
Workgroup: Network Working Group

Internet-Draft: draft-ietf-webtrans-http3-03

Published: 6 July 2022

Intended Status: Standards Track

Expires: 7 January 2023

Authors: A. Frindell

Facebook

E. Kinnear

Apple Inc.

V. Vasiliev

Google

WebTransport over HTTP/3

Abstract

WebTransport [OVERVIEW] is a protocol framework that enables clients

constrained by the Web security model to communicate with a remote

server using a secure multiplexed transport. This document describes

a WebTransport protocol that is based on HTTP/3 [HTTP3] and provides

support for unidirectional streams, bidirectional streams and

datagrams, all multiplexed within the same HTTP/3 connection.

Note to Readers

Discussion of this draft takes place on the WebTransport mailing

list (webtransport@ietf.org), which is archived at <https://

mailarchive.ietf.org/arch/search/?email_list=webtransport>.

The repository tracking the issues for this draft can be found at

<https://github.com/ietf-wg-webtrans/draft-ietf-webtrans-http3/

issues>. The web API draft corresponding to this document can be

found at <https://w3c.github.io/webtransport/>.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 January 2023.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

3. Session Establishment

3.1. Establishing a Transport-Capable HTTP/3 Connection

3.2. Extended CONNECT in HTTP/3

3.3. Creating a New Session

3.4. Limiting the Number of Simultaneous Sessions

4. WebTransport Features

4.1. Unidirectional streams

4.2. Bidirectional Streams

4.3. Resetting Data Streams

4.4. Datagrams

4.5. Buffering Incoming Streams and Datagrams

4.6. Interaction with HTTP/3 GOAWAY frame

5. Session Termination

6. Negotiating the Draft Version

7. Security Considerations

8. IANA Considerations

8.1. Upgrade Token Registration

8.2. HTTP/3 SETTINGS Parameter Registration

8.3. Frame Type Registration

8.4. Stream Type Registration

8.5. HTTP/3 Error Code Registration

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

HTTP/3 [HTTP3] is a protocol defined on top of QUIC [RFC9000] that

can multiplex HTTP requests over a QUIC connection. This document

defines a mechanism for multiplexing non-HTTP data with HTTP/3 in a

manner that conforms with the WebTransport protocol requirements and

semantics [OVERVIEW]. Using the mechanism described here, multiple

WebTransport instances can be multiplexed simultaneously with

regular HTTP traffic on the same HTTP/3 connection.

1.1. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document follows terminology defined in Section 1.2 of

[OVERVIEW]. Note that this document distinguishes between a

WebTransport server and an HTTP/3 server. An HTTP/3 server is the

server that terminates HTTP/3 connections; a WebTransport server is

an application that accepts WebTransport sessions, which can be

accessed via an HTTP/3 server.

2. Protocol Overview

WebTransport servers in general are identified by a pair of

authority value and path value (defined in [RFC3986] Sections 3.2

and 3.3 correspondingly).

When an HTTP/3 connection is established, both the client and server

have to send a SETTINGS_ENABLE_WEBTRANSPORT setting in order to

indicate that they both support WebTransport over HTTP/3.

WebTransport sessions are initiated inside a given HTTP/3 connection

by the client, who sends an extended CONNECT request [RFC8441]. If

the server accepts the request, an WebTransport session is

established. The resulting stream will be further referred to as a

CONNECT stream, and its stream ID is used to uniquely identify a

given WebTransport session within the connection. The ID of the

CONNECT stream that established a given WebTransport session will be

further referred to as a Session ID.

After the session is established, the peers can exchange data using

the following mechanisms:

A client can create a bidirectional stream using a special

indefinite-length HTTP/3 frame that transfers ownership of the

stream to WebTransport.

¶

¶

¶

¶

¶

¶

¶

*

¶

A server can create a bidirectional stream, which is possible

since HTTP/3 does not define any semantics for server-initiated

bidirectional streams.

Both client and server can create a unidirectional stream using a

special stream type.

A datagram can be sent using HTTP Datagrams [HTTP-DATAGRAM].

An WebTransport session is terminated when the CONNECT stream that

created it is closed.

3. Session Establishment

3.1. Establishing a Transport-Capable HTTP/3 Connection

In order to indicate support for WebTransport, both the client and

the server MUST send a SETTINGS_ENABLE_WEBTRANSPORT value set to "1"

in their SETTINGS frame. The SETTINGS_ENABLE_WEBTRANSPORT parameter

value SHALL be either "0" or "1", with "0" being the default; an

endpoint that receives a value other than "0" or "1" MUST close the

connection with the H3_SETTINGS_ERROR error code.

The client MUST NOT send a WebTransport request until it has

received the setting indicating WebTransport support from the

server. Similarly, the server MUST NOT process any incoming

WebTransport requests until the client settings have been received,

as the client may be using a version of WebTransport extension that

is different from the one used by the server.

3.2. Extended CONNECT in HTTP/3

[RFC8441] defines an extended CONNECT method in Section 4, enabled

by the SETTINGS_ENABLE_CONNECT_PROTOCOL parameter. That parameter is

only defined for HTTP/2. This document does not create a new multi-

purpose parameter to indicate support for extended CONNECT in HTTP/

3; instead, the SETTINGS_ENABLE_WEBTRANSPORT setting implies that an

endpoint supports extended CONNECT.

3.3. Creating a New Session

As WebTransport sessions are established over HTTP/3, they are

identified using the https URI scheme ([HTTP], Section 4.2.2).

In order to create a new WebTransport session, a client can send an

HTTP CONNECT request. The :protocol pseudo-header field ([RFC8441])

MUST be set to webtransport. The :scheme field MUST be https. Both

the :authority and the :path value MUST be set; those fields

indicate the desired WebTransport server. An Origin header [RFC6454]

MUST be provided within the request.

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

¶

Upon receiving an extended CONNECT request with a :protocol field

set to webtransport, the HTTP/3 server can check if it has a

WebTransport server associated with the specified :authority

and :path values. If it does not, it SHOULD reply with status code

404 (Section 15.5.4, [HTTP]). If it does, it MAY accept the session

by replying with a 2xx series status code, as defined in Section

15.3 of [HTTP]. The WebTransport server MUST verify the Origin

header to ensure that the specified origin is allowed to access the

server in question.

From the client's perspective, a WebTransport session is established

when the client receives a 2xx response. From the server's

perspective, a session is established once it sends a 2xx response.

WebTransport over HTTP/3 does not support 0-RTT.

The webtransport HTTP Upgrade Token uses the Capsule Protocol as

defined in [HTTP-DATAGRAM].

3.4. Limiting the Number of Simultaneous Sessions

From the flow control perspective, WebTransport sessions count

against the stream flow control just like regular HTTP requests,

since they are established via an HTTP CONNECT request. This

document does not make any effort to introduce a separate flow

control mechanism for sessions, nor to separate HTTP requests from

WebTransport data streams. If the server needs to limit the rate of

incoming requests, it has alternative mechanisms at its disposal:

HTTP_REQUEST_REJECTED error code defined in [HTTP3] indicates to

the receiving HTTP/3 stack that the request was not processed in

any way.

HTTP status code 429 indicates that the request was rejected due

to rate limiting [RFC6585]. Unlike the previous method, this

signal is directly propagated to the application.

4. WebTransport Features

WebTransport over HTTP/3 provides the following features described

in [OVERVIEW]: unidirectional streams, bidirectional streams and

datagrams, initiated by either endpoint.

Session IDs are used to demultiplex streams and datagrams belonging

to different WebTransport sessions. On the wire, session IDs are

encoded using the QUIC variable length integer scheme described in

[RFC9000].

If at any point a session ID is received that cannot a valid ID for

a client-initiated bidirectional stream, the recepient MUST close

the connection with an H3_ID_ERROR error code.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

4.1. Unidirectional streams

Once established, both endpoints can open unidirectional streams.

The HTTP/3 unidirectional stream type SHALL be 0x54. The body of the

stream SHALL be the stream type, followed by the session ID, encoded

as a variable-length integer, followed by the user-specified stream

data (Figure 1).

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | 0x54 (i) ...

 +-+

 | Session ID (i) ...

 +-+

 | Stream Body ...

 +-+

Figure 1: Unidirectional WebTransport stream format

4.2. Bidirectional Streams

WebTransport endpoints can initiate bidirectional streams by opening

an HTTP/3 bidirectional stream and sending an HTTP/3 frame with type

WEBTRANSPORT_STREAM (type=0x41). The format of the frame SHALL be

the frame type, followed by the session ID, encoded as a variable-

length integer, followed by the user-specified stream data (Figure

2). The frame SHALL last until the end of the stream.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | 0x41 (i) ...

 +-+

 | Session ID (i) ...

 +-+

 | Stream Body ...

 +-+

Figure 2: WEBTRANSPORT_STREAM frame format

HTTP/3 does not by itself define any semantics for server-initiated

bidirectional streams. If WebTransport setting is negotiated by both

endpoints, the syntax of the server-initiated bidirectional streams

SHALL be the same as the syntax of client-initated bidirectional

streams, that is, a sequence of HTTP/3 frames. The only frame

defined by this document for use within server-initiated

bidirectional streams is WEBTRANSPORT_STREAM.

¶

¶

¶

TODO: move the paragraph above into a separate draft; define what

happens with already existing HTTP/3 frames on server-initiated

bidirectional streams.

4.3. Resetting Data Streams

A WebTransport endpoint may send a RESET_STREAM or a STOP_SENDING

frame for a WebTransport data stream. Those signals are propagated

by the WebTransport implementation to the application.

A WebTransport application SHALL provide an error code for those

operations. Since WebTransport shares the error code space with

HTTP/3, WebTransport application errors for streams are limited to

an unsigned 8-bit integer, assuming values between 0x00 and 0xff.

WebTransport implementations SHALL remap those error codes into an

error range where 0x00 corresponds to 0x52e4a40fa8db, and 0xff

corresponds to 0x52e4a40fa9e2. Note that there are code points

inside that range of form "0x1f * N + 0x21" that are reserved by

Section 8.1 of [HTTP3]; those have to be accounted for when mapping

the error codes by skipping them (i.e. the two HTTP/3 error

codepoints adjacent to a GREASE codepoint would map to two adjacent

WebTransport application error codepoints). An example pseudocode

can be seen in Figure 3.

Figure 3: Pseudocode for converting between WebTransport application

errors and HTTP/3 error codes; here, `//` is integer division

WebTransport data streams are associated with sessions through a

header at the beginning of the stream; resetting a stream may result

in that data being discarded. Because of that, WebTransport

application error codes are best effort, as the WebTransport stack

is not always capable of associating the reset code with a session.

The only exception is the situation where there is only one session

on a given HTTP/3 connection, and no intermediaries between the

client and the server.

¶

¶

¶

 first = 0x52e4a40fa8db

 last = 0x52e4a40fa9e2

 def webtransport_code_to_http_code(n):

 return first + n + floor(n / 0x1e)

 def http_code_to_webtransport_code(h):

 assert(first <= h <= last)

 assert((h - 0x21) % 0x1f != 0)

 shifted = h - first

 return shifted - shifted // 0x1f

¶

https://rfc-editor.org/rfc/rfc9114#section-8.1

WebTransport implementations SHALL forward the error code for a

stream associated with a known session to the application that owns

that session; similarly, the intermediaries SHALL reset the streams

with corresponding error code when receiving a reset from the peer.

If a WebTransport implementation intentionally allows only one

session over a given HTTP/3 connection, it SHALL forward the error

codes within WebTransport application error code range to the

application that owns the only session on that connection.

4.4. Datagrams

Datagrams can be sent using HTTP Datagrams. The WebTransport

datagram payload is sent unmodified in the "HTTP Datagram Payload"

field of an HTTP Datagram.

4.5. Buffering Incoming Streams and Datagrams

In WebTransport over HTTP/3, the client MAY send its SETTINGS frame,

as well as multiple WebTransport CONNECT requests, WebTransport data

streams and WebTransport datagrams, all within a single flight. As

those can arrive out of order, a WebTransport server could be put

into a situation where it receives a stream or a datagram without a

corresponding session. Similarly, a client may receive a server-

initiated stream or a datagram before receiving the CONNECT response

headers from the server.

To handle this case, WebTransport endpoints SHOULD buffer streams

and datagrams until those can be associated with an established

session. To avoid resource exhaustion, the endpoints MUST limit the

number of buffered streams and datagrams. When the number of

buffered streams is exceeded, a stream SHALL be closed by sending a

RESET_STREAM and/or STOP_SENDING with the

H3_WEBTRANSPORT_BUFFERED_STREAM_REJECTED error code. When the number

of buffered datagrams is exceeded, a datagram SHALL be dropped. It

is up to an implementation to choose what stream or datagram to

discard.

4.6. Interaction with HTTP/3 GOAWAY frame

HTTP/3 defines a graceful shutdown mechanism (Section 5.2 of

[HTTP3]) that allows a peer to send a GOAWAY frame indicating that

it will no longer accept any new incoming requests or pushes. This

mechanism applies to the CONNECT requests for new WebTransport

sessions. A GOAWAY frame does not affect data streams for existing

WebTransport sessions; those can continue to be opened even after

the GOAWAY frame has been sent or received.

¶

¶

¶

¶

¶

Application Error Code:

Application Error Message:

5. Session Termination

A WebTransport session over HTTP/3 is considered terminated when

either of the following conditions is met:

the CONNECT stream is closed, either cleanly or abruptly, on

either side; or

a CLOSE_WEBTRANSPORT_SESSION capsule is either sent or received.

Upon learning that the session has been terminated, the endpoint

MUST reset the send side and abort reading on the receive side of

all of the streams associated with the session (see Section 2.4 of

[RFC9000]) using the H3_WEBTRANSPORT_SESSION_GONE error code; it

MUST NOT send any new datagrams or open any new streams.

To terminate a session with a detailed error message, an application

MAY send an HTTP capsule [HTTP-DATAGRAM] of type

CLOSE_WEBTRANSPORT_SESSION (0x2843). The format of the capsule SHALL

be as follows:

CLOSE_WEBTRANSPORT_SESSION has the following fields:

A 32-bit error code provided by the

application closing the connection.

A UTF-8 encoded error message string

provided by the application closing the connection. The message

takes up the remainer of the capsule, and its length MUST NOT

exceed 1024 bytes.

A CLOSE_WEBTRANSPORT_SESSION capsule MUST be followed by a FIN on

the sender side. If any additional stream data is received on the

CONNECT stream after CLOSE_WEBTRANSPORT_SESSION, the stream MUST be

reset with code H3_MESSAGE_ERROR. The recipient MUST close the

stream upon receiving a FIN. If the sender of

CLOSE_WEBTRANSPORT_SESSION does not receive a FIN after some time,

it SHOULD send STOP_SENDING on the CONNECT stream.

Cleanly terminating a CONNECT stream without a

CLOSE_WEBTRANSPORT_SESSION capsule SHALL be semantically equivalent

to terminating it with a CLOSE_WEBTRANSPORT_SESSION capsule that has

an error code of 0 and an empty error string.

¶

*

¶

* ¶

¶

¶

CLOSE_WEBTRANSPORT_SESSION Capsule {

 Type (i) = CLOSE_WEBTRANSPORT_SESSION,

 Length (i),

 Application Error Code (32),

 Application Error Message (..8192),

}

¶

¶

¶

¶

¶

¶

6. Negotiating the Draft Version

[[RFC editor: please remove this section before publication.]]

WebTransport over HTTP/3 uses two different mechanisms to negotiate

versions for the different parts of the draft.

The hop-by-hop wire format aspects of the protocol are negotiated by

changing the codepoint used for the SETTINGS_ENABLE_WEBTRANSPORT

parameter. Because of that, any WebTransport endpoint MUST wait for

the peer's SETTINGS frame before sending or processing any

WebTransport traffic. When multiple versions are supported by both

of the peers, the most recent version supported by both is selected.

The data exchanged over the CONNECT stream is transmitted across

intermediaries, and thus cannot be versioned using a SETTINGS

parameter. To indicate support for different versions of the

protocol defined in this draft, the clients SHALL send a header for

each version of the draft supported. The header corresponding to the

version described in this draft is Sec-Webtransport-Http3-Draft02;

its value SHALL be 1. The server SHALL reply with a Sec-

Webtransport-Http3-Draft header indicating the selected version; its

value SHALL be draft02 for the version described in this draft.

7. Security Considerations

WebTransport over HTTP/3 satisfies all of the security requirements

imposed by [OVERVIEW] on WebTransport protocols, thus providing a

secure framework for client-server communication in cases when the

client is potentially untrusted.

WebTransport over HTTP/3 requires explicit opt-in through the use of

an HTTP/3 setting; this avoids potential protocol confusion attacks

by ensuring the HTTP/3 server explicitly supports it. It also

requires the use of the Origin header, providing the server with the

ability to deny access to Web-based clients that do not originate

from a trusted origin.

Just like HTTP traffic going over HTTP/3, WebTransport pools traffic

to different origins within a single connection. Different origins

imply different trust domains, meaning that the implementations have

to treat each transport as potentially hostile towards others on the

same connection. One potential attack is a resource exhaustion

attack: since all of the transports share both congestion control

and flow control context, a single client aggressively using up

those resources can cause other transports to stall. The user agent

thus SHOULD implement a fairness scheme that ensures that each

transport within connection gets a reasonable share of controlled

resources; this applies both to sending data and to opening new

streams.

¶

¶

¶

¶

¶

¶

¶

Value:

Description:

Reference:

Setting Name:

Value:

Default:

Specification:

Code:

Frame Type:

Specification:

8. IANA Considerations

8.1. Upgrade Token Registration

The following entry is added to the "Hypertext Transfer Protocol

(HTTP) Upgrade Token Registry" registry established by Section 16.7

of [HTTP].

The "webtransport" label identifies HTTP/3 used as a protocol for

WebTransport:

webtransport

WebTransport over HTTP/3

This document and [I-D.ietf-webtrans-http2]

8.2. HTTP/3 SETTINGS Parameter Registration

The following entry is added to the "HTTP/3 Settings" registry

established by [HTTP3]:

The SETTINGS_ENABLE_WEBTRANSPORT parameter indicates that the

specified HTTP/3 connection is WebTransport-capable.

ENABLE_WEBTRANSPORT

0x2b603742

0

This document

8.3. Frame Type Registration

The following entry is added to the "HTTP/3 Frame Type" registry

established by [HTTP3]:

The WEBTRANSPORT_STREAM frame allows HTTP/3 client-initiated

bidirectional streams to be used by WebTransport:

0x41

WEBTRANSPORT_STREAM

This document

8.4. Stream Type Registration

The following entry is added to the "HTTP/3 Stream Type" registry

established by [HTTP3]:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Code:

Stream Type:

Specification:

Sender:

Name:

Value:

Description:

Specification:

Name:

Value:

Description:

Specification:

Name:

Value:

Description:

Specification:

The "WebTransport stream" type allows unidirectional streams to be

used by WebTransport:

0x54

WebTransport stream

This document

Both

8.5. HTTP/3 Error Code Registration

The following entry is added to the "HTTP/3 Error Code" registry

established by [HTTP3]:

H3_WEBTRANSPORT_BUFFERED_STREAM_REJECTED

0x3994bd84

WebTransport data stream rejected due to lack of

associated session.

This document.

H3_WEBTRANSPORT_SESSION_GONE

0x170d7b68

WebTransport data stream aborted because the

associated WebTransport session has been closed.

This document.

In addition, the following range of entries is registered:

H3_WEBTRANSPORT_APPLICATION_00 ...

H3_WEBTRANSPORT_APPLICATION_FF

0x52e4a40fa8db to 0x52e4a40fa9e2 inclusive, with the

exception of 0x52e4a40fa8f9, 0x52e4a40fa918, 0x52e4a40fa937,

0x52e4a40fa956, 0x52e4a40fa975, 0x52e4a40fa994, 0x52e4a40fa9b3,

and 0x52e4a40fa9d2.

WebTransport application error codes.

This document.

9. References

9.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[HTTP]

[HTTP-DATAGRAM]

[HTTP3]

[OVERVIEW]

[RFC2119]

[RFC3986]

[RFC6454]

[RFC6585]

[RFC8174]

[RFC8441]

[RFC9000]

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", Work in Progress, Internet-Draft,

draft-ietf-masque-h3-datagram-11, 17 June 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-h3-

datagram-11>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Vasiliev, V., "The WebTransport Protocol Framework", Work

in Progress, Internet-Draft, draft-ietf-webtrans-

overview-03, 7 March 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-webtrans-overview-03>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/rfc/rfc6454>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/rfc/rfc6585>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

McManus, P., "Bootstrapping WebSockets with HTTP/2", RFC

8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-03
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-03
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6585
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441

[I-D.ietf-webtrans-http2]

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

9.2. Informative References

Frindell, A., Kinnear, E., Pauly, T., Thomson, M.,

Vasiliev, V., and G. Xie, "WebTransport using HTTP/2",

Work in Progress, Internet-Draft, draft-ietf-webtrans-

http2-03, 7 March 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-webtrans-http2-03>.

Authors' Addresses

Alan Frindell

Facebook

Email: afrind@fb.com

Eric Kinnear

Apple Inc.

Email: ekinnear@apple.com

Victor Vasiliev

Google

Email: vasilvv@google.com

https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http2-03
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http2-03
mailto:afrind@fb.com
mailto:ekinnear@apple.com
mailto:vasilvv@google.com

	WebTransport over HTTP/3
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Session Establishment
	3.1. Establishing a Transport-Capable HTTP/3 Connection
	3.2. Extended CONNECT in HTTP/3
	3.3. Creating a New Session
	3.4. Limiting the Number of Simultaneous Sessions

	4. WebTransport Features
	4.1. Unidirectional streams
	4.2. Bidirectional Streams
	4.3. Resetting Data Streams
	4.4. Datagrams
	4.5. Buffering Incoming Streams and Datagrams
	4.6. Interaction with HTTP/3 GOAWAY frame

	5. Session Termination
	6. Negotiating the Draft Version
	7. Security Considerations
	8. IANA Considerations
	8.1. Upgrade Token Registration
	8.2. HTTP/3 SETTINGS Parameter Registration
	8.3. Frame Type Registration
	8.4. Stream Type Registration
	8.5. HTTP/3 Error Code Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

