
Workgroup: WEBTRANS

Internet-Draft:

draft-ietf-webtrans-overview-04

Published: 11 July 2022

Intended Status: Standards Track

Expires: 12 January 2023

Authors: V. Vasiliev

Google

The WebTransport Protocol Framework

Abstract

The WebTransport Protocol Framework enables clients constrained by

the Web security model to communicate with a remote server using a

secure multiplexed transport. It consists of a set of individual

protocols that are safe to expose to untrusted applications,

combined with a model that allows them to be used interchangeably.

This document defines the overall requirements on the protocols used

in WebTransport, as well as the common features of the protocols,

support for some of which may be optional.

Note to Readers

Discussion of this draft takes place on the WebTransport mailing

list (webtransport@ietf.org), which is archived at <https://

mailarchive.ietf.org/arch/search/?email_list=webtransport>.

The repository tracking the issues for this draft can be found at

<https://github.com/ietf-wg-webtrans/draft-ietf-webtrans-overview/

issues>. The web API draft corresponding to this document can be

found at <https://wicg.github.io/web-transport/>.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 January 2023.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Background

1.2. Conventions and Definitions

2. Common Transport Requirements

3. Session Establishment

4. Transport Features

4.1. Session-Wide Features

4.2. Datagrams

4.3. Streams

5. Transport Properties

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Author's Address

1. Introduction

The WebTransport Protocol Framework enables clients constrained by

the Web security model to communicate with a remote server using a

secure multiplexed transport. It consists of a set of individual

protocols that are safe to expose to untrusted applications,

combined with a model that allows them to be used interchangeably.

This document defines the overall requirements on the protocols used

in WebTransport, as well as the common features of the protocols,

support for some of which may be optional.

1.1. Background

Historically, web applications that needed a bidirectional data

stream between a client and a server could rely on WebSockets

¶

¶

¶

¶

https://trustee.ietf.org/license-info

[RFC6455], a message-based protocol compatible with the Web security

model. However, since the abstraction it provides is a single

ordered stream of messages, it suffers from head-of-line blocking

(HOLB), meaning that all messages must be sent and received in order

even if they are independent and some of them are no longer needed.

This makes it a poor fit for latency-sensitive applications which

rely on partial reliability and stream independence for performance.

One existing option available to Web developers are WebRTC data

channels [RFC8831], which provide a WebSocket-like API for a peer-

to-peer SCTP channel protected by DTLS. In theory, it is possible to

use it for the use cases addressed by this specification. However,

in practice, its use in non-browser-to-browser settings has been

quite low due to its dependency on ICE (which fits poorly with the

Web model) and userspace SCTP (which has very few implementations

available).

An alternative design would be to open multiple WebSocket

connections over HTTP/3 [I-D.ietf-httpbis-h3-websockets] in a manner

similar to how they are currently layered over HTTP/2 [RFC8441].

That would avoid head-of-line blocking and provide an ability to

cancel a stream by closing the corresponding WebSocket object.

However, this approach has a number of drawbacks, which all stem

primarily from the fact that semantically each WebSocket is a

completely independent entity:

Each new stream would require a WebSocket handshake to agree on

application protocol used, meaning that it would take at least

one RTT to establish each new stream before the client can write

to it.

Only clients can initiate streams. Server-initiated streams and

other alternative modes of communication (such as the QUIC

DATAGRAM frame [I-D.ietf-quic-datagram]) are not available.

While the streams would normally be pooled by the user agent,

this is not guaranteed, and the general process of mapping a

WebSocket to a server is opaque to the client. This introduces

unpredictable performance properties into the system, and

prevents optimizations which rely on the streams being on the

same connection (for instance, it might be possible for the

client to request different retransmission priorities for

different streams, but that would be much more complex unless

they are all on the same connection).

The WebTransport protocol framework avoids all of those issues by

letting applications create a single transport object that can

contain multiple streams multiplexed together in a single context

¶

¶

¶

*

¶

*

¶

*

¶

WebTransport session:

WebTransport protocol:

Datagram:

Stream:

Message:

Server:

(similar to SCTP, HTTP/2, QUIC and others), and can be also used to

send unreliable datagrams (similar to UDP).

1.2. Conventions and Definitions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

WebTransport is a framework that aims to abstract away the

underlying transport protocol while still exposing a few key

transport-layer aspects to application developers. It is structured

around the following concepts:

A WebTransport session is a single

communication context established between a client and a server.

It may correspond to a specific transport-layer connection, or it

may be a logical entity within an existing multiplexed transport-

layer connection. Transport sessions are logically independent

from one another even if some sessions can share an underlying

transport-layer connection.

A WebTransport protocol is a specific

protocol that can be used to establish a WebTransport session.

A datagram is a unit of transmission that is treated

atomically.

A stream is a sequence of bytes that is reliably delivered

to the receiving application in the same order as it was

transmitted by the sender. Streams can be of arbitrary length,

and therefore cannot always be buffered entirely in memory.

WebTransport protocols and APIs are expected to provide partial

stream data to the application before the stream has been

entirely received.

A message is a stream that is sufficiently small that it

can be fully buffered before being passed to the application.

WebTransport does not define messages as a primitive, since from

the transport perspective they can be simulated by fully

buffering a stream before passing it to the application. However,

this distinction is important to highlight since some of the

similar protocols and APIs (notably WebSocket [RFC6455]) use

messages as a core abstraction.

A WebTransport server is an application that accepts

incoming WebTransport sessions.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Client:

User agent:

A WebTransport client is an application that initiates the

transport session and may be running in a constrained security

context, for instance, a JavaScript application running inside a

browser.

A WebTransport user agent is a software system that has

an unrestricted access to the host network stack and can create

transports on behalf of the client.

2. Common Transport Requirements

Since clients are not necessarily trusted and have to be constrained

by the Web security model, WebTransport imposes certain requirements

on any specific protocol used.

All WebTransport protocols MUST use TLS [RFC8446] or a semantically

equivalent security protocol (for instance, DTLS [I-D.ietf-tls-

dtls13]). The protocols SHOULD use TLS version 1.3 or later, unless

they aim for backwards compatibility with legacy systems.

All WebTransport protocols MUST require the user agent to obtain and

maintain explicit consent from the server to send data. For

connection-oriented protocols (such as TCP or QUIC), the connection

establishment and keep-alive mechanisms suffice. STUN Consent

Freshness [RFC7675] is another example of a mechanism satisfying

this requirement.

All WebTransport protocols MUST limit the rate at which the client

sends data. This SHOULD be accomplished via a feedback-based

congestion control mechanism (such as [RFC5681] or [RFC9002]).

All WebTransport protocols MUST support simultaneously establishing

multiple sessions between the same client and server.

All WebTransport protocols MUST prevent clients from establishing

transport sessions to network endpoints that are not WebTransport

servers.

All WebTransport protocols MUST provide a way for the user agent to

indicate the origin [RFC6454] of the client to the server.

All WebTransport protocols MUST provide a way for a server endpoint

location to be described using a URI [RFC3986]. This enables

integration with various Web platform features that represent

resources as URIs, such as Content Security Policy [CSP].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

establish a session

terminate a session

session terminated event

3. Session Establishment

WebTransport session establishment is an asynchronous process. A

session is considered ready from the client's perspective when the

server has confirmed that it is willing to accept the session with

the provided origin and URI. WebTransport protocols MAY allow

clients to send data before the session is ready; however, they MUST

NOT use mechanisms that are unsafe against replay attacks without an

explicit indication from the client.

4. Transport Features

All transport protocols MUST provide datagrams, unidirectional and

bidirectional streams in order to make the transport protocols

interchangeable.

4.1. Session-Wide Features

Any WebTransport protocol SHALL provide the following operations on

the session:

Create a new WebTransport session given a URI

[RFC3986] and the origin [RFC6454] of the requester.

Terminate the session while communicating to

the peer an unsigned 32-bit error code and an error reason string

of at most 1024 bytes. The error code and string are optional;

the default values are 0 and "".

Any WebTransport protocol SHALL provide the following events:

Indicates that the WebTransport session

has been terminated, either by the peer or by the local

networking stack, and no user data can be exchanged on it any

further. If the session has been terminated as a result of the

peer performing the "terminate a session" operation above, a

corresponding error code and an error string can be provided.

4.2. Datagrams

A datagram is a sequence of bytes that is limited in size (generally

to the path MTU) and is not expected to be transmitted reliably. The

general goal for WebTransport datagrams is to be similar in behavior

to UDP while being subject to common requirements expressed in

Section 2.

A WebTransport sender is not expected to retransmit datagrams,

though it may end up doing so if it is using a TCP-based protocol or

some other underlying protocol that only provides reliable delivery.

WebTransport datagrams are not expected to be flow controlled,

¶

¶

¶

¶

¶

¶

¶

¶

send a datagram

receive a datagram

get maxiumum datagram size

meaning that the receiver might drop datagrams if the application is

not consuming them fast enough.

The application MUST be provided with the maximum datagram size that

it can send. The size SHOULD be derived from the result of

performing path MTU discovery.

In the WebTransport model, all of the outgoing and incoming

datagrams are placed into a size-bound queue (similar to a network

interface card queue).

Any WebTransport protocol SHALL provide the following operations on

the session:

Enqueues a datagram to be sent to the peer. This

can potentially result in the datagram being dropped if the queue

is full.

Dequeues an incoming datagram, if one is

available.

Returns the largest size of the datagram

that a WebTransport session is expected to be able to send.

4.3. Streams

A unidirectional stream is a one-way reliable in-order stream of

bytes where the initiator is the only endpoint that can send data. A

bidirectional stream allows both endpoints to send data and can be

conceptually represented as a pair of unidirectional streams.

The streams are in general expected to follow the semantics and the

state machine of QUIC streams ([RFC9000], Sections 2 and 3). TODO:

describe the stream state machine explicitly.

A WebTransport stream can be reset, indicating that the endpoint is

not interested in either sending or receiving any data related to

the stream. In that case, the sender is expected to not retransmit

any data that was already sent on that stream.

Streams SHOULD be sufficiently lightweight that they can be used as

messages.

Data sent on a stream is flow controlled by the transport protocol.

In addition to flow controlling stream data, the creation of new

streams is flow controlled as well: an endpoint may only open a

limited number of streams until the peer explicitly allows creating

more streams. From the perspective of the client, this is presented

as a size-bounded queue of incoming streams.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

create a unidirectional stream

create a bidirectional stream

receive a unidirectional stream

receive a bidirectional stream

send bytes

receive bytes

abort send side

abort receive side

Any WebTransport protocol SHALL provide the following operations on

the session:

Creates an outgoing unidirectional

stream; this operation may block until the flow control of the

underlying protocol allows for it to be completed.

Creates an outgoing bidirectional

stream; this operation may block until the flow control of the

underlying protocol allows for it to be completed.

Removes a stream from the queue of

incoming unidirectional streams, if one is available.

Removes a stream from the queue of

incoming unidirectional streams, if one is available.

Any WebTransport protocol SHALL provide the following operations on

an individual stream:

Add bytes into the stream send buffer. The sender can

also indicate a FIN, signalling the fact that no new data will be

send on the stream. Not applicable for incoming unidirectional

streams.

Removes bytes from the stream receive buffer. FIN can

be received together with the stream data. Not applicable for

outgoing unidirectional streams.

Sends a signal to the peer that the write side of

the stream has been aborted. Discards the send buffer; if

possible, no currently outstanding data is transmitted or

retransmitted. An unsigned 8-bit error code can be supplied as a

part of the signal to the peer; if omitted, the error code is

presumed to be 0.

Sends a signal to the peer that the read side of

the stream has been aborted. Discards the receive buffer; the

peer is typically expected to abort the corresponding send side

in response. An unsigned 8-bit error code can be supplied as a

part of the signal to the peer.

Any WebTransport protocol SHALL provide the following events for an

individual stream:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

send side aborted

receive side aborted

Data Recvd state reached

Indicates that the peer has aborted the

corresponding receive side of the stream. An unsigned 8-bit error

code from the peer may be available.

Indicates that the peer has aborted the

corresponding send side of the stream. An unsigned 8-bit error

code from the peer may be available.

Indicates that no further data will be

transmitted or retransmitted on the local send side, and that the

FIN has been sent. Data Recvd implies that aborting send-side is

a no-op.

5. Transport Properties

WebTransport defines common semantics for multiple protocols to

allow them to be used interchangeably. Nevertheless, those protocols

still have substantially different performance properties that an

application may want to query.

The most notable property is support for unreliable data delivery.

The protocol is defined to support unreliable delivery if:

Resetting a stream results in the lost stream data no longer

being retransmitted, and

The datagrams are never retransmitted.

Another important property is pooling support. Pooling means that

multiple transport sessions may end up sharing the same transport

layer connection, and thus share a congestion controller and other

contexts.

6. Security Considerations

Providing untrusted clients with a reasonably low-level access to

the network comes with risks. This document mitigates those risks by

imposing a set of common requirements described in Section 2.

WebTransport mandates the use of TLS for all protocols implementing

it. This has a dual purpose. On one hand, it protects the transport

from the network, including both potential attackers and

ossification by middleboxes. On the other hand, it protects the

network elements from potential confusion attacks such as the one

discussed in Section 10.3 of [RFC6455].

One potential concern is that even when a transport cannot be

created, the connection error would reveal enough information to

allow an attacker to scan the network addresses that would normally

¶

¶

¶

¶

¶

*

¶

* ¶

¶

¶

¶

[RFC2119]

[RFC3986]

[RFC6454]

[RFC8174]

[RFC8446]

be inaccessible. Because of that, the user agent that runs untrusted

clients MUST NOT provide any detailed error information until the

server has confirmed that it is a WebTransport endpoint. For

example, the client must not be able to distinguish between a

network address that is unreachable and one that is reachable but is

not a WebTransport server.

WebTransport does not support any traditional means of HTTP-based

authentication. It is not necessarily based on HTTP, and hence does

not support HTTP cookies or HTTP authentication. Since it requires

TLS, individual transport protocols MAY expose TLS-based

authentication capabilities such as client certificates.

7. IANA Considerations

There are no requests to IANA in this document.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/rfc/rfc3986>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/rfc/rfc6454>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc3986
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc6454
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446

[CSP]

[I-D.ietf-httpbis-h3-websockets]

[I-D.ietf-quic-datagram]

[I-D.ietf-tls-dtls13]

[RFC5681]

[RFC6455]

[RFC7675]

[RFC8441]

[RFC8831]

[RFC9000]

8.2. Informative References

W3C, "Content Security Policy Level 3", July 2022,

<https://www.w3.org/TR/CSP/>.

Hamilton, R., "Bootstrapping WebSockets with HTTP/3",

Work in Progress, Internet-Draft, draft-ietf-httpbis-h3-

websockets-04, 8 February 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-

websockets-04>.

Pauly, T., Kinnear, E., and D. Schinazi,

"An Unreliable Datagram Extension to QUIC", Work in

Progress, Internet-Draft, draft-ietf-quic-datagram-10, 4

February 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-quic-datagram-10>.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/rfc/rfc5681>.

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC

6455, DOI 10.17487/RFC6455, December 2011, <https://

www.rfc-editor.org/rfc/rfc6455>.

Perumal, M., Wing, D., Ravindranath, R., Reddy, T., and

M. Thomson, "Session Traversal Utilities for NAT (STUN)

Usage for Consent Freshness", RFC 7675, DOI 10.17487/

RFC7675, October 2015, <https://www.rfc-editor.org/rfc/

rfc7675>.

McManus, P., "Bootstrapping WebSockets with HTTP/2", RFC

8441, DOI 10.17487/RFC8441, September 2018, <https://

www.rfc-editor.org/rfc/rfc8441>.

Jesup, R., Loreto, S., and M. Tüxen, "WebRTC Data

Channels", RFC 8831, DOI 10.17487/RFC8831, January 2021,

<https://www.rfc-editor.org/rfc/rfc8831>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

https://www.w3.org/TR/CSP/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h3-websockets-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-10
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://www.rfc-editor.org/rfc/rfc5681
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc6455
https://www.rfc-editor.org/rfc/rfc7675
https://www.rfc-editor.org/rfc/rfc7675
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8441
https://www.rfc-editor.org/rfc/rfc8831
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000

[RFC9002]
Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

May 2021, <https://www.rfc-editor.org/rfc/rfc9002>.

Author's Address

Victor Vasiliev

Google

Email: vasilvv@google.com

https://www.rfc-editor.org/rfc/rfc9002
mailto:vasilvv@google.com

	The WebTransport Protocol Framework
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Conventions and Definitions

	2. Common Transport Requirements
	3. Session Establishment
	4. Transport Features
	4.1. Session-Wide Features
	4.2. Datagrams
	4.3. Streams

	5. Transport Properties
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Author's Address

