

Otherwise:

1. Let uri-port be the port component of the URI.

7. Return the triple (uri-scheme, uri-host, uri-port).

Implementations MAY define other types of origins in addition to the
scheme/host/port triple type defined above. For example, an
implementation might define an origin based on a public key or an
implementation might append addition "sandbox" bits to a scheme/host/
port triple.

4. Comparing Origins TOC

To origins are "the same" if, and only if, they are identical. In
particular:

*If the two origins are scheme/host/port triple, the two origins
are the same if, and only if, they have identical schemes, hosts,
and ports.

*An origin that is globally unique identifier cannot be the same
as an origin that is a scheme/host/port triple.

*Two origins that are globally unique identifiers cannot be the
same if they were created at different times, even if they were
created for the same URI.

Two URIs are the same-origin if their origins are the same.
NOTE: A URI is not necessarily same-origin with itself. For example,
a data URI is not same-origin with itself because data URIs do not

use a server-based naming authority and therefore have globally
unique identifiers as origins.

5. Serializing Origins TOC

This section defines how to serialize an origin to a unicode string and
to an ASCII string.

T0C

5.1.

Unicode Serialization of an Origin

The unicode-serialization of an origin is the value returned by the
following algorithm:

1.

6.

If the origin is not a scheme/host/port triple, then return the
string

null

(i.e., the code point sequence U+006E, U+0075, U+006C, U+006C)
and abort these steps.

Otherwise, let result be the scheme part of the origin triple.

. Append the string "://" to result.

. Append the [TODO: IDNA ToUnicode] algorithm to each component

of the host part of the origin triple, and append the results
of each component, in the same order, separated by U+002E FULL
STOP code points (".") to result.

If the port part of the origin triple is different than the
default port for the protocol given by the scheme part of the
origin triple:

1. Append a U+OO03A COLON code point (":") and the given port,
in base ten, to result.

Return result.

[TODO: Check that we handle IPv6 literals correctly.]

5.2.

ASCII Serialization of an Origin TOC

The ascii-serialization of an origin is the value returned by the
following algorithm:

1.

If the origin is not a scheme/host/port triple, then return the
string

null

(i.e., the code point sequence U+006E, U+0075, U+006C, U+006C)
and abort these steps.

Otherwise, let result be the scheme part of the origin triple.

3. Append the string "://" to result.

4. Append the host port of the origin triple to result.

5. If the port part of the origin triple is different than the
default port for the protocol given by the scheme part of the

origin triple:

1. Append a U+0O3A COLON code points (":") and the given
port, in base ten, to result.

6. Return result.

6. The HTTP Origin header TOC

This section defines the HTTP Origin header.

6.1. Syntax TOC

The Origin header has the following syntax:

origin = "Origin:" OWS origin-list-or-null OWS
origin-list-or-null = "null" / origin-1list

origin-1list = serialized-origin *(SP serialized-origin)
serialized-origin = scheme "://" host [":" port]

, <scheme>, <host>, <port> productions from RFC3986

6.2. Semantics TOC

When included in an HTTP request, the Origin header indicates the
origin(s) that caused the user agent to issue the request.

For example, consider a user agent that executes scripts on behalf of
origins. If one of those scripts causes the user agent to issue an HTTP
request, the user agent might wish to use the Origin header to inform
the server that the request was issued by the script.

In some cases, a number of origins contribute to causing the user
agents to issue an HTTP request. In those cases, the user agent can
list all the origins in the Origin header. For example, if the HTTP

request was initially issued by one origin but then later redirected by
another origin, the user agent might wish to inform the server that two
origins were involved in causing the user agent to issue the request.

6.3. User Agent Requirements TOC

The user agent MAY include an Origin header in any HTTP request.

The user agent MUST NOT include more than one Origin header field in
any HTTP request.

Whenever a user agent issues an HTTP request from a "privacy-sensitive"
context, the user agent MUST send the value "null" in the Origin
header.

NOTE: This document does not define the notion of a privacy-
sensitive context. Applications that generate HTTP requests can
designate contexts as privacy-sensitive to impose restrictions on
how user agents generate Origin headers.

When generating an Origin header, the user agent MUST meet the
following requirements:

*Each of the serialized-origin productions in the grammar MUST be
the ascii-serialization of an origin.

*No two consecutive serialized-origin productions in the grammar
can be identical. In particular, if the user agent would generate
two consecutive serialized-origins, the user agent MUST NOT
generate the second one.

If the user agent issued an HTTP request current-request because the
user agent received 3xx Status Code response to another HTTP request
previous-request for URI previous-uri:

*The HTTP request current-request MUST include an Origin header.
*The value of the Origin header MUST be either:

-The string "null" (i.e., the byte sequence %x6E, %Xx75, %Xx6C,
%x6C) .

-The value of the Origin header in the previous-request. The
user agent MUST NOT choose this option if the ascii-
serialization of previous-uri is not identical to the last
serialized-origin in the Origin header of the previous
request.

-The value of the Origin header in previous header extended
with a space and the ascii-serialization of the origin of
previous-uri. The user agent MUST NOT choose this option if
the ascii-serialization of the origin of previous-uri is
"null".

The user agent SHOULD include the Origin header in an HTTP request if
the user agent issues the HTTP request on behalf of an origin (e.g.,
not by the user operating a trusted user interface surface). In this
case, the user agent SHOULD set the value of the Origin header to the
ascii-serialization of that origin.
NOTE: This behavior differs from the usual user agent behavior for
the HTTP Referer header, which user agents often suppress when an

origin with an "https" scheme issues a request for a URI with an
"http" scheme.

7. Privacy Considerations TOC

[TODO: Privacy considerations.]

8. Security Considerations TOC

[TODO: Security considerations.]

9. IANA Considerations TOC

[TODO: Register the Origin header.]

10. Implementation Considerations TOC

10.1. 1IDNA dependency and migration

IDNA2008 [RFC5890] (Klensin, J., “Internationalized Domain Names for
Applications (IDNA): Definitions and Document Framework,” August 2010.)
supersedes IDNA2003 [RFC3490] (Faltstrom, P., Hoffman, P., and A.
Costello, “Internationalizing Domain Names in Applications (IDNA),”
March 2003.) but is not backwards-compatible. For this reason, there
will be a transition period (possibly of a number of years). User
agents SHOULD implement IDNA2008 [RFC5890] (Klensin, J.,
“Internationalized Domain Names for Applications (IDNA): Definitions
and Document Framework,” August 2010.) and MAY implement [Unicode
Technical Standard #46 <http://unicode.org/reports/tr46/>] in order to
facilitate a smoother IDNA transition. If a user agent does not
implement IDNA2008, the user agent MUST implement IDNA2003 [RFC3490]
(Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing
Domain Names in Applications (IDNA),” March 2003.).

11. Normative References
TOC

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext
Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999.

[RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
“Internationalizing Domain Names in Applications (IDNA),”
RFC 3490, March 2003 (TXT).
See Section 10.1 (IDNA dependency and migration) for an
explanation why the normative reference to an obsoleted
specification is needed.

[RFC5234] Crocker, D., Ed. and P. Overell, “Augmented BNF for
Syntax Specifications: ABNF,” STD 68, RFC 5234,
January 2008.

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” RFC 5246, August 2008.

[RFC5890] Klensin, J., “Internationalized Domain Names for
Applications (IDNA): Definitions and Document Framework,”
RFC 5890, August 2010 (TXT).

[RFC5891] Klensin, J., “Internationalized Domain Names in
Applications (IDNA): Protocol,” RFC 5891, August 2010
(TXT).

T0C

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
ftp://ftp.isi.edu/in-notes/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc3490
http://www.rfc-editor.org/rfc/rfc3490.txt
mailto:dcrocker@bbiw.net
mailto:paul.overell@thus.net
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5890
http://www.rfc-editor.org/rfc/rfc5890.txt
http://tools.ietf.org/html/rfc5891
http://tools.ietf.org/html/rfc5891
http://www.rfc-editor.org/rfc/rfc5891.txt

Appendix A. Acknowledgements

Author's Address
TOC
Adam Barth
Google, Inc.
Email: ietf@adambarth.com
URI: http://www.adambarth.com/

mailto:ietf@adambarth.com
http://www.adambarth.com/

	The Web Origin Conceptdraft-ietf-websec-origin-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	2.1. Conformance Criteria
	2.2. Syntax Notation
	2.3. Terminology
	3. Origin
	4. Comparing Origins
	5. Serializing Origins
	5.1. Unicode Serialization of an Origin
	5.2. ASCII Serialization of an Origin
	6. The HTTP Origin header
	6.1. Syntax
	6.2. Semantics
	6.3. User Agent Requirements
	7. Privacy Considerations
	8. Security Considerations
	9. IANA Considerations
	10. Implementation Considerations
	10.1. IDNA dependency and migration
	11. Normative References
	Appendix A. Acknowledgements
	Author's Address

