
XCON Working Group M. Barnes
Internet-Draft Nortel
Intended status: Standards Track C. Boulton
Expires: May 7, 2009 Avaya
 S P. Romano
 University of Napoli
 H. Schulzrinne
 Columbia University
 November 3, 2008

Centralized Conferencing Manipulation Protocol
draft-ietf-xcon-ccmp-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 7, 2009.

Abstract

 The Centralized Conferencing Manipulation Protocol (CCMP) can create,
 retrieve, change and delete objects describing a centralized
 conference, such as state and capabilities of the conference,
 participants, and their roles. The conference information is
 contained in XML documents and fragments conforming to the
 centralized conferencing data model schema. CCMP is a state-less
 client-server protocol based on a request/response model.

Barnes, et al. Expires May 7, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft CCMP November 2008

 Conferencing clients send requests to conference servers, which
 respond to the client with the conference information.

 This document also discusses options for using existing notification
 protocols to inform conference client about the changes in the state
 of a conference during its entire lifetime.

Table of Contents

1. Introduction . 4
2. Conventions . 5
3. Terminology . 5
4. Rationale and Motivation 5
5. System Architecture . 7
6. Conference Object and User Identifiers 9
6.1. Conference Object . 9
6.2. Conference Users and Participants 9

7. Protocol Operations . 10
7.1. Retrieve . 10
7.2. Create . 11
7.3. Change . 12
7.4. Delete . 12

8. Protocol Operations on Conference Objects 13
8.1. Locating a Conference Control Server 14
8.2. Constructing a CCMP Request 15
8.2.1. blueprintsRequest 16
8.2.2. confsRequest . 16
8.2.3. Operations Requests 16

8.3. Handling a CCMP Response 18
8.3.1. blueprintsResponse 20
8.3.2. confsResponse . 20
8.3.3. Operation Responses 21

9. Managing sidebars . 25
9.1. Sidebars by value . 25
9.2. Sidebars by reference 26

10. Protocol Parameters . 26
10.1. Operation Parameter 26
10.2. ConfObjID Parameter 26
10.3. ConfUserID Parameter 27
10.4. ResponseCode Parameter 27
10.5. Blueprints Parameter 28
10.6. Conference-info Parameter 28
10.7. User Parameter . 29
10.8. Users Parameter . 29
10.9. Sidebar Parameters . 29

11. Examples . 30
11.1. HTTP methods for realizing a RESTful CCMP 30

Barnes, et al. Expires May 7, 2009 [Page 2]

Internet-Draft CCMP November 2008

11.2. CCMP Detailed Message Body Examples 33
11.2.1. Creating a New Conference 33
11.2.2. Creating a New Conference User 36
11.2.3. Adding a User to a Conference 36

12. XML Schema . 37
13. Managing notifications . 45
14. Role based access control 46
15. IANA Considerations . 46
15.1. URN Sub-Namespace Registration 46
15.2. XML Schema Registration 47

 15.3. MIME Media Type Registration for 'application/ccmp+xml' . 47
15.4. DNS Registrations . 48

 15.4.1. Registration of a Location Server Application
 Service Tag . 48
 15.4.2. Registration of a Location Server Application
 Protocol Tag for HELD 48

15.5. CCMP Protocol Registry 49
15.5.1. CCMP Message Types 49
15.5.2. CCMP Response Codes 50

16. Security Considerations 51
17. Acknowledgments . 51
18. Changes since last Version 51
19. References . 52
19.1. Normative References 52
19.2. Informative References 52

 Authors' Addresses . 53
 Intellectual Property and Copyright Statements 55

Barnes, et al. Expires May 7, 2009 [Page 3]

Internet-Draft CCMP November 2008

1. Introduction

 The Framework for Centralized Conferencing [RFC5239] (XCON FW)
 defines a signaling-agnostic framework, naming conventions and
 logical entities required for building advanced conferencing systems.
 The XCON FW introduces the conference object as a logical
 representation of a conference instance, representing the current
 state and capabilities of a conference.

 The Centralized Conferencing Manipulation Protocol (CCMP) defined in
 this document allows authenticated and authorized users to create,
 manipulate and delete conference objects. Operations on conferences
 include adding and removing participants, changing their roles, as
 well as adding and removing media streams and associated end points.

 CCMP implements the client-server model within the XCON FW, with the
 conferencing client and conference control server acting as client
 and server, respectively. CCMP is an instance of conference control
 protocol (CCP).

 CCMP can be mapped into the CRUD (Create, Read, Update, Delete)
 design pattern. The basic CRUD operations are used to manipulate
 conference objects, which are XML documents containing the
 information characterizing a specified conference instance, be it an
 active conference or a conference blueprint used by the conference
 server to create new conference instances through a simple clone
 operation.

 CCMP can use a general-purpose protocol such as HTTP [RFC2616] to
 transfer domain-specific XML-encoded data objects defined in the
 Conference Information Data Model for Centralized Conferencing
 [I-D.ietf-xcon-common-data-model].

 CCMP follows the well-known REST (REpresentational State Transfer)
 architectural style [REST] This document describes how the CCMP
 specification maps onto the REST philosophy, by specifying resource
 URIs, resource formats, methods supported at each URI and status
 codes that have to be returned when a certain method is invoked on a
 specific URI.

Section 4 motivates the design of CCMP, followed by the system
 architecture in Section 5. Section 6 discusses the primary keys in
 the conference object carried in the protocol. An overview of the
 operations associated with each protocol request and response is
 provided in Section 7, with the sequence of protocol requests and
 responses discussed in Section 8 and examples provided in Section 11.
 The protocol parameters are detailed in Section 10. Section 12
 provides the XML schema.

https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/rfc2616

Barnes, et al. Expires May 7, 2009 [Page 4]

Internet-Draft CCMP November 2008

2. Conventions

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
 RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
 described in BCP 14, RFC 2119 [RFC2119] and indicate requirement
 levels for compliant implementations.

3. Terminology

 In additon to the terms defined in the Framework for Centralized
 Conferencing [RFC5239], this document uses the following terms and
 acronyms:

 CRUD: CRUD stands for Create/Read/Update/Delete and indicates a
 design pattern supporting creating, retrieving, updating and
 destroying objects.
 REST: REpresentational State Transfer (REST) is an architectural
 style, i.e., a coordinated set of architectural constraints. REST
 is based on the consideration that a software architecture can
 often be specified as an appropriate configuration of components,
 data and connectors, all coordinated through constraining their
 mutual relationships. Coordination and constraints help achieve a
 desired set of architectural properties. [REST]
 SOAP: Simple Object Access Protocol defined in
 [W3C.REC-soap12-part1-20030624] and
 [W3C.REC-soap12-part2-20030624].
 W3C: World Wide Web Consortium, the organization that developed the
 SOAP and WSDL specifications referenced within this document.

4. Rationale and Motivation

 This document specifies the basic operations that can create,
 retrieve, modify and delete conference-related information in a
 centralized conference. The core set of objects includes conference
 blueprints, the conference itself, users, and sidebars.

 The operations on these objects can be implemented in at least two
 different ways, namely as remote procedure calls and by defining
 resources. A remote procedure call (RPC) mechanism could use SOAP
 (Simple Object Access Protocol[W3C.REC-soap12-part1-20030624][W3C.REC
 -soap12-part2-20030624]), where conferences and the other objects are
 modeled as services with associated operations. Conferences and
 other objects are selected by their own local identifiers, such as
 email-like names for users. This approach has the advantage that it
 can easily define atomic operations that have well-defined error

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5239

Barnes, et al. Expires May 7, 2009 [Page 5]

Internet-Draft CCMP November 2008

 conditions.

 Alternatively, conference objects can be modeled as resources
 identified by URIs, with the basic CRUD operations mapped to the HTTP
 methods POST/PUT for creating objects, GET for reading objects,
 PATCH/POST/PUT for changing objects and DELETE for deleting them.
 Many of the objects, such as conferences, already have a natural
 URIs.

 In both approaches, servers will have to recreate their internal
 state representation of the object with each update request, checking
 parameters and triggering function invocations. In the SOAP
 approach, it would be possible to describe a separate operation for
 each atomic element, but that would greatly increase the complexity
 of the protocol. The coarser-grained approach in CCMP does require
 that the server process XML elements in updates that have not changed
 and that there can be multiple changes in one update.

 We assume that each update operation is atomic and either succeeds or
 fails as a whole. Thus, a server has to first check all parameters,
 before making any changes to the internal representation of the
 conference object. For example, it would be undesirable to change
 the <subject> of the conference, but then detect an invalid URI in
 one of the <service-uris> and abort the remaining updates.

 Because multiple clients can modify the same conference objects,
 clients need to obtain the current object and then update the whole
 object.

 Editor's Note: Do we need locking, using WebDAV or floor control?
 Otherwise, changes made by user A could get lost when user B wants to
 modify some other parameter. For example, A changes the subject, B
 adds the a service URI.

 In summary, a REST-style approach must ensure sure that all
 operations can be mapped to HTTP operations, while all SOAP
 operations would use a single HTTP verb. While the RESTful approach
 requires the use of a URI for each object, SOAP can use any token.

 For CCMP, the resource (REST) model appears more attractive, since
 the conference operations fit the CRUD approach.

 It is likely that implementations and future standardization work
 will add more conference attributes and parameters. There are three
 types of extensions. The first and simplest type of extension adds
 elements to the overall conference description, media descriptions or
 descriptions of users. The XML namespace mechanism makes such
 extensions relatively easy, although implementations still have to

Barnes, et al. Expires May 7, 2009 [Page 6]

Internet-Draft CCMP November 2008

 deal with implementations that may not understand the new namespaces.
 The CCMP "blueprintsRequest" message allows clients to determine the
 capabilities of a specific server, reflected by the specific
 blueprints supported by that server.

 A second type of extension replaces the conference, user or media
 objects with completely new schema definitions, i.e., the namespaces
 for these objects themselves differ from the basic one defined in
 this document. As long as the OPTIONS request remains available and
 keeps to a mutually-understood definition, a compatible client and
 server will be able to bootstrap themselves into using these new
 objects.

 Finally, it is conceivable that new object types are needed beyond
 the core conference, user and media objects and their children.
 These would also be introduced by namespaces and new URIs.

5. System Architecture

 CCMP supports the framework for centralized conferencing. Figure 1
 depicts a subset of the 'Conferencing System Logical Decomposition'
 architecture from the framework for centralized conferencing
 document. It illustrates the role that CCMP assumes within the
 overall centralized architecture.

Barnes, et al. Expires May 7, 2009 [Page 7]

Internet-Draft CCMP November 2008

 ..
 . Conferencing System .
 . .
 . +---------------------------------------+ .
 . | C O N F E R E N C E O B J E C T | .
 . +-+-------------------------------------+ | .
 . | C O N F E R E N C E O B J E C T | | .
 . +-+-------------------------------------+ | | .
 . | C O N F E R E N C E O B J E C T | | | .
 . | | | | .
 . | | |-+ .
 . | |-+ .
 . +---------------------------------------+ .
 . ^ .
 . | .
 . v .
 . +-------------------+ .
 . | Conference Control| .
 . | Server | .
 . +-------------------+ .
 . ^ .
 |..............................
 |
 |Conference
 |Control
 |Protocol
 |
 |
 |..............................
 . V .
 . +----------------+ .
 . | Conference | .
 . | Control | .
 . | Client | .
 . +----------------+ .
 . .
 . Conferencing Client .
 ..

 Figure 1: Conference Client Interaction

 CCMP serves as the Conference Control Protocol, allowing the
 conference control client to interface with the conference object
 maintained by the conferencing system, as represented in Figure 1.
 Conference Control is one part of functionality for advanced
 conferencing supported by a conferencing client. Other functions are
 discussed in the framework for centralized conferencing document and

Barnes, et al. Expires May 7, 2009 [Page 8]

Internet-Draft CCMP November 2008

 related documents.

6. Conference Object and User Identifiers

 This section provides an overview of the conference object and
 conference users which are key protocol elements for creating the
 CCMP requests and responses. The identifiers used in CCMP for the
 conference object (XCON-URI) and conference user (XCON-USERID) are
 introduced in the XCON framework and defined in the XCON data model
 [I-D.ietf-xcon-common-data-model].

6.1. Conference Object

 Conference objects feature a simple dynamic inheritance-and-override
 mechanism. Conference objects are linked into a tree, where each
 tree node inherits attributes from its parent node. The roots of
 these inheritance trees are also known as "blueprints". Nodes in the
 inheritance tree can be active conferences or simply descriptions
 that do not currently have any resources associated with them. An
 object can mark certain of its properties as unalterable, so that
 they cannot be overridden.

 The schema for the conference object is defined in the XCON data
 model. Conference objects are uniquely identified by the XCON-URI.
 A client MAY specify a parent element that indicates the parent from
 which the conference is to inherit values. When creating
 conferences, the XCON-URI included by the client is only a
 suggestion. To avoid identifier collisions and to conform to local
 server policy, the conference control server MAY choose a different
 identifier.

6.2. Conference Users and Participants

 Each conference can have zero or more users. All conference
 participants are users, but some users may have only administrative
 functions and do not contribute or receive media. Users are added
 one user at a time to simplify error reporting. Users are inherited
 as well, so that it is easy to set up a conference that has the same
 set of participants or a common administrator. The Conference
 Control Server creates individual users, assigning them a unique
 Conference User Identifier (XCON-USERID).

 A variety of elements defined in the common <conference-info> element
 as specified in the XCON data model are used to determine how a
 specific user expects and is allowed to join a conference as a
 participant, or users with specific privileges (e.g., observer). For
 example, the <method> attribute defines how the caller joins the

Barnes, et al. Expires May 7, 2009 [Page 9]

Internet-Draft CCMP November 2008

 conference, with a set of defined XML elements, namely <dial-in> for
 users that are allowed to dial in and <dial-out> for users that the
 conference focus will be trying to reach. <dial-in> is the default.

 If the conference is currently active, dial-out users are contacted
 immediately; otherwise, they are contacted at the start of the
 conference. The conference control server assigns a unique
 Conference User Identifier (XCON-USERID) to each user. The
 conference control server uses the XCON-USERID to change or delete
 <user> elements. Depending upon policies and privileges, specific
 users MAY also manipulate <user> elements.

 In many conferences, users can dial in if they know the XCON-URI and
 an access code shared by all conference participants. In this case,
 the system is typically not aware of the call signaling URL. Thus,
 the initial <user> element does not have an entity attribute and the
 default type of <dial-in> is used to support this type of user. For
 this case, the server assigns a locally-unique URI, such as a
 locally-scoped tel URI. The conference control server assigns a
 unique Conference User Identifier (XCON-USERID) to these users when
 they dial-in to join the conference. If the user supports the
 notification event package [I-D.ietf-xcon-event-package], they can
 receive their XCON-USERID, thus allowing them to also manipulate the
 <user> attribute, including the entity attribute, in the conference
 object.

7. Protocol Operations

 The primary function of the protocol defined within this document is
 to provide a conference control client with the ability to carry out
 operations on a conference object as a whole and on specific elements
 within a conference object. This section describes the four basic
 operations on a conference object: retrieve, create, change and
 delete. The recommended HTTP method for each of the basic operations
 is described. The XCON-URI as discussed in Section 6.1 is the
 primary target for each of these operations. The normative protocol
 details as to the applicability of each of the operations for the
 various CCMP requests and responses are provided in Section 8.

7.1. Retrieve

 The "retrieve" operation is used by a client to query a system for a
 specific template in the form of a blueprint prior to the creation of
 a conference. In this case, the "retrieve" operation often follows a
 "blueprintsRequest" operation, although a conferencing control client
 may be pre-configured to perform the "retrieve" operation on a
 specific blueprint.

Barnes, et al. Expires May 7, 2009 [Page 10]

Internet-Draft CCMP November 2008

 The "retrieve" operation is also used to get the current
 representation of a specific conference object (or specific
 parameters in the conference object) for a conference reservation or
 an active conference. The unique conference identifier (XCON-URI) is
 included in the CCMP request.

 The "retrieve" operation returns the XML document describing the
 conference object in its current state including all inherited values
 or the specific parameters per the specific request type. Elements
 may be marked by attributes, in particular, whether they are specific
 to this instance or have been inherited from the parent node.

 In the case of a RESTful implementation of the protocol, HTTP GET
 MUST be used on XCON-URIs, so that clients can obtain data about
 conference objects in the form of XML data model documents.

7.2. Create

 The "create" operation is used by a client to create and reserve a
 conference object or a new conference user. The creation of a
 conference object can be explicit by requesting it to be created
 based upon a specific blueprint, based on an existing conference
 object (e.g., cloning a conference reservation or active conference
 object) or based on the data included in the request. In the first
 two cases, a specific XCON-URI MUST be included in the request.

 When the creation of a conference object is implicit, with no
 conference object for a blueprint or existing conference specified
 and no data included in the request (i.e., an "empty" request sent to
 a specific conference server), the creation and reservation of the
 conference instance is based on the default conference object. The
 default conference object is specific to a conference control server
 and its specification is outside the scope of this document.

 A client may first send a request with "retrieve" operation in order
 to obtain all the data as defined in
 [I-D.ietf-xcon-common-data-model] for the specific blueprint or
 existing conference object. This would allow the client to modify
 the data prior to sending the request with the "create" operation.
 In this case, the request would also include all the data. If the
 client wants to create the new conference by cloning the blueprint or
 existing conference object, there would be no data included in the
 request. The client may later modify this data by sending a request
 with a "change" operation.

 When creating conferences, any XCON-URI included by the client is
 considered as the target conference object from which the new
 conference is to be created. To avoid identifier collisions and to

Barnes, et al. Expires May 7, 2009 [Page 11]

Internet-Draft CCMP November 2008

 conform to local server policy, the conference control server
 typically chooses a different identifier for the newly created
 conference object. The identifier is returned in the response.

 In addition, the conference description MAY contain a calendar
 element, in the iCal format in XML rendition defined in CPL [RFC3880]
 or (preferable, if available as stable reference) xCal
 [I-D.royer-calsch-xcal]. This description indicates when the
 conference is active.

 The "create" operation may also be used to create a new conference
 user with the "userRequest" message. In this case, the
 "userResponse" to this operation includes an XCON-USERID.

 In the case of a RESTful implementation of the protocol, HTTP PUT
 MUST be used to create a new object as identified by the XCON-URI or
 XCON-USERID.

7.3. Change

 The "change" operation updates the conference object as referenced by
 the XCON-URI included in the request. A request which attempts to
 change a non-existing object is an error, as is a request which
 attempts to change a parameter that is inherited from a protected
 element.

 During the lifetime of a conference, this operation is used by a
 conference control client to manipulate a conference object. This
 includes the ability to manipulate specific elements in the
 conference object through element specific requests such as
 "userRequest" or "sideBarRequest", etc.

 Upon receipt of a "change" operation, the conference control server
 updates the specific elements in the referenced conference object.
 Object properties that are not explicitly changed, remain as-is.
 This approach allows a conference control client to manipulate
 objects created by another application even if the manipulating
 application does not understand all object properties.

 In the case of a RESTful implementation of the protocol, either HTTP
 PATCH or HTTP POST MUST be used to change the conference object
 identified by the XCON-URI.

7.4. Delete

 This conference control operation is used to delete the current
 representation of a conference object or a specific parameter in the
 conference object and requires the unique conference identifier

https://datatracker.ietf.org/doc/html/rfc3880

Barnes, et al. Expires May 7, 2009 [Page 12]

Internet-Draft CCMP November 2008

 (XCON-URI) be provided by the client.

 A request which attempts to delete a conference object that is being
 referenced by a child object is an error.

 In case of a RESTful implementation of the protocol, HTTP DELETE MUST
 be used to delete conference objects and parameters within conference
 objects identified by the XCON-URI.

8. Protocol Operations on Conference Objects

 The primary function of CCMP is to provide a conference control
 client with the ability to carry out specific operations (Section 7)
 on a conference object through the protocol requests and responses.
 In case of a RESTful implementation of the protocol, the CCMP
 requests (Section 8.2)and responses (Section 8.3) MUST be represented
 as HTTP requests and responses. The basic CCMP request/response
 pairs defined in this document are:

 blueprintsRequest/blueprintsResponse: The blueprintsRequest is used
 to ascertain the list of blueprints available at the conference
 server. The blueprintsResponse returns a list of the requested
 blueprints, in the form of XCON URIs.
 confsRequest/confsResponse: The confsRequest is used to ascertain
 conference reservations and active conferences supported by the
 server. The confsResponse returns a list of the requested types
 of conference objects (i.e. Conference Reservations and/or Active
 Conferences) supported by the specific conference server.
 blueprintRequest/blueprintResponse: The blueprintRequest is used to
 request an operation on a specific blueprint.
 confRequest/confResponse: The confRequest is used to request an
 operation on the conference object as a whole.
 userRequest/userResponse: The userRequest is used to request an
 operation on the "user" element in the conference object.
 [Editor's Note: we may want to add more discrete user requests/
 responses as this is a very broad parameter]
 usersRequest/usersResponse: This usersRequest is used to manipulate
 the "users" element in the conference object, including parameters
 such as the allowed-users-list, join-handling, etc.
 sidebarRequest/sidebarResponse: This sidebarRequest is used to
 retrieve the information related to a sidebar or to create, change
 or delete a specific sidebar. [Editor's Note: the data model
 defines a byVal and byRef sidebar type. Rather than define two
 root operations, the preference is to have these two types
 reflected by a parameter in the request.]

 With respect to the above mentioned operations, we remark that the

Barnes, et al. Expires May 7, 2009 [Page 13]

Internet-Draft CCMP November 2008

 difference between "blueprintsRequest" and "confsRequest" only exists
 at the semantic level. They both ask for a list of XCON-URIs and
 they have exactly the same format. The returned XCON-URIs, though,
 represent blueprints in the former case, real (i.e. either active or
 reserved) conferences in the latter. The fact that blueprints and
 conferences share the same representation (a conference object
 compliant with the XCON data model) is a mere coincidence. The same
 holds for "confRequest/blueprintRequest", which aim at managing,
 respectively, a specific conference object and a specific blueprint.

 To simplify operations, a conference control server treats certain
 parameters as suggestions (e.g., for the "create" and "change"
 operations), as noted in the object description. If the conference
 control server cannot set the parameter to the values desired, it
 picks the next best value, according to local policy and returns the
 values selected in the response. If the client is not satisfied with
 these values, it simply deletes the object.

 As illustrated above, along with the protocol requests and responses
 for manipulating the conference object, there are also querying
 mechanisms ("blueprintsRequest"/"blueprintsResponse" and
 "confsRequest/confsResponse") to get information about either
 blueprints or scheduled/active conferences supported by the server.
 Any elements with namespaces not understood by the server are to be
 ignored by the server. This allows a client to include optional
 elements in requests without having to tailor its request to the
 capabilities of each server.

 A conference client must first discover the conference control server
 as described in Section 8.1. The conference control server is the
 recipient of the CCMP requests.

8.1. Locating a Conference Control Server

 If a conference control client is not pre-configured to use a
 specific conference control server for the requests, the client MUST
 first discover the conference control server before it can send any
 requests. The result of the discovery process, is the address of the
 server supporting conferencing. In this document, the result is an
 http: or https: URI, which identifies a conference server.

 This document proposes the use of DNS to locate the conferencing
 server. U-NAPTR resolution for conferencing takes a domain name as
 input and produces a URI that identifies the conferencing server.
 This process also requires an Application Service tag and an
 Application Protocol tag, which differentiate conferencing-related
 NAPTR records from other records for that domain.

Barnes, et al. Expires May 7, 2009 [Page 14]

Internet-Draft CCMP November 2008

Section 15.4.1 defines an Application Service tag of "XCON", which is
 used to identify the centralized conferencing (XCON) server for a
 particular domain. The Application Protocol tag "CCMP", defined in

Section 15.4.2, is used to identify an XCON server that understands
 the CCMP protocol.

 The NAPTR records in the following example Figure 2 demonstrate the
 use of the Application Service and Protocol tags. Iterative NAPTR
 resolution is used to delegate responsibility for the conferencing
 service from "zonea.example.com." and "zoneb.example.com." to
 "outsource.example.com.".

 zonea.example.com.
 ;; order pref flags
 IN NAPTR 100 10 "" "XCON:CCMP" (; service
 "" ; regex
 outsource.example.com. ; replacement
)
 zoneb.example.com.
 ;; order pref flags
 IN NAPTR 100 10 "" "XCON:CCMP" (; service
 "" ; regex
 outsource.example.com. ; replacement
)
 outsource.example.com.
 ;; order pref flags
 IN NAPTR 100 10 "u" "XCON:CCMP" (; service
 "!*.!https://confs.example.com/!" ; regex
 . ; replacement
)

 Figure 2: Sample XCON:CCMP Service NAPTR Records

 Details for the "XCON" Application Service tag and the "CCMP"
 Application Protocol tag are included in Section 15.4.

8.2. Constructing a CCMP Request

 Construction of a valid CCMP request is based upon the operations
 defined in Section 7, depending upon the function and associated
 information desired by the conference control client. The next two
 sections provide details of the "blueprintsRequest" and
 "confsRequest" messages, which differ from the other CCMP messages in
 that they are only used to ask the conference system for general
 information (blueprints and conferences). Subsequent sections

Barnes, et al. Expires May 7, 2009 [Page 15]

Internet-Draft CCMP November 2008

 summarize the CCMP requests related to the specific operations in
Section 7.

8.2.1. blueprintsRequest

 The "blueprintsRequest" is used by a client to query a system for its
 capabilities in terms of types of conferences supported and isn't
 targeted toward a particular conference object. Detailed information
 about a specific blueprint, can be subsequently obtained through the
 blueprintRequest operation, which is used to retrieve a whole XCON
 blueprint (in the form of a conference object) available at the
 server.

 The "blueprintsResponse" returns the XML namespaces that the server
 understands and the namespaces to be used in responses that it
 requires the client to understand. Within the conferencing system,
 the namespaces correlate with blueprints, as specified in the XCON
 framework. The blueprints are comprised of conference information
 initialized to specific values and ranges. Each blueprint has a
 corresponding XCON-URI.

8.2.2. confsRequest

 The "confsRequest" is used by a client to query a system for
 information about reserved/active conferences and isn't targeted
 toward a particular conference object. Detailed information about a
 specific conference, can be subsequently obtained through the
 confRequest operation, which can be used to retrieve a whole XCON
 conference (in the form of a conference object) available at the
 server.

 The "confsResponse" returns the XCON-URIs of all reserved and active
 conferences currently hosted by the server.

8.2.3. Operations Requests

 Construction of other valid CCMP requests is based upon the
 operations defined in Section 7, depending upon the function and
 associated information desired by the conference control client. The
 following table summarizes specific request type and processing for
 each of the "operations". A value of "N/A" indicates the specific
 operation is not valid for the specific CCMP request. Following the
 table examples for each of the HTTP operations for each of the
 request types is provided.

 Editors' Notes:

Barnes, et al. Expires May 7, 2009 [Page 16]

Internet-Draft CCMP November 2008

 1. Sidebars need additional consideration - e.g., due to the byVal
 and byRef options, it's messy. Operations approach may need
 additional consideration (or we need separate request types).

 +---------------+------------+------------+------------+------------+
Operation	Retrieve	Create	Change	Delete
(HTTP method)	(GET)	(PUT)	(PATCH or	(DELETE)
-------------			POST)	
Request Type				
+---------------+------------+------------+------------+------------+				
blueprintsReq	Gets list	N/A	N/A	N/A
uest	of			
	available			
	blueprints			
confsRequest	Gets list	N/A	N/A	N/A
	of active			
	or			
	reserved			
	confs			
-------------	----------	----------	----------	----------
blueprintRequ	Gets a	Creates a	Changes a	Deletes a
est	specific	blueprint	blueprint	blueprint
	blueprint	(needs	(needs	(needs
		admin	admin	admin
		privileges	privileges	privileges
)))
-------------	----------	----------	----------	----------
confRequest	Gets	Creates	Changes	Deletes
	conference	conference	conference	conference
	object	object	object	Object as
				a whole
-------------	----------	----------	----------	----------
userRequest	Gets a	Creates a	Modifies	Deletes a
	specific	user and	the	user
	user	associated	specified	element as
	element	XCON-UserI	user	a whole
		D	element	
-------------	----------	----------	----------	----------
usersRequest	Gets a	N/A	Modifies	Deletes a
	specific		the	users
	users		specified	element as
	element		users	a whole
			element	
-------------	----------	----------	----------	----------

Barnes, et al. Expires May 7, 2009 [Page 17]

Internet-Draft CCMP November 2008

sidebarReques	Gets a	Creates a	Modifies a	Removes/de
t	sidebar	new	sidebar by	l etes the
	element by	sidebar by	Val	entire
	Val or by	Val		sidebar b
	Ref			y Val
 +---------------+------------+------------+------------+------------+

 Table 1: Request Type Operation Specific Processing

 The following provides HTTP examples for each of the valid operations
 for each request type in the above table Table 1

 o blueprintsRequest: GET /blueprints
 o confsRequest: GET /confs
 o blueprintRequest
 * GET /blueprint/blueprintId
 * PUT /blueprint/blueprintId
 * POST /blueprint/blueprintId
 * DELETE /blueprint/blueprintId
 o confRequest
 * GET /confs/confObjId
 * PUT /confs/confObjId
 * POST /confs/confObjId
 * DELETE /confs/confObjId
 o userRequest
 * GET /user/confUserId
 * PUT /user/confUserId
 * POST /user/confUserId
 * DELETE /user/confUserId
 o usersRequest
 * GET /confs/confObjId/users
 * POST /confs/confObjId/users
 * DELETE /confs/confObjId/users
 o sidebarRequest
 * By val: GET /confs/confObjId/sidebars/entityAttribute
 * By val: N/A (use a "confRequest" message with a "change"
 operation for this)
 * By val: N/A (use a "confRequest" message with a "change"
 operation for this)
 * By val: N/A (use a "confRequest" message with a "change"
 operation for this)
 * By ref: GET /sidebars/sidebarId

8.3. Handling a CCMP Response

 A response to the CCMP request MUST contain a response code and may
 contain other elements depending upon the specific request and the
 value of the response code.

Barnes, et al. Expires May 7, 2009 [Page 18]

Internet-Draft CCMP November 2008

 In case of a RESTful implementation, the CCMP response message MUST
 be enclosed in a HTTP response message. CCMP-related error codes
 will be carried in the body of the response: no mapping is proposed
 in this document regarding the potential association between CCMP and
 HTTP error codes. For the sake of adhering to the principle of
 separation of concerns, HTTP maintains its own semantics, while
 delegating to the CCMP response message (which is in the body of the
 HTTP response) the task of informing the CCMP client about error
 conditions. This means that, in case of a CCMP error, the client
 receives a 200 OK in the HTTP response, but a CCMP-specific response
 code in the body of such response.

 All response codes are application-level, and MUST only be provided
 in successfully processed transport-level responses. For example
 where HTTP is used, CCMP Response messages MUST be accompanied by a
 200 OK HTTP response.

 The set of CCMP Response codes currently contain the following
 tokens:

 success: This code indicates that the request was successfully
 processed.
 modified: This code indicates that the object was created, but may
 differ from the request.
 badRequest: This code indicates that the request was badly formed in
 some fashion.
 unauthorized: This code indicates that the user was not authorized
 for the specific operation on the conference object.
 forbidden: This code indicates that the specific operation is not
 valid for the target conference object.
 objectNotFound: This code indicates that the specific conference
 object was not found.
 operationNotAllowed: This code indicates that the specific operation
 is not allowed for the target conference object (e.g.., when
 trying to make a "confRequest" operation with a request type equal
 to "delete" on a conference object representing a blueprint, etc.)
 deleteFailedParent: This code indicates that the conferencing system
 cannot delete the specific conference object because it is a
 parent for another conference object.
 changeFailedProtected: This code indicates that the target
 conference object cannot be changed (e.g., due to policies, roles,
 privileges, etc.).
 requestTimeout: This code indicates that the request could not be
 processed within a reasonable time, with the time specific to a
 conferencing system implementation.

Barnes, et al. Expires May 7, 2009 [Page 19]

Internet-Draft CCMP November 2008

 serverInternalError: This code indicates that the conferencing
 system experienced some sort of internal error.
 notImplemented: This code indicates that the specific operation is
 not implemented on that conferencing system.

 CCMP Response codes are defined to allow for extensibility. A
 conference control client SHOULD treat unrecognized response codes as
 it handles a Response code of "notImplemented".

8.3.1. blueprintsResponse

 A "blueprintsResponse" message containing a response code of
 "success" MUST include the XML namespaces that the server understands
 and the namespaces to be used in subsequent responses that it
 requires the client to understand. Future work may add more global
 capabilities rather than conferencing system specific. Within the
 conferencing system, the namespaces correlate with blueprints, as
 specified in the XCON framework. The blueprints are comprised of
 conference information initialized to specific values and ranges.

 Upon receipt of a successful "blueprintsResponse" message, a
 conference control client may then initiate a "blueprintRequest" with
 a "retrieve" operation per Section 7.1 to get a specific conference
 blueprint.

 In the case of a response code of "requestTimeout", a conference
 control client MAY re-attempt the request within a period of time
 that would be specific to a conference control client or conference
 control server.

 The response codes of "modified", "deleteParentFailed" and
 "changeFailedProtected" are not applicable to a "blueprintsRequest"
 and should be treated as "serverInternalError", the handling of which
 is specific to the conference control client.

 A "blueprintsResponse" message containing any other response code is
 an error and the handling is specific to the conference control
 client. Typically, an error for a "blueprintsRequest" indicates a
 configuration problem in the conference control server or in the
 client.

8.3.2. confsResponse

 A "confsResponse" message containing a response code of "success"
 MUST include the list of XCON-URIs associated with reserved/active
 conferences at the server.

 Upon receipt of a successful "confsResponse" message, a conference

Barnes, et al. Expires May 7, 2009 [Page 20]

Internet-Draft CCMP November 2008

 control client may then initiate a "confRequest" with a "retrieve"
 operation per Section 7.1 to get a specific conference object.

 In the case of a response code of "requestTimeout", a conference
 control client MAY re-attempt the request within a period of time
 that would be specific to a conference control client or conference
 control server.

 The response codes of "modified", "deleteParentFailed" and
 "changeFailedProtected" are not applicable to a "confsRequest" and
 should be treated as "serverInternalError", the handling of which is
 specific to the conference control client.

 A "confsResponse" message containing any other response code is an
 error and the handling is specific to the conference control client.
 Typically, an error for a "blueprintsRequest" indicates a
 configuration problem in the conference control server or in the
 client.

8.3.3. Operation Responses

 The following sections detail the operation specific handling of the
 response codes, including details associated with specific types of
 responses in the cases where the response handling is not generic.

8.3.3.1. Retrieve Operation Responses

 A confResponse for a "retrieve" operation containing a response code
 of "success" MUST contain the full XML document describing the
 conference object in its current state including all inherited
 values. Elements may be marked by attributes, in particular, whether
 they are specific to this instance or have been inherited from the
 parent node.

 A blueprintResponse for a "retrieve" operation containing a response
 code of "success" MUST contain the full XML document describing the
 conference object associated with the requested blueprint

 Any other CCMP response message (e.g., userResponse, usersResponse,
 etc.) for a "retrieve" operation containing a response code of
 "success" MUST contain the XML document describing the specific
 target parameter (as indicated by the specific type of Request) from
 the conference object.

 If a response code of "objectNotFound" is received in a
 "blueprintResponse" message to a "blueprintRequest" to get the
 initial blueprint, it is RECOMMENDED that a conference control client
 attempt to retrieve another conference blueprint if more than one had

Barnes, et al. Expires May 7, 2009 [Page 21]

Internet-Draft CCMP November 2008

 been received in the "blueprintsResponse" message. If there was only
 one blueprint in the "blueprintsResponse" initially, then the client
 should send another "blueprintsRequest" message to determine if there
 may be new or additional blueprints for the specific conferencing
 system. If this "blueprintsResponse" message contains no blueprints,
 the handling is specific to the conference control client. This
 might indicate, for example, that something is going wrong at the
 server, since no more blueprints are now available at it. In such
 case, the client MAY interpret the new answer as a
 'serverInternalError' and assume that no more service associated with
 blueprints (e.g. creation of a new conference starting from a server-
 side template) is available.

 If a response code of "requestTimeout" is received in the CCMP
 response, a conference control client MAY re-attempt the request
 within a period of time that would be specific to a conference
 control client or conference control server.

 Response codes such as "notImplemented" and "forbidden" indicate that
 a subsequent "retrieve" would not likely be sucessful. Handling of
 these and other response codes is specific to the conference control
 client. For example, in the case of some clients a
 "blueprintsRequest" operation might be performed again or another
 conference control server may be accessed.

 The response codes of "modified", "deleteParentFailed" and
 "changeFailedProtected" are not applicable to the "retrieve"
 operation and SHOULD be treated as "serverInternalError", the
 handling of which is specific to the conference control client.

8.3.3.2. Create Operation Responses

 The only valid responses containing a "create" operation are a
 "confResponse", a "blueprintResponse" and the "userResponse". The
 "blueprintRequest" containing a "create" operation has to be
 considered a special operation, used by a conference server
 administrator wishing to remotely add a new blueprint to the
 conference server. The operation requires that the new blueprint is
 associated with an XCON-URI. Such URI is provided by the
 administrator in the request, but has to be considered as a
 suggestion. The conference server MAY change such identifier and
 create a new one. The new identifier MUST be returned to the client
 as part of the "blueprintResponse" message. If the CCMP response
 contains a response code of "success", a "confResponse" message MUST
 contain the XCON-URI for the conference object and a "userResponse"
 message MUST contain the XCON-USERID.

 If the confResponse to a "create" operation contains a response code

Barnes, et al. Expires May 7, 2009 [Page 22]

Internet-Draft CCMP November 2008

 of "modified", along with the XCON-URI for the conference object, the
 response MUST also contain the entire XML document associated with
 that conference object for a "confRequest". For example, in the case
 where the conference object contained a calendar element, the
 conference server may only offer a subset of the dates requested,
 thus the updated dates are included in the returned XML document.

 In the case of a response code of "requestTimeout", a conference
 control client MAY re-attempt the request within a period of time
 that would be specific to a conference control client or conference
 control server.

 Response codes such as "unauthorized", "forbidden" and
 "operationNotAllowed" indicate the client does not have the
 appropriate permissions, there is an error in the permissions, or
 there is a system error in the client or conference control server,
 thus re-attempting the request would likely not succeed.

 The response codes of "deleteParentFailed" and
 "changeFailedProtected" are not applicable to the "create" operation
 and SHOULD be treated as "serverInternalError", the handling of which
 is specific to the conference control client.

 Any other response code indicates an error in the client or
 conference control server (e.g., "forbidden", "badRequest") and the
 handling is specific to the conference control client.

8.3.3.3. Change Operation Responses

 If the CCMP response to the "change" operation contains a response
 code of "success", the response SHOULD also contain the XCON-URI for
 the conference object that was changed.

 The "blueprintRequest" containing a "change" operation has to be
 considered a special operation, used by a conference server
 administrator wishing to remotely an existing blueprint in the
 conference server.

 If the CCMP response to the "change" operation contains a response
 code of "modified", the response MUST contain the XCON-URI for the
 conference object and the appropriate XML document (either the full
 XML document for a confResponse or specific paramaters for the other
 CCMP request types) associated with that conference object. For
 example, a conferencing system may not have the resources to support
 specific capabilities that were changed, such as <codecs> in the
 <available-media>, thus the <codecs> supported are included in the
 returned XML document.

Barnes, et al. Expires May 7, 2009 [Page 23]

Internet-Draft CCMP November 2008

 If the CCMP response code of "requestTimeout" is received, a
 conference control client MAY re-attempt the request within a period
 of time that would be specific to a conference control client or
 conference control server.

 Response codes such as "unauthorized", "forbidden",
 "operationNotAllowed" and "changeFailedProtected" indicate the client
 does not have the appropriate permissions, the conference is locked,
 there is an error in the permissions, or there is a system error in
 the client or conference control server, thus re-attempting the
 request would likely not succeed.

 The response code of "deleteParentFailed" is not applicable to the
 "change" operation and SHOULD be treated as "serverInternalError",
 the handling of which is specific to the conference control client.

 Any other response code indicates an error in the client or
 conference control server (e.g., "forbidden", "badRequest") and the
 handling is specific to the conference control client.

 [Note by spromano: In case of "change" with a userRequest, the server
 first has to change the user's information stored; then, it has to
 update all conference objects which include that user. The
 association between the user and the conferences in which she/he is
 participating is guaranteed through the "entity" attribute of the
 <user> element. IMO, after doing all that, the server just answers
 with a userResponse message; then, if it is also using notifications,
 it might raise events towards the interested subscribers, to notify
 them about the changes in the updated conference objects. Is this
 right??]

8.3.3.4. Delete Operation Responses

 If the CCMP response to the "delete" operation contains a response
 code of "success", the response MUST contain the XCON-URI for the
 conference object that was deleted for a "confResponse" or whose data
 element(s) were deleted for the other response types.

 The "blueprintRequest" containing a "delete" operation has to be
 considered a special operation, used by a conference server
 administrator wishing to remotely remove a blueprint from the
 conference server.

 The response code of "deleteParentFailed" indicates that the
 conference object could not be deleted because it is the Parent of
 another conference object that is in use. In this case, the response
 also includes the XCON-URI for the conference object and is only
 applicable to a "confResponse". If this response code is received

Barnes, et al. Expires May 7, 2009 [Page 24]

Internet-Draft CCMP November 2008

 for any other type of CCMP response, it should be treated as
 "serverInternalError", the handling of which is specific to the
 conference control client.

 If a response code of "requestTimeout" is received, a conference
 control client MAY re-attempt the request within a period of time
 that would be specific to a conference control client or conference
 control server.

 Response codes such as "unauthorized", "forbidden" and
 "operationNotAllowed" indicate the client does not have the
 appropriate permissions, the conference is locked, the object that
 the client is trying to delete is actually a blueprint, there is an
 error in the permissions, or there is a system error in the client or
 conference control server, thus re-attempting the request would
 likely not succeed.

 The response code of "changeFailedProtected" is not applicable to the
 "delete" operation and SHOULD be treated as "serverInternalError",
 the handling of which is specific to the conference control client.

 Any other response code indicates an error in the client or
 conference control server (e.g., "forbidden", "badRequest") and the
 handling is specific to the conference control client.

 [Note by spromano (same comment as for "change"): In case of "delete"
 with a userRequest, the server first has to delete the user's
 information stored; then, it has to update all conference objects
 which include that user. The association between the user and the
 conferences in which she/he is participating is guaranteed through
 the "entity" attribute of the <user> element. IMO, after doing all
 that, the server just answers with a userResponse message; then, if
 it is also using notifications, it might raise events towards the
 interested subscribers, to notify them about the changes in the
 updated conference objects. Is this right??]

9. Managing sidebars

 Sidebars can be either "by reference" or "by value". The management
 of sidebars differs in the two cases, as discussed below

9.1. Sidebars by value

 Sidebars by value represent an inner part of the conference object
 associated with the root conference from which they stem. One or
 more sidebars by value are then created by using the "confRequest"
 message with an operation of "change". The conference description

Barnes, et al. Expires May 7, 2009 [Page 25]

Internet-Draft CCMP November 2008

 provided in the request MUST contain the desired sidebars
 information, in the form of a sequence of one or more <entry>
 elements under the <sidebars-by-val> element. Information about a
 sidebar by value can be accessed directly through a "sidebarRequest"
 message containing the identifier of the required sidebar (i.e. its
 "entity" attribute value).

9.2. Sidebars by reference

 Sidebars by reference represent semi-independent conference objects,
 i.e. objects that exist on their own, but which are strictly coupled
 to the conference object from which they stem. A sidebar by
 reference is then created by using the "confRequest" message with an
 operation of "create".

 Editor's Note: should we have a means to indicate that the object we
 are creating is actually a sidebar? This would go in the
 confRequest/create message. Otherwise, we might add a
 sidebarRequest/create operation which basically does a conference
 creation, but, e.g., stores it in a different repository (/sidebars
 rather than /confs).

 Once the sidebar has been created, you can add it to a conference by
 issuing a "confRequest" message with a "change" operation on the
 conference object which the sidebar belongs to. Information about a
 sidebar by reference can be accessed directly through a
 "sidebarRequest" message containing the identifier of the required
 sidebar (i.e. the value of its <uri> element).

10. Protocol Parameters

 This section describes in detail the parameters that are used for the
 CCMP protocol.

10.1. Operation Parameter

 The "operation" attribute is a mandatory token included in all CCMP
 request and response messages. This document defines four possible
 values for this parameter: "retrieve", "create", "change" and
 "delete".

10.2. ConfObjID Parameter

 The "confObjID" attribute is an optional URI included in the CCMP
 request and response messages. This attribute is required in the
 case of an "operation" of "retrieve", "change", and "delete" in the
 CCMP request and response messages. The attribute is optional for an

Barnes, et al. Expires May 7, 2009 [Page 26]

Internet-Draft CCMP November 2008

 "operation" of "create" in the "confRequest" message. The "create"
 cases for which this parameter is REQUIRED are described in

Section 7.2. This attribute is the XCON-URI which is the target for
 the specific operation. [Editor's Note: it might be good to re-
 iterate the normative text here.]

 This attribute is not included in the "userRequest" message for an
 operation of "create". In this case, the conference control client
 is requesting the creation of a new conference user, as detailed in

Section 10.3.

 In the cases where the "conference-info" parameter Section 10.6 is
 also included in the requests and responses, the "confObjID" MUST
 match the XCON-URI in the "entity" attribute.

10.3. ConfUserID Parameter

 The "confUserID" attribute is optional URI included in the CCMP
 request and response messages. This is the XCON-USERID for the
 conference control client initiating the request. The attribute is
 required in the CCMP request and response messages with the exception
 of the "userRequest" message. The "confUserID" parameter is used to
 determine if the conference control client has the authority to
 perform the operation. Note that the details for authorization and
 related policy are specified in a separate document [TBD].

 This attribute is optional only for an "userRequest" message with a
 "create" operation. In this case, the request MUST include
 information about the user in the "user" element. At a minimum, the
 request MUST include the "user" element with an "entity" attribute.
 For this case, the conference control server MUST create a new
 conference user and return the associated confUserID in the response,
 if the allocation of a new XCON-USERID is succesful.

 In the case where there is a confUserID in the request that has
 already been allocated, this request may be the creation of a
 confUserID for the conference control client to take on an additional
 role.

 This attribute is required in the "userResponse" message in the case
 of an "operation" of "create" and for all other responses.

10.4. ResponseCode Parameter

 The "responseCode" attribute is a mandatory parameter in all CCMP
 response messages. The values for each of the "responseCode" values
 are detailed in Section 8.3 with the associated processing described
 in Section 8.3.3.

Barnes, et al. Expires May 7, 2009 [Page 27]

Internet-Draft CCMP November 2008

10.5. Blueprints Parameter

 The "blueprints" attribute is an optional parameter in the CCMP
 blueprintsResponse message. In the case of a "blueprintsRequest"
 message, the "blueprintsResponse" message with a "responseCode" of
 "success" SHOULD include the "blueprints" supported by the conference
 control server. The "blueprints" attribute is comprised of a list of
 blueprints supported by the specific conference server and includes a
 conference system specific "blueprintName" and a "confObjID" in the
 form of an XCON-URI for each of the blueprints.

10.6. Conference-info Parameter

 The "conference-info" element is optional in the CCMP confRequest and
 confResponse messages.

 The "conference-info" element contains the data for the conference
 object that is the target for the "confRequest" operations for
 "create", "change" and "delete" operations. It is returned in a
 "confResponse" if the "confResponse" contains a responseCode of
 "modified" or if the original CCMP request for the "create" operation
 did not contain a "conference-info" element. The latter case occurs
 when a conference control client sends a "confRequest" containing any
 of the following: - a "confObjID" associated with a specific
 blueprint - a "confObjID associated with a specific active conference
 or conference reservation that was included in a "confsResponse"
 message - no "confObjID" (or "conference-info") element, in which
 case the request is to create a conference object based on a default
 provided by a conferencing system.

 The "conference-info" element is also returned in a "userResponse"
 message, in the case of a "change" operation. In such case, in fact,
 the request contains the <user> element to be added to the conference
 indicated in the <confObjID> parameter; the associated answer SHOULD
 carry the updated conference object in its body.

 The details on the information that may be included in the
 "conference-info" element MUST follow the rules as specified in the
 XCON Data Model document [I-D.ietf-xcon-common-data-model]. The
 conference control client and conference control server MUST follow
 those rules in generating the "conference-info" in any of the CCMP
 request and response messages.

 Note that the "conference-info" element is not explicitly shown in
 the XML schema (Section 12) due to XML schema constraints.

Barnes, et al. Expires May 7, 2009 [Page 28]

Internet-Draft CCMP November 2008

10.7. User Parameter

 The "user" element contains the data for the conference user that is
 the target for the CCMP request operations. It is REQUIRED for all
 "userRequest" messages.

 The details on the information that may be included in the "user"
 element MUST follow the rules as specified in the XCON Data Model
 document [I-D.ietf-xcon-common-data-model]. The conference control
 client and conference control server MUST follow those rules in
 generating the "user" in any of the CCMP request and response
 messages.

 Note that the "user" element is not explicitly shown in the XML
 schema Section 12 due to XML schema constraints.

10.8. Users Parameter

 The "users" element contains the data for the conference users that
 are the target for the CCMP request operations. It is REQUIRED for
 all "usersRequest" messages.

 The details on the information that may be included in the "users"
 element MUST follow the rules as specified in the XCON Data Model
 document [I-D.ietf-xcon-common-data-model]. The conference control
 client and conference control server MUST follow those rules in
 generating the "users" in any of the CCMP request and response
 messages.

 Note that the "users" element is not explicitly shown in the XML
 schema Section 12 due to XML schema constraints.

10.9. Sidebar Parameters

 The "sidebar" parameter contains the data for the sidebar that is the
 target for the CCMP request operations. It is REQUIRED for all
 "sidebarRequest" messages. There are two elements associated with a
 sidebar: "sidebar-by-val" and "sidebar-by-ref". The elements relate
 to whether the data for the sidebar is in the same conference object
 for which it serves as a sidebar or whether a new conference object
 is created for the sidebar.

 The details on the information that may be included in the "sidebar-
 by-val" or "sidebar-by-ref" element MUST follow the rules as
 specified in the XCON Data Model document
 [I-D.ietf-xcon-common-data-model]. The conference control client and
 conference control server MUST follow those rules in generating the
 "sidebar-by-val" or "sidebar-by-ref" element in any of the CCMP

Barnes, et al. Expires May 7, 2009 [Page 29]

Internet-Draft CCMP November 2008

 request and response messages.

11. Examples

 Examples on the use of HTTP as the CCP based on a RESTful
 implementation are provided in Section 11.1. The body of the HTTP
 methods contains the CCMP operations and data. Examples of the CCMP
 operations and related data are provided in section Section 11.2

11.1. HTTP methods for realizing a RESTful CCMP

 This section provides a series of examples using the HTTP methods for
 realization of the CCMP. The examples provide a sequence of
 operations that a typical user might invoke in activating a
 conference, adding users to a conference, retrieving conference data
 and then deleting an active conference. Note, the examples do not
 include any details beyond the basic operation. For example, the
 "Host" that would be the result of discovery of the conference server
 per Section 8.1 would be included in the HTTP messages.

 Alice retrieves info about active/scheduled CCMP 'conferences':

 CCMP client "Alice" ConfS
 | |
 | GET /confs |
 |--->|
 | |--+ Prepare
 | | | formatted
 | 200 OK (w/ body) |<-+ conf info
 |<---| (list of
 | | conf objs)

 Figure 3: Getting a List of Active Coferences

Barnes, et al. Expires May 7, 2009 [Page 30]

Internet-Draft CCMP November 2008

 Alice is now able to retrieve info about a specific conference:

 CCMP client "Alice" ConfS
 | |
 | GET /confs/confid-34fg67h |
 |--->|
 | |--+ Prepare
 | | | formatted
 | 200 OK (w/ body) |<-+ XML info
 |<---|
 | |

 Figure 4: Getting a Specific Coference

 Alice decides to add a new user to this conference:

 CCMP client "Alice" ConfS
 | |
 | PUT /confs/confid-34fg67h/users/pippo876 |
 | (w/ body=new user info) |
 |--->|
 | |--+ Add new user
 | | | to data model
 | 200 OK (w/ body) |<-+ and update
 |<---| user in system
 | |
 | | (event triggered
 | | e.g. RFC4575)
 | |---------------->
 | |

 Figure 5: Adding a New User to an Active Conference

https://datatracker.ietf.org/doc/html/rfc4575

Barnes, et al. Expires May 7, 2009 [Page 31]

Internet-Draft CCMP November 2008

 Subsequent GETs on both the conference object as a whole and the
 users portion reflect the addition of the New User:

 CCMP client "Alice" ConfS
 | |
 | GET /confs/confid-34fg67h/users/pippo876 |
 |--->|
 | |--+ Prepare
 | | | formatted
 | 200 OK (w/ body) |<-+ XML info
 |<---|
 | |
 | GET /users/pippo876 |
 |--->|
 | |--+ Prepare
 | | | formatted
 | 200 OK (w/ body) |<-+ XML info
 |<---|
 | |

 Figure 6: Getting a Specific Conference Object after Changes

 Alice updates some info related to the same user:

 CCMP client "Alice" ConfS
 | |
 | POST /confs/confid-34fg67h/users/pippo876 |
 | (w/ body=updated user info) |
 |--->|
 | |--+ Update user
 | | | in data
 | 200 OK (w/ body) |<-+ and in
 |<---| system
 | |
 | |Event trigger
 | |e.g. RFC4575
 | |------------->
 | |

https://datatracker.ietf.org/doc/html/rfc4575

Barnes, et al. Expires May 7, 2009 [Page 32]

Internet-Draft CCMP November 2008

 Figure 7: Updating a User's Information

 Alice destroys the running conference: when trying to access it, the
 server returns an error:

 CCMP client "Alice" ConfS
 | |
 | DELETE /confs/confid-34fg67h |
 |--->|
 | |--+ Prepare
 | | | formatted
 | 200 OK (w/ body) |<-+ XML info
 |<---|
 | |
 | GET /confs/confid-34fg67h |
 |--->|
 | |--+ ConfS can't
 | | | find the
 | 200 OK (w/body: |<-+ conference
 |<---|
 | responseCode=objectNotFound |
 | |

 Figure 8: Deleting an Active Coference

11.2. CCMP Detailed Message Body Examples

 The examples below contain simply the <body> of the requests and
 responses. In the case that HTTP serves as the transport, the HTTP
 methods as identified in Table 1 (and per the examples in

Section 11.1) would include the CCMP requests and Responses as the
 body of the HTTP methods.

11.2.1. Creating a New Conference

 The first example creates a new conference.

Barnes, et al. Expires May 7, 2009 [Page 33]

Internet-Draft CCMP November 2008

 <confRequest xmlns="urn:ietf-params:xml:ns:xcon:ccmp">
 <operation>create</operation>
 <confUserID> userA-confxyz987 </confUserID>

 <conference-info
 xmlns="urn:ietf:params:xml:ns:conference-info"
 version="1">
 <conference-description>
 <parent>http://example.com/conf200</parent>
 <subject>Agenda: This month's goals</subject>
 <conf-uris>
 <entry>
 <uri>sips:conf223@example.com</uri>
 <purpose>participation</purpose>
 </entry>
 </conf-uris>
 <service-uris>
 <entry>
 <uri>http://sharep/salesgroup/</uri>
 <purpose>web-page</purpose>
 </entry>
 <entry>
 <uri>http://example.com/conf233</uri>
 <purpose>control</purpose>
 </entry>
 </service-uris>
 </conference-description>
 </conference-info>

 </confRequest>

 Figure 9: Create Request Example

 The response to this request is shown below; it returns the object
 identifier as a URL and the final conference description, which may
 modify the description offered by the user.

Barnes, et al. Expires May 7, 2009 [Page 34]

Internet-Draft CCMP November 2008

 <confResponse xmlns="urn:ietf-params:xml:ns:xcon:ccmp"
 <operation>create</operation>
 <responseCode> modified </responseCode>
 <confObjID> xcon:confxyz987@example.com </confObjID>
 <confUserID> userA-confxyz987 </confUserID>

 <conference-info
 xmlns="urn:ietf:params:xml:ns:conference-info"
 version="1">
 <entity> xcon:confxyz987@example.com </entity>
 <conference-description>
 <parent>http://example.com/conf200</parent>
 <subject>Agenda: This month's goals</subject>
 <conf-uris>
 <entry>
 <uri>sips:conf223@example.com</uri>
 <purpose>participation</purpose>
 </entry>
 </conf-uris>
 <service-uris>
 <entry>
 <uri>http://sharep/salesgroup/</uri>
 <purpose>web-page</purpose>
 </entry>
 <entry>
 <uri>http://example.com/conf233</uri>
 <purpose>control</purpose>
 </entry>
 </service-uris>

 <!-- Addt'l modified conference description including users alice,
 bob and userA... -->

 <allowed-users-list>
 <target uri="sip:alice@example.com" method="dial-out"/>
 <target uri="sip:bob@example.com" method="dial-out"/>
 <target uri="sip:userA@example.com" method="dial-in"/>
 </allowed-users-list>

 </conference-description>
 </conference-info>

 </confResponse>

 Figure 10: Create Response Example

Barnes, et al. Expires May 7, 2009 [Page 35]

Internet-Draft CCMP November 2008

11.2.2. Creating a New Conference User

 The request below creates a new conference user, independent of a
 specific conference object.

 <userRequest xmlns="urn:ietf-params:xml:ns:xcon:ccmp">
 <operation>create</operation>

 <user entity="sip:bob@example.com">
 <role>observer</role>
 </user>

 </userRequest>

 Figure 11: Create User Example

 The response to this request is shown below; it returns the
 conference user identifier.

 <userResponse xmlns="urn:ietf-params:xml:ns:xcon:ccmp">
 <operation>create</operation>
 <responseCode> success </responseCode>
 <confUserID>userC-confxyz987</confUserID>
 </userResponse>

 Figure 12: Create Response Example

11.2.3. Adding a User to a Conference

 The request below adds a user to the conference identified by the
 XCON-URI. Note that the user in "confUserID" element is the user
 requesting that the user "sip:claire@example.com" be added to the
 conference. The user may or may not be "claire" (i.e., a user, such
 as the moderator, can add another user to the conference.

 Editor's note: Do we need to consider users adding users OBO of other
 users or in that case do we just change the conference object as a
 whole?

Barnes, et al. Expires May 7, 2009 [Page 36]

Internet-Draft CCMP November 2008

 <userRequest xmlns="urn:ietf-params:xml:ns:xcon:ccmp">
 <operation>change</operation>
 <confObjID> xcon:confxyz987@example.com </confObjID>
 <confUserID> userC-confxyz987 </confUserID>

 <user entity="sip:claire@example.com">
 <role>participant</role>
 <type>dial-out</type>
 </user>

 </userRequest>

 Figure 13: Add User Example

 The response to this request is shown below.

 <userResponse xmlns="urn:ietf-params:xml:ns:xcon:ccmp">
 <operation>change</operation>
 <responseCode> success </responseCode>
 <confObjID> xcon:confxyz987@example.com </confObjID>
 <confUserID> userC-confxyz987 </confUserID>

 <user entity="sip:claire@example.com">
 <role>participant</role>
 <type><dial-out/></type>
 </user>
 </users>
 </conference-info>

 </userResponse>

 Figure 14: Add User Response Example

12. XML Schema

 This section provides the XML schema definition of the "application/
 ccmp+xml" format.

 Editor's Note: the schema currently matches the prototype - it needs
 updating to include changes/additions to request names (e.g.,
 optionsRequest -> blueprintsRequest, addition of blueprintRequest and
 confsRequest.

Barnes, et al. Expires May 7, 2009 [Page 37]

Internet-Draft CCMP November 2008

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema
 targetNamespace="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:tns="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:dm="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- Import data model schema (as per the latest draft) -->
 <xs:import
 namespace="urn:ietf:params:xml:ns:xcon-conference-info"
 schemaLocation="DataModel-11.xsd"/>

 <xs:element name="ccmpRequest"
 type="ccmp-request-type" />
 <xs:element name="ccmpResponse"
 type="ccmp-response-type" />

 <!-- CCMP request definition -->

 <xs:complexType name="ccmp-request-type">
 <xs:sequence>
 <xs:element name="ccmpRequest"
 type="ccmp-request-message-type" />
 </xs:sequence>
 <xs:attribute name="xconURI" type="xs:string"
 use="optional" />
 </xs:complexType>

 <!-- CCMP response definition -->

 <xs:complexType name="ccmp-response-type">
 <xs:sequence>
 <xs:element name="ccmpResponse"
 type="ccmp-response-message-type" />
 </xs:sequence>
 <xs:attribute name="xconURI" type="xs:string"
 use="optional" />
 </xs:complexType>

 <!-- Definition of ccmp-request-message-type as an
 abstract complex type -->

 <xs:complexType abstract="true"
 name="ccmp-request-message-type">
 <xs:sequence>
 <xs:element name="confObjID" type="xs:string"
 minOccurs="0" maxOccurs="1" />

Barnes, et al. Expires May 7, 2009 [Page 38]

Internet-Draft CCMP November 2008

 <xs:element name="confUserID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <!-- blueprintsRequest -->

 <xs:complexType
 name="ccmp-blueprints-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type"/>
 </xs:complexContent>
 </xs:complexType>

 <!-- confsRequest -->

 <xs:complexType name="ccmp-confs-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type"/>
 </xs:complexContent>
 </xs:complexType>

 <!-- confRequest -->

 <xs:complexType name="ccmp-conf-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="confRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- usersRequest -->

 <xs:complexType name="ccmp-users-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="usersRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- userRequest -->

Barnes, et al. Expires May 7, 2009 [Page 39]

Internet-Draft CCMP November 2008

 <xs:complexType name="ccmp-user-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="userRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- [TODO: sidebarRequest -->

 <!-- Definition of ccmp-response-message-type -->

 <xs:complexType abstract="true"
 name="ccmp-response-message-type">
 <xs:sequence>
 <xs:element name="confObjID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="confUserID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element ref="response-code" minOccurs="1"
 maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <!-- blueprintsResponse -->

 <xs:complexType name="ccmp-blueprints-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="blueprintsResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confsResponse -->

 <xs:complexType name="ccmp-confs-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="confsResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>

Barnes, et al. Expires May 7, 2009 [Page 40]

Internet-Draft CCMP November 2008

 </xs:complexType>

 <!-- confResponse -->

 <xs:complexType name="ccmp-conf-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="confResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- usersResponse -->

 <xs:complexType name="ccmp-users-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="usersResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- userResponse -->

 <xs:complexType name="ccmp-user-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="userResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- [TODO: sidebarResponse -->

 <!-- response-code -->

 <xs:element name="response-code" type="response-codeType" />

 <xs:simpleType name="response-codeType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="success"/>

Barnes, et al. Expires May 7, 2009 [Page 41]

Internet-Draft CCMP November 2008

 <xs:enumeration value="pending"/>
 <xs:enumeration value="modified"/>
 <xs:enumeration value="badRequest"/>
 <xs:enumeration value="unauthorized"/>
 <xs:enumeration value="forbidden"/>
 <xs:enumeration value="objectNotFound"/>
 <xs:enumeration value="operationNotAllowed"/>
 <xs:enumeration value="deleteFailedParent"/>
 <xs:enumeration value="modifyFailedProtected"/>
 <xs:enumeration value="requestTimeout"/>
 <xs:enumeration value="serverInternalError"/>
 <xs:enumeration value="notImplemented"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- blueprintsResponse -->

 <xs:element name="blueprintsResponse"
 type="blueprintsResponseType" />

 <xs:complexType name="blueprintsResponseType">
 <xs:sequence>
 <xs:element ref="namespace"
 minOccurs="1"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:element name="namespace">
 <xs:simpleType>
 <xs:restriction base="xs:string" />
 </xs:simpleType>
 </xs:element>

 <!-- confsResponse -->

 <xs:element name="confsResponse"
 type="confsResponseType" />

 <xs:complexType name="confsResponseType">
 <xs:sequence>
 <xs:element ref="namespace"
 minOccurs="1"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

Barnes, et al. Expires May 7, 2009 [Page 42]

Internet-Draft CCMP November 2008

 <!-- confRequest -->

 <xs:element name="confRequest"
 type="confRequestType" />

 <xs:complexType name="confRequestType">
 <xs:sequence>
 <xs:element name="operation"
 type="operationType"
 minOccurs="1"
 maxOccurs="1" />
 <xs:element name="confInfo"
 type="dm:conference-info"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <!-- confResponse -->

 <xs:element name="confResponse" type="confResponseType" />

 <xs:complexType name="confResponseType">
 <xs:sequence>
 <xs:element name="operation"
 type="operationType"
 minOccurs="1"
 maxOccurs="1" />
 <xs:element name="confInfo"
 type="dm:conference-info"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <!-- userRequest -->

 <xs:element name="userRequest" type="userRequestType" />

 <xs:complexType name="userRequestType">
 <xs:sequence>
 <xs:element name="operation"
 type="operationType"
 minOccurs="1"
 maxOccurs="1" />
 <xs:element name="userInfo"
 type="dm:user"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

Barnes, et al. Expires May 7, 2009 [Page 43]

Internet-Draft CCMP November 2008

 <!-- userResponse -->

 <xs:element name="userResponse"
 type="userResponseType" />

 <xs:complexType name="userResponseType">
 <xs:sequence>
 <xs:element name="operation"
 type="operationType"
 minOccurs="1"
 axOccurs="1" />
 <xs:element name="userInfo"
 type="dm:conference-info"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <!-- usersRequest -->

 <xs:element name="usersRequest"
 type="usersRequestType" />

 <xs:complexType name="usersRequestType">
 <xs:sequence>
 <xs:element name="operation"
 type="operationType"
 minOccurs="1"
 maxOccurs="1" />
 <xs:element name="usersInfo"
 type="dm:users"
 minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <!-- confResponse -->

 <xs:element name="usersResponse"
 type="usersResponseType" />

 <xs:complexType name="usersResponseType">
 <xs:sequence>
 <xs:element name="operation"
 type="operationType"
 minOccurs="1"
 maxOccurs="1" />
 <xs:element name="usersInfo"
 type="dm:users"
 minOccurs="0"/>

Barnes, et al. Expires May 7, 2009 [Page 44]

Internet-Draft CCMP November 2008

 </xs:sequence>
 </xs:complexType>

 <!-- operationType -->

 <xs:simpleType name="operationType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="retrieve"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="change"/>
 <xs:enumeration value="delete"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:schema>

 Figure 15

13. Managing notifications

 This section is still "Under Construction" and currently contains
 some views on handling notifications.

 One proposal is to stick with SIP notification. Another alternative,
 which is commonly done in other web-based systems, is a "call back",
 i.e., the CCMP client provides the conference server with an HTTP URL
 which is invoked when a change occurs. This is apparently how most
 credit card shopping cards work, having implemented one. This works
 well for our scenario since a CCMP "client" is likely to be a web
 server that provides the graphical HTML user interface and uses CCMP
 as the backend to talk to the conference server. In that particular
 case, there doesn't seem to be a problem of having both models. PC-
 based clients behind NATs would provide a SIP event URI, web servers
 would probably find the HTTP model much easier to program with.

 Another option being considered is BOSH
 (http://xmpp.org/extensions/xep-0124.html), which is basically an
 extension to XMPP designed with the following aim: "...a transport
 protocol that emulates a bidirectional stream between two entities
 (such as a client and a server) by efficiently using multiple
 synchronous HTTP request/response pairs without requiring the use of
 polling or asynchronous chunking."

 A final consideration (under discussion only) is basic XMPP.

http://xmpp.org/extensions/xep-0124.html

Barnes, et al. Expires May 7, 2009 [Page 45]

Internet-Draft CCMP November 2008

14. Role based access control

 Editors' Note: this section is also under construction. This topic
 is planned to be described in a separate document that will be
 reference here. XACML is the current proposed direction for which
 the authors would like feedback.

15. IANA Considerations

 This document registers a new XML namespace, a new XML schema, and
 the MIME type for the schema. This document also registers the
 "XCON" Application Service tag and the "CCMP" Application Protocol
 tag. This document also defines registries for the CCMP operation
 types and response codes.

15.1. URN Sub-Namespace Registration

 This section registers a new XML namespace,
 ""urn:ietf:params:xml:ns:xcon:ccmp"".

 URI: "urn:ietf:params:xml:ns:xcon:ccmp"
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org),
 Mary Barnes (mary.barnes@nortel.com).
 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>CCMP Messages</title>
 </head>
 <body>
 <h1>Namespace for CCMP Messages</h1>
 <h2>urn:ietf:params:xml:ns:xcon:ccmp</h2>
 [[NOTE TO IANA/RFC-EDITOR: Please update RFC URL and replace XXXX
 with the RFC number for this specification.]]
 <p>See RFCXXXX.</p>
 </body>
 </html>
 END

Barnes, et al. Expires May 7, 2009 [Page 46]

Internet-Draft CCMP November 2008

15.2. XML Schema Registration

 This section registers an XML schema as per the guidelines in
 [RFC3688].

 URI: urn:ietf:params:xml:schema:xcon:ccmp
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org), Mary
 Barnes (mary.barnes@nortel.com).
 Schema: The XML for this schema can be found as the entirety of

Section 12 of this document.

15.3. MIME Media Type Registration for 'application/ccmp+xml'

 This section registers the "application/ccmp+xml" MIME type.

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/ccmp+xml
 MIME media type name: application
 MIME subtype name: ccmp+xml
 Required parameters: (none)
 Optional parameters: charset
 Indicates the character encoding of enclosed XML. Default is
 UTF-8.
 Encoding considerations: Uses XML, which can employ 8-bit
 characters, depending on the character encoding used. See RFC

3023 [RFC3023], section 3.2.
 Security considerations: This content type is designed to carry
 protocol data related conference control. Some of the data could
 be considered private and thus should be protected.
 Interoperability considerations: This content type provides a basis
 for a protocol
 Published specification: RFC XXXX [[NOTE TO IANA/RFC-EDITOR: Please
 replace XXXX with the RFC number for this specification.]]
 Applications which use this media type: Centralized Conferencing
 control clients and servers.
 Additional Information: Magic Number(s): (none)
 File extension(s): .xml
 Macintosh File Type Code(s): (none)
 Person & email address to contact for further information: Mary
 Barnes <mary.barnes@nortel.com>
 Intended usage: LIMITED USE
 Author/Change controller: The IETF
 Other information: This media type is a specialization of
 application/xml [RFC3023], and many of the considerations
 described there also apply to application/ccmp+xml.

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-3.2
https://datatracker.ietf.org/doc/html/rfc3023

Barnes, et al. Expires May 7, 2009 [Page 47]

Internet-Draft CCMP November 2008

15.4. DNS Registrations

Section 15.4.1 defines an Application Service tag of "XCON", which is
 used to identify the centralized conferencing (XCON) server for a
 particular domain. The Application Protocol tag "CCMP", defined in

Section 15.4.2, is used to identify an XCON server that understands
 the CCMP protocol.

15.4.1. Registration of a Location Server Application Service Tag

 This section registers a new S-NAPTR/U-NAPTR Application Service tag
 for XCON, as mandated by [RFC3958].

 Application Service Tag: XCON

 Intended usage: Identifies a server that supports centralized
 conferencing.

 Defining publication: RFCXXXX

 Contact information: The authors of this document

 Author/Change controller: The IESG

15.4.2. Registration of a Location Server Application Protocol Tag for
 HELD

 This section registers a new S-NAPTR/U-NAPTR Application Protocol tag
 for the CCMP protocol, as mandated by [RFC3958].

 Application Service Tag: CCMP

 Intended Usage: Identifies the Centralized Conferencing (XCON)
 Manipulation Protocol.

 Applicable Service Tag(s): XCON

 Terminal NAPTR Record Type(s): U

 Defining Publication: RFCXXXX

 Contact Information: The authors of this document

 Author/Change Controller: The IESG

https://datatracker.ietf.org/doc/html/rfc3958
https://datatracker.ietf.org/doc/html/rfc3958

Barnes, et al. Expires May 7, 2009 [Page 48]

Internet-Draft CCMP November 2008

15.5. CCMP Protocol Registry

 This document requests that the IANA create a new registry for the
 CCMP protocol including an initial registry for operation types and
 response codes.

15.5.1. CCMP Message Types

 The CCMP messages are described in Section 8 and defined in the XML
 schema in Section 12. The following summarizes the requested
 registry:

 Related Registry: CCMP Message Types Registry
 Defining RFC: RFC XXXX [NOTE TO IANA/RFC-EDITOR: Please replace XXXX
 with the RFC number for this specification.]
 Registration/Assignment Procedures: New CCMP message types are
 allocated on a specification required basis.
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org), Mary
 Barnes (mary.barnes@nortel.com).

 This section pre-registers the following initial CCMP message types:

 blueprintsRequest: Used by a conference control client to query a
 conferencing system for its capabilities, in terms of available
 conference blueprints.
 blueprintsResponse: The optionsResponse returns a list of Blueprints
 supported by the specific conference server.
 confsRequest: Used by a conference control client to query a
 conferencing system for its scheduled/active conferences.
 confsResponse: The confsResponse returns the list of the currently
 activated/scheduled conferences at the server.
 confRequest: The confRequest is used to create a conference object
 and/or to request an operation on the conference object as a
 whole.
 confResponse: The confResponse indicates the result of the operation
 on the conference object as a whole.
 userRequest: The userRequest is used to request an operation on the
 "user" element in the conference object.
 userResponse: The userResponse indicates the result of the requested
 operation on the "user" element in the conference object.
 usersRequest This usersRequest is used to manipulate the "users"
 element in the conference object, including parameters such as the
 allowed-users-list, join-handling, etc.
 usersResponse: This usersResponse indicates the result of the
 request to manipulate the "users" element in the conference
 object.

Barnes, et al. Expires May 7, 2009 [Page 49]

Internet-Draft CCMP November 2008

 sidebarRequest: This sidebarRequest is used to retrieve the
 information related to a sidebar or to create, change or delete a
 specific sidebar.
 sidebarResponse: This sidebarResponse indicates the result of the
 sidebarRequest.

15.5.2. CCMP Response Codes

 The following summarizes the requested registry for CCMP Response
 codes:

 Related Registry: CCMP Response Code Registry
 Defining RFC: RFC XXXX [NOTE TO IANA/RFC-EDITOR: Please replace XXXX
 with the RFC number for this specification.]
 Registration/Assignment Procedures: New response codes are allocated
 on a first-come/first-serve basis with specification required.
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org), Mary
 Barnes (mary.barnes@nortel.com).

 This section pre-registers the following thirteen initial response
 codes as described above in Section 8.3:

 success: This code indicates that the request was successfully
 processed.
 modified: This code indicates that the object was created, but may
 differ from the request.
 badRequest: This code indicates that the request was badly formed in
 some fashion.
 unauthorized: This code indicates that the user was not authorized
 for the specific operation on the conference object.
 forbidden: This code indicates that the specific operation is not
 valid for the target conference object.
 objectNotFound: This code indicates that the specific conference
 object was not found.
 operationNotAllowed: This code indicates that the specific operation
 is not allowed for the target conference object (e.g.., due to
 policies, etc.)
 deleteFailedParent: This code indicates that the conferencing system
 cannot delete the specific conference object because it is a
 parent for another conference object.
 changeFailedProtected: This code indicates that the target
 conference object cannot be changed (e.g., due to policies, roles,
 privileges, etc.).
 requestTimeout: This code indicates that the request could not be
 processed within a reasonable time, with the time specific to a
 conferencing system implementation.

Barnes, et al. Expires May 7, 2009 [Page 50]

Internet-Draft CCMP November 2008

 serverInternalError: This code indicates that the conferencing
 system experienced some sort of internal error.
 notImplemented: This code indicates that the specific operation is
 not implemented on that conferencing system.

16. Security Considerations

 Access to conference control functionality needs to be tightly
 controlled to keep attackers from disrupting conferences, adding
 themselves to conferences or engaging in theft of services. In the
 case of a RESTful implementation of the CCMP, implementors need to
 deploy standard HTTP authentication and authorization mechanisms.
 Since conference information may contain secrets such as participant
 lists and dial-in codes, all conference control information SHOULD be
 carried over TLS (HTTPS).

17. Acknowledgments

 The authors appreciate the feedback provided by Dave Morgan, Pierre
 Tane, Lorenzo Miniero and Tobia Castaldi

18. Changes since last Version

 NOTE TO THE RFC-Editor: Please remove this section prior to
 publication as an RFC.

 The following summarizes the changes between the WG 00 and the 01:

 1. Changed the basic approach from using SOAP to REST - the
 fundamentals are the same in terms of schema, basic operations.
 This impacted most sections, in particular introduction and
 motivation.
 2. Added new request types - blueprintsRequest, blueprintRequest and
 confsRequest. The first replaces the optionsRequest and the
 latter allows the client to get a list of all active conferences.
 3. Merged all requests into the basic operations table. Added
 summary of RESTful examples (referenced by the basic operations
 table.
 4. Added examples showing RESTful approach - i.e., HTTP methods for
 message exchange.
 5. Removed requestID from the schema (it should be handle by the
 transport - e.g., HTTP). Updated schema (based on current
 prototype - it still needs another revision.

Barnes, et al. Expires May 7, 2009 [Page 51]

Internet-Draft CCMP November 2008

 6. Added placeholders for Notifications and Role Based Access
 Control.
 7. Added some text for discovery using DNS (including IANA
 registrations)
 8. Updated References: updated XCON FW RFC, SOAP/W3C moved to
 informational section.

19. References

19.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5239] Barnes, M., Boulton, C., and O. Levin, "A Framework for
 Centralized Conferencing", RFC 5239, June 2008.

 [I-D.ietf-xcon-common-data-model]
 Novo, O., Camarillo, G., Morgan, D., Even, R., and J.
 Urpalainen, "Conference Information Data Model for
 Centralized Conferencing (XCON)",

draft-ietf-xcon-common-data-model-12 (work in progress),
 October 2008.

19.2. Informative References

 [REST] Fielding, "Architectural Styles and the Design of Network-
 based Software Architectures", 2000.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3880] Lennox, J., Wu, X., and H. Schulzrinne, "Call Processing
 Language (CPL): A Language for User Control of Internet
 Telephony Services", RFC 3880, October 2004.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/draft-ietf-xcon-common-data-model-12
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3880

Barnes, et al. Expires May 7, 2009 [Page 52]

Internet-Draft CCMP November 2008

 [RFC3958] Daigle, L. and A. Newton, "Domain-Based Application
 Service Location Using SRV RRs and the Dynamic Delegation
 Discovery Service (DDDS)", RFC 3958, January 2005.

 [RFC3966] Schulzrinne, H., "The tel URI for Telephone Numbers",
RFC 3966, December 2004.

 [I-D.ietf-xcon-event-package]
 Camarillo, G., Srinivasan, S., Even, R., and J.
 Urpalainen, "Conference Event Package Data Format
 Extension for Centralized Conferencing (XCON)",

draft-ietf-xcon-event-package-01 (work in progress),
 September 2008.

 [I-D.royer-calsch-xcal]
 Royer, D., "iCalendar in XML Format (xCal-Basic)",

draft-royer-calsch-xcal-03 (work in progress),
 October 2005.

 [W3C.REC-soap12-part1-20030624]
 Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., and H.
 Nielsen, "SOAP Version 1.2 Part 1: Messaging Framework",
 World Wide Web Consortium FirstEdition REC-soap12-part1-
 20030624, June 2003,
 <http://www.w3.org/TR/2003/REC-soap12-part1-20030624>.

 [W3C.REC-soap12-part2-20030624]
 Moreau, J., Mendelsohn, N., Hadley, M., Nielsen, H., and
 M. Gudgin, "SOAP Version 1.2 Part 2: Adjuncts", World Wide
 Web Consortium FirstEdition REC-soap12-part2-20030624,
 June 2003,
 <http://www.w3.org/TR/2003/REC-soap12-part2-20030624>.

Authors' Addresses

 Mary Barnes
 Nortel
 2201 Lakeside Blvd
 Richardson, TX

 Email: mary.barnes@nortel.com

https://datatracker.ietf.org/doc/html/rfc3958
https://datatracker.ietf.org/doc/html/rfc3966
https://datatracker.ietf.org/doc/html/draft-ietf-xcon-event-package-01
https://datatracker.ietf.org/doc/html/draft-royer-calsch-xcal-03
http://www.w3.org/TR/2003/REC-soap12-part1-20030624
http://www.w3.org/TR/2003/REC-soap12-part2-20030624

Barnes, et al. Expires May 7, 2009 [Page 53]

Internet-Draft CCMP November 2008

 Chris Boulton
 Avaya
 Building 3
 Wern Fawr Lane
 St Mellons
 Cardiff, South Wales CF3 5EA

 Email: cboulton@avaya.com

 Simon Pietro Romano
 University of Napoli
 Via Claudio 21
 Napoli 80125
 Italy

 Email: spromano@unina.it

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 450 Computer Science Building
 New York, NY 10027

 Email: hgs+xcon@cs.columbia.edu

Barnes, et al. Expires May 7, 2009 [Page 54]

Internet-Draft CCMP November 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Barnes, et al. Expires May 7, 2009 [Page 55]

