
Workgroup: Network Working Group

Internet-Draft: draft-ietf-webtrans-http3-06

Published: 25 May 2023

Intended Status: Standards Track

Expires: 26 November 2023

Authors: A. Frindell

Facebook

E. Kinnear

Apple Inc.

V. Vasiliev

Google

WebTransport over HTTP/3

Abstract

WebTransport [OVERVIEW] is a protocol framework that enables clients

constrained by the Web security model to communicate with a remote

server using a secure multiplexed transport. This document describes

a WebTransport protocol that is based on HTTP/3 [HTTP3] and provides

support for unidirectional streams, bidirectional streams and

datagrams, all multiplexed within the same HTTP/3 connection.

Note to Readers

Discussion of this draft takes place on the WebTransport mailing

list (webtransport@ietf.org), which is archived at <https://

mailarchive.ietf.org/arch/search/?email_list=webtransport>.

The repository tracking the issues for this draft can be found at

<https://github.com/ietf-wg-webtrans/draft-ietf-webtrans-http3/

issues>. The web API draft corresponding to this document can be

found at <https://w3c.github.io/webtransport/>.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 26 November 2023.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

3. Session Establishment

3.1. Establishing a Transport-Capable HTTP/3 Connection

3.2. Extended CONNECT in HTTP/3

3.3. Creating a New Session

3.4. Limiting the Number of Simultaneous Sessions

4. WebTransport Features

4.1. Unidirectional streams

4.2. Bidirectional Streams

4.3. Resetting Data Streams

4.4. Datagrams

4.5. Buffering Incoming Streams and Datagrams

4.6. Interaction with HTTP/3 GOAWAY frame

5. Session Termination

6. Negotiating the Draft Version

7. Security Considerations

8. IANA Considerations

8.1. Upgrade Token Registration

8.2. HTTP/3 SETTINGS Parameter Registration

8.3. Frame Type Registration

8.4. Stream Type Registration

8.5. HTTP/3 Error Code Registration

8.6. Capsule Types

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Changelog

A.1. Changes between draft versions 02 and 06

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

HTTP/3 [HTTP3] is a protocol defined on top of QUIC [RFC9000] that

can multiplex HTTP requests over a QUIC connection. This document

defines a mechanism for multiplexing non-HTTP data with HTTP/3 in a

manner that conforms with the WebTransport protocol requirements and

semantics[OVERVIEW]. Using the mechanism described here, multiple

WebTransport instances can be multiplexed simultaneously with

regular HTTP traffic on the same HTTP/3 connection.

1.1. Terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document follows terminology defined in Section 1.2 of

[OVERVIEW]. Note that this document distinguishes between a

WebTransport server and an HTTP/3 server. An HTTP/3 server is the

server that terminates HTTP/3 connections; a WebTransport server is

an application that accepts WebTransport sessions, which can be

accessed via an HTTP/3 server.

2. Protocol Overview

WebTransport servers in general are identified by a pair of

authority value and path value (defined in [RFC3986] Sections 3.2

and 3.3 correspondingly).

When an HTTP/3 connection is established, both the client and server

have to send a SETTINGS_ENABLE_WEBTRANSPORT setting in order to

indicate that they both support WebTransport over HTTP/3. This

process also negotiates the use of additional HTTP/3 extensions.

WebTransport sessions are initiated inside a given HTTP/3 connection

by the client, who sends an extended CONNECT request [RFC8441]. If

the server accepts the request, a WebTransport session is

established. The resulting stream will be further referred to as a

CONNECT stream, and its stream ID is used to uniquely identify a

given WebTransport session within the connection. The ID of the

CONNECT stream that established a given WebTransport session will be

further referred to as a Session ID.

¶

¶

¶

¶

¶

¶

After the session is established, the peers can exchange data using

the following mechanisms:

A client can create a bidirectional stream and transfer its

ownership to WebTransport by providing a special signal in the

first bytes.

A server can create a bidirectional stream and transfer its

ownership to WebTransport by providing a special signal in the

first bytes..

Both client and server can create a unidirectional stream using a

special stream type.

A datagram can be sent using HTTP Datagrams [HTTP-DATAGRAM].

A WebTransport session is terminated when the CONNECT stream that

created it is closed.

3. Session Establishment

3.1. Establishing a Transport-Capable HTTP/3 Connection

In order to indicate support for WebTransport, both the client and

the server MUST send a SETTINGS_ENABLE_WEBTRANSPORT value set to "1"

in their SETTINGS frame. The SETTINGS_ENABLE_WEBTRANSPORT parameter

value SHALL be either "0" or "1", with "0" being the default; an

endpoint that receives a value other than "0" or "1" MUST close the

connection with the H3_SETTINGS_ERROR error code.

The client MUST NOT send a WebTransport request until it has

received the setting indicating WebTransport support from the

server. Similarly, the server MUST NOT process any incoming

WebTransport requests until the client settings have been received,

as the client may be using a version of WebTransport extension that

is different from the one used by the server.

In addition to the setting above, the server MUST send a

SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter indicating the maximum

number of concurrent sessions it is willing to receive. The default

value for the SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter is "0",

meaning that the server is not willing to receive any WebTransport

sessions.

Because WebTransport over HTTP/3 requires support for HTTP/3

datagrams and the Capsule Protocol, both the client and the server

MUST indicate support for HTTP/3 datagrams by sending a

SETTINGS_H3_DATAGRAM value set to 1 in their SETTINGS frame (see

Section 2.1.1 of [HTTP-DATAGRAM]).

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9297#section-2.1.1

WebTransport over HTTP/3 also requires support for QUIC datagrams.

To indicate support, both the client and the server MUST send a

max_datagram_frame_size transport parameter with a value greater

than 0 (see Section 3 of [QUIC-DATAGRAM]).

3.2. Extended CONNECT in HTTP/3

[RFC8441] defines an extended CONNECT method in Section 4, enabled

by the SETTINGS_ENABLE_CONNECT_PROTOCOL setting. That setting is

defined for HTTP/3 by [RFC9220]. An endpoint supporting WebTransport

over HTTP/3 MUST send both the SETTINGS_ENABLE_WEBTRANSPORT setting

and the SETTINGS_ENABLE_CONNECT_PROTOCOL setting with values set to

"1".

3.3. Creating a New Session

As WebTransport sessions are established over HTTP/3, they are

identified using the https URI scheme ([HTTP], Section 4.2.2).

In order to create a new WebTransport session, a client can send an

HTTP CONNECT request. The :protocol pseudo-header field ([RFC8441])

MUST be set to webtransport. The :scheme field MUST be https. Both

the :authority and the :path value MUST be set; those fields

indicate the desired WebTransport server. If the WebTransport

session is coming from a browser client, an Origin header [RFC6454]

MUST be provided within the request; otherwise, the header is

OPTIONAL.

Upon receiving an extended CONNECT request with a :protocol field

set to webtransport, the HTTP/3 server can check if it has a

WebTransport server associated with the specified :authority

and :path values. If it does not, it SHOULD reply with status code

404 (Section 15.5.5 of [HTTP]). When the request contains the Origin

header, the WebTransport server MUST verify the Origin header to

ensure that the specified origin is allowed to access the server in

question. If the verification fails, the WebTransport server SHOULD

reply with status code 403 (Section 15.5.4 of [HTTP]). If all checks

pass, the WebTransport server MAY accept the session by replying

with a 2xx series status code, as defined in Section 15.3 of [HTTP].

From the client's perspective, a WebTransport session is established

when the client receives a 2xx response. From the server's

perspective, a session is established once it sends a 2xx response.

The server may reply with a 3xx response, indicating a redirection

(Section 15.4 of [HTTP]). The user agent MUST NOT automatically

follow such redirects, as the client could potentially already have

sent data for the WebTransport session in question; it MAY notify

the client about the redirect.

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9221#section-3
https://rfc-editor.org/rfc/rfc9110#section-15.5.5
https://rfc-editor.org/rfc/rfc9110#section-15.5.4
https://rfc-editor.org/rfc/rfc9110#section-15.3
https://rfc-editor.org/rfc/rfc9110#section-15.4

Clients cannot initiate WebTransport in 0-RTT packets, as the

CONNECT method is not considered safe; see Section 10.9 of [HTTP3].

However, WebTransport-related SETTINGS parameters may be retained

from the previous session as described in Section 7.2.4.2 of

[HTTP3]. If the server accepts 0-RTT, the server MUST NOT reduce the

limit of maximum open WebTransport sessions from the one negotiated

during the previous session; such change would be deemed

incompatible, and MUST result in a H3_SETTINGS_ERROR connection

error.

The webtransport HTTP Upgrade Token uses the Capsule Protocol as

defined in [HTTP-DATAGRAM]. The Capsule Protocol is negotiated when

the server sends a 2xx response. The capsule-protocol header field

Section 3.4 of [HTTP-DATAGRAM] is not required by WebTransport and

can safely be ignored by WebTransport endpoints.

3.4. Limiting the Number of Simultaneous Sessions

This document defines a SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter

that allows the server to limit the maximum number of concurrent

WebTransport sessions on a single HTTP/3 connection. The client MUST

NOT open more sessions than indicated in the server SETTINGS

parameters. The server MUST NOT close the connection if the client

opens sessions exceeding this limit, as the client and the server do

not have a consistent view of how many sessions are open due to the

asynchronous nature of the protocol; instead, it MUST reset all of

the CONNECT streams it is not willing to process with the

HTTP_REQUEST_REJECTED status defined in [HTTP3].

Just like other HTTP requests, WebTransport sessions, and data sent

on those sessions, are counted against flow control limits. This

document does not introduce additional mechanisms for endpoints to

limit the relative amount of flow control credit consumed by

different WebTransport sessions, however servers that wish to limit

the rate of incoming requests on any particular session have

alternative mechanisms:

The HTTP_REQUEST_REJECTED error code defined in [HTTP3] indicates

to the receiving HTTP/3 stack that the request was not processed

in any way.

HTTP status code 429 indicates that the request was rejected due

to rate limiting [RFC6585]. Unlike the previous method, this

signal is directly propagated to the application.

4. WebTransport Features

WebTransport over HTTP/3 provides the following features described

in [OVERVIEW]: unidirectional streams, bidirectional streams and

datagrams, initiated by either endpoint.

¶

¶

¶

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc9114#section-10.9
https://rfc-editor.org/rfc/rfc9297#section-3.4

Session IDs are used to demultiplex streams and datagrams belonging

to different WebTransport sessions. On the wire, session IDs are

encoded using the QUIC variable length integer scheme described in

[RFC9000].

The client MAY optimistically open unidirectional and bidirectional

streams, as well as send datagrams, for a session that it has sent

the CONNECT request for, even if it has not yet received the

server's response to the request. On the server side, opening

streams and sending datagrams is possible as soon as the CONNECT

request has been received.

If at any point a session ID is received that cannot a valid ID for

a client-initiated bidirectional stream, the recipient MUST close

the connection with an H3_ID_ERROR error code.

4.1. Unidirectional streams

WebTransport endpoints can initiate unidirectional streams. The

HTTP/3 unidirectional stream type SHALL be 0x54. The body of the

stream SHALL be the stream type, followed by the session ID, encoded

as a variable-length integer, followed by the user-specified stream

data (Figure 1).

Figure 1: Unidirectional WebTransport stream format

4.2. Bidirectional Streams

All client-initiated bidirectional streams are reserved by HTTP/3 as

request streams, which are a sequence of HTTP/3 frames with a

variety of rules; see Sections 4.1 and 6.1 of [HTTP3].

WebTransport extends HTTP/3 to allow clients to declare and use

alternative request stream rules. Once a client receives settings

indicating WebTransport support (Section 3.1), it can send a special

signal value, encoded as a variable-length integer, as the first

bytes of the stream in order to indicate how the remaining bytes on

the stream are used.

WebTransport extends HTTP/3 by defining rules for all server-

initiated bidirectional streams. Once a server receives settings

indicating WebTransport support (Section 3.1), it can open a

bidirectional stream and SHALL send a special signal value, encoded

¶

¶

¶

¶

Unidirectional Stream {

 Stream Type (i) = 0x54,

 Session ID (i),

 Stream Body (..)

}

¶

¶

https://rfc-editor.org/rfc/rfc9114#section-4.1
https://rfc-editor.org/rfc/rfc9114#section-6.1

as a variable-length integer, as the first bytes of the stream in

order to indicate how the remaining bytes on the stream are used.

The signal value, 0x41, is used by clients and servers to open a

bidirectional WebTransport stream. Following this is the associated

session ID, encoded as a variable-length integer; the rest of the

stream is the application payload of the WebTransport stream

(Figure 2).

Figure 2: Bidirectional WebTransport stream format

This document reserves the special signal value 0x41 as a

WEBTRANSPORT_STREAM frame type. While it is registered as an HTTP/3

frame type to avoid collisions, WEBTRANSPORT_STREAM is not a proper

HTTP/3 frame, as it lacks length; it is an extension of HTTP/3 frame

syntax that MUST be supported by any peer negotiating

SETTINGS_ENABLE_WEBTRANSPORT. Endpoints that implement this

extension are also subject to additional frame handling

requirements. Endpoints MUST NOT send WEBTRANSPORT_STREAM as a frame

type on HTTP/3 streams other than the very first bytes of a request

stream. Receiving this frame type in any other circumstances MUST be

treated as a connection error of type H3_FRAME_ERROR.

4.3. Resetting Data Streams

A WebTransport endpoint may send a RESET_STREAM or a STOP_SENDING

frame for a WebTransport data stream. Those signals are propagated

by the WebTransport implementation to the application.

A WebTransport application SHALL provide an error code for those

operations. Since WebTransport shares the error code space with

HTTP/3, WebTransport application errors for streams are limited to

an unsigned 32-bit integer, assuming values between 0x00000000 and

0xffffffff. WebTransport implementations SHALL remap those error

codes into the error range reserved for

WEBTRANSPORT_APPLICATION_ERROR, where 0x00000000 corresponds to

0x52e4a40fa8db, and 0xffffffff corresponds to 0x52e5ac983162. Note

that there are code points inside that range of form "0x1f * N +

0x21" that are reserved by Section 8.1 of [HTTP3]; those have to be

skipped when mapping the error codes (i.e. the two HTTP/3 error

codepoints adjacent to a reserved codepoint would map to two

adjacent WebTransport application error codepoints). An example

pseudocode can be seen in Figure 3.

¶

¶

Bidirectional Stream {

 Signal Value (i) = 0x41,

 Session ID (i),

 Stream Body (..)

}

¶

¶

¶

https://rfc-editor.org/rfc/rfc9114#section-8.1

Figure 3: Pseudocode for converting between WebTransport application

errors and HTTP/3 error codes

WebTransport data streams are associated with sessions through a

header at the beginning of the stream; resetting a stream may result

in that data being discarded. Because of that, WebTransport

application error codes are best effort, as the WebTransport stack

is not always capable of associating the reset code with a session.

The only exception is the situation where there is only one session

on a given HTTP/3 connection, and no intermediaries between the

client and the server.

WebTransport implementations SHALL forward the error code for a

stream associated with a known session to the application that owns

that session; similarly, the intermediaries SHALL reset the streams

with corresponding error code when receiving a reset from the peer.

If a WebTransport implementation intentionally allows only one

session over a given HTTP/3 connection, it SHALL forward the error

codes within WebTransport application error code range to the

application that owns the only session on that connection.

4.4. Datagrams

Datagrams can be sent using HTTP Datagrams. The WebTransport

datagram payload is sent unmodified in the "HTTP Datagram Payload"

field of an HTTP Datagram (Section 2.1 of [HTTP-DATAGRAM]). Note

that the payload field directly follows the Quarter Stream ID field,

which is at the start of the QUIC DATAGRAM frame payload and refers

to the CONNECT stream that established the WebTransport session.

4.5. Buffering Incoming Streams and Datagrams

In WebTransport over HTTP/3, the client MAY send its SETTINGS frame,

as well as multiple WebTransport CONNECT requests, WebTransport data

streams and WebTransport datagrams, all within a single flight. As

those can arrive out of order, a WebTransport server could be put

into a situation where it receives a stream or a datagram without a

 first = 0x52e4a40fa8db

 last = 0x52e5ac983162

 def webtransport_code_to_http_code(n):

 return first + n + floor(n / 0x1e)

 def http_code_to_webtransport_code(h):

 assert(first <= h <= last)

 assert((h - 0x21) % 0x1f != 0)

 shifted = h - first

 return shifted - floor(shifted / 0x1f)

¶

¶

¶

corresponding session. Similarly, a client may receive a server-

initiated stream or a datagram before receiving the CONNECT response

headers from the server.

To handle this case, WebTransport endpoints SHOULD buffer streams

and datagrams until those can be associated with an established

session. To avoid resource exhaustion, the endpoints MUST limit the

number of buffered streams and datagrams. When the number of

buffered streams is exceeded, a stream SHALL be closed by sending a

RESET_STREAM and/or STOP_SENDING with the

WEBTRANSPORT_BUFFERED_STREAM_REJECTED error code. When the number of

buffered datagrams is exceeded, a datagram SHALL be dropped. It is

up to an implementation to choose what stream or datagram to

discard.

4.6. Interaction with HTTP/3 GOAWAY frame

HTTP/3 defines a graceful shutdown mechanism (Section 5.2 of

[HTTP3]) that allows a peer to send a GOAWAY frame indicating that

it will no longer accept any new incoming requests or pushes. This

mechanism applies to the CONNECT requests for new WebTransport

sessions. A GOAWAY frame does not affect data streams for existing

WebTransport sessions; those can continue to be opened even after

the GOAWAY frame has been sent or received.

To drain a WebTransport session, either endpoint can send a

DRAIN_WEBTRANSPORT_SESSION capsule. After sending or receiving a

DRAIN_WEBTRANSPORT_SESSION capsule, an endpoint MAY continue using

the session but SHOULD attempt to gracefully terminate the session

as soon as possible.

5. Session Termination

A WebTransport session over HTTP/3 is considered terminated when

either of the following conditions is met:

the CONNECT stream is closed, either cleanly or abruptly, on

either side; or

a CLOSE_WEBTRANSPORT_SESSION capsule is either sent or received.

Upon learning that the session has been terminated, the endpoint

MUST reset the send side and abort reading on the receive side of

all of the streams associated with the session (see Section 2.4 of

¶

¶

¶

¶

DRAIN_WEBTRANSPORT_SESSION Capsule {

 Type (i) = DRAIN_WEBTRANSPORT_SESSION,

 Length (i) = 0

}

¶

¶

*

¶

* ¶

Application Error Code:

Application Error Message:

[RFC9000]) using the WEBTRANSPORT_SESSION_GONE error code; it MUST

NOT send any new datagrams or open any new streams.

To terminate a session with a detailed error message, an application

MAY send an HTTP capsule [HTTP-DATAGRAM] of type

CLOSE_WEBTRANSPORT_SESSION (0x2843). The format of the capsule SHALL

be as follows:

CLOSE_WEBTRANSPORT_SESSION has the following fields:

A 32-bit error code provided by the

application closing the connection.

A UTF-8 encoded error message string

provided by the application closing the connection. The message

takes up the remainder of the capsule, and its length MUST NOT

exceed 1024 bytes.

An endpoint that sends a CLOSE_WEBTRANSPORT_SESSION capsule MUST

immediately send a FIN. The endpoint MAY send a STOP_SENDING to

indicate it is no longer reading from the CONNECT stream. The

recipient MUST close the stream upon receiving a FIN. If any

additional stream data is received on the CONNECT stream after

receiving a CLOSE_WEBTRANSPORT_SESSION capsule, the stream MUST be

reset with code H3_MESSAGE_ERROR.

Cleanly terminating a CONNECT stream without a

CLOSE_WEBTRANSPORT_SESSION capsule SHALL be semantically equivalent

to terminating it with a CLOSE_WEBTRANSPORT_SESSION capsule that has

an error code of 0 and an empty error string.

In some scenarios, an endpoint might want to send a

CLOSE_WEBTRANSPORT_SESSION with detailed close information and then

immediately close the underlying QUIC connection. If the endpoint

were to do both of those simultaneously, the peer could potentially

receive the CONNECTION_CLOSE before receiving the

CLOSE_WEBTRANSPORT_SESSION, thus never receiving the application

error data contained in the latter. To avoid this, the endpoint

SHOULD wait until all of the data on the CONNECT stream is

acknowledged before sending the CONNECTION_CLOSE; this gives

CLOSE_WEBTRANSPORT_SESSION properties similar to that of the QUIC

CONNECTION_CLOSE mechanism as a best-effort mechanism of delivering

application close metadata.

¶

¶

CLOSE_WEBTRANSPORT_SESSION Capsule {

 Type (i) = CLOSE_WEBTRANSPORT_SESSION,

 Length (i),

 Application Error Code (32),

 Application Error Message (..8192),

}

¶

¶

¶

¶

¶

¶

¶

6. Negotiating the Draft Version

[[RFC editor: please remove this section before publication.]]

The wire format aspects of the protocol are negotiated by changing

the codepoint used for the SETTINGS_ENABLE_WEBTRANSPORT parameter.

Because of that, any WebTransport endpoint MUST wait for the peer's

SETTINGS frame before sending or processing any WebTransport

traffic. When multiple versions are supported by both of the peers,

the most recent version supported by both is selected.

7. Security Considerations

WebTransport over HTTP/3 satisfies all of the security requirements

imposed by [OVERVIEW] on WebTransport protocols, thus providing a

secure framework for client-server communication in cases when the

client is potentially untrusted.

WebTransport over HTTP/3 requires explicit opt-in through the use of

an HTTP/3 setting; this avoids potential protocol confusion attacks

by ensuring the HTTP/3 server explicitly supports it. It also

requires the use of the Origin header, providing the server with the

ability to deny access to Web-based clients that do not originate

from a trusted origin.

Just like HTTP traffic going over HTTP/3, WebTransport pools traffic

to different origins within a single connection. Different origins

imply different trust domains, meaning that the implementations have

to treat each transport as potentially hostile towards others on the

same connection. One potential attack is a resource exhaustion

attack: since all of the transports share both congestion control

and flow control context, a single client aggressively using up

those resources can cause other transports to stall. The user agent

thus SHOULD implement a fairness scheme that ensures that each

transport within connection gets a reasonable share of controlled

resources; this applies both to sending data and to opening new

streams.

A client could attempt to exhaust resources by opening too many

WebTransport sessions at once. In cases when the client is

untrusted, the user agent SHOULD limit the number of outgoing

sessions the client can open.

8. IANA Considerations

8.1. Upgrade Token Registration

The following entry is added to the "Hypertext Transfer Protocol

(HTTP) Upgrade Token Registry" registry established by Section 16.7

of [HTTP].

¶

¶

¶

¶

¶

¶

¶

Value:

Description:

Reference:

Setting Name:

Value:

Default:

Specification:

Setting Name:

Value:

Default:

Specification:

Code:

Frame Type:

Specification:

The "webtransport" label identifies HTTP/3 used as a protocol for

WebTransport:

webtransport

WebTransport over HTTP/3

This document and [I-D.ietf-webtrans-http2]

8.2. HTTP/3 SETTINGS Parameter Registration

The following entries are added to the "HTTP/3 Settings" registry

established by [HTTP3]:

The SETTINGS_ENABLE_WEBTRANSPORT parameter indicates that the

specified HTTP/3 connection is WebTransport-capable.

ENABLE_WEBTRANSPORT

0x2b603742

0

This document

The SETTINGS_WEBTRANSPORT_MAX_SESSIONS parameter indicates that the

specified HTTP/3 server is WebTransport-capable and the number of

concurrent sessions it is willing to receive.

WEBTRANSPORT_MAX_SESSIONS

0x3c48d522

0

This document

8.3. Frame Type Registration

The following entry is added to the "HTTP/3 Frame Type" registry

established by [HTTP3]:

The WEBTRANSPORT_STREAM frame is reserved for the purpose of

avoiding collision with WebTransport HTTP/3 extensions:

0x41

WEBTRANSPORT_STREAM

This document

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Code:

Stream Type:

Specification:

Sender:

Name:

Value:

Description:

Specification:

Name:

Value:

Description:

Specification:

Name:

Value:

Description:

Specification:

8.4. Stream Type Registration

The following entry is added to the "HTTP/3 Stream Type" registry

established by [HTTP3]:

The "WebTransport stream" type allows unidirectional streams to be

used by WebTransport:

0x54

WebTransport stream

This document

Both

8.5. HTTP/3 Error Code Registration

The following entry is added to the "HTTP/3 Error Code" registry

established by [HTTP3]:

WEBTRANSPORT_BUFFERED_STREAM_REJECTED

0x3994bd84

WebTransport data stream rejected due to lack of

associated session.

This document.

WEBTRANSPORT_SESSION_GONE

0x170d7b68

WebTransport data stream aborted because the

associated WebTransport session has been closed.

This document.

In addition, the following range of entries is registered:

WEBTRANSPORT_APPLICATION_ERROR

0x52e4a40fa8db to 0x52e5ac983162 inclusive, with the

exception of the codepoints of form 0x1f * N + 0x21.

WebTransport application error codes.

This document.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Value:

Capsule Type:

Status:

Specification:

Change Controller:

Contact:

Notes:

[HTTP]

[HTTP-DATAGRAM]

[HTTP3]

[OVERVIEW]

[QUIC-DATAGRAM]

[RFC2119]

[RFC3986]

8.6. Capsule Types

The following entries are added to the "HTTP Capsule Types" registry

established by [HTTP-DATAGRAM]:

The CLOSE_WEBTRANSPORT_SESSION capsule.

0x2843

CLOSE_WEBTRANSPORT_SESSION

permanent

This document

IETF

WebTransport Working Group webtransport@ietf.org

None

9. References

9.1. Normative References

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/rfc/

rfc9110>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", RFC 9297, DOI 10.17487/RFC9297, August

2022, <https://www.rfc-editor.org/rfc/rfc9297>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/rfc/

rfc9114>.

Vasiliev, V., "The WebTransport Protocol Framework", Work

in Progress, Internet-Draft, draft-ietf-webtrans-

overview-05, 24 January 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-webtrans-

overview-05>.

Pauly, T., Kinnear, E., and D. Schinazi, "An

Unreliable Datagram Extension to QUIC", RFC 9221, DOI

10.17487/RFC9221, March 2022, <https://www.rfc-

editor.org/rfc/rfc9221>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:webtransport@ietf.org
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9110
https://www.rfc-editor.org/rfc/rfc9297
https://www.rfc-editor.org/rfc/rfc9114
https://www.rfc-editor.org/rfc/rfc9114
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-05
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-05
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-overview-05
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc9221
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

[RFC6454]

[RFC6585]

[RFC8174]

[RFC8441]

[RFC9000]

[RFC9220]

[I-D.ietf-webtrans-http2]

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/rfc/rfc6454>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/rfc/rfc6585>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

McManus, P., "Bootstrapping WebSockets with HTTP/2", RFC

8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Hamilton, R., "Bootstrapping WebSockets with HTTP/3", RFC

9220, DOI 10.17487/RFC9220, June 2022, <https://www.rfc-

editor.org/rfc/rfc9220>.

9.2. Informative References

Frindell, A., Kinnear, E., Pauly, T., Thomson, M.,

Vasiliev, V., and G. Xie, "WebTransport over HTTP/2",

Work in Progress, Internet-Draft, draft-ietf-webtrans-

http2-05, 13 March 2023, <https://datatracker.ietf.org/

doc/html/draft-ietf-webtrans-http2-05>.

Appendix A. Changelog

A.1. Changes between draft versions 02 and 06

The following changes make the draft-02 and draft-06 versions of

this protocol incompatible:

draft-06 requires SETTINGS_WEBTRANSPORT_MAX_SESSIONS (#86)

draft-06 explicitly requires SETTINGS_ENABLE_CONNECT_PROTOCOL to

be enabled (#93)

¶

* ¶

*

¶

https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6585
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9220
https://www.rfc-editor.org/rfc/rfc9220
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http2-05
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http2-05

draft-06 explicitly requires SETTINGS_H3_DATAGRAM to be enabled

(#106)

draft-06 only allows WEBTRANSPORT_STREAM at the beginning of the

stream

SETTINGS_ENABLE_WEBTRANSPORT uses codepoint 0x2b603742 in

draft-02 and 0x3c48d522 in draft-06

The following changes that are present in draft-06 can be also

implemented by a draft-02 implementation safely:

Expanding stream reset error code space from 8 to 32 bits (#115)

H3_WEBTRANSPORT_SESSION_GONE error code (#75)

Handling for HTTP GOAWAY (#76)

DRAIN_WEBTRANSPORT_SESSION capsule (#79)

Disallowing following redirects automatically (#113)

Authors' Addresses

Alan Frindell

Facebook

Email: afrind@fb.com

Eric Kinnear

Apple Inc.

Email: ekinnear@apple.com

Victor Vasiliev

Google

Email: vasilvv@google.com

*

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

mailto:afrind@fb.com
mailto:ekinnear@apple.com
mailto:vasilvv@google.com

	WebTransport over HTTP/3
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Session Establishment
	3.1. Establishing a Transport-Capable HTTP/3 Connection
	3.2. Extended CONNECT in HTTP/3
	3.3. Creating a New Session
	3.4. Limiting the Number of Simultaneous Sessions

	4. WebTransport Features
	4.1. Unidirectional streams
	4.2. Bidirectional Streams
	4.3. Resetting Data Streams
	4.4. Datagrams
	4.5. Buffering Incoming Streams and Datagrams
	4.6. Interaction with HTTP/3 GOAWAY frame

	5. Session Termination
	6. Negotiating the Draft Version
	7. Security Considerations
	8. IANA Considerations
	8.1. Upgrade Token Registration
	8.2. HTTP/3 SETTINGS Parameter Registration
	8.3. Frame Type Registration
	8.4. Stream Type Registration
	8.5. HTTP/3 Error Code Registration
	8.6. Capsule Types

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Changelog
	A.1. Changes between draft versions 02 and 06

	Authors' Addresses

