
Network Working Group A.L. Newton
Internet-Draft ARIN
Intended status: Standards Track B.J. Ellacott
Expires: November 14, 2013 APNIC
 N. Kong
 CNNIC
 May 13, 2013

HTTP usage in the Registration Data Access Protocol (RDAP)
draft-ietf-weirds-using-http-05

Abstract

 This document is one of a collection that together describe the
 Registration Data Access Protocol (RDAP). It describes how RDAP is
 transported using the Hypertext Transfer Protocol (HTTP).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 14, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Newton, et al. Expires November 14, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft RDAP over HTTP May 2013

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Design Intents . 4
4. Queries . 5
4.1. Accept Header . 5
4.2. Query Parameters . 5

5. Types of HTTP Response 5
5.1. Positive Answers . 5
5.2. Redirects . 6
5.3. Negative Answers . 6
5.4. Malformed Queries . 6
5.5. Rate Limits . 7
5.6. Cross-Origin Resource Sharing 7

6. Extensibility . 7
7. Security Considerations 8
8. IANA Considerations . 8
8.1. RDAP Extensions Registry 8
8.2. RDAP Media Type Registration 9

9. Internationalization Considerations 10
9.1. URIs and IRIs . 10
9.2. Language Identifiers in Queries and Responses 10
9.3. Language Identifiers in HTTP Headers 10

10. Contributing Authors and Acknowledgements 10
11. References . 11
11.1. Normative References 11
11.2. Informative References 11

Appendix A. Protocol Example 12
Appendix B. Cache Busting 13
Appendix C. Changelog . 13

 Authors' Addresses . 14

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Newton, et al. Expires November 14, 2013 [Page 2]

Internet-Draft RDAP over HTTP May 2013

1. Introduction

 This document describes the usage of HTTP for Registration Data
 Directory Services. The goal of this document is to tie together
 usage patterns of HTTP into a common profile applicable to the
 various types of Directory Services serving Registration Data using
 RESTful practices. By giving the various Directory Services common
 behavior, a single client is better able to retrieve data from
 Directory Services adhering to this behavior.

 The registration data expected to be presented by this service is
 Internet resource registration data - registration of domain names
 and Internet number resources. This data is typically provided by
 WHOIS [RFC3912] services, but the WHOIS protocol is insufficient to
 modern registration data service requirements. A replacement
 protocol is expected to retain the simple transactional nature of
 WHOIS, while providing a specification for queries and responses,
 redirection to authoritative sources, support for Internationalized
 Domain Names (IDNs, [RFC5890]), and support for localized
 registration data such as addresses and organisation or person names.

 In designing these common usage patterns, this document introduces
 considerations for a simple use of HTTP. Where complexity may
 reside, it is the goal of this document to place it upon the server
 and to keep the client as simple as possible. A client
 implementation should be possible using common operating system
 scripting tools.

 This is the basic usage pattern for this protocol:

 1. A client issues an HTTP query using GET. As an example, a query
 for the network registration 192.0.2.0 might be http://
 example.com/ip/192.0.2.0.

 2. If the receiving server has the information for the query, it
 examines the Accept header field of the query and returns a 200
 response with a response entity appropriate for the requested
 format.

 3. If the receiving server does not have the information for the
 query but does have knowledge of where the information can be
 found, it will return a redirection response (3xx) with the
 Location: header field containing an HTTP(S) URL (Uniform
 Resource Locator) pointing to the information or another server
 known to have knowledge of the location of the information. The
 client is expected to re-query using that HTTP URL.

https://datatracker.ietf.org/doc/html/rfc3912
https://datatracker.ietf.org/doc/html/rfc5890

Newton, et al. Expires November 14, 2013 [Page 3]

Internet-Draft RDAP over HTTP May 2013

 4. If the receiving server does not have the information being
 requested and does not have knowledge of where the information
 can be found, it returns a 404 response.

 5. If the receiving server will not answer a request for policy
 reasons, it will return an error response (4xx) indicating the
 reason for giving no answer.

 It is important to note that it is not the intent of this document to
 redefine the meaning and semantics of HTTP. The purpose of this
 document is to clarify the use of standard HTTP mechanisms for this
 application.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 As is noted in SSAC Report on WHOIS Terminology and Structure
 [SAC-051], the term "WHOIS" is overloaded, often referring to a
 protocol, a service and data. In accordance with [SAC-051], this
 document describes the base behavior for a Registration Data Access
 Protocol (RDAP). [SAC-051] describes a protocol profile of RDAP for
 Domain Name Registries (DNRs), the Domain Name Registration Data
 Access Protocol (DNRD-AP).

 In this document, an RDAP client is an HTTP User Agent performing an
 RDAP query, and an RDAP server is an HTTP server providing an RDAP
 response. RDAP query and response formats are described in other
 documents in the collection of RDAP specifications, while this
 document describes how RDAP clients and servers use HTTP to exchange
 queries and responses.

3. Design Intents

 There are a few design criteria this document attempts to meet.

 First, each query is meant to return either zero or one result. With
 the maximum upper bound being set to one, the issuance of redirects
 is simplified to the known query/response model used by HTTP
 [RFC2616]. Should an entity contain more than one result, some of
 which are better served by other servers, the redirection model
 becomes much more complicated.

 Second, multiple response formats are supported by this protocol. At
 present the IETF Web Extensible Internet Data Service (WEIRDS)
 working group is defining only a JSON [RFC4627] response format, but

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4627

Newton, et al. Expires November 14, 2013 [Page 4]

Internet-Draft RDAP over HTTP May 2013

 server operators may use other data formats when those formats are
 requested.

 Third, this protocol is intended to be able to make use of the range
 of mechanisms available for use with HTTP. HTTP offers a number of
 mechanisms not described further in this document. Operators are
 able to make use of these mechanisms according to their local policy,
 including cache control, authorization, compression, and redirection.
 HTTP also benefits from widespread investment in scalability,
 reliability, and performance, and widespread programmer understanding
 of client behaviours for RESTful web services, reducing the cost to
 deploy Registration Data Directory Services and clients.

4. Queries

4.1. Accept Header

 RDAP clients MUST include an Accept: header field specifying
 application/rdap+json, application/json, or both. Servers receiving
 an RDAP request MUST return an entity with Content-Type application/
 rdap+json.

 This specification does not define the responses a server returns to
 a request with any other media types in the Accept: header field, or
 with no Accept: header field. One possibility would be to return a
 response in a media type suitable for rendering in a web browser.

4.2. Query Parameters

 Servers MUST ignore unknown query parameters. Use of unknown query
 parameters for cache-busting is described in Appendix B.

5. Types of HTTP Response

 This section describes the various types of responses a server may
 send to a client. While no standard HTTP response code is forbidden
 in usage, at a minimum clients SHOULD understand the response codes
 described in this section as they will be in common use by servers.
 It is expected that usage of response codes and types for this
 application not defined here will be described in subsequent
 documents.

5.1. Positive Answers

Newton, et al. Expires November 14, 2013 [Page 5]

Internet-Draft RDAP over HTTP May 2013

 If a server has the information requested by the client and wishes to
 respond to the client with the information according to its policies,
 it encodes the answer in the format most appropriate according to the
 standard and defined rules for processing the HTTP Accept header
 field, and return that answer in the body of a 200 response.

5.2. Redirects

 If a server wishes to inform a client that the answer to a given
 query can be found elsewhere, it MUST return a 301 response code to
 indicate a permanent move, or a 307 response code to indicate a non-
 permanent redirection, and include an HTTP(s) URL in the Location:
 header field. The client is expected to issue a subsequent request
 to satisfy the original query using the given URL without any
 processing of the URL. In other words, the server is to hand back a
 complete URL and the client should not have to transform the URL to
 follow it.

 For this application, such an example of a permanent move might be a
 Top Level Domain (TLD) operator informing a client the information
 being sought can be found with another TLD operator (i.e. a query
 for the domain bar in foo.example is found at http://foo.example/
 domain/bar).

 For example, if the client sends http://serv1.example.com/weirds/
 domain/example.com, the server redirecting to https://
 serv2.example.net/weirds2/ would set the Location: field to the
 value: https://serv2.example.net/weirds2/domain/example.com.

5.3. Negative Answers

 If a server wishes to respond that it has no information regarding
 the query, it MUST return a 404 response code. Optionally, it MAY
 include additional information regarding the negative answer in the
 HTTP entity body.

 If a server wishes to inform the client that information about the
 query is available, but cannot include the information in the
 response to the client for policy reasons, the server MUST respond
 with an appropriate response code out of HTTP's 4xx range. Clients
 MAY retry the query based on the respective response code.

5.4. Malformed Queries

 If a server receives a query which it cannot interpret as an RDAP
 query, it MUST return a 400 response code. Optionally, it MAY
 include additional information regarding this negative answer in the
 HTTP entity body.

Newton, et al. Expires November 14, 2013 [Page 6]

Internet-Draft RDAP over HTTP May 2013

5.5. Rate Limits

 Some servers apply rate limits to deter address scraping and other
 abuses. When a server declines to answer a query due to rate limits,
 it SHOULD return a 429 response code as described in [RFC6585]. A
 client that receives a 429 response SHOULD decrease its query rate,
 and honor the Retry-After header field if one is present.

 Note that this is not a defense against denial-of-service attacks,
 since a malicious client could ignore the code and continue to send
 queries at a high rate. A server might use another response code if
 it did not wish to reveal to a client that rate limiting is the
 reason for the denial of a reply.

5.6. Cross-Origin Resource Sharing

 When responding to queries, it is RECOMMENDED that servers use the
 Access-Control-Allow-Origin header field, as specified by
 [W3C.CR-cors-20130129].

6. Extensibility

 For extensibility purposes, this document defines an IANA registry
 for prefixes used in JSON [RFC4627] data serialization and URI path
 segments (see Section 8).

 Prefixes and identifiers SHOULD only consist of the alphabetic ASCII
 characters A through Z in both uppercase and lowercase, the numerical
 digits 0 through 9, underscore characters, and SHOULD NOT begin with
 an underscore character, numerical digit or the characters "xml".
 The following describes the production of JSON names in ABNF
 [RFC5234].

 ABNF for JSON names

 name = ALPHA *(ALPHA / DIGIT / "_")

 Figure 1

 This restriction is a union of the Ruby programming language
 identifier syntax and the XML element name syntax and has two
 purposes. First, client implementers using modern programming
 languages such as Ruby or Java can use libraries that automatically
 promote JSON names to first order object attributes or members.
 Second, a clean mapping between JSON and XML is easy to accomplish
 using these rules.

https://datatracker.ietf.org/doc/html/rfc6585
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5234

Newton, et al. Expires November 14, 2013 [Page 7]

Internet-Draft RDAP over HTTP May 2013

7. Security Considerations

 This document does not pose strong security requirements to the RDAP
 protocol. However, it does not restrict against the use of security
 mechanisms offered by the HTTP protocol.

 This document made recommendations for server implementations against
 denial-of-service (Section 5.5) and interoperability with existing
 security mechanism in HTTP clients (Section 5.6).

 Additional security considerations to the RDAP protocol will be
 covered in future RFCs documenting specific security mechanisms and
 schemes.

8. IANA Considerations

8.1. RDAP Extensions Registry

 This specification proposes an IANA registry for RDAP extensions.
 The purpose of this registry is to ensure uniqueness of extension
 identifiers. The extension identifier is used as a prefix in JSON
 names and as a prefix of path segments in RDAP URLs.

 The production rule for these identifiers is specified in Section 6.

 In accordance with RFC5226, the IANA policy for assigning new values
 shall be Specification Required: values and their meanings must be
 documented in an RFC or in some other permanent and readily available
 reference, in sufficient detail that interoperability between
 independent implementations is possible.

 The following is a preliminary template for an RDAP extension
 registration:

 Extension identifier: the identifier of the extension

 Registry operator: the name of the registry operator

 Published specification: RFC number, bibliographical reference or
 URL to a permanent and readily available specification

 Person & email address to contact for further information: The
 names and email addresses of individuals for contact regarding
 this registry entry

 Intended usage: brief reasons for this registry entry

https://datatracker.ietf.org/doc/html/rfc5226

Newton, et al. Expires November 14, 2013 [Page 8]

Internet-Draft RDAP over HTTP May 2013

 The following is an example of a registration in the RDAP extension
 registry:

 Extension identifier: lunarNic

 Registry operator: The Registry of the Moon, LLC

 Published specification: http://www.example/moon_apis/rdap

 Person & email address to contact for further information:
 Professor Bernardo de la Paz <berny@moon.example>

 Intended usage: COMMON

8.2. RDAP Media Type Registration

 This specification registers the "application/rdap+json" media type.

 Type name: application

 Subtype name: rdap+json

 Required parameters: n/a

 Encoding considerations: See section 3.1 of [RFC6839].

 Security considerations: The media represented by this identifier
 does not have security considerations beyond that found in section

6 of [RFC4627]

 Interoperability considerations: There are no known
 interoperability problems regarding this media format.

 Published specification: [[this document]]

 Applications that use this media type: Implementations of the
 Registration Data Access Protocol (RDAP)

 Additional information: This media type is a product of the IETF
 WEIRDS working group. The WEIRDS charter, information on the
 WEIRDS mailing list, and other documents produced by the WEIRDS
 working group can be found at https://datatracker.ietf.org/wg/

weirds/ [1]

 Person & email address to contact for further information: Andy
 Newton <andy@hxr.us>

 Intended usage: COMMON

https://datatracker.ietf.org/doc/html/rfc6839#section-3.1
https://datatracker.ietf.org/doc/html/rfc4627#section-6
https://datatracker.ietf.org/doc/html/rfc4627#section-6
https://datatracker.ietf.org/wg/weirds/
https://datatracker.ietf.org/wg/weirds/

Newton, et al. Expires November 14, 2013 [Page 9]

Internet-Draft RDAP over HTTP May 2013

 Restrictions on usage: none

 Author: Andy Newton

 Change controller: IETF

 Provisional Registration: No (upon publication of this RFC)

9. Internationalization Considerations

9.1. URIs and IRIs

 Clients MAY use IRIs [RFC3987] as they see fit, but MUST transform
 them to URIs [RFC3986] for interaction with RDAP servers. RDAP
 servers MUST use URIs in all responses, and clients MAY transform
 these URIs to IRIs.

9.2. Language Identifiers in Queries and Responses

 Under most scenarios, clients requesting data will not signal that
 the data be returned in a particular language or script. On the
 other hand, when servers return data and have knowledge that the data
 is in a language or script, the data SHOULD be annotated with
 language identifiers whenever they are available, thus allowing
 clients to process and display the data accordingly.

 The mechanism for including a language identifier in a response will
 be defined in subsequent documents describing specific response
 formats.

9.3. Language Identifiers in HTTP Headers

 Given the description of the use of language identifiers in
Section 9.2, unless otherwise specified servers SHOULD ignore the

 HTTP [RFC2616] Accept-Language header field when formulating HTTP
 entity responses, so that clients do not conflate the Accept-Language
 header with the 'lang' values in the entity body.

 However, servers MAY return language identifiers in the Content-
 Language header field so as to inform clients of the intended
 language of HTTP layer messages.

10. Contributing Authors and Acknowledgements

 John Levine provided text to tighten up the Accept header field usage
 and the text for the section on 429 responses.

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2616

Newton, et al. Expires November 14, 2013 [Page 10]

Internet-Draft RDAP over HTTP May 2013

 Marc Blanchet provided some clarifying text regarding the use of URLs
 with redirects, as well as very useful feedback during WGLC.

 Normative language reviews were provided by Murray S. Kucherawy and
 Andrew Sullivan.

 Jean-Phillipe Dionne provided text for the Security Considerations
 section.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, April 2012.

 [RFC6839] Hansen, T. and A. Melnikov, "Additional Media Type
 Structured Syntax Suffixes", RFC 6839, January 2013.

 [W3C.CR-cors-20130129]
 Kesteren, A., "Cross-Origin Resource Sharing", World Wide
 Web Consortium Candidate Recommendation CR-cors-20130129,
 January 2013,
 <http://www.w3.org/TR/2013/CR-cors-20130129>.

11.2. Informative References

 [RFC3912] Daigle, L., "WHOIS Protocol Specification", RFC 3912,
 September 2004.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc6585
https://datatracker.ietf.org/doc/html/rfc6839
http://www.w3.org/TR/2013/CR-cors-20130129
https://datatracker.ietf.org/doc/html/rfc3912
https://datatracker.ietf.org/doc/html/rfc4627

Newton, et al. Expires November 14, 2013 [Page 11]

Internet-Draft RDAP over HTTP May 2013

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, August 2010.

 [SAC-051] Piscitello, D., Ed., "SSAC Report on Domain Name WHOIS
 Terminology and Structure", September 2011.

Appendix A. Protocol Example

 To demonstrate typical behaviour of an RDAP client and server, the
 following is an example of an exchange, including a redirect. The
 data in the response has been elided for brevity, as the data format
 is not described in this document.

 An example of an RDAP client and server exchange:

 Client:
 <TCP connect to rdap.example.com port 80>
 GET /ip/203.0.113.0/24 HTTP/1.1
 Host: rdap.example.com
 Accept: application/rdap+json

 rdap.example.com:
 HTTP 301 Moved Permanently
 Location: http://rdap-ip.example.com/ip/203.0.113.0/24
 Content-Length: 0
 Content-Type: application/rdap+json; charset=UTF-8
 <TCP disconnect>

 Client:
 <TCP connect to rdap-ip.example.com port 80>
 GET /ip/203.0.113.0/24 HTTP/1.1
 Host: rdap-ip.example.com
 Accept: application/rdap+json

 rdap-ip.example.com:
 HTTP 200 OK
 Content-Type: application/rdap+json; charset=UTF-8
 Content-Length: 9001

 { ... }
 <TCP disconnect>

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5890

Newton, et al. Expires November 14, 2013 [Page 12]

Internet-Draft RDAP over HTTP May 2013

Appendix B. Cache Busting

 Some HTTP [RFC2616] cache infrastructure does not adhere to caching
 standards adequately, and could cache responses longer than is
 intended by the server. To overcome these issues, clients MAY use an
 adhoc and improbably used query parameter with a random value of
 their choosing. As Section 4.2 instructs servers to ignore unknown
 parameters, this is unlikely to have any known side effects.

 An example of using an unknown query parameter to bust caches:

 http://example.com/ip/192.0.2.0?__fuhgetaboutit=xyz123

 Use of an unknown parameter to overcome misbehaving caches is not
 part of any specification and is offered here for informational
 purposes.

Appendix C. Changelog

 Initial WG -00: Updated to working group document 2012-September-20

 -01

 * Updated for the sections moved to the JSON responses draft.

 * Simplified media type, removed "level" parameter.

 * Updated 2119 language and added boilerplate.

 * In section 1, noted that redirects can go to redirect servers
 as well.

 * Added Section 9.2 and Section 9.3.

 -02

 * Added a section on 429 response codes.

 * Changed Accept header language in section 4.1

 * Removed reference to the now dead requirements draft.

 * Added contributing authors and acknowledgements section.

https://datatracker.ietf.org/doc/html/rfc2616

Newton, et al. Expires November 14, 2013 [Page 13]

Internet-Draft RDAP over HTTP May 2013

 * Added some clarifying text regarding complete URLs in the
 redirect section.

 * Changed media type to application/rdap+json

 * Added media type registration

 -03

 * Removed forward reference to draft-ietf-weirds-json-response.

 * Added reference and recommended usage of CORS

 -04

 * Revised introduction and abstract.

 * Added negative responses other than 404.

 * Added security considerations.

 * Added and corrected references: CORS, RFC3912, RFC3987,
RFC5890.

 * Expanded on first use several acronyms.

 * Updated 2119 language.

 -05

 * Update the media type registration.

 * Further explained the SHOULD in section 5.

 * Split the references into normative and informative.

 * Other minor fixes.

Authors' Addresses

 Andrew Lee Newton
 American Registry for Internet Numbers
 3635 Concorde Parkway
 Chantilly, VA 20151
 US

 Email: andy@arin.net
 URI: http://www.arin.net

https://datatracker.ietf.org/doc/html/draft-ietf-weirds-json-response
https://datatracker.ietf.org/doc/html/rfc3912
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc5890
http://www.arin.net

Newton, et al. Expires November 14, 2013 [Page 14]

Internet-Draft RDAP over HTTP May 2013

 Byron J. Ellacott
 Asia Pacific Network Information Center
 6 Cordelia Street
 South Brisbane QLD 4101
 Australia

 Email: bje@apnic.net
 URI: http://www.apnic.net

 Ning Kong
 China Internet Network Information Center
 4 South 4th Street, Zhongguancun, Haidian District
 Beijing 100190
 China

 Phone: +86 10 5881 3147
 Email: nkong@cnnic.cn

Newton, et al. Expires November 14, 2013 [Page 15]

http://www.apnic.net

