
 INTERNET-DRAFT Paul Gauthier
 Expires: December 1999 Inktomi Corporation
 Category: Standards Track Josh Cohen

draft-ietf-wrec-wpad-01.txt Microsoft Corporation
 Martin Dunsmuir
 RealNetworks, Inc.
 Charles Perkins
 Sun Microsystems, Inc.

 Web Proxy Auto-Discovery Protocol

Status of This Memo

 This document is a submission by the WREC Working Group of the
 Internet Engineering Task Force (IETF). Comments should be
 submitted to the wrec@cs.utk.edu mailing list.

 Distribution of this memo is unlimited.

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at:
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at:
http://www.ietf.org/shadow.html.

Abstract

 A mechanism is needed to permit web clients to locate nearby web
 proxy caches. Current best practice is for end users to hand
 configure their web client (i.e., browser) with the URL of an "auto
 configuration file". In large environments this presents a
 formidable support problem. It would be much more manageable for
 the web client software to automatically learn the configuration
 information for its web proxy settings. This is typically referred
 to as a resource discovery problem.

 Web client implementers are faced with a dizzying array of resource
 discovery protocols at varying levels of implementation and
 deployment. This complexity is hampering deployment of a "web proxy
 auto-discovery "facility. This document proposes a pragmatic

https://datatracker.ietf.org/doc/html/draft-ietf-wrec-wpad-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 approach to web proxy auto-discovery. It draws on a number of
 proposed standards in the light of practical deployment concerns. It
 proposes an escalating strategy of resource discovery attempts in
 order to find a nearby web proxy server. It attempts to provide rich

 Gauthier, Cohen, Dunsmuir, Perkins [Page 1]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 mechanisms for supporting a complex environment, which may contain
 multiple web proxy servers.

Table of Contents

Status of This Memo...1
Abstract..1
Table of Contents...2
1. Conventions used in this document................................2
2. Introduction...2
3. Defining Web Proxy Auto-Discovery................................3
4. The Discovery Process..4
4.1. WPAD Overview..4
4.2. When to Execute WPAD...6
4.2.1. Upon Startup of the Web Client............................7
4.2.2. Network Stack Events......................................7
4.2.3. Expiration of the CFILE...................................7

4.3. WPAD Protocol Specification..................................7
4.4. Discovery Mechanisms...9
4.4.1. DHCP..9
4.4.2. SVRLOC/SLP...10
4.4.3. DNS A/CNAME "Well Known Aliases10
4.4.4. DNS SRV Records..10
4.4.5. DNS TXT service: Entries.................................11
4.4.6. Fallback...11
4.4.7. Timeouts...11

4.5. Composing a Candidate CURL..................................12
4.6. Retrieving the CFILE at the CURL............................12
4.7. Resuming Discovery..12
5. Client Implementation Considerations............................12
6. Proxy Server Considerations.....................................13
7. Administrator Considerations....................................13
8. Conditional Compliance..14
8.1. Class 0 - Minimally compliant...............................15
8.2. Class 1 - Compliant...15
8.3. Class 2 - Maximally compliant...............................15
9. Security Considerations...15
10. Acknowledgements..16
11. Copyright...16
12. References..16
13. Author Information..17

1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in "Key words for use in
 RFCs to Indicate Requirement Levels" [KEYWORDS].

2. Introduction

 The problem of locating nearby web proxy cache servers can not wait
 for the implementation and large scale deployment of various

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 2]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 upcoming resource discovery protocols. The widespread success of the
 HTTP protocol and the recent popularity of streaming media has
 placed unanticipated strains on the networks of corporations, ISPs
 and backbone providers. There currently is no effective method for
 these organizations to realize the obvious benefits of web caching
 without tedious and error prone configuration by each and every end
 user.

 The de-facto mechanism for specifying a web proxy server
 configuration in web clients is the download of a script or
 configuration file named by a URL. Users are currently expected to
 hand configure this URL into their Browser or other web client.
 This mechanism suffers from a number of drawbacks:

 - Difficulty in supporting a large body of end-users. Many users
 misconfigure their proxy settings and are unable to diagnose the
 cause of their problems.

 - Lack of support for mobile clients who require a different proxy
 as their point of access changes.

 - Lack of support for complex proxy environments where there may
 exist a number of proxy servers with different affinities for
 different clients (based on network proximity, for example).
 Currently, clients would have to "know" which proxy server was
 optimal for their use.

 Currently available methods for resource discovery need to be
 exploited in the context of a well defined framework. Simple,
 functional and efficient mechanisms stand a good chance of solving
 this pressing and basic need. As new resource discovery mechanisms
 mature they can be folded into this framework with little
 difficulty.

 This document is a specification for implementers of web client
 software. It defines a protocol for automatically configuring those
 clients to use a local proxy. It also defines how an administrator
 should configure various resource discovery services in their
 network to support WPAD compatible web clients.

 While it does contain suggestions for web proxy server implementers,
 it does not make any specific demands of those parties.

3. Defining Web Proxy Auto-Discovery

 As mentioned above, currently web client software needs to be
 configured with the URL of a proxy auto-configuration file or
 script. The contents of this script are vendor specific and not
 currently standardized. This document does not attempt to discuss
 the contents of these files (see[8] for an example file format).

 Thus, the Web Proxy Auto-Discovery (WPAD) problem reduces to
 providing the web client a mechanism for discovering the URL of the

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 3]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 Configuration File. Once this Configuration URL (CURL) is known, the
 client software already contains mechanisms for retrieving and
 interpreting the Configuration File (CFILE) to enable access to the
 specified proxy cache servers.

 It is worth carefully noting that the goal of the WPAD process is to
 discover the correct CURL at which to retrieve the CFILE. The client
 is *not* trying to directly discover the name of the proxy server.
 That would circumvent the additional capabilities provided by proxy
 Configuration Files (such as load balancing, request routing to an
 array of servers, automated fail-over to backup proxy server [6,8]).

 It is worth noting that different clients requesting the CURL may
 receive completely different CFILEs in response. The web server may
 send back different CFILES based on a number of criteria such as the
 "User-Agent" header, "Accept" headers, client IP address/subnet,
 etc. The same client could conceivably receive a different CFILE on
 successive retrievals (as a method of round-robin load balancing,
 for example).

 This document will discuss a range of mechanisms for discovering the
 Configuration URL. The client will attempt them in a predefined
 order, until one succeeds. Existing widely deployed facilities may
 not provide enough expressiveness to specify a complete URL. As
 such, we will define default values for portions of the CURL which
 may not be expressible by some discovery mechanisms:

 http://<HOST>:<PORT><PATH>

 <HOST> - There is no default for this potion. Any succeeding
 discovery mechanism will provide a value for the <HOST> portion
 of the CURL. The client MUST NOT provide a default.

 <PORT> - The client MUST assume port 80 if the successful discovery
 mechanism does not provide a port component.

 <PATH> - The client MUST assume a path of "/wpad.dat" if the
 successful discovery mechanism does not provide a path
 component.

4. The Discovery Process

4.1. WPAD Overview

 This sub-section will present a descriptive overview of the WPAD
 protocol. It is intended to introduce the concepts and flow of the
 protocol. The remaining sub-sections (3.2-3.7) will provide the
 rigorous specification of the protocol details. WPAD uses a
 collection of pre-existing Internet resource discovery mechanisms to

 perform web proxy auto-discovery. Readers may wish to refer to [1]
 for a similar approach to resource discovery, since it was a basis
 for this strategy. The WPAD protocol specifies the following:

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 4]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 - how to use each mechanism for the specific purpose of web proxy
 auto-discovery
 - the order in which the mechanisms should be performed
 - the minimal set of mechanisms which must be attempted by a WPAD
 compliant web client

 The resource discovery mechanisms utilized by WPAD are as follows.
 - Dynamic Host Configuration Protocol (DHCP, [3,7]).
 - Service Location Protocol (SLP, [4]).
 - "Well Known Aliases using DNS A records [5,9].
 - DNS SRV records [2,9].
 - "service: URLs" in DNS TXT records [10].

 Of all these mechanisms only the DHCP and Well Known Aliases are
 required in WPAD clients. This decision is based on three reasons:
 these facilities are currently widely deployed in existing vendor
 hardware and software; they represent functionality that should
 cover most real world environments; they are relatively simple to
 implement.

 DNS servers supporting A records are clearly the most widely
 deployed of the services outlined above. It is reasonable to expect
 API support inside most web client development environments (POSIX
 C, Java, etc). The hierarchical nature of DNS makes it possible to
 support hierarchies of proxy servers.

 DNS is not suitable in every environment, unfortunately.
 Administrators often choose a DNS domain name hierarchy that does
 not correlate to network topologies, but rather with some
 organizational model (for example, foo.development.bar.com and
 foo.marketing.bar.com). DHCP servers, on the other hand, are
 frequently deployed with concern for network topologies. DHCP
 servers provide support for making configuration decisions based on
 subnets, which are directly related to network topology.

 Full client support for DHCP is not as ubiquitous as for DNS. That
 is, not all clients are equipped to take advantage of DHCP for their
 essential network configuration (assignment of IP address, network
 mask, etc). APIs for DHCP are not as widely available. Luckily,
 using DHCP for WPAD does not require either of these facilities. It
 is relatively easy for web client developers to speak just the
 minimal DHCP protocol to perform resource discovery. It entails
 building a simple UDP packet, sending it to the subnet broadcast
 address, and parsing the reply UDP packet(s) which are received to
 extract the WPAD option field. A reference implementation of this
 code in C is available [11].

 The WPAD client attempts a series of resource discovery requests,

 using the discovery mechanisms mentioned above, in a specific order.
 Clients only attempt mechanisms that they support (obviously). Each
 time the discovery attempt succeeds; the client uses the information
 obtained to construct a CURL. If a CFILE is successfully retrieved

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 5]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 at that CURL, the process completes. If not, the client resumes
 where it left of in the predefined series of resource discovery
 requests. If no untried mechanisms remain and a CFILE has not been
 successfully retrieved, the WPAD protocol fails and the client is
 configured to use no proxy server.

 First the client tries DHCP, followed by SLP. If no CFILE has been
 retrieved the client moves on to the DNS based mechanisms. The
 client will cycle through the DNS SRV, Well Known Aliases and DNS
 TXT record methods multiple times. Each time through the QNAME being
 used in the DNS query is made less and less specific. In this manner
 the client can locate the most specific configuration information
 possible, but can fall back on less specific information. Every DNS
 lookup has the QNAME prefixed with wpad to indicate the resource
 type being requested.

 As an example, consider a client with hostname johns-
 desktop.development.foo.com. Assume the web client software supports
 all of the mechanisms listed above. This is the sequence of
 discovery attempts the client would perform until one succeeded in
 locating a valid CFILE:

 - DHCP
 - SLP
 - DNS A lookup on QNAME=wpad.development.foo.com.
 - DNS SRV lookup on QNAME=wpad.development.foo.com.
 - DNS TXT lookup on QNAME=wpad.development.foo.com.
 - DBS A lookup on QNAME=wpad.foo.com.
 - DNS SRV lookup on QNAME=wpad.foo.com.
 - DNS TXT lookup on QNAME=wpad.foo.com.

4.2. When to Execute WPAD

 Web clients need to perform the WPAD protocol periodically to
 maintain correct proxy settings. This should occur on a regular
 basis corresponding to initialization of the client software or the
 networking stack below the client. As well, WPAD will need to occur
 in response to expiration of existing configuration data. The
 following sections describe the details of these scenarios. 3.2.1.
 Periodic Discovery

 The web proxy auto-discovery process MUST occur at least as
 frequently as one of the following two options. A web client can use
 either option depending on which makes sense in their environment.
 Clients MUST use at least one of the following options. They MAY
 also choose to implement both options.
 - Upon startup of the web client.
 - Whenever there indication from the networking stack that the IP
 address of the client host either has, or could have, changed.

 In addition, the client MUST attempt a discovery cycle upon
 expiration of a previously downloaded CFILE in accordance with
 HTTP/1.1.

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 6]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

4.2.1. Upon Startup of the Web Client

 For many types of web client (like web browsers) there can be many
 instances of the client operating for a given user at one time. This
 is often to allow display of multiple web pages in different
 windows, for example. There is no need to re-perform WPAD every time
 a new instance of the web client is opened. WPAD MUST be performed
 when the number of web client instances transitions from 0 to 1. It
 SHOULD NOT be performed as additional instances are created.

4.2.2. Network Stack Events

 Another option for clients is to tie the execution of WPAD to
 changes in the networking environment. If the client can learn about
 the change of the local host s IP address, or the possible change of
 the IP address, it MUST re-perform the WPAD protocol. Many
 operating systems provide indications of network up events, for
 example. Those types of events and system-boot events might be the
 triggers for WPAD in many environments.

4.2.3. Expiration of the CFILE

 The HTTP retrieval of the CURL may return HTTP headers specifying a
 valid lifetime for the CFILE returned. The client MUST obey these
 timeouts and rerun the PAD process when it expires. A client MAY
 rerun the WPAD process if it detects a failure of the currently
 configured proxy (which is not otherwise recoverable via the
 inherent mechanisms provided by the currently active Configuration
 File).

 Whenever the client decides to invalidate the current CURL or CFILE,
 it MUST rerun the entire WPAD protocol to ensure it discovers the
 currently correct CURL. Specifically, if the valid lifetime of the
 CFILE ends(as specified by the HTTP headers provided when it was
 retrieved),the complete WPAD protocol MUST be rerun. The client MUST
 NOT simply re-use the existing CURL to obtain a fresh copy of the
 CFILE.

 A number of network round trips, broadcast and/or multicast
 communications may be required during the WPAD protocol. The WPAD
 protocol SHOULD NOT be invoked at a more frequent rate than
 specified above (such as per-URL retrieval).

4.3. WPAD Protocol Specification

 The following pseudo-code defines the WPAD protocol. If a
 particular discovery mechanism is not supported, treat it as a
 failed discovery attempt in the pseudo-code.

 In addition, this logic is expressed below in pseudo-code.
 The following pseudo-code fragment defines WPAD. Unsupported
 discovery mechanisms are treated as failure in the pseudo-code.

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 7]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 Two subroutines need explanation. The subroutine
 strip_leading_component(dns_string) strips off the leading
 characters, up to and including the first dot (`.') in the string
 which is passed as a parameter, and is expected to contain DNS name.
 The Boolean subroutine is_not_canonical(dns_string) returns FALSE if
 dns_string is one of the canonical domain suffixes defined in RFC

1591 [13] (for example, "com").

 The slp_list and dns_list elements below are assumed to be linked
 lists containing a data field and a pointer to the next element.
 The data field contains the elements used to override the default
 values in creating a CURL, as detailed in section 3.5.

 load_CFILE() {
 /* MUST use DHCP */
 curl = dhcp_query(/*WPAD option (section 4.4.1) */);
 if (curl != null) { /* DHCP succeeded */
 if isvalid (read_CFILE(curl))
 return SUCCESS; /* valid CFILE */
 }

 /* Should use SLP */
 slp_list = slp_query(/*(WPAD attributes (Section 4.4.2)*/);
 while (slp_list != null) { /* test each curl */
 if isvalid(read_CFILE(slp_list.curl_data))
 return SUCCESS; /* valid CFILE */
 else
 slp_list = slp_list.next;
 }

 /* all the DNS mechanisms */
 TGTDOM = gethostbyname(me);
 TGTDOM = strip_leading_component(TGTDOM);

 while (is_not_canonical(TGTDOM)) {

 /* SHOULD try DNS SRV records */
 dns_list = dns_query(/*QNAME=wpad.TGTDOM.,
 QTYPE=SRV (section 4.4.4)*/);
 while (dns_list != null) { /* each TXT record */
 if isvalid(read_CFILE(dns_list, curl_data))
 return SUCCESS; /* valid CFILE */
 else
 dns_list = dns_list.next;
 }

 /* SHOULD try DNS TXT records */
 dns_list = dns_query(/*QNAME=wpad.TGTDOM.,

https://datatracker.ietf.org/doc/html/rfc1591
https://datatracker.ietf.org/doc/html/rfc1591

 QTYPE=TXT (section 4.4.5)*/);
 while (dns_list != null) { /* each TXT record */
 if isvalid(read_CFILE(dns_list, curl_data))
 return SUCCESS; /* valid CFILE */

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 8]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 else
 dns_list = dns_list.next;
 }

 /* MUST try DNS A records */
 dns_list = dns_query(/*QNAME=wpad.TGTDOM.,
 QTYPE=A (Section 4.4.3)*/);

 while (dns_list != null) { /* check each A record */
 if isvalid(read_CFILE(dns_list, curl_data))
 return SUCCESS; /* valid CFILE */
 else
 dns_list = dns_list.next;
 }

 /* Still no match, remove leading component and iterate */
 TGTDOM = strip_leading_component(TGTDOM);

 } /* no A, TXT or SRV records for wpad.* */

 return FAILED; /* could not locate valid CFILE */
 }

4.4. Discovery Mechanisms

 Each of the resource discovery methods will be marked as to whether
 the client MUST, SHOULD, MAY, or MUST NOT implement them to be
 compliant. Client implementers are encouraged to implement as many
 mechanisms as possible, to promote maximum interoperability.

 +-------------------------+--------+----------+
 | Discovery | | Document |
 | Mechanism | Status | Section |
 +-------------------------+--------+----------+
DHCP	MUST	4.4.1
SLP	SHOULD	4.4.2
"Well Known Alias"	MUST	4.4.3
DNS SRV Records	SHOULD	4.4.4
DNS TXT "service: URLs"	SHOULD	4.4.5
 +-------------------------+--------+----------+

 SUMMARY OF DISCOVERY MECHANISMS

4.4.1. DHCP

 Client implementations MUST support DHCP. DHCP has widespread
 support innumerous vendor hardware and software implementations, and
 is widely deployed. It is also perfectly suited to this task, and is
 used to discover other network resources (such a time servers,

 printers, etc). The DHCP protocol is detailed in RFC 2131 [3].
 We propose a new DHCP option with code 252 for use in web proxy
 auto-discovery. See RFC 2132 [7] for a list of existing DHCP

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 9]

https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2132

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 options. See "Conditional Compliance" for more information on DHCP
 requirements.

 The client should obtain the value of the DHCP option code 252 as
 returned by the DHCP server. If the client has already conducted
 DHCP protocol during its initialization, the DHCP server may already
 have supplied that value. If the value is not available through a
 client OS API, the client SHOULD use a DHCPINFORM message to query
 the DHCP server to obtain the value.

 The DHCP option code for WPAD is 252 by agreement of the DHC working
 group chair. This option is of type STRING. This string contains a
 URL which points to an appropriate config file. The STRING is of
 arbitrary size.
 An example STRING value would be:
 "http://server.domain/proxyconfig.pac"

4.4.2. Service Location Protocol /SLP

 The Service Location Protocol [RFC2608] is a Proposed Standard for
 discovering services in the Internet. SLP has several reference
 implementations available; for details, check the following web
 page:

http://www.svrloc.org/

 A service type for use with WPAD has been defined and is available
 as an Internet Draft.

 Client implementations SHOULD implement SLP. SLP Service Replies
 will provide one or more complete CURLs. Each candidate CURL so
 created should be pursued as specified in section 4.5 and beyond.

4.4.3. DNS A/CNAME "Well Known Aliases

 Client implementations MUST support this mechanism. This should be
 straightforward since only basic DNS lookup of A records is
 required. See RFC 2219 [5] for a description of using "well known"
 DNS aliases for resource discovery. We propose the "well known
 alias of "wpad" for web proxy auto-discovery.

 The client performs the following DNS lookup:
 QNAME=wpad.TGTDOM., QCLASS=IN, QTYPE=A

 Each A RR, which is returned, contains an IP address which is used
 to replace the <HOST> default in the CURL.

 Each candidate CURL so created should be pursued as specified in
section 4.5 and beyond.

https://datatracker.ietf.org/doc/html/rfc2608
http://www.svrloc.org/
https://datatracker.ietf.org/doc/html/rfc2219

4.4.4. DNS SRV Records

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 10]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 Client implementations SHOULD support the DNS SRV mechanism. Details
 of the protocol can be found in RFC 2052 [2]. If the implementation
 language/environment provides the ability to perform DNS lookups on
 QTYPEs other than A, client implementers are strongly encouraged to
 provide this support. It is acknowledged that not all resolver APIs
 provide this functionality.

 The client issues the following DNS lookup:
 QNAME=wpad.tcp.TGTDOM., QCLASS=IN, QTYPE=SRV

 If it receives SRV RRs in response, the client should use each valid
 RR in the order specified in RFC 2052 [2]. Each valid record will
 specify both a <HOST> and a <PORT> to override the CURL defaults.

 Each candidate CURL so created should be pursued as specified in
section 4.5 and beyond.

4.4.5. DNS TXT service: Entries

 Client implementation SHOULD support this mechanism. If the
 implementation language/environment provides the ability to perform
 DNS lookups on QTYPEs other than A, the vendor is strongly
 encouraged to provide this support. It is acknowledged that not all
 resolver APIs provide this functionality.
 The client should attempt to retrieve TXT RRs from the DNS to obtain
 service: URLs contained therein. The service: URL will be of the
 following format, specifying a complete candidate CURL for each
 record located:

 service: wpad:http://<HOST>:<PORT><PATH>

 The client should first issue the following DNS query:
 QNAME=wpad.TGTDOM., QCLASS=IN, QTYPE=TXT

 It should process each TXT RR it receives (if any) using each
 service:URL found (if any) to generate a candidate CURL. These CURLs
 should be pursued as described in section 3.5 and beyond.
 Readers familiar with [1] should note that WPAD clients MUST NOT
 perform the QNAME=TGTDOM., QCLASS=IN, QTYPE=TXT lookup which would
 be suggested by that document.

4.4.6. Fallback

 Clients MUST NOT implement the "Fallback" mechanism described in
 [1]. It is unlikely that a client will find a web server prepared to
 handle the CURL request at a random suffix of its FQDN. This will
 only increase the number of DNS probes and introduce an excess of
 spurious "GET" requests on those hapless web servers.

 Instead, the "Well Known Aliases method of section 3.4.4 provides

https://datatracker.ietf.org/doc/html/rfc2052
https://datatracker.ietf.org/doc/html/rfc2052

 equivalent functionality.

4.4.7. Timeouts

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 11]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 Implementers are encouraged to limit the time elapsed in each
 discovery phase. When possible, limiting each phase to 10 seconds
 is considered reasonable. Implementers may choose a different value
 which is more appropriate to their network properties. For example,
 a device implementation, which operated over a wireless network, may
 use a much larger timeout to account for low bandwidth or high
 latency.

4.5. Composing a Candidate CURL

 Any successful discovery mechanism response will provide a
 <HOST>(perhaps in the form of an IP address). Some mechanisms will
 also provide a <PORT> and/or a <PATH>. The client should override
 the default CURL fields with all of those supplied by the discovery
 mechanism.

4.6. Retrieving the CFILE at the CURL

 The client then requests the CURL via HTTP.
 When making the request it MUST transmit HTTP "Accept" headers
 indicating what CFILE formats it is capable of accepting. For
 example, Netscape Navigator browsers with versions 2.0 and beyond
 might include the following line in the HTTP Request:

 Accept: application/x-ns-proxy-autoconfig

 The client MUST follow HTTP redirect directives (response codes 3xx)
 returned by the server. The client SHOULD send a valid "User-Agent"
 header.

4.7. Resuming Discovery

 If the HTTP request fails for any reason (fails to connect, server
 error response, etc) the client MUST resume the search for a
 successful CURL where it left off. It should continue attempting
 other sub-steps in a specific discovery mechanism, and then move on
 to the next mechanism or TGTDOM iteration, etc.

5. Client Implementation Considerations

 The large number of discovery mechanisms specified in this document
 may raise concerns about network traffic and performance. The DHCP
 portion of the process will result in a single broadcast by the
 client, and perhaps a few replies by listening DHCP servers.

 The remaining mechanisms are all DNS based. All DNS queries should
 have the QNAME terminated with a trailing '.' to indicate a FQDN and
 expedite the lookup. As such each TGTDOM iteration will cause 3 DNS

 lookups, each a unicast UDP packet and a reply. Most clients will
 have fewer than 2TGTDOM iterations, limiting the total number of DNS
 request/replies to6.

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 12]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 All total, 7 UDP request/reply packets on client startup is quite a
 low overhead. The first web page downloaded by the client will
 likely dwarf that packet count. Each of the DNS lookups should stand
 a high chance of hitting the cache in the client's DNS server, since
 other clients will have likely looked them up recently, providing a
 low total elapsed time.

 This is of course the worst case, where no CURLS are obtained, and
 assuming a long client FQDN. Often, a successful CURL will be found
 early in the protocol, reducing the total packet count.
 Client implementations are encouraged to overlap this protocol work
 with other startup activities. Also, client implementers with
 concerns about performance can choose to implement only the
 discovery mechanisms listed as MUST in section 3.4.

 A longer delay could occur if a CURL is obtained, but the hosting
 web server is down. The client could spend considerable time waiting
 for the TCP connect () call to fail. Luckily this is an extremely
 rare case where the web server hosting the CFILE has failed. See

section 5, where proxy server implementers are encouraged to provide
 support for hosting CURLs on the proxy itself (acting as web
 server). Since proxy servers are often deployed with considerable
 attention to fault tolerance, this corner case can be further
 minimized.

6. Proxy Server Considerations

 As mentioned in the previous section, it is suggested that proxy
 servers be capable of acting as a web server, so that they can host
 the CURL directly.

 The implementers of proxy servers are most likely to understand the
 deployment situations of proxy caches, the formats of proxy
 configuration files, etc. They can also build in the ability select
 a CFILE based on all the various inputs at the time of the CURL
 request("User-Agent", "Accept", client IP address/subnet/hostname,
 topological distribution of nearby proxy servers, etc).

7. Administrator Considerations

 Administrators should configure at least one of the DHCP or DNS A RR
 methods in their environment (since those are the only two all
 compatible clients MUST implement). Beyond that, configuring to
 support mechanisms earlier in the search order will improve client
 startup time.

 One of the major motivations for this protocol structure was to
 support client location of "nearby" proxy servers. In many
 environments there may be a number of proxy servers (workgroup,

 corporate gateway, ISP, backbone). There are a number of possible
 points at which "nearness" decisions can be made in this framework:

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 13]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 - DHCP servers for different subnets can return different answers.
 They can also base decisions on the client cipaddr field or the
 client identifier option.

 - DNS servers can be configured to return different SRV/A/TXT RRs
 for Different domain suffixes (for example, QNAMEs
 wpad.marketing.bigcorp.com and wpad.development.bigcorp.com).

 - The web server handling the CURL request can make decisions based
 on the "User-Agent", "Accept", client IP
 address/subnet/hostname, and the topological distribution of
 nearby proxy servers, etc. This can occur inside a CGI
 executable created to handle the CURL. As mentioned above it
 could be a proxy server itself handing the CURL request and
 making those decisions.

 - The CFILE may be expressive enough to select from a set of
 alternatives at "runtime" on the client. CARP [6] is based on
 this premise for an array of caches. It is not inconceivable
 that the CFILE could compute some network distance or fitness
 metrics to a set of candidate proxy servers and then select the
 "closest" or "most responsive" server.

 Note that it is valid to configure a DHCP daemon to respond only to
 INFORM option queries in static IP environments

 Not all of the above mechanisms can be supported in all currently
 deployed vendor hardware and software. The hope is that enough
 flexibility is provided in this framework that administrators can
 select which mechanisms will work in their environments.

8. Conditional Compliance

 In light of the fact that many of the discovery technologies
 described in this document are not well deployed or not available on
 all platforms, this specification permits conditional compliance.
 Conditional compliance is designated by three class identifications.

 Additionally, due to the possible security implications of a DHCP
 broadcast request, it is onerous to REQUIRE an implementer to put
 himself or his implementation at undue risk. It is quite common to
 have rogue DHCP servers on a network which may fool a DHCP broadcast
 implementation into using a malicious configuration file. On
 platforms which do not support DHCP natively and cannot get the WPAD
 option along with its IP address, and which cannot support the DHCP
 INFORM unicast request, presumably to a known and trusted DHCP
 server, the likelihood of an undetected spoofing attack is
 increased. Having an individual program, such as a browser, trying
 to detect a DHCP server on a network is unreasonable, in the

 authors' opinion. On platforms which use DHCP for their system IP
 address and have previously trusted a DHCP server, a unicast DHCP
 INFORM to that same trusted server does not introduce any additional
 trust to that server.

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 14]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

8.1. Class 0 - Minimally compliant

 A WPAD implementation which implements only the following discovery
 mechanisms and interval schemes is considered class 0 compliant:

 DNS A record queries
 Browser or System session refresh intervals

 Class 0 compliance is only applicable to systems or implementations
 which do not natively support DHCP and or cannot securely determine
 a trusted local DHCP server.

8.2. Class 1 - Compliant

 A WPAD implementation which implements only the following discovery
 mechanisms and interval schemes is considered class 1 compliant:

 DNS A record queries
 DHCP INFORM Queries

 Network stack change refresh intervals
 CFILE expiration refresh intervals

8.3. Class 2 - Maximally compliant

 A WPAD implementation which implements only the following discovery
 mechanisms and interval schemes is considered class 1 compliant:

 DNS A record queries
 DHCP INFORM Queries
 DNS TXT service: queries
 DNS SRV RR queries
 SVRLOC Queries
 Network stack change refresh intervals
 CFILE expiration refresh intervals

 To be considered compliant with a given class, an implementation
 MUST support the features listed above corresponding to that class.

9. Security Considerations

 This document does not address security of the protocols involved.
 The WPAD protocol is vulnerable to existing identified weaknesses in
 DHCP and DNS. The groups driving those standards, as well as the SLP
 protocol standards, are addressing security.

 When using DHCP discovery, clients are encouraged to use unicast
 DHCP INFORM queries instead of broadcast queries which are more
 easily spoofed in insecure networks.

 Minimally, it can be said that the WPAD protocol does not create new
 security weaknesses.

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 15]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

10. Acknowledgements

 The authors' work on this specification would be incomplete without
 the assistance of many people. Specifically, the authors would like
 the express their gratitude to the following people:

 Chuck Neerdaels, Inktomi, for providing assistance in the design of
 the WPAD protocol as well as for providing reference
 implementations.

 Arthur Bierer, Darren Mitchell, Sean Edmison, Mario Rodriguez, Danpo
 Zhang, and Yaron Goland, Microsoft, for providing implementation
 insights as well as testing and deployment.

 Ari Luotonen, Netscape, for his role in designing the first web
 proxy.

 In addition, the authors are grateful for the feedback provided by
 the following people:

 Jeremy Worley - RealNetworks
 Eric Twitchell - United Parcel Service

11. Copyright

 Copyright (C) The Internet Society 1998. All Rights Reserved. This
 document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English. The limited permissions granted above are perpetual and
 will not be revoked by the Internet Society or its successors or
 assigns. This document and the information contained herein is
 provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE
 INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

12. References

 [1] Moats, R., Hamilton, M., and P. Leach, "Finding Stuff (How to
 discover services)", Internet Draft, October 1997.

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 16]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 [2] Gulbrandsen, A., and P. Vixie, "A DNS RR for specifying the
 location of services (DNS SRV)", RFC 2052, October 1996

 [3] Droms, R., "Dynamic Host Configuration Protocol", RFC 2131,
 March 1997.

 [4] Veizades, J., Guttman, E., Perkins, C., and M. Day, "Service
 Location Protocol," Internet Draft, October 1997.

 [5] Hamilton, M., and R. Wright, "Use of DNS Aliases for Network
 Services", RFC 2219, October 1997.

 [6] Valloppillil, V., and K. Ross, "Cache Array Routing Protocol",
 Internet Draft, October 1997.

 [7] Alexander, S., and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [8] Luotonen, A., "Navigator Proxy Auto-Config File Format",
 Netscape Corporation,

http://home.netscape.com/eng/mozilla/2.0/relnotes/
demo/proxy-live.html, March 1996.

 [9] Mockapetris, P., "Domain Names - Concepts and Facilities",
RFC 1034, November 1987.

 [10] Perkins, C., Guttman, E., and J. Kempf, "Service Templates and
 service: Schemes", Internet Draft, December 1997.

 [11] A Sample DHCP Implementation for WPAD , Inktomi Corporation,
http://www.inktomi.com/TBD.html, February 1998.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

13. Author Information

 Paul Gauthier
 Inktomi Corporation
 1900 South Norfolk Street Suite 310, San Mateo, CA 94403-1151
 Phone: (650) 653-2800
 Email: gauthier@inktomi.com

 Josh Cohen
 Microsoft Corporation
 One Microsoft Way, Redmond, WA 98052
 Phone: (425) 703-5812
 Email: joshco@microsoft.com

 Martin Dunsmuir

https://datatracker.ietf.org/doc/html/rfc2052
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2219
https://datatracker.ietf.org/doc/html/rfc2132
http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html
https://datatracker.ietf.org/doc/html/rfc1034
http://www.inktomi.com/TBD.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

 RealNetworks, Inc.
 1111 3rd Ave, Suite 2900, Seattle, WA 98101
 Phone: (206) 674-2237

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 17]

 INTERNET-DRAFT Web Proxy Auto-Discovery Protocol 7/28/99

 Email: martind@real.com

 Charles Perkins
 Sun Microsystems, Inc.
 15 Network Circle, Menlo Park, CA 94025
 Phone: (650) 786-6464
 Email: charles.perkins@Sun.COM

 Category: Standards Track Expires: December 1999
 Gauthier, Cohen, Dunsmuir, Perkins [Page 18]

