
Workgroup: wish

Internet-Draft: draft-ietf-wish-whip-05

Published: 19 October 2022

Intended Status: Standards Track

Expires: 22 April 2023

Authors: S. Murillo

Millicast

A. Gouaillard

CoSMo Software

WebRTC-HTTP ingestion protocol (WHIP)

Abstract

This document describes a simple HTTP-based protocol that will allow

WebRTC-based ingestion of content into streaming services and/or

CDNs.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. Overview

4. Protocol Operation

4.1. ICE and NAT support

4.2. WebRTC constraints

4.3. Load balancing and redirections

4.4. STUN/TURN server configuration

4.5. Authentication and authorization

4.6. Simulcast and scalable video coding

4.7. Protocol extensions

5. Security Considerations

6. IANA Considerations

6.1. Link Relation Type: ice-server

6.2. Registration of WHIP URN Sub-namespace and WHIP Registry

6.3. URN Sub-namespace for WHIP

6.3.1. Specification Template

6.4. Registering WHIP Protocol Extensions URIs

6.4.1. Registration Procedure

6.4.2. WHIP Protocol Extension Registration Template

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

While WebRTC has been very successful in a wide range of scenarios,

its adoption in the broadcasting/streaming industry is lagging

behind.

The IETF RTCWEB working group standardized JSEP ([RFC8829]), a

mechanism used to control the setup, management, and teardown of a

multimedia session. It also describes how to negotiate media flows

using the Offer/Answer Model with the Session Description Protocol

(SDP) [RFC3264] as well as the formats for data sent over the wire

(e.g., media types, codec parameters, and encryption). WebRTC

intentionally does not specify a signaling transport protocol at

application level. This flexibility has allowed the implementation

of a wide range of services. However, those services are typically

standalone silos which don't require interoperability with other

services or leverage the existence of tools that can communicate

with them.

In the broadcasting/streaming world, the use of hardware encoders

that make it very simple to plug in cables carrying raw media,

¶

¶

encode it in-place, and push it to any streaming service or CDN

ingest is already ubiquitous. The adoption of a custom signaling

transport protocol for each WebRTC service has hindered broader

adoption as an ingestion protocol.

While some standard signaling protocols are available that can be

integrated with WebRTC, like SIP [RFC3261] or XMPP [RFC6120], they

are not designed to be used in broadcasting/streaming services, and

there also is no sign of adoption in that industry. RTSP [RFC7826],

which is based on RTP and may be the closest in terms of features to

WebRTC, is not compatible with the SDP offer/answer model [RFC3264].

So, currently, there is no standard protocol designed for ingesting

media into a streaming service using WebRTC and so content providers

still rely heavily on protocols like RTMP for doing so. Most of

those protocols are not RTP based, requiring media protocol

translation when doing egress via WebRTC. Avoiding this media

protocol translation is desirable as there is no functional parity

between those protocols and WebRTC and it increases the

implementation complexity at the media server side.

Also, the media codecs used in those protocols tend to be limited

and not negotiated, not always matching the mediac codes supported

in WebRTC. This requires transcoding on the ingest node, which

introduces delay, degrades media quality and increases the

processing workload required on the server side. Server side

transcoding that has traditionally been done to present multiple

renditions in Adaptive Bit Rate Streaming (ABR) implementations can

be replaced with Simulcast [RFC8853] and SVC codecs that are well

supported by WebRTC clients. In addition, WebRTC clients can adjust

client-side encoding parameters based on RTCP feedback to maximize

encoding quality.

This document proposes a simple protocol for supporting WebRTC as

media ingestion method which:

Is easy to implement,

Is as easy to use as popular IP-based broadcast protocols

Is fully compliant with WebRTC and RTCWEB specs

Allows for ingest both in traditional media platforms and in

WebRTC end-to-end platforms with the lowest possible latency.

Lowers the requirements on both hardware encoders and

broadcasting services to support WebRTC.

Is usable both in web browsers and in native encoders.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

WHIP client: WebRTC media encoder or producer that acts as a

client of the WHIP protocol by encoding and delivering the media

to a remote Media Server.

WHIP endpoint: Ingest server receiving the initial WHIP

request.**

WHIP endpoint URL: URL of the WHIP endpoint that will create the

WHIP resource.

Media Server: WebRTC Media Server or consumer that establishes

the media session with the WHIP client and receives the media

produced by it.

WHIP resource: Allocated resource by the WHIP endpoint for an

ongoing ingest session that the WHIP client can send requests for

altering the session (ICE operations or termination, for

example).

WHIP resource URL: URL allocated to a specific media session by

the WHIP endpoint which can be used to perform operations such as

terminating the session or ICE restarts.

3. Overview

The WebRTC-HTTP Ingest Protocol (WHIP) uses an HTTP POST request to

perform a single-shot SDP offer/answer so an ICE/DTLS session can be

established between the encoder/media producer (WHIP client) and the

broadcasting ingestion endpoint (Media Server).

Once the ICE/DTLS session is set up, the media will flow

unidirectionally from the encoder/media producer (WHIP client) to

the broadcasting ingestion endpoint (Media Server). In order to

reduce complexity, no SDP renegotiation is supported, so no tracks

or streams can be added or removed once the initial SDP offer/answer

over HTTP is completed.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Figure 1: WHIP session setup and teardown

4. Protocol Operation

In order to set up an ingestion session, the WHIP client will

generate an SDP offer according to the JSEP rules and perform an

HTTP POST request to the configured WHIP endpoint URL.

The HTTP POST request will have a content type of "application/sdp"

and contain the SDP offer as the body. The WHIP endpoint will

generate an SDP answer and return a "201 Created" response with a

content type of "application/sdp", the SDP answer as the body, and a

Location header field pointing to the newly created resource.

The SDP offer SHOULD use the "sendonly" attribute and the SDP answer

MUST use the "recvonly" attribute.

 +-------------+ +---------------+ +--------------+ +---------------+

 | WHIP client | | WHIP endpoint | | Media Server | | WHIP Resource |

 +--+----------+ +---------+-----+ +------+-------+ +--------|------+

 | | | |

 | | | |

 |HTTP POST (SDP Offer) | | |

 +------------------------>+ | |

 |201 Created (SDP answer) | | |

 +<------------------------+ | |

 | ICE REQUEST | |

 +--------------------------------------->+ |

 | ICE RESPONSE | |

 |<---------------------------------------+ |

 | DTLS SETUP | |

 |<======================================>| |

 | RTP/RTCP FLOW | |

 +<-------------------------------------->+ |

 | HTTP DELETE |

 +-->+

 | 200 OK |

 <---x

¶

¶

¶

POST /whip/endpoint HTTP/1.1

Host: whip.example.com

Content-Type: application/sdp

Content-Length: 1326

v=0

o=- 5228595038118931041 2 IN IP4 127.0.0.1

s=-

t=0 0

a=group:BUNDLE 0 1

a=extmap-allow-mixed

a=msid-semantic: WMS

m=audio 9 UDP/TLS/RTP/SAVPF 111

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=ice-ufrag:EsAw

a=ice-pwd:bP+XJMM09aR8AiX1jdukzR6Y

a=ice-options:trickle

a=fingerprint:sha-256 DA:7B:57:DC:28:CE:04:4F:31:79:85:C4:31:67:EB:27:58:29:ED:77:2A:0D:24:AE:ED:AD:30:BC:BD:F1:9C:02

a=setup:actpass

a=mid:0

a=bundle-only

a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid

a=sendonly

a=msid:- d46fb922-d52a-4e9c-aa87-444eadc1521b

a=rtcp-mux

a=rtpmap:111 opus/48000/2

a=fmtp:111 minptime=10;useinbandfec=1

m=video 9 UDP/TLS/RTP/SAVPF 96 97

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=ice-ufrag:EsAw

a=ice-pwd:bP+XJMM09aR8AiX1jdukzR6Y

a=ice-options:trickle

a=fingerprint:sha-256 DA:7B:57:DC:28:CE:04:4F:31:79:85:C4:31:67:EB:27:58:29:ED:77:2A:0D:24:AE:ED:AD:30:BC:BD:F1:9C:02

a=setup:actpass

a=mid:1

a=bundle-only

a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:10 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=extmap:11 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

a=sendonly

a=msid:- d46fb922-d52a-4e9c-aa87-444eadc1521b

a=rtcp-mux

a=rtcp-rsize

a=rtpmap:96 VP8/90000

a=rtcp-fb:96 ccm fir

a=rtcp-fb:96 nack

a=rtcp-fb:96 nack pli

a=rtpmap:97 rtx/90000

a=fmtp:97 apt=96

HTTP/1.1 201 Created

ETag: "xyzzy"

Content-Type: application/sdp

Content-Length: 1400

Location: https://whip.example.com/resource/id

v=0

o=- 1657793490019 1 IN IP4 127.0.0.1

s=-

t=0 0

a=group:BUNDLE 0 1

a=extmap-allow-mixed

a=ice-lite

a=msid-semantic: WMS *

m=audio 9 UDP/TLS/RTP/SAVPF 111

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=ice-ufrag:38sdf4fdsf54

a=ice-pwd:2e13dde17c1cb009202f627fab90cbec358d766d049c9697

a=fingerprint:sha-256 F7:EB:F3:3E:AC:D2:EA:A7:C1:EC:79:D9:B3:8A:35:DA:70:86:4F:46:D9:2D:CC:D0:BC:81:9F:67:EF:34:2E:BD

a=candidate:1 1 UDP 2130706431 198.51.100.1 39132 typ host

a=setup:passive

a=mid:0

a=bundle-only

a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid

a=recvonly

a=rtcp-mux

a=rtcp-rsize

a=rtpmap:111 opus/48000/2

a=fmtp:111 minptime=10;useinbandfec=1

m=video 9 UDP/TLS/RTP/SAVPF 96 97

c=IN IP4 0.0.0.0

a=rtcp:9 IN IP4 0.0.0.0

a=ice-ufrag:38sdf4fdsf54

a=ice-pwd:2e13dde17c1cb009202f627fab90cbec358d766d049c9697

a=fingerprint:sha-256 F7:EB:F3:3E:AC:D2:EA:A7:C1:EC:79:D9:B3:8A:35:DA:70:86:4F:46:D9:2D:CC:D0:BC:81:9F:67:EF:34:2E:BD

a=candidate:1 1 UDP 2130706431 198.51.100.1 39132 typ host

a=setup:passive

a=mid:1

a=bundle-only

a=extmap:4 urn:ietf:params:rtp-hdrext:sdes:mid

a=extmap:10 urn:ietf:params:rtp-hdrext:sdes:rtp-stream-id

a=extmap:11 urn:ietf:params:rtp-hdrext:sdes:repaired-rtp-stream-id

a=recvonly

a=rtcp-mux

a=rtcp-rsize

a=rtpmap:96 VP8/90000

a=rtcp-fb:96 ccm fir

a=rtcp-fb:96 nack

a=rtcp-fb:96 nack pli

a=rtpmap:97 rtx/90000

a=fmtp:97 apt=96

Figure 2: HTTP POST doing SDP O/A example

Once a session is setup, ICE consent freshness [RFC7675] will be

used to detect non graceful disconnection and DTLS teardown for

session termination by either side.

To explicitly terminate a session, the WHIP client MUST perform an

HTTP DELETE request to the resource URL returned in the Location

header field of the initial HTTP POST. Upon receiving the HTTP

DELETE request, the WHIP resource will be removed and the resources

freed on the Media Server, terminating the ICE and DTLS sessions.

A Media Server terminating a session MUST follow the procedures in

[RFC7675] section 5.2 for immediate revocation of consent.

The WHIP endpoints MUST return an HTTP 405 response for any HTTP

GET, HEAD or PUT requests on the endpoint URL in order to reserve

its usage for future versions of this protocol specification.

The WHIP endpoint MUST support OPTIONS requests for Cross-Origin

Resource Sharing (CORS) as defined in [FETCH] and it SHOULD include

an "Accept-Post" header with a mime type value of "application/sdp"

on the "200 OK" response to any OPTIONS request recevied as per

[W3C.REC-ldp-20150226].

The WHIP resources MUST return an HTTP 405 response for any HTTP

GET, HEAD, POST or PUT requests on the resource URL in order to

reserve its usage for future versions of this protocol

specification.

4.1. ICE and NAT support

The initial offer by the WHIP client MAY be sent after the full ICE

gathering is complete with the full list of ICE candidates, or it

MAY only contain local candidates (or even an empty list of

candidates) as per [RFC8863].

In order to simplify the protocol, there is no support for

exchanging gathered trickle candidates from Media Server ICE

candidates once the SDP answer is sent. The WHIP Endpoint SHALL

gather all the ICE candidates for the Media Server before responding

to the client request and the SDP answer SHALL contain the full list

of ICE candidates of the Media Server. The Media Server MAY use ICE

lite, while the WHIP client MUST implement full ICE.

The WHIP client MAY perform trickle ICE or ICE restarts as per

[RFC8838] by sending an HTTP PATCH request to the WHIP resource URL

with a body containing a SDP fragment with MIME type "application/

trickle-ice-sdpfrag" as specified in [RFC8840]. When used for

trickle ICE, the body of this PATCH message will contain the new ICE

¶

¶

¶

¶

¶

¶

¶

¶

candidate; when used for ICE restarts, it will contain a new ICE

ufrag/pwd pair.

Trickle ICE and ICE restart support is OPTIONAL for a WHIP resource.

If the WHIP resource supports either Trickle ICE or ICE restarts,

the WHIP endpoint MUST include an "Accept-Patch" header with a mime

type value of "application/trickle-ice-sdpfrag" in the "201 Created"

of the POST request that creates the WHIP resource as per [RFC5789]

section 3.1.

If the WHIP resource supports either Trickle ICE or ICE restarts,

but not both, it MUST return a 405 (Not Implemented) for the HTTP

PATCH requests that are not supported.

If the WHIP resource does not support the PATCH method for any

purpose, it returns a 501 (Not Implemented), as described in

[RFC9110] section 6.6.2.

As the HTTP PATCH request sent by a WHIP client may be received out-

of-order by the WHIP resource, the WHIP resource MUST generate a

unique strong entity-tag identifying the ICE session as per

[RFC9110] section 2.3. The initial value of the entity-tag

identifying the initial ICE session MUST be returned in an ETag

header field in the "201 response" to the initial POST request to

the WHIP endpoint. It MUST also be returned in the "200 OK" of any

PATCH request that triggers an ICE restart. Note that including the

ETag in the original "201 Created" response is only REQUIRED if the

WHIP resource supports ICE restarts and OPTIONAL otherwise.

A WHIP client sending a PATCH request for performing trickle ICE

MUST include an "If-Match" header field with the latest known

entity-tag as per [RFC9110] section 3.1. When the PATCH request is

received by the WHIP resource, it MUST compare the indicated entity-

tag value with the current entity-tag of the resource as per

[RFC9110] section 3.1 and return a "412 Precondition Failed"

response if they do not match.

WHIP clients SHOULD NOT use entity-tag validation when matching a

specific ICE session is not required, such as for example when

initiating a DELETE request to terminate a session.

A WHIP resource receiving a PATCH request with new ICE candidates,

but which does not perform an ICE restart, MUST return a "204 No

Content" response without body. If the Media Server does not support

a candidate transport or is not able to resolve the connection

address, it MUST accept the HTTP request with the 204 response and

silently discard the candidate.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 3: Trickle ICE request

A WHIP client sending a PATCH request for performing ICE restart

MUST contain an "If-Match" header field with a field-value "*" as

per [RFC9110] section 3.1.

If the HTTP PATCH request results in an ICE restart, the WHIP

resource SHALL return a "200 OK" with an "application/trickle-ice-

sdpfrag" body containing the new ICE username fragment and password.

Also, the "200 OK" response for a successful ICE restart MUST

contain the new entity-tag corresponding to the new ICE session in

an ETag response header field and MAY contain a new set of ICE

candidates for the Media Server.

If the ICE request cannot be satisfied by the WHIP resource, the

resource MUST return an appropriate HTTP error code and MUST NOT

terminate the session immediately. The WHIP client MAY retry

performing a new ICE restart or terminate the session by issuing an

HTTP DELETE request instead. In either case, the session MUST be

terminated if the ICE consent expires as a consequence of the failed

ICE restart as per [RFC7675] section 5.1.

PATCH /resource/id HTTP/1.1

Host: whip.example.com

If-Match: "xyzzy"

Content-Type: application/trickle-ice-sdpfrag

Content-Length: 548

a=ice-ufrag:EsAw

a=ice-pwd:P2uYro0UCOQ4zxjKXaWCBui1

m=audio 9 RTP/AVP 0

a=mid:0

a=candidate:1387637174 1 udp 2122260223 192.0.2.1 61764 typ host generation 0 ufrag EsAw network-id 1

a=candidate:3471623853 1 udp 2122194687 198.51.100.1 61765 typ host generation 0 ufrag EsAw network-id 2

a=candidate:473322822 1 tcp 1518280447 192.0.2.1 9 typ host tcptype active generation 0 ufrag EsAw network-id 1

a=candidate:2154773085 1 tcp 1518214911 198.51.100.2 9 typ host tcptype active generation 0 ufrag EsAw network-id 2

a=end-of-candidates

HTTP/1.1 204 No Content

¶

¶

¶

Figure 4: ICE restart request

Because the WHIP client needs to know the entity-tag associated with

the ICE session in order to send new ICE candidates, it MUST buffer

any gathered candidates before it receives the HTTP response to the

initial POST request or the PATCH request with the new entity-tag

value. Once it knows the entity-tag value, the WHIP client SHOULD

send a single aggregated HTTP PATCH request with all the ICE

candidates it has buffered so far.

In case of unstable network conditions, the ICE restart HTTP PATCH

requests and responses might be received out of order. In order to

mitigate this scenario, when the client performs an ICE restart, it

MUST discard any previous ice username/pwd frags and ignore any

further HTTP PATCH response received from a pending HTTP PATCH

request. Clients MUST apply only the ICE information received in the

response to the last sent request. If there is a mismatch between

the ICE information at the client and at the server (because of an

out-of-order request), the STUN requests will contain invalid ICE

information and will be rejected by the server. When this situation

is detected by the WHIP Client, it SHOULD send a new ICE restart

request to the server.

4.2. WebRTC constraints

In the specific case of media ingestion into a streaming service,

some assumptions can be made about the server-side which simplifies

the WebRTC compliance burden, as detailed in WebRTC-gateway document

[I-D.draft-ietf-rtcweb-gateways].

PATCH /resource/id HTTP/1.1

Host: whip.example.com

If-Match: "*"

Content-Type: application/trickle-ice-sdpfrag

Content-Length: 54

a=ice-ufrag:ysXw

a=ice-pwd:vw5LmwG4y/e6dPP/zAP9Gp5k

HTTP/1.1 200 OK

ETag: "abccd"

Content-Type: application/trickle-ice-sdpfrag

Content-Length: 102

a=ice-lite

a=ice-ufrag:289b31b754eaa438

a=ice-pwd:0b66f472495ef0ccac7bda653ab6be49ea13114472a5d10a

¶

¶

¶

In order to reduce the complexity of implementing WHIP in both

clients and Media Servers, WHIP imposes the following restrictions

regarding WebRTC usage:

Both the WHIP client and the WHIP endpoint SHALL use SDP bundle

[RFC9143]. Each "m=" section MUST be part of a single BUNDLE group.

Hence, when a WHIP client sends an SDP offer, it MUST include a

"bundle-only" attribute in each bundled "m=" section. The WHIP

client and the Media Server MUST support multiplexed media

associated with the BUNDLE group as per [RFC9143] section 9. In

addition, per [RFC9143] the WHIP client and Media Server will use

RTP/RTCP multiplexing for all bundled media. The WHIP client and

Media Server SHOULD include the "rtcp-mux-only" attribute in each

bundled "m=" sections as per [RFC8858].

While this version of the specification only supports a single audio

and video track, in order to ensure forward compatibility, if the

number of audio and or video tracks or number streams is not

supported by the WHIP Endpoint, it MUST reject the HTTP POST request

with a 406 Not Acceptable error code.

Furthermore, the WHIP Endpoint SHOULD NOT reject individual "m="

sections as per [RFC8829] section 5.3.1 in case there is any error

processing the "m=" section, but reject the HTTP POST request with a

406 Not Acceptable error code to prevent having partially successful

WHIP sessions.

When a WHIP client sends an SDP offer, it SHOULD insert an SDP

"setup" attribute with an "actpass" attribute value, as defined in

[RFC8842]. However, if the WHIP client only implements the DTLS

client role, it MAY use an SDP "setup" attribute with an "active"

attribute value. If the WHIP endpoint does not support an SDP offer

with an SDP "setup" attribute with an "active" attribute value, it

SHOULD reject the request with a 422 Unprocessable Entity response.

NOTE: [RFC8842] defines that the offerer must insert an SDP "setup"

attribute with an "actpass" attribute value. However, the WHIP

client will always communicate with a Media Server that is expected

to support the DTLS server role, in which case the client might

choose to only implement support for the DTLS client role.

Trickle ICE and ICE restarts support is OPTIONAL for both the WHIP

clients and Media Servers as explained in section 4.1.

4.3. Load balancing and redirections

WHIP endpoints and Media Servers might not be colocated on the same

server, so it is possible to load balance incoming requests to

different Media Servers. WHIP clients SHALL support HTTP redirection

via the "307 Temporary Redirect response code" as described in

¶

¶

¶

¶

¶

¶

¶

[RFC9110] section 6.4.7. The WHIP resource URL MUST be a final one,

and redirections are not required to be supported for the PATCH and

DELETE requests sent to it.

In case of high load, the WHIP endpoints MAY return a 503 (Service

Unavailable) status code indicating that the server is currently

unable to handle the request due to a temporary overload or

scheduled maintenance, which will likely be alleviated after some

delay. The WHIP endpoint might send a Retry-After header field

indicating the minimum time that the user agent ought to wait before

making a follow-up request.

4.4. STUN/TURN server configuration

The WHIP endpoint MAY return STUN/TURN server configuration URLs and

credentials usable by the client in the "201 Created" response to

the HTTP POST request to the WHIP endpoint URL.

Each STUN/TURN server will be returned using the "Link" header field

[RFC8288] with a "rel"" attribute value of "ice-server". The Link

target URI is the server URL as defined in [RFC7064] and [RFC7065].

The credentials are encoded in the Link target attributes as

follows:

username: If the Link header field represents a TURN server, and

credential-type is "password", then this attribute specifies the

username to use with that TURN server.

credential: If the "credential-type" attribute is missing or has

a "password" value, the credential attribute represents a long-

term authentication password, as described in [RFC8489], Section

10.2.

credential-type: If the Link header field represents a TURN

server, then this attribute specifies how the credential

attribute value should be used when that TURN server requests

authorization. The default value if the attribute is not present

is "password".

Figure 5: Example ICE server configuration

¶

¶

¶

¶

*

¶

*

¶

*

¶

 Link: <stun:stun.example.net>; rel="ice-server"

 Link: <turn:turn.example.net?transport=udp>; rel="ice-server";

 username="user"; credential="myPassword"; credential-type="password"

 Link: <turn:turn.example.net?transport=tcp>; rel="ice-server";

 username="user"; credential="myPassword"; credential-type="password"

 Link: <turns:turn.example.net?transport=tcp>; rel="ice-server";

 username="user"; credential="myPassword"; credential-type="password"

NOTE: The naming of both the "rel" attribute value of "ice-server"

and the target attributes follows the one used on the W3C WebRTC

recommendation [W3C.REC-webrtc-20210126] RTCConfiguration dictionary

in section 4.2.1. "rel" attribute value of "ice-server" is not

prepended with the "urn:ietf:params:whip:" so it can be reused by

other specifications which may use this mechanism to configure the

usage of STUN/TURN servers.

NOTE: Depending on the ICE Agent implementation, the WHIP client may

need to call the setConfiguration method before calling the

setLocalDescription method with the local SDP offer in order to

avoid having to perform an ICE restart for applying the updated

STUN/TURN server configuration on the next ICE gathering phase.

There are some WebRTC implementations that do not support updating

the STUN/TURN server configuration after the local offer has been

created as specified in [RFC8829] section 4.1.18. In order to

support these clients, the WHIP endpoint MAY also include the STUN/

TURN server configuration on the responses to OPTIONS request sent

to the WHIP endpoint URL before the POST request is sent. However,

this method is not NOT RECOMMENDED and if supported by the

underlying WHIP Client's webrtc implementation, the WHIP Client

SHOULD wait for the information to be returned by the WHIP Endpoint

on the response of the HTTP POST request instead.

The generation of the TURN server credentials may require performing

a request to an external provider, which can both add latency to the

OPTIONS request processing and increase the processing required to

handle that request. In order to prevent this, the WHIP Endpoint

SHOULD NOT return the STUN/TURN server configuration if the OPTIONS

request is a preflight request for CORS, that is, if The OPTIONS

request does not contain an Access-Control-Request-Method with

"POST" value and the the Access-Control-Request-Headers HTTP header

does not contain the "Link" value.

It might be also possible to configure the STUN/TURN server URLs

with long term credentials provided by either the broadcasting

service or an external TURN provider on the WHIP client, overriding

the values provided by the WHIP endpoint.

4.5. Authentication and authorization

WHIP endpoints and resources MAY require the HTTP request to be

authenticated using an HTTP Authorization header field with a Bearer

token as specified in [RFC6750] section 2.1. WHIP clients MUST

implement this authentication and authorization mechanism and send

the HTTP Authorization header field in all HTTP requests sent to

either the WHIP endpoint or resource except the preflight OPTIONS

requests for CORS.

¶

¶

¶

¶

¶

¶

The nature, syntax, and semantics of the bearer token, as well as

how to distribute it to the client, is outside the scope of this

document. Some examples of the kind of tokens that could be used

are, but are not limited to, JWT tokens as per [RFC6750] and

[RFC8725] or a shared secret stored on a database. The tokens are

typically made available to the end user alongside the WHIP endpoint

URL and configured on the WHIP clients (similar to the way RTMP URLs

and Stream Keys are distributed).

WHIP endpoints and resources could perform the authentication and

authorization by encoding an authentication token within the URLs

for the WHIP endpoints or resources instead. In case the WHIP client

is not configured to use a bearer token, the HTTP Authorization

header field must not be sent in any request.

4.6. Simulcast and scalable video coding

Both Simulcast [RFC8853] and Scalable Video Coding (SVC), including

K-SVC (also known as "S modes", in which multiple encodings are sent

on the same SSRC), MAY be supported by both the Media Servers and

WHIP clients through negotiation in the SDP offer/answer.

If the client supports simulcast and wants to enable it for

publishing, it MUST negotiate the support in the SDP offer according

to the procedures in [RFC8853] section 5.3. A server accepting a

simulcast offer MUST create an answer according to the procedures

[RFC8853] section 5.3.2.

4.7. Protocol extensions

In order to support future extensions to be defined for the WHIP

protocol, a common procedure for registering and announcing the new

extensions is defined.

Protocol extensions supported by the WHIP server MUST be advertised

to the WHIP client in the "201 Created" response to the initial HTTP

POST request sent to the WHIP endpoint. The WHIP endpoint MUST

return one "Link" header field for each extension, with the

extension "rel" type attribute and the URI for the HTTP resource

that will be available for receiving requests related to that

extension.

Protocol extensions are optional for both WHIP clients and servers.

WHIP clients MUST ignore any Link attribute with an unknown "rel"

attribute value and WHIP servers MUST NOT require the usage of any

of the extensions.

Each protocol extension MUST register a unique "rel" attribute value

at IANA starting with the prefix: "urn:ietf:params:whip:ext" as

defined in Section 6.3.

¶

¶

¶

¶

¶

¶

¶

¶

For example, considering a potential extension of server-to-client

communication using server-sent events as specified in https://

html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-

events, the URL for connecting to the server side event resource for

the published stream could be returned in the initial HTTP "201

Created" response with a "Link" header field and a "rel" attribute

of "urn:ietf:params:whip:ext:example:server-sent-events". (This

document does not specify such an extension, and uses it only as an

example.)

In this theoretical case, the HTTP 201 response to the HTTP POST

request would look like:

5. Security Considerations

HTTPS SHALL be used in order to preserve the WebRTC security model.

6. IANA Considerations

This specification adds a new link relation type and a registry for

URN sub-namespaces for WHIP protocol extensions.

6.1. Link Relation Type: ice-server

The link relation type below has been registered by IANA per Section

4.2 of [RFC8288].

Relation Name: ice-server

Description: For the WHIP protocol, conveys the STUN and TURN

servers that can be used by an ICE Agent to establish a connection

with a peer.

Reference: TBD

6.2. Registration of WHIP URN Sub-namespace and WHIP Registry

IANA has added an entry to the "IETF URN Sub-namespace for

Registered Protocol Parameter Identifiers" registry and created a

sub-namespace for the Registered Parameter Identifier as per

[RFC3553]: "urn:ietf:params:whip".

To manage this sub-namespace, IANA has created the "WebRTC-HTTP

ingestion protocol (WHIP) URIs" registry, which is used to manage

¶

¶

HTTP/1.1 201 Created

Content-Type: application/sdp

Location: https://whip.example.com/resource/id

Link: <https://whip.ietf.org/publications/213786HF/sse>;

 rel="urn:ietf:params:whip:ext:example:server-side-events"

¶

¶

¶

¶

¶

¶

¶

¶

entries within the "urn:ietf:params:whip" namespace. The registry

description is as follows:

Registry name: WHIP

Specification: this document (RFC TBD)

Repository: See Section Section 6.3

Index value: See Section Section 6.3

6.3. URN Sub-namespace for WHIP

WHIP Endpoint utilizes URIs to identify the supported WHIP protocol

extensions on the "rel" attribute of the Link header as defined in

Section 4.7.

This section creates and registers an IETF URN Sub-namespace for use

in the WHIP specifications and future extensions.

6.3.1. Specification Template

Namespace ID:

The Namespace ID "whip" has been assigned.

Registration Information:

Version: 1

Date: TBD

Declared registrant of the namespace:

Registering organization: The Internet Engineering Task Force.

Designated contact: A designated expert will monitor the WHIP

public mailing list, "wish@ietf.org".

Declaration of Syntactic Structure:

The Namespace Specific String (NSS) of all URNs that use the

"whip" Namespace ID shall have the following structure:

urn:ietf:params:whip:{type}:{name}:{other}.

The keywords have the following meaning:

type: The entity type. This specification only defines the

"ext" type.

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

* ¶

¶

* ¶

* ¶

¶

* ¶

*

¶

¶

*

¶

* ¶

-

¶

name: A required US-ASCII string that conforms to the URN

syntax requirements (see [RFC8141]) and defines a major

namespace of a WHIP protocol extension. The value MAY also be

an industry name or organization name.

other: Any US-ASCII string that conforms to the URN syntax

requirements (see [RFC8141]) and defines the sub-namespace

(which MAY be further broken down in namespaces delimited by

colons) as needed to uniquely identify an WHIP protocol

extension.

Relevant Ancillary Documentation:

None

Identifier Uniqueness Considerations:

The designated contact shall be responsible for reviewing and

enforcing uniqueness.

Identifier Persistence Considerations:

Once a name has been allocated, it MUST NOT be reallocated for a

different purpose.

The rules provided for assignments of values within a sub-

namespace MUST be constructed so that the meanings of values

cannot change.

This registration mechanism is not appropriate for naming values

whose meanings may change over time.

Process of Identifier Assignment:

Namespace with type "ext" (e.g., "urn:ietf:params:whip:ext") is

reserved for IETF-approved WHIP specifications.

Process of Identifier Resolution:

None specified.

Rules for Lexical Equivalence:

No special considerations; the rules for lexical equivalence

specified in [RFC8141] apply.

Conformance with URN Syntax:

No special considerations.

-

¶

-

¶

¶

* ¶

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

* ¶

¶

*

¶

¶

* ¶

Validation Mechanism:

None specified.

Scope:

Global.

6.4. Registering WHIP Protocol Extensions URIs

This section defines the process for registering new WHIP protocol

extensions URIs with IANA in the "WebRTC-HTTP ingestion protocol

(WHIP) URIs" registry (see Section 6.3).

A WHIP Protocol Extension URI is used as a value in the "rel"

attribute of the Link header as defined in Section 4.7 for the

purpose of signaling the WHIP protocol extensions supported by the

WHIP Endpoints.

WHIP Protocol Extensions URIs have a "ext" type as defined in

Section 6.3.

6.4.1. Registration Procedure

The IETF has created a mailing list, "wish@ietf.org", which can be

used for public discussion of WHIP protocol extensions proposals

prior to registration. Use of the mailing list is strongly

encouraged. The IESG has appointed a designated expert [RFC8126] who

will monitor the wish@ietf.orgg mailing list and review

registrations.

Registration of new "ext" type URI (in the namespace

"urn:ietf:params:whip:ext") belonging to a WHIP Protocol Extension

MUST be reviewed by the designated expert and published in an RFC.

An RFC is REQUIRED for the registration of new value data types that

modify existing properties. An RFC is also REQUIRED for registration

of WHEP Protocol Extensions URIs that modify WHEP Protocol

Extensions previously documented in an existing RFC.

The registration procedure begins when a completed registration

template, defined in the sections below, is sent to wish@ietf.org

and iana@iana.org. Within two weeks, the designated expert is

expected to tell IANA and the submitter of the registration whether

the registration is approved, approved with minor changes, or

rejected with cause. When a registration is rejected with cause, it

can be resubmitted if the concerns listed in the cause are

addressed.

¶

* ¶

¶

* ¶

¶

¶

¶

¶

¶

¶

Decisions made by the designated expert can be appealed to the IESG

Applications Area Director, then to the IESG. They follow the normal

appeals procedure for IESG decisions.

Once the registration procedure concludes successfully, IANA creates

or modifies the corresponding record in the WHIP Protocol Extension

registry. The completed registration template is discarded.

An RFC specifying one or more new WHIP Protocol Extension URIs MUST

include the completed registration templates, which MAY be expanded

with additional information. These completed templates are intended

to go in the body of the document, not in the IANA Considerations

section. The RFC SHOULD include any attributes defined.

6.4.2. WHIP Protocol Extension Registration Template

A WHIP Protocol Extension URI is defined by completing the following

template:

URI: A unique URI for the WHIP Protocol Extension (e.g.,

"urn:ietf:params:whip:ext:example:server-sent-events").

Reference: A formal reference to the publicly available

specification

Name: A descriptive name of the WHIP Protocol Extension extension

(e.g., "Sender Side events").

Description: A short phrase describing the function of the

extension

Contact information: Contact information for the organization or

person making the registration

7. Acknowledgements

The authors wish to thank Lorenzo Miniero, Juliusz Chroboczek, Adam

Roach, Nils Ohlmeier, Christer Holmberg, Cameron Elliott, Gustavo

Garcia, Jonas Birme and everyone else in the WebRTC community that

have provided comments, feedback, text and improvement proposals on

the document and contributed early implementations of the spec.

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

[FETCH]

[RFC2119]

[RFC3264]

[RFC3553]

[RFC5789]

[RFC6750]

[RFC7064]

[RFC7065]

[RFC7675]

[RFC8174]

8. References

8.1. Normative References

WHATWG, "Fetch - Living Standard", n.d., <https://

fetch.spec.whatwg.org>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model

with Session Description Protocol (SDP)", RFC 3264, DOI

10.17487/RFC3264, June 2002, <https://www.rfc-editor.org/

info/rfc3264>.

Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An

IETF URN Sub-namespace for Registered Protocol

Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June

2003, <https://www.rfc-editor.org/info/rfc3553>.

Dusseault, L. and J. Snell, "PATCH Method for HTTP", RFC

5789, DOI 10.17487/RFC5789, March 2010, <https://www.rfc-

editor.org/info/rfc5789>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Nandakumar, S., Salgueiro, G., Jones, P., and M. Petit-

Huguenin, "URI Scheme for the Session Traversal Utilities

for NAT (STUN) Protocol", RFC 7064, DOI 10.17487/RFC7064,

November 2013, <https://www.rfc-editor.org/info/rfc7064>.

Petit-Huguenin, M., Nandakumar, S., Salgueiro, G., and P.

Jones, "Traversal Using Relays around NAT (TURN) Uniform

Resource Identifiers", RFC 7065, DOI 10.17487/RFC7065,

November 2013, <https://www.rfc-editor.org/info/rfc7065>.

Perumal, M., Wing, D., Ravindranath, R., Reddy, T., and

M. Thomson, "Session Traversal Utilities for NAT (STUN)

Usage for Consent Freshness", RFC 7675, DOI 10.17487/

RFC7675, October 2015, <https://www.rfc-editor.org/info/

rfc7675>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://fetch.spec.whatwg.org
https://fetch.spec.whatwg.org
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc3553
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc5789
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7064
https://www.rfc-editor.org/info/rfc7065
https://www.rfc-editor.org/info/rfc7675
https://www.rfc-editor.org/info/rfc7675
https://www.rfc-editor.org/info/rfc8174

[RFC8288]

[RFC8489]

[RFC8725]

[RFC8829]

[RFC8838]

[RFC8840]

[RFC8842]

[RFC8853]

[RFC8858]

Nottingham, M., "Web Linking", RFC 8288, DOI 10.17487/

RFC8288, October 2017, <https://www.rfc-editor.org/info/

rfc8288>.

Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,

D., Mahy, R., and P. Matthews, "Session Traversal

Utilities for NAT (STUN)", RFC 8489, DOI 10.17487/

RFC8489, February 2020, <https://www.rfc-editor.org/info/

rfc8489>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token

Best Current Practices", BCP 225, RFC 8725, DOI 10.17487/

RFC8725, February 2020, <https://www.rfc-editor.org/info/

rfc8725>.

Uberti, J., Jennings, C., and E. Rescorla, Ed.,

"JavaScript Session Establishment Protocol (JSEP)", RFC

8829, DOI 10.17487/RFC8829, January 2021, <https://

www.rfc-editor.org/info/rfc8829>.

Ivov, E., Uberti, J., and P. Saint-Andre, "Trickle ICE:

Incremental Provisioning of Candidates for the

Interactive Connectivity Establishment (ICE) Protocol",

RFC 8838, DOI 10.17487/RFC8838, January 2021, <https://

www.rfc-editor.org/info/rfc8838>.

Ivov, E., Stach, T., Marocco, E., and C. Holmberg, "A

Session Initiation Protocol (SIP) Usage for Incremental

Provisioning of Candidates for the Interactive

Connectivity Establishment (Trickle ICE)", RFC 8840, DOI

10.17487/RFC8840, January 2021, <https://www.rfc-

editor.org/info/rfc8840>.

Holmberg, C. and R. Shpount, "Session Description

Protocol (SDP) Offer/Answer Considerations for Datagram

Transport Layer Security (DTLS) and Transport Layer

Security (TLS)", RFC 8842, DOI 10.17487/RFC8842, January

2021, <https://www.rfc-editor.org/info/rfc8842>.

Burman, B., Westerlund, M., Nandakumar, S., and M.

Zanaty, "Using Simulcast in Session Description Protocol

(SDP) and RTP Sessions", RFC 8853, DOI 10.17487/RFC8853,

January 2021, <https://www.rfc-editor.org/info/rfc8853>.

Holmberg, C., "Indicating Exclusive Support of RTP and

RTP Control Protocol (RTCP) Multiplexing Using the

Session Description Protocol (SDP)", RFC 8858, DOI

10.17487/RFC8858, January 2021, <https://www.rfc-

editor.org/info/rfc8858>.

https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8489
https://www.rfc-editor.org/info/rfc8489
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8829
https://www.rfc-editor.org/info/rfc8829
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8840
https://www.rfc-editor.org/info/rfc8840
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8853
https://www.rfc-editor.org/info/rfc8858
https://www.rfc-editor.org/info/rfc8858

[RFC8863]

[RFC9110]

[RFC9143]

[W3C.REC-ldp-20150226]

[I-D.draft-ietf-rtcweb-gateways]

[RFC3261]

[RFC6120]

[RFC7826]

[RFC8126]

Holmberg, C. and J. Uberti, "Interactive Connectivity

Establishment Patiently Awaiting Connectivity (ICE PAC)",

RFC 8863, DOI 10.17487/RFC8863, January 2021, <https://

www.rfc-editor.org/info/rfc8863>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP Semantics", STD 97, RFC 9110, DOI 10.17487/

RFC9110, June 2022, <https://www.rfc-editor.org/info/

rfc9110>.

Holmberg, C., Alvestrand, H., and C. Jennings,

"Negotiating Media Multiplexing Using the Session

Description Protocol (SDP)", RFC 9143, DOI 10.17487/

RFC9143, February 2022, <https://www.rfc-editor.org/info/

rfc9143>.

Malhotra, A., Ed., Arwe, J., Ed., and S.

Speicher, Ed., "Linked Data Platform 1.0", W3C REC REC-

ldp-20150226, W3C REC-ldp-20150226, 26 February 2015,

<https://www.w3.org/TR/2015/REC-ldp-20150226/>.

8.2. Informative References

Alvestrand, H. T. and U.

Rauschenbach, "WebRTC Gateways", Work in Progress,

Internet-Draft, draft-ietf-rtcweb-gateways-02, 21 January

2016, <https://www.ietf.org/archive/id/draft-ietf-rtcweb-

gateways-02.txt>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,

March 2011, <https://www.rfc-editor.org/info/rfc6120>.

Schulzrinne, H., Rao, A., Lanphier, R., Westerlund, M.,

and M. Stiemerling, Ed., "Real-Time Streaming Protocol

Version 2.0", RFC 7826, DOI 10.17487/RFC7826, December

2016, <https://www.rfc-editor.org/info/rfc7826>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

https://www.rfc-editor.org/info/rfc8863
https://www.rfc-editor.org/info/rfc8863
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9143
https://www.rfc-editor.org/info/rfc9143
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://www.ietf.org/archive/id/draft-ietf-rtcweb-gateways-02.txt
https://www.ietf.org/archive/id/draft-ietf-rtcweb-gateways-02.txt
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc7826
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126

[RFC8141]

[W3C.REC-webrtc-20210126]

Saint-Andre, P. and J. Klensin, "Uniform Resource Names

(URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,

<https://www.rfc-editor.org/info/rfc8141>.

Jennings, C., Ed., Boström, H., Ed., and

J. Bruaroey, Ed., "WebRTC 1.0: Real-Time Communication

Between Browsers", W3C REC REC-webrtc-20210126, W3C REC-

webrtc-20210126, 26 January 2021, <https://www.w3.org/TR/

2021/REC-webrtc-20210126/>.

Authors' Addresses

Sergio Garcia Murillo

Millicast

Email: sergio.garcia.murillo@cosmosoftware.io

Alexandre Gouaillard

CoSMo Software

Email: alex.gouaillard@cosmosoftware.io

https://www.rfc-editor.org/info/rfc8141
https://www.w3.org/TR/2021/REC-webrtc-20210126/
https://www.w3.org/TR/2021/REC-webrtc-20210126/
mailto:sergio.garcia.murillo@cosmosoftware.io
mailto:alex.gouaillard@cosmosoftware.io

	WebRTC-HTTP ingestion protocol (WHIP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview
	4. Protocol Operation
	4.1. ICE and NAT support
	4.2. WebRTC constraints
	4.3. Load balancing and redirections
	4.4. STUN/TURN server configuration
	4.5. Authentication and authorization
	4.6. Simulcast and scalable video coding
	4.7. Protocol extensions

	5. Security Considerations
	6. IANA Considerations
	6.1. Link Relation Type: ice-server
	6.2. Registration of WHIP URN Sub-namespace and WHIP Registry
	6.3. URN Sub-namespace for WHIP
	6.3.1. Specification Template

	6.4. Registering WHIP Protocol Extensions URIs
	6.4.1. Registration Procedure
	6.4.2. WHIP Protocol Extension Registration Template

	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

