
Workgroup: webtrans

Internet-Draft: draft-ietf-webtrans-http2-08

Published: 4 March 2024

Intended Status: Standards Track

Expires: 5 September 2024

Authors: A. Frindell

Facebook Inc.

E. Kinnear

Apple Inc.

T. Pauly

Apple Inc.

M. Thomson

Mozilla

V. Vasiliev

Google

G. Xie

Facebook Inc.

WebTransport over HTTP/2

Abstract

WebTransport defines a set of low-level communications features

designed for client-server interactions that are initiated by Web

clients. This document describes a protocol that can provide many of

the capabilities of WebTransport over HTTP/2. This protocol enables

the use of WebTransport when a UDP-based protocol is not available.

Note to Readers

Discussion of this draft takes place on the WebTransport mailing

list (webtransport@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=webtransport.

The repository tracking the issues for this draft can be found at

https://github.com/ietf-wg-webtrans/draft-webtransport-http2. The

web API draft corresponding to this document can be found at

https://w3c.github.io/webtransport/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 September 2024.

¶

¶

¶

¶

¶

¶

¶

mailto:webtransport@ietf.org
https://mailarchive.ietf.org/arch/search/?email_list=webtransport
https://mailarchive.ietf.org/arch/search/?email_list=webtransport
https://github.com/ietf-wg-webtrans/draft-webtransport-http2
https://w3c.github.io/webtransport/
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

3. Session Establishment

3.1. Establishing a Transport-Capable HTTP/2 Connection

3.2. Extended CONNECT in HTTP/2

3.3. Creating a New Session

3.4. Flow Control

3.4.1. Limiting the Number of Simultaneous Sessions

3.4.2. Limiting the Number of Streams Within a Session

3.4.3. Initial Flow Control Limits

3.4.4. Flow Control and Intermediaries

4. WebTransport Features

4.1. Transport Properties

4.2. WebTransport Streams

5. WebTransport Capsules

5.1. PADDING Capsule

5.2. WT_RESET_STREAM Capsule

5.3. WT_STOP_SENDING Capsule

5.4. WT_STREAM Capsule

5.5. WT_MAX_DATA Capsule

5.6. WT_MAX_STREAM_DATA Capsule

5.7. WT_MAX_STREAMS Capsule

5.8. WT_DATA_BLOCKED Capsule

5.9. WT_STREAM_DATA_BLOCKED Capsule

5.10. WT_STREAMS_BLOCKED Capsule

5.11. DATAGRAM Capsule

5.12. CLOSE_WEBTRANSPORT_SESSION Capsule

5.13. DRAIN_WEBTRANSPORT_SESSION Capsule

6. Examples

7. Session Termination

8. Security Considerations

¶

¶

https://trustee.ietf.org/license-info

9. IANA Considerations

9.1. HTTP/2 SETTINGS Parameter Registration

9.2. Capsule Types

9.3. HTTP Header Field Name

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Index

Authors' Addresses

1. Introduction

WebTransport [OVERVIEW] is designed to provide generic communication

capabilities to Web clients that use HTTP/3 [HTTP3]. The HTTP/3

WebTransport protocol [WEBTRANSPORT-H3] allows Web clients to use

QUIC [QUIC] features such as streams or datagrams [DATAGRAM].

However, there are some environments where QUIC cannot be deployed.

This document defines a protocol that provides all of the core

functions of WebTransport using HTTP semantics. This includes

unidirectional streams, bidirectional streams, and datagrams.

By relying only on generic HTTP semantics, this protocol might allow

deployment using any HTTP version. However, this document only

defines negotiation for HTTP/2 [HTTP2] as the current most common

TCP-based fallback to HTTP/3.

1.1. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document follows terminology defined in Section 1.2 of

[OVERVIEW]. Note that this document distinguishes between a

WebTransport server and an HTTP/2 server. An HTTP/2 server is the

server that terminates HTTP/2 connections; a WebTransport server is

an application that accepts WebTransport sessions, which can be

accessed using HTTP/2 and this protocol.

2. Protocol Overview

WebTransport servers are identified by an HTTPS URI as defined in

Section 4.2.2 of [HTTP].

When an HTTP/2 connection is established, both the client and server

have to send a SETTINGS_WEBTRANSPORT_MAX_SESSIONS setting with a

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-07#section-1.2
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-4.2.2

value greater than "0" to indicate that they both support

WebTransport over HTTP/2. For servers, the value of the setting is

the number of concurrent sessions the server is willing to receive.

Clients cannot receive incoming WebTransport sessions, so any value

greater than "0" sent by a client simply indicates support for

WebTransport over HTTP/2.

A client initiates a WebTransport session by sending an extended

CONNECT request [RFC8441]. If the server accepts the request, a

WebTransport session is established. The stream that carries the

CONNECT request is used to exchange bidirectional data for the

session. This stream will be referred to as a CONNECT stream. The

stream ID of a CONNECT stream, which will be referred to as a

Session ID, is used to uniquely identify a given WebTransport

session within the connection. WebTransport using HTTP/2 uses

extended CONNECT with the same webtransport HTTP Upgrade Token as

[WEBTRANSPORT-H3]. This Upgrade Token uses the Capsule Protocol as

defined in [HTTP-DATAGRAM].

After the session is established, endpoints exchange WebTransport

messages using the Capsule Protocol on the bidirectional CONNECT

stream, the "data stream" as defined in Section 3.1 of

[HTTP-DATAGRAM].

Within this stream, WebTransport streams and WebTransport datagrams

are multiplexed. In HTTP/2, WebTransport capsules are carried in

HTTP/2 DATA frames. Multiple independent WebTransport sessions can

share a connection if the HTTP version supports that, as HTTP/2

does.

WebTransport capsules closely mirror a subset of QUIC frames and

provide the essential WebTransport features. Within a WebTransport

session, endpoints can

create and use bidirectional or unidirectional streams with no

additional round trips using the WT_STREAM capsule

Stream creation and data flow on streams uses flow control

mechanisms modeled on those in QUIC. Flow control is managed using

the WebTransport capsules:

WT_MAX_DATA, WT_MAX_STREAM_DATA, WT_MAX_STREAMS, WT_DATA_BLOCKED, WT_STREAM_DATA_BLOCKED,

and WT_STREAMS_BLOCKED. Flow control for the CONNECT stream as a

whole, as provided by the HTTP version in use, applies in addition

to any WebTransport-session-level flow control.

WebTransport streams can be aborted using a WT_RESET_STREAM capsule

and a receiver can request that a sender stop sending with a

WT_STOP_SENDING capsule.

¶

¶

¶

¶

¶

*

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.1

A WebTransport session is terminated when the CONNECT stream that

created it is closed. This implicitly closes all WebTransport

streams that were multiplexed over that CONNECT stream.

3. Session Establishment

3.1. Establishing a Transport-Capable HTTP/2 Connection

In order to indicate support for WebTransport, both the client and

the server MUST send a SETTINGS_WEBTRANSPORT_MAX_SESSIONS value

greater than "0" in their SETTINGS frame. Endpoints MUST NOT use any

WebTransport-related functionality unless the parameter has been

negotiated.

3.2. Extended CONNECT in HTTP/2

[RFC8441] defines an extended CONNECT method in Section 4, enabled

by the SETTINGS_ENABLE_CONNECT_PROTOCOL parameter. An endpoint needs

to send both SETTINGS_ENABLE_CONNECT_PROTOCOL and

SETTINGS_WEBTRANSPORT_MAX_SESSIONS for WebTransport to be enabled.

3.3. Creating a New Session

As WebTransport sessions are established over HTTP, they are

identified using the https URI scheme [RFC7230].

In order to create a new WebTransport session, a client can send an

HTTP CONNECT request. The :protocol pseudo-header field ([RFC8441])

MUST be set to webtransport (Section 7.1 of [WEBTRANSPORT-H3]).

The :scheme field MUST be https. Both the :authority and the :path

value MUST be set; those fields indicate the desired WebTransport

server. In a Web context, the request MUST include an Origin header

field [ORIGIN] that includes the origin of the site that requested

the creation of the session.

Upon receiving an extended CONNECT request with a :protocol field

set to webtransport, the HTTP server checks if the identified

resource supports WebTransport sessions. If the resource does not,

the server SHOULD reply with status code 406 (Section 15.5.7 of

[RFC9110]). If it does, it MAY accept the session by replying with a

2xx series status code, as defined in Section 15.3 of [SEMANTICS].

The WebTransport server MUST verify the Origin header to ensure that

the specified origin is allowed to access the server in question.

A WebTransport session is established when the server sends a 2xx

response. A server generates that response from the request header,

not from the contents of the request. To enable clients to resend

data when attempting to re-establish a session that was rejected by

a server, a server MUST NOT process any capsules on the request

stream unless it accepts the WebTransport session.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-08#section-7.1
https://rfc-editor.org/rfc/rfc9110#section-15.5.7
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19#section-15.3

A client MAY optimistically send any WebTransport capsules

associated with a CONNECT request, without waiting for a response,

to the extent allowed by flow control. This can reduce latency for

data sent by a client at the start of a WebTransport session. For

example, a client might choose to send datagrams or flow control

updates before receiving any response from the server.

3.4. Flow Control

Flow control governs the amount of resources that can be consumed or

data that can be sent. WebTransport over HTTP/2 allows a server to

limit the number of sessions that a client can create on a single

connection; see Section 3.4.1.

For data, there are five applicable levels of flow control for data

that is sent or received using WebTransport over HTTP/2:

TCP flow control.

HTTP/2 connection flow control, which governs the total amount

of data in DATA frames for all HTTP/2 streams.

HTTP/2 stream flow control, which limits the data on a single

HTTP/2 stream. For a WebTransport session, this includes all

capsules, including those that are exempt from WebTransport

session-level flow control.

WebTransport session-level flow control, which limits the total

amount of stream data that can be sent or received on streams

within the WebTransport session. Note that this does not limit

other types of capsules within a WebTransport session, such as

control messages or datagrams.

WebTransport stream flow control, which limits data on

individual streams within a session.

TCP and HTTP/2 define the first three levels of flow control. This

document defines the final two.

3.4.1. Limiting the Number of Simultaneous Sessions

This document defines a SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter

that allows the server to limit the maximum number of concurrent

WebTransport sessions on a single HTTP/2 connection. The client MUST

NOT open more sessions than indicated in the server SETTINGS

parameters. The server MUST NOT close the connection if the client

opens sessions exceeding this limit, as the client and the server do

not have a consistent view of how many sessions are open due to the

asynchronous nature of the protocol; instead, it MUST reset all of

¶

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

the CONNECT streams it is not willing to process with the

REFUSED_STREAM error code (Section 8.7 of [HTTP2]).

Just like other HTTP requests, WebTransport sessions, and data sent

on those sessions, are counted against flow control limits. Servers

that wish to limit the rate of incoming requests on any particular

session have multiple mechanisms:

The REFUSED_STREAM error code defined in Section 8.7 of [HTTP2]

indicates to the receiving HTTP/2 stack that the request was not

processed in any way.

HTTP status code 429 indicates that the request was rejected due

to rate limiting [RFC6585]. Unlike the previous method, this

signal is directly propagated to the application.

An endpoint that wishes to reduce the value of

SETTINGS_WEBTRANSPORT_MAX_SESSIONS to a value that is below the

current number of open sessions can either close sessions that

exceed the new value or allow those sessions to complete. Endpoints

MUST NOT reduce the value of SETTINGS_WEBTRANSPORT_MAX_SESSIONS to

"0" after previously advertising a non-zero value.

3.4.2. Limiting the Number of Streams Within a Session

This document defines a WT_MAX_STREAMS capsule (Section 5.7) that

allows each endpoint to limit the number of streams its peer is

permitted to open as part of a WebTransport session. There is a

separate limit for bidirectional streams and for unidirectional

streams. Note that, unlike WebTransport over HTTP/3

[WEBTRANSPORT-H3], because the entire WebTransport session is

contained within HTTP/2 DATA frames on a single HTTP/2 stream, this

limit is the only mechanism for an endpoint to limit the number of

WebTransport streams that its peer can open on a session.

3.4.3. Initial Flow Control Limits

To allow stream data to be exchanged in the same flight as the

extended CONNECT request that establishes a WebTransport session,

initial flow control limits can be exchanged via HTTP/2 SETTINGS

(Section 3.4.3.1). Initial values for the flow control limits can

also be exchanged via the WebTransport-Init header field on the

extended CONNECT request (Section 3.4.3.2).

The limits communicated via HTTP/2 SETTINGS apply to all

WebTransport sessions opened on that HTTP/2 connection. Limits

communicated via the WebTransport-Init header field apply only to

the WebTransport session established by the extended CONNECT request

carrying that field.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9113#section-8.7
https://rfc-editor.org/rfc/rfc9113#section-8.7

u:

bl:

br:

If both the SETTINGS and the header field are present when a

WebTransport session is established, the endpoint MUST use the

greater of the two values for each corresponding initial flow

control value. Endpoints sending the SETTINGS and also including the

header field SHOULD ensure that the header field values are greater

than or equal to the values provided in the SETTINGS.

3.4.3.1. Flow Control SETTINGS

Initial flow control limits can be exchanged via HTTP/2 SETTINGS

(Section 9.1) by providing non-zero values for

WT_MAX_DATA via SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA

WT_MAX_STREAM_DATA

via SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI

and SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI

WT_MAX_STREAMS via SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI

and SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI

3.4.3.2. Flow Control Header Field

The WebTransport-Init HTTP header field can be used to communicate

the initial values of the flow control windows, similar to how QUIC

uses transport parameters. The WebTransport-Init is a Dictionary

Structured Field (Section 3.2 of [RFC8941]). If any of the fields

cannot be parsed correctly or do not have the correct type, the peer

MUST reset the CONNECT stream. The following keys are defined for

the WebTransport-Init header field:

The initial flow control limit for unidirectional streams opened

by the recipient of this header field. MUST be an Integer.

The initial flow control limit for the bidirectional streams

opened by the sender of this header field. MUST be an Integer.

The initial flow control limit for the bidirectional streams

opened by the recipient of this header field. MUST be an Integer.

3.4.4. Flow Control and Intermediaries

WebTransport over HTTP/2 uses several capsules for flow control, and

all of these capsules define special intermediary handling as

described in Section 3.2 of [HTTP-DATAGRAM]. These capsules,

referred to as the "flow control capsules" are

WT_MAX_DATA, WT_MAX_STREAM_DATA, WT_MAX_STREAMS, WT_DATA_BLOCKED, WT_STREAM_DATA_BLOCKED,

and WT_STREAMS_BLOCKED.

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8941#section-3.2
https://rfc-editor.org/rfc/rfc9297#section-3.2

Because flow control in WebTransport is hop-by-hop and does not

provide an end-to-end signal, intermediaries MUST consume flow

control signals and express their own flow control limits to the

next hop. The intermediary can send these signals via HTTP/3 flow

control messages, HTTP/2 flow control messages, or as WebTransport

flow control capsules, where appropriate. Intermediaries are

responsible for storing any data for which they advertise flow

control credit if that data cannot be immediately forwarded to the

next hop.

In practice, an intermediary that translates flow control signals

between similar WebTransport protocols, such as between two HTTP/2

connections, can often simply reexpress the same limits received on

one connection directly on the other connection.

An intermediary that does not want to be responsible for storing

data that cannot be immediately sent on its translated connection

would ensure that it does not advertise a higher flow control limit

on one connection than the corresponding limit on the translated

connection.

4. WebTransport Features

WebTransport over TCP-based HTTP semantics provides the following

features described in [OVERVIEW]: unidirectional streams,

bidirectional streams, and datagrams, initiated by either endpoint.

WebTransport streams and datagrams that belong to different

WebTransport sessions are identified by the CONNECT stream on which

they are transmitted, with one WebTransport session consuming one

CONNECT stream.

4.1. Transport Properties

The WebTransport framework [OVERVIEW] defines a set of optional

transport properties that clients can use to determine the presence

of features which might allow additional optimizations beyond the

common set of properties available via all WebTransport protocols.

Because WebTransport over TCP-based HTTP semantics relies on the

underlying protocols to provide in order and reliable delivery,

there are some notable differences from the way in which QUIC

handles application data. For example, endpoints send stream data in

order. As there is no ordering mechanism available for the receiver

to reassemble incoming data, receivers assume that all data arriving

in WT_STREAM capsules is contiguous and in order.

Below are details about support in WebTransport over HTTP/2 for the

properties defined by the WebTransport framework.

¶

¶

¶

¶

¶

¶

¶

¶

Stream Independence:

Partial Reliability:

Pooling Support:

Connection Mobility:

WebTransport over HTTP/2 does not support

stream independence, as HTTP/2 inherently has head-of-line

blocking.

WebTransport over HTTP/2 does not support

partial reliability, as HTTP/2 retransmits any lost data. This

means that any datagrams sent via WebTransport over HTTP/2 will

be retransmitted regardless of the preference of the application.

The receiver is permitted to drop them, however, if it is unable

to buffer them.

WebTransport over HTTP/2 supports pooling, as

multiple transports using WebTransport over HTTP/2 may share the

same underlying HTTP/2 connection and therefore share a

congestion controller and other transport context. Note that

WebTransport streams over HTTP/2 are contained within a single

HTTP/2 stream and do not compete with other pooled WebTransport

sessions for per-stream resources.

WebTransport over HTTP/2 does not support

connection mobility, unless an underlying transport protocol that

supports multipath or migration, such as MPTCP [MPTCP], is used

underneath HTTP/2 and TLS. Without such support, WebTransport

over HTTP/2 connections cannot survive network transitions.

4.2. WebTransport Streams

WebTransport streams have identifiers and states that mirror the

identifiers ((Section 2.1 of [RFC9000])) and states (Section 3 of

[RFC9000]) of QUIC streams as closely as possible to aid in ease of

implementation.

WebTransport streams are identified by a numeric value, or stream

ID. Stream IDs are only meaningful within the WebTransport session

in which they were created. They share the same semantics as QUIC

stream IDs, with client initiated streams having even-numbered

stream IDs and server-initiated streams having odd-numbered stream

IDs. Similarly, they can be bidirectional or unidirectional,

indicated by the second least significant bit of the stream ID.

Because WebTransport does not provide an acknowledgement mechanism

for WebTransport capsules, it relies on the underlying transport's

in order delivery to inform stream state transitions. Wherever QUIC

relies on receiving an ack for a packet to transition between stream

states, WebTransport performs that transition immediately.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-2.1
https://rfc-editor.org/rfc/rfc9000#section-3

5. WebTransport Capsules

WebTransport capsules mirror their QUIC frame counterparts as

closely as possible to enable maximal reuse of any applicable QUIC

infrastructure by implementors.

WebTransport capsules use the Capsule Protocol defined in

Section 3.2 of [HTTP-DATAGRAM].

5.1. PADDING Capsule

A PADDING capsule is an HTTP capsule [HTTP-DATAGRAM] of

type=0x190B4D38 and has no semantic value. PADDING capsules can be

used to introduce additional data between other HTTP datagrams and

can also be used to provide protection against traffic analysis or

for other reasons.

Note that, when used with WebTransport over HTTP/2, the PADDING

capsule exists alongside the ability to pad HTTP/2 frames

(Section 10.7 of [RFC9113]). HTTP/2 padding is hop-by-hop and can be

modified by intermediaries, while the PADDING capsule traverses

intermedaries. The PADDING capsule is also constrained to be no

smaller than the capsule overhead itself.

Figure 1: PADDING Capsule Format

The Padding field MUST be set to an all-zero sequence of bytes of

any length as specified by the Length field.

5.2. WT_RESET_STREAM Capsule

A WT_RESET_STREAM capsule is an HTTP capsule [HTTP-DATAGRAM] of

type=0x190B4D39 and allows either endpoint to abruptly terminate the

sending part of a WebTransport stream.

After sending a WT_RESET_STREAM capsule, an endpoint ceases

transmission of WT_STREAM capsules on the identified stream. A

receiver of a WT_RESET_STREAM capsule can discard any data that it

already received on that stream.

¶

¶

¶

¶

PADDING Capsule {

 Type (i) = 0x190B4D38,

 Length (i),

 Padding (..),

}

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.2
https://rfc-editor.org/rfc/rfc9113#section-10.7

Stream ID:

Application Protocol Error Code:

Stream ID:

Application Protocol Error Code:

Figure 2: WT_RESET_STREAM Capsule Format

The WT_RESET_STREAM capsule defines the following fields:

A variable-length integer encoding of the WebTransport

stream ID of the stream being terminated.

A variable-length integer

containing the application protocol error code that indicates why

the stream is being closed.

Unlike the equivalent QUIC frame, this capsule does not include a

Final Size field. In-order delivery of WT_STREAM capsules ensures

that the amount of session-level flow control consumed by a stream

is always known by both endpoints.

5.3. WT_STOP_SENDING Capsule

An HTTP capsule [HTTP-DATAGRAM] called WT_STOP_SENDING

(type=0x190B4D3A) is introduced to communicate that incoming data is

being discarded on receipt per application request. WT_STOP_SENDING

requests that a peer cease transmission on a WebTransport stream.

Figure 3: WT_STOP_SENDING Capsule Format

The WT_STOP_SENDING capsule defines the following fields:

A variable-length integer carrying the WebTransport

stream ID of the stream being ignored.

A variable-length integer

containing the application-specified reason the sender is

ignoring the stream.

WT_RESET_STREAM Capsule {

 Type (i) = 0x190B4D39,

 Length (i),

 Stream ID (i),

 Application Protocol Error Code (i),

}

¶

¶

¶

¶

¶

WT_STOP_SENDING Capsule {

 Type (i) = 0x190B4D3A,

 Length (i),

 Stream ID (i),

 Application Protocol Error Code (i),

}

¶

¶

¶

Stream ID:

Stream Data:

Maximum Data:

5.4. WT_STREAM Capsule

WT_STREAM capsules implicitly create a WebTransport stream and carry

stream data.

The Type field in the WT_STREAM capsule is either 0x190B4D3B or

0x190B4D3C. The least significant bit in the capsule type is the FIN

bit (0x01), indicating when set that the capsule marks the end of

the stream in one direction. Stream data consists of any number of

0x190B4D3B capsules followed by a terminal 0x190B4D3C capsule.

Figure 4: WT_STREAM Capsule Format

WT_STREAM capsules contain the following fields:

The stream ID for the stream.

Zero or more bytes of data for the stream. Empty

WT_STREAM capsules MUST NOT be used unless they open or close a

stream; an endpoint MAY treat an empty WT_STREAM capsule that

neither starts nor ends a stream as a session error.

5.5. WT_MAX_DATA Capsule

An HTTP capsule [HTTP-DATAGRAM] called WT_MAX_DATA (type=0x190B4D3D)

is introduced to inform the peer of the maximum amount of data that

can be sent on the WebTransport session as a whole.

Figure 5: WT_MAX_DATA Capsule Format

WT_MAX_DATA capsules contain the following field:

A variable-length integer indicating the maximum

amount of data that can be sent on the entire connection, in

units of bytes.

¶

¶

WT_STREAM Capsule {

 Type (i) = 0x190B4D3B..0x190B4D3C,

 Length (i),

 Stream ID (i),

 Stream Data (..),

}

¶

¶

¶

¶

WT_MAX_DATA Capsule {

 Type (i) = 0x190B4D3D,

 Length (i),

 Maximum Data (i),

}

¶

¶

Stream ID:

Maximum Stream Data:

All data sent in WT_STREAM capsules counts toward this limit. The

sum of the lengths of Stream Data fields in WT_STREAM capsules MUST

NOT exceed the value advertised by a receiver.

The WT_MAX_DATA capsule defines special intermediary handling, as

described in Section 3.2 of [HTTP-DATAGRAM]. Intermedaries MUST

consume WT_MAX_DATA capsules for flow control purposes and MUST

generate and send appropriate flow control signals for their limits;

see Section 3.4.4.

The initial value for this limit MAY be communicated by sending a

non-zero value for SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA.

5.6. WT_MAX_STREAM_DATA Capsule

An HTTP capsule [HTTP-DATAGRAM] called WT_MAX_STREAM_DATA

(type=0x190B4D3E) is introduced to inform a peer of the maximum

amount of data that can be sent on a WebTransport stream.

Figure 6: WT_MAX_STREAM_DATA Capsule Format

WT_MAX_STREAM_DATA capsules contain the following fields:

The stream ID of the affected WebTransport stream,

encoded as a variable-length integer.

A variable-length integer indicating the

maximum amount of data that can be sent on the identified stream,

in units of bytes.

All data sent in WT_STREAM capsules for the identified stream counts

toward this limit. The sum of the lengths of Stream Data fields in

WT_STREAM capsules on the identified stream MUST NOT exceed the

value advertised by a receiver.

The WT_MAX_STREAM_DATA capsule defines special intermediary

handling, as described in Section 3.2 of [HTTP-DATAGRAM].

Intermedaries MUST consume WT_MAX_STREAM_DATA capsules for flow

control purposes and MUST generate and send appropriate flow control

signals for their limits; see Section 3.4.4.

¶

¶

¶

¶

WT_MAX_STREAM_DATA Capsule {

 Type (i) = 0x190B4D3E,

 Length (i),

 Stream ID (i),

 Maximum Stream Data (i),

}

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.2
https://rfc-editor.org/rfc/rfc9297#section-3.2

Maximum Streams:

Initial values for this limit for unidirectional and bidirectional

streams MAY be communicated by sending non-zero values for

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI

and SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI respectively.

5.7. WT_MAX_STREAMS Capsule

An HTTP capsule [HTTP-DATAGRAM] called WT_MAX_STREAMS is introduced

to inform the peer of the cumulative number of streams of a given

type it is permitted to open. A WT_MAX_STREAMS capsule with a type

of 0x190B4D3F applies to bidirectional streams, and a WT_MAX_STREAMS

capsule with a type of 0x190B4D40 applies to unidirectional streams.

Note that, because Maximum Streams is a cumulative value

representing the total allowed number of streams, including

previously closed streams, endpoints repeatedly send new

WT_MAX_STREAMS capsules with increasing Maximum Streams values as

streams are opened.

Figure 7: WT_MAX_STREAMS Capsule Format

WT_MAX_STREAMS capsules contain the following field:

A count of the cumulative number of streams of the

corresponding type that can be opened over the lifetime of the

connection. This value cannot exceed 2 , as it is not possible to

encode stream IDs larger than 2 -1.

An endpoint MUST NOT open more streams than permitted by the current

stream limit set by its peer. For instance, a server that receives a

unidirectional stream limit of 3 is permitted to open streams 3, 7,

and 11, but not stream 15.

Note that this limit includes streams that have been closed as well

as those that are open.

The WT_MAX_STREAMS capsule defines special intermediary handling, as

described in Section 3.2 of [HTTP-DATAGRAM]. Intermedaries MUST

consume WT_MAX_STREAMS capsules for flow control purposes and MUST

generate and send appropriate flow control signals for their limits.

¶

¶

¶

WT_MAX_STREAMS Capsule {

 Type (i) = 0x190B4D3F..0x190B4D40,

 Length (i),

 Maximum Streams (i),

}

¶

60

62 ¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.2

Maximum Data:

Initial values for these limits MAY be communicated by sending non-

zero values for SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI

and SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI.

5.8. WT_DATA_BLOCKED Capsule

A sender SHOULD send a WT_DATA_BLOCKED capsule (type=0x190B4D41)

when it wishes to send data but is unable to do so due to

WebTransport session-level flow control. WT_DATA_BLOCKED capsules

can be used as input to tuning of flow control algorithms.

Figure 8: WT_DATA_BLOCKED Capsule Format

WT_DATA_BLOCKED capsules contain the following field:

A variable-length integer indicating the session-

level limit at which blocking occurred.

The WT_DATA_BLOCKED capsule defines special intermediary handling,

as described in Section 3.2 of [HTTP-DATAGRAM]. Intermedaries MUST

consume WT_DATA_BLOCKED capsules for flow control purposes and MUST

generate and send appropriate flow control signals for their limits;

see Section 3.4.4.

5.9. WT_STREAM_DATA_BLOCKED Capsule

A sender SHOULD send a WT_STREAM_DATA_BLOCKED capsule

(type=0x190B4D42) when it wishes to send data but is unable to do so

due to stream-level flow control. This capsule is analogous to

WT_DATA_BLOCKED.

Figure 9: WT_STREAM_DATA_BLOCKED Capsule Format

WT_STREAM_DATA_BLOCKED capsules contain the following fields:

¶

¶

WT_DATA_BLOCKED Capsule {

 Type (i) = 0x190B4D41,

 Length (i),

 Maximum Data (i),

}

¶

¶

¶

¶

WT_STREAM_DATA_BLOCKED Capsule {

 Type (i) = 0x190B4D42,

 Length (i),

 Stream ID (i),

 Maximum Stream Data (i),

}

¶

https://rfc-editor.org/rfc/rfc9297#section-3.2

Stream ID:

Maximum Stream Data:

Maximum Streams:

A variable-length integer indicating the WebTransport

stream that is blocked due to flow control.

A variable-length integer indicating the

offset of the stream at which the blocking occurred.

The WT_STREAM_DATA_BLOCKED capsule defines special intermediary

handling, as described in Section 3.2 of [HTTP-DATAGRAM].

Intermedaries MUST consume WT_STREAM_DATA_BLOCKED capsules for flow

control purposes and MUST generate and send appropriate flow control

signals for their limits; see Section 3.4.4.

5.10. WT_STREAMS_BLOCKED Capsule

A sender SHOULD send a WT_STREAMS_BLOCKED capsule (type=0x190B4D43

or 0x190B4D44) when it wishes to open a stream but is unable to do

so due to the maximum stream limit set by its peer. A

WT_STREAMS_BLOCKED capsule of type 0x190B4D43 is used to indicate

reaching the bidirectional stream limit, and a STREAMS_BLOCKED

capsule of type 0x190B4D44 is used to indicate reaching the

unidirectional stream limit.

A WT_STREAMS_BLOCKED capsule does not open the stream, but informs

the peer that a new stream was needed and the stream limit prevented

the creation of the stream.

Figure 10: WT_STREAMS_BLOCKED Capsule Format

WT_STREAMS_BLOCKED capsules contain the following field:

A variable-length integer indicating the maximum

number of streams allowed at the time the capsule was sent. This

value cannot exceed 2 , as it is not possible to encode stream

IDs larger than 2 -1.

The WT_STREAMS_BLOCKED capsule defines special intermediary

handling, as described in Section 3.2 of [HTTP-DATAGRAM].

Intermedaries MUST consume WT_STREAMS_BLOCKED capsules for flow

control purposes and MUST generate and send appropriate flow control

signals for their limits.

¶

¶

¶

¶

¶

WT_STREAMS_BLOCKED Capsule {

 Type (i) = 0x190B4D43..0x190B4D44,

 Length (i),

 Maximum Streams (i),

}

¶

60

62 ¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.2
https://rfc-editor.org/rfc/rfc9297#section-3.2

HTTP Datagram Payload:

5.11. DATAGRAM Capsule

WebTransport over HTTP/2 uses the DATAGRAM capsule defined in

Section 3.5 of [HTTP-DATAGRAM] to carry datagram traffic.

Figure 11: DATAGRAM Capsule Format

When used in WebTransport over HTTP/2, DATAGRAM capsules contain the

following fields:

The content of the datagram to be delivered.

The data in DATAGRAM capsules is not subject to flow control. The

receiver MAY discard this data if it does not have sufficient space

to buffer it.

An intermediary could forward the data in a DATAGRAM capsule over

another protocol, such as WebTransport over HTTP/3. In QUIC, a

datagram frame can span at most one packet. Because of that, the

applications have to know the maximum size of the datagram they can

send. However, when proxying the datagrams, the hop-by-hop MTUs can

vary.

Section 3.5 of [HTTP-DATAGRAM] indicates that intermediaries that

forward DATAGRAM capsules where QUIC datagrams [DATAGRAM] are

available forward the contents of the capsule as native QUIC

datagrams, rather than as HTTP datagrams in a DATAGRAM capsule.

Similarly, when forwarding DATAGRAM capsules used as part of a

WebTransport over HTTP/2 session on a WebTransport session that

natively supports QUIC datagrams, such as WebTransport over HTTP/3

[WEBTRANSPORT-H3], intermediaries follow the requirements in

[WEBTRANSPORT-H3] to use native QUIC datagrams.

5.12. CLOSE_WEBTRANSPORT_SESSION Capsule

WebTransport over HTTP/2 uses the CLOSE_WEBTRANSPORT_SESSION capsule

defined in Section 5 of [WEBTRANSPORT-H3] to terminate a

WebTransport session with an application error code and message.

WebTransport sessions can be terminated by optionally sending a

CLOSE_WEBTRANSPORT_SESSION capsule and then by closing the HTTP/2

stream associated with the session (see Section 7).

¶

DATAGRAM Capsule {

 Type (i) = 0x00,

 Length (i),

 HTTP Datagram Payload (..),

}

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-3.5
https://rfc-editor.org/rfc/rfc9297#section-3.5
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-08#section-5

Application Error Code:

Application Error Message:

Figure 12: CLOSE_WEBTRANSPORT_SESSION Capsule Format

When used in WebTransport over HTTP/2, CLOSE_WEBTRANSPORT_SESSION

capsules contain the following fields:

A 32-bit error code provided by the

application closing the connection.

A UTF-8 encoded error message string

provided by the application closing the connection. The message

takes up the remainder of the capsule, and its length MUST NOT

exceed 1024 bytes.

An endpoint that sends a CLOSE_WEBTRANSPORT_SESSION capsule MUST set

the FIN bit on the frame carrying the capsule. The recipient MUST

close the stream upon receipt of the capsule.

Cleanly terminating a WebTransport session without a

CLOSE_WEBTRANSPORT_SESSION capsule is semantically equivalent to

terminating it with a CLOSE_WEBTRANSPORT_SESSION capsule that has an

error code of 0 and an empty error string.

5.13. DRAIN_WEBTRANSPORT_SESSION Capsule

HTTP/2 uses GOAWAY frames (Section 6.8 of [HTTP2]) to allow an

endpoint to gracefully stop accepting new streams while still

finishing processing of previously established streams.

WebTransport over HTTP/2 uses the DRAIN_WEBTRANSPORT_SESSION capsule

defined in Section 4.6 of [WEBTRANSPORT-H3] to gracefully shut down

a WebTransport session.

Figure 13: DRAIN_WEBTRANSPORT_SESSION Capsule Format

After sending or receiving either a DRAIN_WEBTRANSPORT_SESSION

capsule or HTTP/2 GOAWAY frame, an endpoint MAY continue using the

session and MAY open new WebTransport streams. The signal is

CLOSE_WEBTRANSPORT_SESSION Capsule {

 Type (i) = CLOSE_WEBTRANSPORT_SESSION,

 Length (i),

 Application Error Code (32),

 Application Error Message (..8192),

}

¶

¶

¶

¶

¶

¶

¶

DRAIN_WEBTRANSPORT_SESSION Capsule {

 Type (i) = DRAIN_WEBTRANSPORT_SESSION,

 Length (i) = 0

}

https://rfc-editor.org/rfc/rfc9113#section-6.8
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-08#section-4.6

intended for the application using WebTransport, which is expected

to attempt to gracefully terminate the session as soon as possible.

6. Examples

An example of negotiating a WebTransport Stream on an HTTP/2

connection follows. This example is intended to closely follow the

example in Section 5.1 of [RFC8441] to help illustrate the

differences defined in this document.

An example of the server initiating a WebTransport Stream follows.

The only difference here is the endpoint that sends the first

WT_STREAM capsule.

¶

¶

[[From Client]] [[From Server]]

SETTINGS

SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 1

 SETTINGS

 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

 SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 100

HEADERS + END_HEADERS

Stream ID = 3

:method = CONNECT

:protocol = webtransport

:scheme = https

:path = /

:authority = server.example.com

origin: server.example.com

 HEADERS + END_HEADERS

 Stream ID = 3

 :status = 200

WT_STREAM

Stream ID = 0

WebTransport Data

 WT_STREAM + FIN

 Stream ID = 0

 WebTransport Data

WT_STREAM + FIN

Stream ID = 0

WebTransport Data

¶

¶

https://rfc-editor.org/rfc/rfc8441#section-5.1

7. Session Termination

An WebTransport session over HTTP/2 is terminated when either

endpoint closes the stream associated with the CONNECT request that

initiated the session. Upon learning about the session being

terminated, the endpoint MUST stop sending new datagrams and reset

all of the streams associated with the session.

Prior to closing the stream associated with the CONNECT request,

either endpoint can send a CLOSE_WEBTRANSPORT_SESSION capsule with

an application error code and message to convey additional

information about the reasons for the closure of the session.

[[From Client]] [[From Server]]

SETTINGS

SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 1

 SETTINGS

 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

 SETTINGS_WEBTRANSPORT_MAX_SESSIONS = 100

HEADERS + END_HEADERS

Stream ID = 3

:method = CONNECT

:protocol = webtransport

:scheme = https

:path = /

:authority = server.example.com

origin: server.example.com

 HEADERS + END_HEADERS

 Stream ID = 3

 :status = 200

 WT_STREAM

 Stream ID = 1

 WebTransport Data

WT_STREAM + FIN

Stream ID = 1

WebTransport Data

 WT_STREAM + FIN

 Stream ID = 1

 WebTransport Data

¶

¶

¶

Setting Name:

Value:

Default:

Specification:

8. Security Considerations

WebTransport over HTTP/2 satisfies all of the security requirements

imposed by [OVERVIEW] on WebTransport protocols, thus providing a

secure framework for client-server communication in cases when the

client is potentially untrusted.

WebTransport over HTTP/2 requires explicit opt-in through the use of

HTTP SETTINGS; this avoids potential protocol confusion attacks by

ensuring the HTTP/2 server explicitly supports it. It also requires

the use of the Origin header, providing the server with the ability

to deny access to Web-based clients that do not originate from a

trusted origin.

Just like HTTP traffic going over HTTP/2, WebTransport pools traffic

to different origins within a single connection. Different origins

imply different trust domains, meaning that the implementations have

to treat each transport as potentially hostile towards others on the

same connection. One potential attack is a resource exhaustion

attack: since all of the transports share both congestion control

and flow control context, a single client aggressively using up

those resources can cause other transports to stall. The user agent

thus SHOULD implement a fairness scheme that ensures that each

transport within connection gets a reasonable share of controlled

resources; this applies both to sending data and to opening new

streams.

9. IANA Considerations

9.1. HTTP/2 SETTINGS Parameter Registration

The following entries are added to the "HTTP/2 Settings" registry

established by [RFC7540]:

The SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter indicates that the

specified HTTP/2 connection is WebTransport-capable and the number

of concurrent sessions an endpoint is willing to receive. The

default value for the SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter

is "0", meaning that the endpoint is not willing to receive any

WebTransport sessions.

WEBTRANSPORT_MAX_SESSIONS

0x2b60

0

This document

¶

¶

¶

¶

¶

¶

¶

¶

¶

Setting Name:

Value:

Default:

Specification:

Setting Name:

Value:

Default:

Specification:

The SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA parameter indicates the

initial value for the session data limit, otherwise communicated by

the WT_MAX_DATA capsule (see Section 5.5). The default value for

the SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA parameter is "0",

indicating that the endpoint needs to send a WT_MAX_DATA capsule

within each session before its peer is allowed to send any stream

data within that session.

Note that this limit applies to all WebTransport sessions that use

the HTTP/2 connection on which this SETTING is sent.

SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA

0x2b61

0

This document

The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI parameter

indicates the initial value for the stream data limit for incoming

unidirectional streams, otherwise communicated by the

WT_MAX_STREAM_DATA capsule (see Section 5.6). The default value for

the SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI parameter is

"0", indicating that the endpoint needs to send WT_MAX_STREAM_DATA

capsules for each stream within each individual WebTransport session

before its peer is allowed to send any stream data on those streams.

Note that this limit applies to all WebTransport streams on all

sessions that use the HTTP/2 connection on which this SETTING is

sent.

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI

0x2b62

0

This document

The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI parameter

indicates the initial value for the stream data limit for incoming

data on bidirectional streams, otherwise communicated by the

WT_MAX_STREAM_DATA capsule (see Section 5.6). The default value for

the SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI parameter is

"0", indicating that the endpoint needs to send WT_MAX_STREAM_DATA

capsules for each stream within each individual WebTransport session

before its peer is allowed to send any stream data on those streams.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Setting Name:

Value:

Default:

Specification:

Setting Name:

Value:

Default:

Specification:

Setting Name:

Value:

Default:

Note that this limit applies to all WebTransport streams on all

sessions that use the HTTP/2 connection on which this SETTING is

sent.

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI

0x2b63

0

This document

The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI parameter

indicates the initial value for the unidirectional max stream limit,

otherwise communicated by the WT_MAX_STREAMS capsule (see

Section 5.7). The default value for

the SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI parameter is "0",

indicating that the endpoint needs to send WT_MAX_STREAMS capsules

on each individual WebTransport session before its peer is allowed

to create any unidirectional streams within that session.

Note that this limit applies to all WebTransport sessions that use

the HTTP/2 connection on which this SETTING is sent.

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI

0x2b64

0

This document

The SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI parameter

indicates the initial value for the bidirectional max stream limit,

otherwise communicated by the WT_MAX_STREAMS capsule (see

Section 5.7). The default value for

the SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI parameter is "0",

indicating that the endpoint needs to send WT_MAX_STREAMS capsules

on each individual WebTransport session before its peer is allowed

to create any bidirectional streams within that session.

Note that this limit applies to all WebTransport sessions that use

the HTTP/2 connection on which this SETTING is sent.

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI

0x2b65

0

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Specification:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

This document

9.2. Capsule Types

The following entries are added to the "HTTP Capsule Types" registry

established by [HTTP-DATAGRAM]:

The PADDING capsule.

0x190B4D38

PADDING

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_RESET_STREAM capsule.

0x190B4D39

WT_RESET_STREAM

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_STOP_SENDING capsule.

0x190B4D3A

WT_STOP_SENDING

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_STREAM capsule.

0x190B4D3B..0x190B4D3C

WT_STREAM

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_MAX_DATA capsule.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:webtransport@ietf.org
mailto:webtransport@ietf.org
mailto:webtransport@ietf.org
mailto:webtransport@ietf.org

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

0x190B4D3D

WT_MAX_DATA

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_MAX_STREAM_DATA capsule.

0x190B4D3E

WT_MAX_STREAM_DATA

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_MAX_STREAMS capsule.

0x190B4D3F..0x190B4D40

WT_MAX_STREAMS

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_DATA_BLOCKED capsule.

0x190B4D41

WT_DATA_BLOCKED

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_STREAM_DATA_BLOCKED capsule.

0x190B4D42

WT_STREAM_DATA_BLOCKED

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

The WT_STREAMS_BLOCKED capsule.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:webtransport@ietf.org
mailto:webtransport@ietf.org
mailto:webtransport@ietf.org
mailto:webtransport@ietf.org
mailto:webtransport@ietf.org

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

Field Name:

Template:

Status:

Reference:

Comments:

[HTTP]

[HTTP-DATAGRAM]

[HTTP2]

[ORIGIN]

[OVERVIEW]

0x190B4D43..0x190B4D44

WT_STREAMS_BLOCKED

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

9.3. HTTP Header Field Name

IANA will register the following entry in the "Hypertext Transfer

Protocol (HTTP) Field Name Registry" maintained at https://

www.iana.org/assignments/http-fields:

WebTransport-Init

None

permanent

This document

None

10. References

10.1. Normative References

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August

2022, <https://www.rfc-editor.org/rfc/rfc9297>.

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/rfc/rfc9113>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/rfc/rfc6454>.

Vasiliev, V., "The WebTransport Protocol Framework", Work

in Progress, Internet-Draft, draft-ietf-webtrans-

overview-07, 4 March 2024, <https://datatracker.ietf.org/

doc/html/draft-ietf-webtrans-overview-07>.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:webtransport@ietf.org
https://www.iana.org/assignments/http-fields
https://www.iana.org/assignments/http-fields
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://www.rfc-editor.org/rfc/rfc9297
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-07
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-07

[RFC2119]

[RFC6585]

[RFC7230]

[RFC7540]

[RFC8174]

[RFC8441]

[RFC8941]

[RFC9000]

[RFC9110]

[RFC9113]

[SEMANTICS]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/rfc/rfc6585>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/rfc/rfc7230>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

McManus, P., "Bootstrapping WebSockets with HTTP/2", RFC

8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Nottingham, M. and P. Kamp, "Structured Field Values for

HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,

<https://www.rfc-editor.org/rfc/rfc8941>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/rfc/rfc9113>.

Fielding, R. T., Nottingham, M., and J. Reschke, "HTTP

Semantics", Work in Progress, Internet-Draft, draft-ietf-

httpbis-semantics-19, 12 September 2021, <https://

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc6585
https://www.rfc-editor.org/rfc/rfc7230
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8941
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9113
https://www.rfc-editor.org/rfc/rfc9113
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19

[WEBTRANSPORT-H3]

[DATAGRAM]

[HTTP3]

[MPTCP]

[QUIC]

PADDING

SETTINGS_WEBTRANSPORT_INITIAL_MAX_DATA

datatracker.ietf.org/doc/html/draft-ietf-httpbis-

semantics-19>.

Frindell, A., Kinnear, E., and V. Vasiliev,

"WebTransport over HTTP/3", Work in Progress, Internet-

Draft, draft-ietf-webtrans-http3-08, 23 October 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-

webtrans-http3-08>.

10.2. Informative References

Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable

Datagram Extension to QUIC", RFC 9221, DOI 10.17487/

RFC9221, March 2022, <https://www.rfc-editor.org/rfc/

rfc9221>.

Bishop, M., "HTTP/3", Work in Progress, Internet-Draft,

draft-ietf-quic-http-34, 2 February 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-quic-http-34>.

Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,

"TCP Extensions for Multipath Operation with Multiple

Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,

<https://www.rfc-editor.org/rfc/rfc6824>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Acknowledgments

Thanks to Anthony Chivetta, Joshua Otto, and Valentin Pistol for

their contributions in the design and implementation of this work.

Index

P S W

P

Section 5.1, Paragraph 1; Section 5.1, Paragraph 2;

Section 9.2, Paragraph 3.4.1

S

Section 3.4.3.1, Paragraph 2.1.1; Section 5.5, Paragraph 7;

Section 9.1, Paragraph 4; Section 9.1, Paragraph 6.2.1

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-semantics-19
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-08
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-08
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9221
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://www.rfc-editor.org/rfc/rfc6824
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_BIDI

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAM_DATA_UNI

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_BIDI

SETTINGS_WEBTRANSPORT_INITIAL_MAX_STREAMS_UNI

WT_DATA_BLOCKED

WT_MAX_DATA

WT_MAX_STREAM_DATA

WT_MAX_STREAMS

WT_RESET_STREAM

WT_STOP_SENDING

WT_STREAM

Section 3.4.3.1, Paragraph 2.2.1; Section 5.6, Paragraph 7;

Section 9.1, Paragraph 10; Section 9.1, Paragraph 12.2.1

Section 3.4.3.1, Paragraph 2.2.1; Section 5.6, Paragraph 7;

Section 9.1, Paragraph 7; Section 9.1, Paragraph 9.2.1

Section 3.4.3.1, Paragraph 2.3.1; Section 5.7, Paragraph 9;

Section 9.1, Paragraph 16; Section 9.1, Paragraph 18.2.1

Section 3.4.3.1, Paragraph 2.3.1; Section 5.7, Paragraph 9;

Section 9.1, Paragraph 13; Section 9.1, Paragraph 15.2.1

W

Section 2, Paragraph 8; Section 3.4.4, Paragraph 1;

Section 5.8, Paragraph 1; Section 5.8, Paragraph 3;

Section 5.8, Paragraph 5; Section 5.9, Paragraph 1;

Section 9.2, Paragraph 17.4.1

Section 2, Paragraph 8; Section 3.4.3.1, Paragraph 2.1.1;

Section 3.4.4, Paragraph 1; Section 5.5, Paragraph 1;

Section 5.5, Paragraph 3; Section 5.5, Paragraph 6;

Section 9.1, Paragraph 4; Section 9.2, Paragraph 11.4.1

Section 2, Paragraph 8; Section 3.4.3.1, Paragraph 2.2.1;

Section 3.4.4, Paragraph 1; Section 5.6, Paragraph 1;

Section 5.6, Paragraph 3; Section 5.6, Paragraph 6;

Section 9.1, Paragraph 7; Section 9.1, Paragraph 10;

Section 9.2, Paragraph 13.4.1

Section 2, Paragraph 8; Section 3.4.2, Paragraph 1;

Section 3.4.3.1, Paragraph 2.3.1;

Section 3.4.4, Paragraph 1; Section 5.7, Paragraph 1;

Section 5.7, Paragraph 2; Section 5.7, Paragraph 4;

Section 5.7, Paragraph 8; Section 9.1, Paragraph 13;

Section 9.1, Paragraph 16; Section 9.2, Paragraph 15.4.1

Section 2, Paragraph 9; Section 5.2, Paragraph 1;

Section 5.2, Paragraph 2; Section 5.2, Paragraph 4;

Section 9.2, Paragraph 5.4.1

Section 2, Paragraph 9; Section 5.3, Paragraph 1;

Section 5.3, Paragraph 3; Section 9.2, Paragraph 7.4.1

Section 2, Paragraph 7.1.1; Section 4.1, Paragraph 2;

Section 5.2, Paragraph 2; Section 5.2, Paragraph 6;

Section 5.4, Paragraph 1; Section 5.4, Paragraph 2;

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

WT_STREAM_DATA_BLOCKED

WT_STREAMS_BLOCKED

Section 5.4, Paragraph 4; Section 5.4, Paragraph 5.4.1;

Section 5.5, Paragraph 5; Section 5.6, Paragraph 5;

Section 6, Paragraph 3; Section 9.2, Paragraph 9.4.1

Section 2, Paragraph 8; Section 3.4.4, Paragraph 1;

Section 5.9, Paragraph 1; Section 5.9, Paragraph 3;

Section 5.9, Paragraph 5; Section 9.2, Paragraph 19.4.1

Section 2, Paragraph 8; Section 3.4.4, Paragraph 1;

Section 5.10, Paragraph 1; Section 5.10, Paragraph 2;

Section 5.10, Paragraph 4; Section 5.10, Paragraph 6;

Section 9.2, Paragraph 21.4.1

Authors' Addresses

Alan Frindell

Facebook Inc.

Email: afrind@fb.com

Eric Kinnear

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: ekinnear@apple.com

Tommy Pauly

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Martin Thomson

Mozilla

Email: mt@lowentropy.net

Victor Vasiliev

Google

Email: vasilvv@google.com

Guowu Xie

Facebook Inc.

Email: woo@fb.com

¶

¶

¶

mailto:afrind@fb.com
mailto:ekinnear@apple.com
mailto:tpauly@apple.com
mailto:mt@lowentropy.net
mailto:vasilvv@google.com
mailto:woo@fb.com

	WebTransport over HTTP/2
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Session Establishment
	3.1. Establishing a Transport-Capable HTTP/2 Connection
	3.2. Extended CONNECT in HTTP/2
	3.3. Creating a New Session
	3.4. Flow Control
	3.4.1. Limiting the Number of Simultaneous Sessions
	3.4.2. Limiting the Number of Streams Within a Session
	3.4.3. Initial Flow Control Limits
	3.4.3.1. Flow Control SETTINGS
	3.4.3.2. Flow Control Header Field

	3.4.4. Flow Control and Intermediaries

	4. WebTransport Features
	4.1. Transport Properties
	4.2. WebTransport Streams

	5. WebTransport Capsules
	5.1. PADDING Capsule
	5.2. WT_RESET_STREAM Capsule
	5.3. WT_STOP_SENDING Capsule
	5.4. WT_STREAM Capsule
	5.5. WT_MAX_DATA Capsule
	5.6. WT_MAX_STREAM_DATA Capsule
	5.7. WT_MAX_STREAMS Capsule
	5.8. WT_DATA_BLOCKED Capsule
	5.9. WT_STREAM_DATA_BLOCKED Capsule
	5.10. WT_STREAMS_BLOCKED Capsule
	5.11. DATAGRAM Capsule
	5.12. CLOSE_WEBTRANSPORT_SESSION Capsule
	5.13. DRAIN_WEBTRANSPORT_SESSION Capsule

	6. Examples
	7. Session Termination
	8. Security Considerations
	9. IANA Considerations
	9.1. HTTP/2 SETTINGS Parameter Registration
	9.2. Capsule Types
	9.3. HTTP Header Field Name

	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Index
	Authors' Addresses

