
XCON Working Group M. Barnes
Internet-Draft Polycom
Intended status: Standards Track C. Boulton
Expires: January 13, 2011 NS-Technologies
 S P. Romano
 University of Napoli
 H. Schulzrinne
 Columbia University
 July 12, 2010

Centralized Conferencing Manipulation Protocol
draft-ietf-xcon-ccmp-10

Abstract

 The Centralized Conferencing Manipulation Protocol (CCMP) allows an
 XCON conferencing system client to create, retrieve, change, and
 delete objects that describe a centralized conference. CCMP is a
 means to control basic and advanced conference features such as
 conference state and capabilities, participants, relative roles, and
 details. CCMP is a state-less, XML-based, client server protocol
 that carries, in its request and response messages, conference
 information in the form of XML documents and fragments conforming to
 the centralized conferencing data model schema.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 13, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Barnes, et al. Expires January 13, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft CCMP July 2010

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 4
3. XCON Conference Control System Architecture 5
3.1. Conference Objects 7
3.2. Conference Users . 7

4. Protocol Overview . 8
4.1. Protocol Operations 9
4.2. Implementation Approach 11

5. CCMP messages . 12
5.1. CCMP Request Message Type 12
5.2. CCMP Response Message Type 14
5.3. Detailed messages . 16
5.3.1. blueprintsRequest and blueprintsResponse 19
5.3.2. confsRequest and confsResponse 21
5.3.3. blueprintRequest and blueprintResponse 22
5.3.4. confRequest and confResponse 24
5.3.5. usersRequest and usersResponse 28
5.3.6. userRequest and userResponse 30
5.3.7. sidebarsByValRequest and sidebarsByValResponse . . . 35
5.3.8. sidebarByValRequest and sidebarByValResponse 36
5.3.9. sidebarsByRefRequest and sidebarsByRefResponse . . . 39
5.3.10. sidebarByRefRequest and sidebarByRefResponse 41
5.3.11. extendedRequest and extendedResponse 44
5.3.12. optionsRequest and optionsResponse 45

5.4. CCMP Response Codes 49
6. A complete example of the CCMP in action 52
6.1. Alice retrieves the available blueprints 53

 6.2. Alice gets detailed information about a specific
 blueprint . 55
 6.3. Alice creates a new conference through a cloning
 operation . 57

6.4. Alice updates conference information 60
 6.5. Alice inserts a list of users in the conference object . 62

6.6. Alice joins the conference 63
6.7. Alice adds a new user to the conference 65

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Barnes, et al. Expires January 13, 2011 [Page 2]

Internet-Draft CCMP July 2010

6.8. Alice asks for the CCMP server capabilities 67
6.9. Alice exploits a CCMP server extension 70

7. Locating a Conference Control Server 73
8. Managing Notifications 74
9. HTTP Transport . 75
10. Security Considerations 77

 10.1. Assuring that the Proper Conferencing Server has been
 contacted . 78

10.2. User Authentication and Authorization 78
10.3. Security and Privacy of Identity 79

11. XML Schema . 80
12. IANA Considerations . 98
12.1. URN Sub-Namespace Registration 98
12.2. XML Schema Registration 99

 12.3. MIME Media Type Registration for 'application/ccmp+xml' . 99
12.4. DNS Registrations . 100

 12.4.1. Registration of a Conference Control Server
 Application Service Tag 100
 12.4.2. Registration of a Conference Control Server
 Application Protocol Tag for CCMP 100

12.5. CCMP Protocol Registry 101
12.5.1. CCMP Message Types 101
12.5.2. CCMP Response Codes 102

13. Acknowledgments . 104
14. Changes since last Version 104
15. References . 105
15.1. Normative References 105
15.2. Informative References 106

Appendix A. Appendix A: Other protocol models and transports
 considered for CCMP 106

A.1. Using SOAP for the CCMP 107
A.2. A RESTful approach for the CCMP 108

 Authors' Addresses . 108

Barnes, et al. Expires January 13, 2011 [Page 3]

Internet-Draft CCMP July 2010

1. Introduction

 The Framework for Centralized Conferencing [RFC5239] (XCON Framework)
 defines a signaling-agnostic framework, naming conventions and
 logical entities required for building advanced conferencing systems.
 The XCON Framework introduces the conference object as a logical
 representation of a conference instance, representing the current
 state and capabilities of a conference.

 The Centralized Conferencing Manipulation Protocol (CCMP) defined in
 this document allows authenticated and authorized users to create,
 manipulate and delete conference objects. Operations on conferences
 include adding and removing participants, changing their roles, as
 well as adding and removing media streams and associated end points.

 The CCMP implements the client-server model within the XCON
 Framework, with the Conference Control Client and Conference Control
 Server acting as client and server, respectively. The CCMP uses HTTP
 [RFC2616] as the protocol to transfer requests and responses, which
 contain the domain-specific XML-encoded data objects defined in
 [I-D.ietf-xcon-common-data-model] Conference Information Data Model
 for Centralized Conferencing (XCON Data Model).

Section 2 clarifies the conventions and terminology used in the
 document. Section 3 provides an overview of the Conference Control
 functionality of the XCON framework, together with a description of
 the main targets CCMP deals with, namely conference objects and
 conference users. A general description of the operations associated
 with protocol messages is given in Section 4 together with
 implementation details. Section 5 delves into the details of the
 specific CCMP messages. A complete, not normative, example of the
 operation of the CCMP, describing a typical call flow associated with
 conference creation and manipulation, is provided in Section 6. A
 survey of the methods that can be used to locate a Conference Control
 Server is provided in Section 7, whereas Section 8 discusses
 potential approaches to notifications management. CCMP transport
 over HTTP is highlighted in Section 9. Security considerations are
 presented in Section 10. Finally, Section 11 provides the XML
 schema.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 In additon to the terms defined in the Framework for Centralized

https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119

Barnes, et al. Expires January 13, 2011 [Page 4]

Internet-Draft CCMP July 2010

 Conferencing [RFC5239], this document uses the following terms and
 acronyms:

 XCON aware client: An XCON conferencing system client which is able
 to issue CCMP requests.

3. XCON Conference Control System Architecture

 CCMP supports the XCON framework . Figure 1 depicts a subset of the
 "Conferencing System Logical Decomposition" architecture from the
 XCON framework document. It illustrates the role that CCMP assumes
 within the overall centralized architecture.

Barnes, et al. Expires January 13, 2011 [Page 5]

https://datatracker.ietf.org/doc/html/rfc5239

Internet-Draft CCMP July 2010

 ..
 . Conferencing System .
 . .
 . +---------------------------------------+ .
 . | C O N F E R E N C E O B J E C T | .
 . +-+-------------------------------------+ | .
 . | C O N F E R E N C E O B J E C T | | .
 . +-+-------------------------------------+ | | .
 . | C O N F E R E N C E O B J E C T | | | .
 . | | |-+ .
 . | |-+ .
 . +---------------------------------------+ .
 . ^ .
 . | .
 . v .
 . +-------------------+ .
 . | Conference Control| .
 . | Server | .
 . +-------------------+ .
 . ^ .
 |..............................
 |
 |Centralized
 |Conferencing
 |Manipulation
 |Protocol
 |
 |..............................
 . V .
 . +----------------+ .
 . | Conference | .
 . | Control | .
 . | Client | .
 . +----------------+ .
 . .
 . Conferencing Client .
 ..

 Figure 1: Conference Client Interaction

 CCMP serves as the Conference Control Protocol, allowing the
 conference control client to interface with the conference object
 maintained by the conferencing system, as represented in Figure 1.
 Conference Control is one part of functionality for advanced
 conferencing supported by a conferencing client. Other functions are
 discussed in the XCON framework and related documents.

Barnes, et al. Expires January 13, 2011 [Page 6]

Internet-Draft CCMP July 2010

 Conference object and conference users do represent key elements
 involved in Conference Control Protocol operations. Their
 identifiers, respectively the conference XCON-URI and the
 conferencing client XCON-USERID, and their XML representations
 compliant with the XML Schema defined in the XCON data model are
 widely used for creating the CCMP requests and responses. The main
 conference objects and users features envisioned by the XCON
 framework are briefly described in the following subsections.

3.1. Conference Objects

 Conference objects feature a simple dynamic inheritance-and-override
 mechanism. Conference objects are linked into a tree known as
 "cloning tree" (see Section 7.1 of [RFC5239]). Each cloning tree
 node inherits attributes from its parent node. The roots of these
 inheritance trees are conference templates also known as
 "blueprints". Nodes in the inheritance tree can be active
 conferences or simply descriptions that do not currently have any
 resources associated with them (conference reservations). An object
 can mark certain of its properties as unalterable, so that they
 cannot be overridden. It is envisaged by the framework that a client
 may specify a parent object (a conference or blueprint) from which
 the conference to be created has to inherit values by the mean of the
 Conference Control Protocol.

 Conference objects are uniquely identified by the XCON-URI within the
 scope of the conferencing system. Such identifier is introduced in
 the XCON framework and defined in the XCON common data model.

 Conference objects are comprehensively represented through XML
 documents compliant with the XML Schema defined in the XCON data
 model [I-D.ietf-xcon-common-data-model]. The root element of such
 documents, called "<conference-info>", is of type "conference-type".
 It encompasses other XML elements describing different conference
 features and users as well. By the mean of CCMP, conferencing
 clients can use such XML structures to express their preferences in
 creation or update. A conferencing server can convey conference
 information of such a form back to the clients.

3.2. Conference Users

 Each conference can have zero or more users. All conference
 participants are users, but some users may have only administrative
 functions and do not contribute or receive media. Users are added
 one user at a time to simplify error reporting. When a conference is
 cloned from a parent object, users are inherited as well, so that it
 is easy to set up a conference that has the same set of participants
 or a common administrator. The Conference Control Server creates

https://datatracker.ietf.org/doc/html/rfc5239#section-7.1

Barnes, et al. Expires January 13, 2011 [Page 7]

Internet-Draft CCMP July 2010

 individual users, assigning them a unique Conference User Identifier
 (XCON-USERID). The XCON-USERID as identifier of each conferencing
 system client is introduced in the XCON framework and defined in the
 XCON common data model. Each CCMP request, with an exception pointed
 out in Section 5.3.6 representing the case of a user at his first
 entrance in the system as a conference participant, must carry the
 XCON-USERID of the requestor in the proper "confUserID" parameter.

 The XCON-USERID acts as a pointer to the user's profile as a
 conference actor, e.g. her signalling URI and other XCON protocol
 URIs in general, her role (moderator, participant, observer, etc.),
 her display text, her joining information and so on. A variety of
 elements defined in the common <conference-info> element as specified
 in the XCON data model are used to describe the users related to a
 conference, in the first place the <users> element, as well as each
 <user> element included in it. For example, it is possible to
 determine how a specific user expects and is allowed to join a
 conference by looking at the <allowed-user-list> in <users>: each
 <target> element involved in such a list represents a user and shows
 a "method" attribute defining how the user is expected to join the
 conference, i.e. "dial-in" for users that are allowed to dial, "dial-
 out" for users that the conference focus will be trying to reach
 (with "dial-in" being the default mode). If the conference is
 currently active, dial-out users are contacted immediately;
 otherwise, they are contacted at the start of the conference. The
 CCMP, acting as the Conference Control Protocol, provides a means to
 manipulate these and other kinds of user-related features.

 As a consequence of an explicit user registration to a specific XCON
 conferencing system, conferencing clients are usually provided
 (besides the XCON-USERID) with log-in credentials (i.e. username and
 password). Such credentials can be used to authenticate the XCON
 aware client issuing CCMP requests. To this purpose, both username
 and password should be carried in a CCMP request as part of the
 "subject" parameter whenever a registered conferencing client wishes
 to contact a CCMP server. The CCMP does not look after users
 subscriptions at the conference server; hence, it does not provide
 any specific mechanism allowing clients to register their
 conferencing accounts. The "subject" parameter is just used for
 carrying authentication data associated with pre-registered clients.

4. Protocol Overview

 CCMP is a client-server, XML-based protocol, which has been
 specifically conceived to provide users with the necessary means for
 the creation, retrieval, modification and deletion of conference
 objects. CCMP is also state-less, which means implementations can

Barnes, et al. Expires January 13, 2011 [Page 8]

Internet-Draft CCMP July 2010

 safely handle transactions independently from each other.
 Conference-related information is encapsulated into CCMP messages in
 the form of XML documents or XML document fragments compliant with
 the XCON data model representation.

Section 4.1 specifies the basic operations that can create, retrieve,
 modify and delete conference-related information in a centralized
 conference. The core set of objects manipulated in the CCMP protocol
 includes conference blueprints, the conference object, users, and
 sidebars.

 CCMP has been conceived as completely independent from underlying
 protocols, which means that there can be different ways to carry CCMP
 messages across the network, from a conferencing client to a
 conferencing server. Nevertheless, it is recommended to use HTTP as
 a transport solution, including CCMP requests in HTTP POST messages
 and CCMP responses in HTTP 200 OK replies. Implementation details
 are presented in Section 4.2

4.1. Protocol Operations

 The main operations provided by CCMP belong in four general
 categories:

 create: for the creation of a conference, a conference user, a
 sidebar, or a blueprint.
 retrieve: to get information about the current state of either a
 conference object (be it an actual conference or a blueprint, or a
 sidebar) or a conference user. A retrieve operation can also be
 used to obtain the XCON-URIs of the current conferences (active or
 registered) handled by the conferencing server and/or the
 available blueprints.
 update: to modify the current features of a specified conference or
 conference user.
 delete: to remove from the system a conference object or a
 conference user.

 Thus, the main targets of CCMP operations are:

 o conference objects associated with either active or registered
 conferences,
 o conference objects associated with blueprints,
 o conference objects associated with sidebars, both embedded in the
 main conference (i.e. <entry> elements in <sidebars-by-value>) and
 external to it (i.e. whose xcon-uris are included in the <entry>
 elements of <sidebars-by-ref>),

Barnes, et al. Expires January 13, 2011 [Page 9]

Internet-Draft CCMP July 2010

 o <user> elements associated with conference users,
 o the list of XCON-URIs related to conferences and blueprints
 available at the server, for which only retrieval operations are
 allowed.

 Each operation in the protocol model is atomic and either succeeds or
 fails as a whole. The conference server must ensure that the
 operations are atomic in that the operation invoked by a specific
 conference client completes prior to another client's operation on
 the same conference object. The details for this data locking
 functionality are out of scope for the CCMP protocol specification
 and are implementation specific for a conference server. Thus, the
 conference server first checks all the parameters, before making any
 changes to the internal representation of the conference object. For
 example, it would be undesirable to change the <subject> of the
 conference, but then detect an invalid URI in one of the <service-
 uris> and abort the remaining updates. Also, since multiple clients
 can modify the same conference objects, conference clients should
 first obtain the current object from the conference server and then
 update the relevant data elements in the conference object prior to
 invoking a specific operation on the conference server. In order to
 effectively manage modifications to conference data, a versioning
 approach is exploited in the CCMP. More precisely, each conference
 object is associated with a version number indicating the most up to
 date view of the conference at the server's side. Such version
 number is reported to the clients when answering their requests. A
 client willing to make modifications to a conference object has to
 send an update message to the server. In case the modifications are
 all successfully applied, the server sends back to the client a "200"
 response which also carries information about the current server-side
 version of the modified object. With such approach, a client which
 is working on version "X" of a conference object and finds inside a
 "200" response a version number which is "X+1" can be sure that the
 version it was aware of was the most up to date. On the other hand,
 if the "200" response carries back a version which is at least "X+2",
 the client can detect that the object that has been modified at the
 server's side was more up to date than the one it was working upon.
 This is clearly due to the effect of concurrent modification requests
 issued by independent clients. Hence, for the sake of having
 available the latest version of the modified object, the client can
 send to the conference server a further "retrieve" request. In no
 case a copy of the conference object available at the server is
 returned to the client as part of the update response message. Such
 a copy can always be obtained through an ad-hoc "retrieve" message.

 Based on the above considerations, all CCMP response messages
 carrying in their body a conference document (or a fragment of it)
 must contain a "version" parameter. This does not hold for request

Barnes, et al. Expires January 13, 2011 [Page 10]

Internet-Draft CCMP July 2010

 messages, for which the "version" parameter is not at all required,
 since it represents useless information for the server: as long as
 the required modifications can be applied to the target conference
 object with no conflicts, the server does not care whether or not the
 client had an up to date view of the information stored at its side.
 This said, it stands clear that a client which has subscribed at the
 server, through the XCON event package [I-D.ietf-xcon-event-package],
 to notifications about conference object modifications, will always
 have the most up to date version of that object available at his
 side.

 A final consideration concerns the relation between the CCMP and the
 main entities it manages, i.e. conference objects. Such objects have
 to be compliant with the XCON data-model, which identifies some
 elements/attributes as mandatory. From the CCMP standpoint this can
 become a problem in cases of client-initiated operations, like the
 creation/update of conference objects. In such cases, not all of the
 mandatory data can be known in advance to the client issuing a CCMP
 request. As an example, a client has no means to know, at the time
 it issues a conference creation request, the XCON-URI that the server
 will assign to the yet-to-be-created conference and hence it is not
 able to appropriately fill with that value the mandatory "entity"
 attribute of the conference document contained in the request. To
 solve this kind of issues, the CCMP will fill all mandatory data
 model fields, for which no value is available at the client at the
 time the request is constructed, with fake values in the form of
 wildcard strings (e.g. AUTO_GENERATE_X, with X being an incremental
 index initialized to a value of 1). Upon reception of the mentioned
 kinds of requests, the server will: (i) generate the proper
 identifier(s); (ii) produce a response in which the received fake
 identifier(s) carried in the request has (have) been replaced by the
 newly created one(s). With this approach we maintain compatibility
 with the data model requirements, at the same time allowing for
 client-initiated manipulation of conference objects at the server's
 side (which is, by the way, one of the main goals for which the CCMP
 protocol has been conceived at the outset).

4.2. Implementation Approach

 There have been a number of different proposals as to the most
 suitable implementation solution for the CCMP. A non-exhaustive
 summary of the most interesting ones is provided in Appendix A. The
 solution for the CCMP defined in this document is viewed as a good
 compromise amongst the most notable past candidates and is referred
 to as "HTTP single-verb transport plus CCMP body". With this
 approach, CCMP is able to take advantage of existing HTTP
 functionality. As with SOAP, the CCMP uses a "single HTTP verb" for
 transport (i.e. a single transaction type for each request/response

Barnes, et al. Expires January 13, 2011 [Page 11]

Internet-Draft CCMP July 2010

 pair); this allows decoupling CCMP messages from HTTP messages.
 Similarly, as with any RESTful approach, CCMP messages are inserted
 directly in the body of HTTP messages, thus avoiding any unnecessary
 processing and communication burden associated with further
 intermediaries. With this approach, no modification to the CCMP
 messages/operations is required to use a different transport
 protocol.

 The remainder of this document focuses on the selected approach. The
 CCMP protocol inserts XML-based CCMP requests into the body of HTTP
 POST operations and retrieves responses from the body of HTTP "200
 OK" messages. CCMP messages have a MIME-type of "application/
 ccmp+xml", which appears inside the "Content-Type" and "Accept"
 fields of HTTP requests and responses. Section 9 provides the
 complete requirements for an HTTP implementation to support the CCMP.

5. CCMP messages

 CCMP messages are either requests or responses. The general CCMP
 request message is defined in Section 5.1. The general CCMP response
 message is defined in Section 5.2. The details of the specific
 message type which is carried in the CCMP request and response
 messages are described in Section 5.3. CCMP response codes are
 listed in Section 5.4

5.1. CCMP Request Message Type

 A CCMP request message is comprised of the following parameters:

 subject: An optional parameter containing username and password of
 the client registered at the conferencing system. Each user who
 subscribes to the conferencing system is assumed to be equipped
 with those credentials and SHOULD enclose them in each CCMP
 request she issues. These fields can be used to control that the
 user sending the CCMP request has the authority to perform the
 entailed operation. The same fields can also be exploited to
 carry out other Authorization, Authentication and Accounting (AAA)
 procedures.
 confUserID: An optional parameter containing the XCON-USERID of the
 client. The XCON-USERID is used to identify any conferencing
 client within the context of the conferencing system and it is
 assinged by the conferencing server at each conferencing client
 who interacts with it. The "confUserID" parameter is REQUIRED in
 the CCMP request and response messages with the exception of the
 case of a user who has no XCON-USERID and who wants to enter, via
 CCMP, a conference whose identifier is known. In such case, a
 side-effect of the request is that the user is provided with an

Barnes, et al. Expires January 13, 2011 [Page 12]

Internet-Draft CCMP July 2010

 appropriate XCON-USERID. An example of the above mentioned case
 will be provided in Section 5.3.6.
 confObjID: An optional parameter containing the XCON-URI of the
 target conference object.
 operation: An optional parameter refining the type of specialized
 request message. The "operation" parameter is REQUIRED in all
 requests except for the "blueprintsRequest" and "confsRequest"
 specialized messages.
 conference-password: An optional parameter that MUST be inserted in
 all requests whose target conference object is password-protected
 (as per the <conference-password> element in
 [I-D.ietf-xcon-common-data-model]).
 specialized request message: This is specialization of the generic
 request message (e.g., blueprintsRequest), containing parameters
 that are dependent on the specific request sent to the server. A
 specialized request message MUST be included in the CCMP request
 message. The details for the specialized messages and associated
 parameters are provided in Section 5.3.

Barnes, et al. Expires January 13, 2011 [Page 13]

Internet-Draft CCMP July 2010

 <!-- Definition of CCMP Request -->

 <xs:element name="ccmpRequest" type="ccmp-request-type" />

 <!-- Definition of ccmp-request-type-->

 <xs:complexType name="ccmp-request-type">
 <xs:sequence>
 <xs:element name="ccmpRequest"
 type="ccmp-request-message-type" />
 </xs:sequence>
 </xs:complexType>

 <!-- Definition of ccmp-request-message-type -->

 <xs:complexType abstract="true"
 name="ccmp-request-message-type">
 <xs:sequence>
 <xs:element name="subject" type="subject-type"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="confUserID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="confObjID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="operation" type="operationType"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="conference-password" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 2: Structure of CCMP Request messages

5.2. CCMP Response Message Type

 A CCMP response message is comprised of the following parameters:

 confUserID: A mandatory parameter in CCMP response messages
 containing the XCON-USERID of the conferencing client who issued
 the CCMP request message.

Barnes, et al. Expires January 13, 2011 [Page 14]

Internet-Draft CCMP July 2010

 confObjID: An optional parameter containing the XCON-URI of the
 target conference object.
 operation: An optional parameter for CCMP response messages. This
 parameter is REQUIRED in all responses except for the
 "blueprintsResponse" and "confsResponse" specialized messages.
 response-code: A mandatory parameter containing the response code
 associated with the request. The response code MUST be chosen
 from the codes listed in Section 5.4.
 response-string: An optional reason string associated with the
 response. In case of an error, in particular, such string can be
 used to provide the client with detailed information about the
 error itself.
 version: An optional parameter reflecting the current version number
 of the conference object referred by the confObjID. This number
 is contained in the "version" attribute of the <conference-info>
 element related to that conference.
 specialized response message: This is specialization of the generic
 response message, containing parameters that are dependent on the
 specific request sent to the server (e.g., blueprintsResponse). A
 specialized response message SHOULD be included in the CCMP
 response message, except in an error situation where the CCMP
 request message did not contain a valid specialized message. In
 this case, the conference server MUST return a "response-code" of
 "400". The details for the specialized messages and associated
 parameters are provided in Section 5.3.

Barnes, et al. Expires January 13, 2011 [Page 15]

Internet-Draft CCMP July 2010

 <!-- Definition of CCMP Response -->

 <xs:element name="ccmpResponse" type="ccmp-response-type" />

 <!-- Definition of ccmp-response-type -->

 <xs:complexType name="ccmp-response-type">
 <xs:sequence>
 <xs:element name="ccmpResponse"
 type="ccmp-response-message-type" />
 </xs:sequence>
 </xs:complexType>

 <!-- Definition of ccmp-response-message-type -->

 <xs:complexType abstract="true"
 name="ccmp-response-message-type">
 <xs:sequence>
 <xs:element name="confUserID" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 <xs:element name="confObjID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="operation" minOccurs="0"
 maxOccurs="1" />
 <xs:element ref="response-code" minOccurs="1"
 maxOccurs="1" />
 <xs:element name="response-string" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="version" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 3: Structure of CCMP Response message

5.3. Detailed messages

 Based on the request and response message structures described in
Section 5.1 and Section 5.2, the following summarizes the specialized

 CCMP request/response types described in this document:

 1. blueprintsRequest/blueprintsResponse

Barnes, et al. Expires January 13, 2011 [Page 16]

Internet-Draft CCMP July 2010

 2. confsRequest/confsResponse
 3. blueprintRequest/blueprintResponse
 4. confRequest/confResponse
 5. usersRequest/usersResponse
 6. userRequest/userResponse
 7. sidebarsByValRequest/sidebarsByValResponse
 8. sidebarsByRefRequest/sidebarsByRefResponse
 9. sidebarByValRequest/sidebarByValResponse
 10. sidebarByRefRequest/sidebarByRefResponse
 11. extendedRequest/extendedResponse
 12. optionsRequest/optionsResponse

 These CCMP request/response pairs use the fundamental CCMP operations
 as defined in Section 4.1 to manipulate the conference data. The
 optionsRequest/optionsResponse message pair deserves a specific
 discussion, since it is not used for manipulating information about
 either conferences or conference users, but rather to retrieve
 general information about conference server capabilities, in terms of
 standard CCMP messages it supports, plus potential extension messages
 it understands, as it will be further explained in Section 5.3.12.
 Table 1 summarizes the remaining CCMP operations and corresponding
 actions that are valid for a specific CCMP request type, noting that
 neither the blueprintsRequest/blueprintsResponse nor confsRequest/
 confsResponse require an "operation" parameter. The corresponding
 response MUST contain the same operation. Note that some entries are
 labeled "N/A" indicating the operation is invalid for that request
 type. In the case of an "N/A*", the operation MAY be allowed for
 specific privileged users or system administrators, but is not part
 of the functionality included in this document.

Barnes, et al. Expires January 13, 2011 [Page 17]

Internet-Draft CCMP July 2010

 +---------------+------------+------------+------------+------------+
Operation	Retrieve	Create	Update	Delete

Request Type				
+---------------+------------+------------+------------+------------+				
blueprints	Get list	N/A	N/A	N/A
Request	of			
	blueprints			
-------------	----------	----------	----------	----------
blueprint	Get	N/A*	N/A*	N/A*
Request	blueprint			
-------------	----------	----------	----------	----------
confsRequest	Get list	N/A	N/A	N/A
	of confs			
-------------	----------	----------	----------	----------
confRequest	Gets	Creates	Changes	Deletes
	conference	conference	conference	conference
	object	object	object	object
-------------	----------	----------	----------	----------
usersRequest	Gets	N/A(**)	Changes	N/A(**)
	<users>		<users>	
-------------	----------	----------	----------	----------
userRequest	Gets	Adds a	Changes	Deletes
	specified	<user> to	specified	specified
	<user>	a conf	<user>	<user>
		(***)		
-------------	----------	----------	----------	----------
sidebarsByVal	Gets	N/A	N/A	N/A
Request	<sidebars-			
	by-val>			
-------------	----------	----------	----------	----------
sidebarsByRef	Gets	N/A	N/A	N/A
Request	<sidebars-			
	by-ref>			
-------------	----------	----------	----------	----------
sidebarByVal	Gets	Creates	Changes	Deletes
Request	sidebar-	sidebar-	sidebar-	sidebar-
	by-val	by-val	by-val	by-val
-------------	----------	----------	----------	----------
sidebarByRef	Gets	Creates	Changes	Deletes
Request	sidebar-	sidebar-	sidebar-	sidebar-
	by-ref	by-ref	by-ref	by-ref
 +---------------+------------+------------+------------+------------+

 Table 1: Request Type Operation Specific Processing

 (**): These operations are not allowed for a usersRequest message,
 since the <users> section, which is the target element of such a

Barnes, et al. Expires January 13, 2011 [Page 18]

Internet-Draft CCMP July 2010

 request, is created and removed in conjuntcion with, respectively,
 the creation and deletion of the associated conference document.
 Thus, "update" and "retrieve" are the only semantically correct
 operations for such message.

 (***): This operation can involve the creation of an XCON-USERID, if
 the sender does not add it in the "confUserID" parameter, and/or if
 the "entity" field of the "userInfo" parameter is void.

 Additional parameters included in the specialized CCMP request/
 response messages are detailed in the subsequent sections.

5.3.1. blueprintsRequest and blueprintsResponse

 A "blueprintsRequest" (Figure 4) message is sent to request the list
 of XCON-URIs associated with the available blueprints from the
 conference server. Such URIs can be subsequently used by the client
 to access detailed information about a specified blueprint with a
 specific blueprintRequest message per Section 5.3.3. The
 "confUserID" parameter MUST be included in every blueprintsRequest/
 Response message and reflect the XCON-USERID of the conferencing
 client issuing the request. A blueprintsRequest message REQUIRES no
 "confObjID" and "operation" parameters, since it is not targetted to
 a specific conference instance and it is conceived as a "retrieve-
 only" request. In order to obtain a specific subset of the available
 blueprints, a client may specify a selection filter providing an
 appropriate xpath query in the optional "xpathFilter" parameter of
 the request. For example, to select blueprints having both audio and
 video stream support, a possible xpathFilter value could be: "/
 conference-info[conference-description/available-media/entry/
 type='audio' and conference-description/available-media/entry/
 type='video']".

 The associated "blueprintsResponse" message SHOULD contain, as shown
 in Figure 4, a "blueprintsInfo" parameter containing the above
 mentioned XCON-URI list.

 <!-- blueprintsRequest -->

 <xs:complexType name="ccmp-blueprints-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="blueprintsRequest" />
 </xs:sequence>
 </xs:extension>

Barnes, et al. Expires January 13, 2011 [Page 19]

Internet-Draft CCMP July 2010

 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintsRequestType -->

 <xs:element name="blueprintsRequest" type="blueprintsRequestType"/>

 <xs:complexType name="blueprintsRequestType">
 <xs:sequence>
 <xs:element name="xpathFilter" type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- blueprintsResponse -->

 <xs:complexType name="ccmp-blueprints-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="blueprintsResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintsResponseType -->

 <xs:element name="blueprintsResponse" type="blueprintsResponseType"/>

 <xs:complexType name="blueprintsResponseType">
 <xs:sequence>
 <xs:element name="blueprintsInfo"
 type="info:uris-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 4: Structure of the blueprintsRequest and blueprintsResponse
 messages

Barnes, et al. Expires January 13, 2011 [Page 20]

Internet-Draft CCMP July 2010

5.3.2. confsRequest and confsResponse

 A "confsRequest" message is used to retrieve, from the server, the
 list of XCON-URIs associated with active and registered conferences
 currently handled by the conferencing system. The "confUserID"
 parameter MUST be included in every confsRequest/Response message and
 reflect the XCON-USERID of the conferencing client issuing the
 request. The "confObjID" parameter MUST NOT be included in the
 confsRequest message. The "confsRequest" message is of a "retrieve-
 only" type, since the sole purpose is to collect information
 available at the conference server. Thus, an "operation" parameter
 MUST NOT be included in a "confsRequest" message. In order to
 retrieve a specific subset of the available conferences, a client may
 specify a selection filter providing an appropriate xpath query in
 the optional "xpathFilter" parameter of the request. For example, to
 select only the registered conferences, a possible xpathFilter value
 could be: "/conference-info[conference-description/conference-state/
 active='false']". The associated "confsResponse" message SHOULD
 contain the list of XCON-URIs in the "confsInfo" parameter. A user,
 upon receipt of the response message, can interact with the available
 conference objects through further CCMP messages.

 <!-- confsRequest -->

 <xs:complexType name="ccmp-confs-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="confsRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confsRequestType -->

 <xs:element name="confsRequest" type="confsRequestType" />

 <xs:complexType name="confsRequestType">
 <xs:sequence>
 <xs:element name="xpathFilter" type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

Barnes, et al. Expires January 13, 2011 [Page 21]

Internet-Draft CCMP July 2010

 <!-- confsResponse -->

 <xs:complexType name="ccmp-confs-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="confsResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confsResponseType -->

 <xs:element name="confsResponse" type="confsResponseType"/>

 <xs:complexType name="confsResponseType">
 <xs:sequence>
 <xs:element name="confsInfo" type="info:uris-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 5: Structure of the confsRequest and confsResponse messages

5.3.3. blueprintRequest and blueprintResponse

 Through a "blueprintRequest", a client can manipulate the conference
 object associated with a specified blueprint. Further than the
 "confUserID" parameter, the request MUST include the "confObjID" and
 the "operation" one. Again, the "confUserID" parameter MUST be
 included in every blueprintRequest/Response message and reflect the
 XCON-USERID of the conferencing client issuing the request. The
 "confObjID" parameter MUST contain the XCON-URI of the blueprint,
 which might have been previously retrieved through a
 "blueprintsRequest" message.

 The blueprintRequest message SHOULD NOT contain an "operation"
 parameter other than "retrieve". The "create", "update" and "delete"
 operations SHOULD NOT be included in a "blueprintRequest" message
 except in the case of privileged users (e.g. the conference server
 administration staff), who might authenticate themselves by the mean
 of the "subject" request parameter.

Barnes, et al. Expires January 13, 2011 [Page 22]

Internet-Draft CCMP July 2010

 A blueprintRequest/retrieve carrying a "confObjID" which is not
 associated with one of the available system's blueprints will
 generate, on the server's side, a blueprintResponse message
 containing a "404" error code. This holds also for the case in which
 the mentioned "confObjID" is related to an existing conference
 document stored at the server, but associated with an actual
 conference (be it active or registered) or with a sidebar rather than
 a blueprint.

 In the case of "response-code" of "200" for a "retrieve" operation,
 the "blueprintInfo" parameter MUST be included in the
 "blueprintResponse" message. The "blueprintInfo" parameter contains
 the conference document associated with the blueprint as identified
 by the "confObjID" parameter specified in the blueprintRequest.

 <!-- blueprintRequest -->

 <xs:complexType name="ccmp-blueprint-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="blueprintRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintRequestType -->

 <xs:element name="blueprintRequest" type="blueprintRequestType" />

 <xs:complexType name="blueprintRequestType">
 <xs:sequence>
 <xs:element name="blueprintInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- blueprintResponse -->

 <xs:complexType name="ccmp-blueprint-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">

Barnes, et al. Expires January 13, 2011 [Page 23]

Internet-Draft CCMP July 2010

 <xs:sequence>
 <xs:element ref="blueprintResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintResponseType -->

 <xs:element name="blueprintResponse" type="blueprintResponseType"/>

 <xs:complexType name="blueprintResponseType">
 <xs:sequence>
 <xs:element name="blueprintInfo" type="info:conference-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded">
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 6: Structure of the blueprintRequest and blueprintResponse
 messages

5.3.4. confRequest and confResponse

 With a "confRequest" message, CCMP clients can manipulate conference
 objects associated with either active or registered conferences. The
 "confUserID" parameter MUST be included in every confRequest/Response
 message and reflect the XCON-USERID of the conferencing client
 issuing the request. ConfRequest and confResponse messages MUST also
 include an "operation" parameter. ConfResponse messages MUST return
 to the requestor a "response-code" and MAY contain a "response-
 string" explaining it. Depending upon the type of "operation", a
 "confObjID" and "confInfo" parameter MAY be included in the
 confRequest and response. The requirements for inclusion of
 "confObjID" and "confInfo" parameter in the confRequest/confResponse
 messages and are detailed below for each "operation" case.

 The creation case deserves care. To create a new conference through
 a "confRequest" message, two approaches can be considered:

 1. Creation through explicit cloning: the "confObjID" parameter MUST
 contain the XCON-URI of the blueprint or of the conference to be
 cloned, while the "confInfo" parameter MUST NOT be included in
 the confRequest;

Barnes, et al. Expires January 13, 2011 [Page 24]

Internet-Draft CCMP July 2010

 2. Creation through implicit cloning (also known as "direct
 creation"): the "confObjID" parameter MUST NOT be included in the
 request and the CCMP client can describe the desired conference
 to be created using the "confInfo" parameter. If no "confInfo"
 parameter is provided in the request, the new conference will be
 created as a clone of the system default blueprint.

 In both creation cases, the confResponse, for a successful completion
 of a "create" operation, contains a response-code of "200" and MUST
 contain the XCON-URI of the newly created conference in the
 "confObjID" parameter, in order to allow the conferencing client to
 manipulate that conference through following CCMP requests. In
 addition, the "confInfo" parameter transporting the created
 conference document MAY be included, at the discretion of the
 conferencing system implementation, along with an optional version
 parameter initialized at "1", since at creation time the conference
 object is at its first version.

 In the case of a confRequest with a "retrieve" operation, the
 "confObjID" representing the XCON-URI of the target conference MUST
 be included and the "confInfo" parameter MUST NOT be included in the
 request. The conferencing server MUST ignore any "confInfo"
 parameter that is received in a confRequest/retrieve. If the
 confResponse for the "retrieve" operation contains a "response-code"
 of "200", the "confInfo" parameter MUST be included in the response.
 The "confInfo" parameter MUST contain the entire conference document
 describing the target conference object in its current state. The
 current state of the retrieved conference object MUST also be
 reported in the proper "version" response parameter.

 In case of a confRequest with an "update" operation, the "confInfo"
 and "confObjID" MUST be included in the request. The "confInfo"
 represents an object of type "conference-type" containing all the
 changes to be applied to the conference whose identifier is
 "confObjID". Note that, in such a case, though the confInfo
 parameter has indeed to follow the rules indicated in the XCON data
 model, it does not represent the entire updated version of the target
 conference, since it rather conveys just the modifications to apply
 to that conference. For example, in order to change the conference
 title, the confInfo parameter will be of the form:

 <confInfo entity="xcon:8977777@example.com">
 <conference-description>
 <display-text> *** NEW CONFERENCE TITLE *** </display-text>
 </conference-description>
 </confInfo>

Barnes, et al. Expires January 13, 2011 [Page 25]

Internet-Draft CCMP July 2010

 Figure 7: Updating a conference object: modifying the title of a
 conference

 Similarly, to remove the title of an existing conference, a
 confRequest/update carrying the following "confInfo" parameter would
 do the job.:

 <confInfo entity="xcon:8977777@example.com">
 <conference-description>
 <display-text/>
 </conference-description>
 </confInfo>

 Figure 8: Updating a conference object: removing the title of a
 conference

 In the case of a confResponse/update with a response-code of "200",
 no additional information is required in the response message, which
 means the return of confInfo parameter is not mandatory. A following
 confRequest/retrieve transaction might provide the CCMP client with
 the current aspect of the conference upon the modification, or the
 Notification Protocol might address that task as well. A "200"
 response-code indicates that the referenced conference document has
 been changed accordingly to the request by the conferencing server.
 The "version" parameter MUST be enclosed in the confResponse/update
 message, in order to let the client understand what is the actual
 current conference-object version, upon the applied modifications.
 An "409" response-code indicates that the changes reflected in the
 request "confInfo" are not feasible. This could be due to policies,
 requestor roles, specific privileges, unacceptable values etc., with
 the reason specific to a conferencing system and its configuration.
 Together with the "409" response-code, the "version" parameter MUST
 be attached in the confResponse/update, by this way allowing the
 client to eventually retrieve the current version of the target
 conference if the one she attempted to modify was not the most up-to-
 date.

 In the case of a confRequest with a "delete" operation, the
 "confObjID" representing the XCON-URI of the target conference MUST
 be included while the "confInfo" MUST NOT be included in the request.
 The conferencing server MUST ignore any "confInfo" parameter that is
 received within such a request. The confResponse MUST contain the
 same "confObjID" that was included in the confRequest. If the
 confResponse/delete operation contains a "200" response-code, the
 conference indicated in the "confObjID" has been successfully

Barnes, et al. Expires January 13, 2011 [Page 26]

Internet-Draft CCMP July 2010

 deleted. A "200" confResponse/delete MUST NOT contain the "confInfo"
 parameter. The "version" parameter SHOULD NOT be returned in any
 confResponse/delete. If the conferencing server cannot delete the
 conference referenced by the "confObjID" received in the confRequest
 because it is the parent of another conference object that is in use,
 the conferencing server MUST return a response-code of "425".

 A confRequest with an "operation" of "retrieve", "update" or "delete"
 carrying a "confObjID" which is not associated with one of the
 conferences (active or registered) the system is holding will
 generate, on the server's side, a confResponse message containing a
 "404" error code. This holds also for the case in which the
 mentioned "confObjID" is related to an existing conference object
 stored at the server, but associated with a blueprint or with a
 sidebar rather than an actual conference.

 The schema for the confRequest/confResponse pair is shown in
 Figure 9.

 <!-- confRequest -->

 <xs:complexType name="ccmp-conf-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="confRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confRequestType -->

 <xs:element name="confRequest" type="confRequestType" />

 <xs:complexType name="confRequestType">
 <xs:sequence>
 <xs:element name="confInfo" type="info:conference-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- confResponse -->

Barnes, et al. Expires January 13, 2011 [Page 27]

Internet-Draft CCMP July 2010

 <xs:complexType name="ccmp-conf-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="confResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confResponseType -->

 <xs:element name="confResponse" type="confResponseType" />

 <xs:complexType name="confResponseType">
 <xs:sequence>
 <xs:element name="confInfo" type="info:conference-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 9: Structure of the confRequest and confResponse messages

5.3.5. usersRequest and usersResponse

 Through a "usersRequest" message the CCMP client manipulates the XML
 <users> element of the conference document associated with the
 conference identified by the "confObjID" parameter complusory
 included in the request. Inside the <users> element, along with the
 list of <user> elements associated with conference participants,
 there is information that the client may be interested in
 controlling, such the list of the users to which access to the
 conference is allowed/denied, conference participation policies,
 etc.; for this reason, a customized message has been designed to
 allow for the manipulation of this specific part of a conference
 document.

 A "usersInfo" parameter MAY be included in a usersRequest message
 depending upon the operation. If the "usersInfo" parameter is
 included in the usersRequest message, the parameter MUST be compliant
 with the <users> field of the XCON data model.

 Two operations are allowed for a "usersRequest" message:

Barnes, et al. Expires January 13, 2011 [Page 28]

Internet-Draft CCMP July 2010

 1. "retrieve": In this case the request MUST NOT include a
 "usersInfo" parameter, while the successful response MUST contain
 the desired <users> element in the "usersInfo" parameter. The
 conference server MUST ignore a "usersInfo" parameter if it is
 received in a request with a "retrieve" operation.
 2. update: In this case, the "usersInfo" parameter MUST contain the
 modifications to be applied to the referred <users> element. If
 the "response-code" is "200", then the "usersInfo" parameter
 SHOULD NOT be returned. Any "usersInfo" parameter that is
 returned SHOULD be ignored. A "response-code" of "426" indicates
 that the conferencing client is not allowed to make the changes
 reflected in the "usersInfo" contained in the usersRequest
 message. This could be due to policies, roles, specific
 privileges, etc., with the reason specific to a conferencing
 system and its configuration.

 Operations of "create" and "delete" are not applicable to a
 usersRequest message and MUST NOT be considered by the server, which
 means that a "response-code" of "403" MUST be included in the
 usersResponse message.

 <!-- usersRequest -->

 <xs:complexType name="ccmp-users-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="usersRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- usersRequestType -->

 <xs:element name="usersRequest" type="usersRequestType" />

 <xs:complexType name="usersRequestType">
 <xs:sequence>
 <xs:element name="usersInfo"
 type="info:users-type" minOccurs="0" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>

Barnes, et al. Expires January 13, 2011 [Page 29]

Internet-Draft CCMP July 2010

 </xs:complexType>

 <!-- usersResponse -->

 <xs:complexType name="ccmp-users-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="usersResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- usersResponseType -->

 <xs:element name="usersResponse" type="usersResponseType" />

 <xs:complexType name="usersResponseType">
 <xs:sequence>
 <xs:element name="usersInfo" type="info:users-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 10: Structure of the usersRequest and usersResponse messages

5.3.6. userRequest and userResponse

 A "userRequest" message is used to manipulate <user> elements inside
 a conference document associated with a conference identified by the
 "confObjID" parameter. Besides retrieving information about a
 specific conference user, the message is used to request that the
 conference server either create, modify, or delete information about
 a user. A "userRequest" message MUST include the "confObjID", the
 "operation" parameter, and MAY include a "userInfo" parameter
 containing the detailed user's information depending upon the
 operation and whether the "userInfo" has already been populated for a
 specific user. Note that a user may not necessarily be a
 conferencing control client (i.e., some participants in a conference
 are not "XCON aware").

 An XCON-USERID SHOULD be assigned to each and every user subscribed
 to the system. In such a way, a user who is not a conference

Barnes, et al. Expires January 13, 2011 [Page 30]

Internet-Draft CCMP July 2010

 participant can make requests (provided she has successfully passed
 AAA checks), like creating a conference, retrieving conference
 information, etc..

 Conference users can be created in a number of different ways. In
 each of these cases the operation MUST be set to "create" in the
 userRequest message. Each of the userResponse messages for these
 cases MUST include the "confObjID", "confUserID", "operation" and
 "response-code" parameters. In the case of a response code of "200",
 the userResponse message MAY include the "userInfo" parameter
 depending upon the manner in which the user was created:

 o Conferencing client with an XCON-USERID adds itself to the
 conference: In this case, the "userInfo" parameter MAY be included
 in the userRequest. The "userInfo" parameter MUST contain a
 <user> element (compliant with the XCON data model) and the
 "entity" attribute MUST be set to a value which represents the
 XCON-USERID of the user initiating the request. No additional
 parameters beyond those previously described are required in the
 userResponse message, in the case of a "response-code" of "200".
 o Conferencing client acts on behalf of a third user whose XCON-
 USERID is known: in this case, the "userInfo" parameter MUST be
 included in the userRequest. The "userInfo" parameter MUST
 contain a <user> element and the "entity" attribute value MUST be
 set to the XCON-USERID of the third user in question. No
 additional parameters beyond those previously described are
 required in the userResponse message, in the case of a "response-
 code" of "200".
 o A conferencing client who has no XCON-USERID and who wants to
 enter, via CCMP, a conference whose identifier is known. In such
 case, a side-effect of the request is that the user is provided
 with a new XCON-USERID (created by the server) carried inside the
 "confUserID" parameter of the response. This is the only case in
 which a CCMP request can be valid though carrying a void
 "confUserID" parameter. A "userInfo" parameter MUST be enclosed
 in the request, providing at least a contact URI of the joining
 client, in order to let the focus instigate the signaling phase
 needed to add her to the conference. The mandatory "entity"
 attribute of the "userInfo" parameter in the request is filled
 with a dummy value recognizable on the server side, so to conform
 to the rules contained in the XCON data model XML schema. The
 involved messages (userRequest and userResponse) in such case
 should look like the following:

Barnes, et al. Expires January 13, 2011 [Page 31]

Internet-Draft CCMP July 2010

 Request fields:

 confUserID=null;
 confObjID=confXYZ;
 operation=create;
 userInfo=

 <userInfo entity="xcon-userid:AUTO_GENERATE@example.com">
 <endpoint entity="sip:GHIL345@blablabla">
 ...

 Response fields (in case of success):

 confUserID=user345;
 confObjID=confXYZ;
 operation=create;
 response-code=200;
 userInfo=null; //or the entire userInfo object

 Figure 11: userRequest and userResponse in the absence of an xcon-
 userid

 o Conferencing client is unaware of the XCON-USERID of a third user:
 In this case, the XCON-USERID in the request "confUserID" is the
 sender's one and the "entity" attribute of the attached userInfo
 is filled with the pre-defined fake value
 "xcon-userid:AUTO_GENERATE@example.com". The XCON-USERID for the
 third user MUST be returned to the client issuing the request in
 the "entity" attribute of the response "userInfo" parameter, if
 the "response-code" is "200". This scenario is intended to
 support both the case where a brand new conferencing system user
 is added to a conference by a third party (i.e. a user who is not
 yet provided with an XCON-USERID) and the case where the CCMP
 client issuing the request does not know the to-be-added user's
 XCON-USERID (which means such an identifier could already exist on
 the server's side for that user). In this last case, the
 conferencing server is in charge of avoiding XCON-URI duplicates
 for the same conferencing client, looking at key fields in the
 request provided "userInfo" parameter, such as the signalling URI:
 if the joining user is a brand new one, then the generation of a
 new XCON identifier is needed; otherwise, if that user is an
 existing one, the server must recover the corresponding XCON
 identifier.

Barnes, et al. Expires January 13, 2011 [Page 32]

Internet-Draft CCMP July 2010

 In the case of a userRequest with a "retrieve" operation, the
 "confObjID" representing the XCON-URI of the target conference MUST
 be included. The "confUserID", containing the CCMP client's xcon-
 userid, MUST also be included in the userRequest message. If the
 client wants to retrieve information about her profile in the
 specified conference, no "userInfo" parameter is needed in the
 retrieve request. On the other hand, if the client wants to obtain
 someone else's info within the given conference, she MUST include in
 the userRequest/retrieve a "userInfo" parameter whose "entity"
 attribute conveys the desired user's xcon-userid. If the
 userResponse for the "retrieve" operation contains a "response-code"
 of "200", the "userInfo" parameter MUST be included in the response.

 In case of a userRequest with an "update" operation, the "confObjID",
 "confUserID" and "userInfo" MUST be included in the request. The
 "userInfo" is of type "user-type" and contains all the changes to be
 applied to a specific <user> element in the conference object
 identified by the "confObjID" in the userRequest message. The user
 to be modified is identified through the "entity" attribute of the
 "userInfo" parameter included in the request. In the case of a
 userResponse with a "response-code" of "200", no additional
 information is required in the "userResponse" message. A "response-
 code" of "200" indicates that the referenced user element has been
 updated by the conference server. A "response-code" of "426"
 indicates that the conferencing client is not allowed to make the
 changes reflected in the "userInfo" in the initial request. This
 could be due to policies, roles, specific privileges, etc., with the
 reason specific to a conferencing system and its configuration.

 In the case of a userRequest with a "delete" operation, the
 "confObjID" representing the XCON-URI of the target conference MUST
 be included. The "confUserID", containing the CCMP client's xcon-
 userid, MUST be included in the userRequest message. If the client
 wants to exit the specified conference, no "userInfo" parameter is
 needed in the delete request. On the other hand, if the client wants
 to remove another participant from the given conference, she MUST
 include in the userRequest/delete a "userInfo" parameter whose
 "entity" attribute conveys the xcon-userid of that participant. The
 userResponse MUST contain the same "confObjID" that was included in
 the userRequest. The userResponse MUST contain a "response-code" of
 "200" if the target <user> element has been successfully deleted. If
 the userResponse for the "delete" operation contains a "response-
 code" of "200", the userResponse MUST NOT contain the "userInfo"
 parameter.

 <!-- userRequest -->

Barnes, et al. Expires January 13, 2011 [Page 33]

Internet-Draft CCMP July 2010

 <xs:complexType name="ccmp-user-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="userRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- userRequestType -->

 <xs:element name="userRequest" type="userRequestType" />

 <xs:complexType name="userRequestType">
 <xs:sequence>
 <xs:element name="userInfo"
 type="info:user-type" minOccurs="0" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- userResponse -->

 <xs:complexType name="ccmp-user-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="userResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- userResponseType -->

 <xs:element name="userResponse" type="userResponseType" />

 <xs:complexType name="userResponseType">
 <xs:sequence>
 <xs:element name="userInfo" type="info:user-type
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>

Barnes, et al. Expires January 13, 2011 [Page 34]

Internet-Draft CCMP July 2010

 </xs:complexType>

 Figure 12: Structure of the userRequest and userResponse messages

5.3.7. sidebarsByValRequest and sidebarsByValResponse

 A "sidebarsByValRequest" is used to execute a retrieve-only operation
 on the <sidebars-by-val> field of the conference object represented
 by the "confObjID". The "sidebarsByValRequest" message is of a
 "retrieve-only" type, so an "operation" parameter MUST NOT be
 included in a "sidebarsByValRequest" message. As with blueprints and
 conferences, also with sidebars, CCMP allows for the use of xpath
 filters whenever a selected subset of the sidebars available at the
 server's side has to be retrieved by the client. This applies both
 to sidebars by reference and to sidebars by value. A
 "sidebarsByValResponse" with a "response-code" of "200" MUST contain
 a "sidebarsByValInfo" parameter containing the desired <sidebars-by-
 val> element. A "sidebarsByValResponse" message MUST carry back to
 the client a "version" element related to the current version of the
 main conference object (i.e. the one whose identifier is contained in
 the "confObjId" field of the request) to which the sidebars in
 question are associated. The "sidebarsByValInfo" parameter contains
 the list of the conference objects associated with the sidebars by
 value derived from the main conference. The retrieved sidebars can
 then be updated or deleted using the "sidebarByValRequest" message,
 which is described in Section 5.3.8.

 <!-- sidebarsByValRequest -->

 <xs:complexType name="ccmp-sidebarsByVal-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByValRequest"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByValRequestType -->

 <xs:element name="sidebarsByValRequest"
 type="sidebarsByValRequestType" />

 <xs:complexType name="sidebarsByValRequestType">
 <xs:sequence>

Barnes, et al. Expires January 13, 2011 [Page 35]

Internet-Draft CCMP July 2010

 <xs:element name="xpathFilter" type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarsByValResponse -->

 <xs:complexType name="ccmp-sidebarsByVal-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByValResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByValResponseType -->

 <xs:element name="sidebarsByValResponse"
 type="sidebarsByValResponseType" />

 <xs:complexType name="sidebarsByValResponseType">
 <xs:sequence>
 <xs:element name="sidebarsByValInfo"
 type="info:sidebars-by-val-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 13: Structure of the sidebarsByValRequest and
 sidebarsByValResponse messages

5.3.8. sidebarByValRequest and sidebarByValResponse

 A sidebarByValRequest message MUST contain the "operation" parameter
 which discriminates among retrieval, creation, modification and
 deletion of a specific sidebar. The other required parameters depend
 upon the type of operation.

 In the case of a "create" operation, the "confObjID" parameter MUST

Barnes, et al. Expires January 13, 2011 [Page 36]

Internet-Draft CCMP July 2010

 be included in the sidebyValRequest message. In this case, the
 "confObjID" parameter contains the XCON-URI of the main conference in
 which the sidebar has to be created. If no "sidebarByValInfo"
 parameter is included, as envisaged in the XCON framework
 ([RFC5239]), the sidebar is created by cloning the main conference,
 following the implementation specific cloning rules. Otherwise,
 similarly to the case of direct creation, the sidebar conference
 object is built on the basis of the "sidebarByValInfo" parameter
 provided by the requestor. As a consequence of a sidebar-by-val
 creation, the conference server MUST update the main conference
 object reflected by the "confObjID" parameter in the
 sidebarbyValRequest/create message introducing the new sidebar object
 as a new new <entry> in the proper section <sidebars-by-val>. The
 newly created sidebar conference object MAY be included in the
 sidebarByValResponse in the "sidebarByValInfo" parameter, if the
 "response-code" is "200". The XCON-URI of the newly created sidebar
 MUST appear in the "confObjID" parameter of the response. The
 conference server can notify any conferencing clients that have
 subscribed to the conference event package, and are authorized to
 receive the notifications, of the addition of the sidebar to the
 conference.

 In the case of a "sidebarByVal" request with an operation of
 "retrieve", the URI for the conference object created for the sidebar
 (received in the response to a "create" operation or in a
 sidebarsByValResponse message) MUST be included in the "confObjID"
 parameter in the request. This "retrieve" operation is handled by
 the conference server in the same manner as a "retrieve" operation
 included in a confRequest message as detailed in Section 5.3.4.

 In the case of a "sidebarByVal" request with an operation of
 "update", the "sidebarByValInfo" MUST also be included in the
 request. The "confObjID" parameter contained in the request message
 identifies the specific sidebar instance to be updated. An "update"
 operation on the "sidebarByValInfo" is handled by the conference
 server in the same manner as an "update" operation on the confInfo
 included in a confRequest message as detailed in Section 5.3.4. A
 "sidebarByValResponse" message MUST carry back to the client a
 "version" element related to the current version of the sidebar whose
 identifier is contained in the "confObjId" field of the request.

 If an "operation" of "delete" is included in the sidebarByVal
 request, the "sidebarByValInfo" parameter MUST NOT be included in the
 request. Any "sidebarByValInfo" included in the request MUST be
 ignored by the conference server. The URI for the conference object
 associated with the sidebar MUST be included in the "confObjID"
 parameter in the request. If the specific conferencing user as
 reflected by the "confUserID" in the request is authorized to delete

https://datatracker.ietf.org/doc/html/rfc5239

Barnes, et al. Expires January 13, 2011 [Page 37]

Internet-Draft CCMP July 2010

 the conference, the conference server deletes the conference object
 reflected by the "confObjID" parameter and updates the data in the
 conference object from which the sidebar was cloned. The conference
 server can notify any conferencing clients that have subscribed to
 the conference event package, and are authorized to receive the
 notifications, of the deletion of the sidebar to the conference.

 If a sidebarByValRequest with an "operation" of "retrieve", "update"
 or "delete" carries a "confObjID" which is not associated with any
 existing sidebar-by-val, a confResponse message containing a "404"
 error code will be generated on the server's side. This holds also
 for the case in which the mentioned "confObjID" is related to an
 existing conference object stored at the server, but associated with
 a blueprint or with an actual conference or with a sidebar-by-ref
 rather than a sidebar-by-val.

 <!-- sidebarByValRequest -->

 <xs:complexType name="ccmp-sidebarByVal-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByValRequest"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByValRequestType -->

 <xs:element name="sidebarByValRequest"
 type="sidebarByValRequestType" />

 <xs:complexType name="sidebarByValRequestType">
 <xs:sequence>
 <xs:element name="sidebarByValInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarByValResponse -->

Barnes, et al. Expires January 13, 2011 [Page 38]

Internet-Draft CCMP July 2010

 <xs:complexType name="ccmp-sidebarByVal-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByValResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByValResponseType -->

 <xs:element name="sidebarByValResponse"
 type="sidebarByValResponseType" />

 <xs:complexType name="sidebarByValResponseType">
 <xs:sequence>
 <xs:element name="sidebarByValInfo"
 type="info:conference-type minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 14: Structure of the sidebarByValRequest and
 sidebarByValResponse messages

5.3.9. sidebarsByRefRequest and sidebarsByRefResponse

 Similar to the sidebarsByValRequest, a sidebarsByRefRequest can be
 invoked to retrieve the <sidebars-by-ref> element of the conference
 object identified by the "confObjID" parameter. The
 "sidebarsByRefRequest" message is of a "retrieve-only" type, so an
 "operation" parameter MUST NOT be included in a
 "sidebarsByRefRequest" message. In the case of a "response-code" of
 "200", the "sidebarsByRefInfo" parameter, containing the <sidebars-
 by-ref> element of the conference object, MUST be included in the
 response. The <sidebars-by-ref> element represents the set of URIs
 of the sidebars associated with the main conference, whose
 description (in the form of a standard XCON conference document) is
 external to the main conference itself. Through the retrieved URIs,
 it is then possible to access single sidebars using the
 "sidebarByRef" request message, described in Section 5.3.10. A
 "sidebarsByRefResponse" message MUST carry back to the client a
 "version" element related to the current version of the main
 conference object (i.e. the one whose identifier is contained in the

Barnes, et al. Expires January 13, 2011 [Page 39]

Internet-Draft CCMP July 2010

 "confObjId" field of the request) to which the sidebars in question
 are associated.

 <!-- sidebarsByRefRequest -->

 <xs:complexType name="ccmp-sidebarsByRef-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByRefRequest"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByRefRequestType -->

 <xs:element name="sidebarsByRefRequest"
 type="sidebarsByRefRequestType" />

 <xs:complexType name="sidebarsByRefRequestType">
 <xs:sequence>
 <xs:element name="xpathFilter"
 type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarsByRefResponse -->

 <xs:complexType name="ccmp-sidebarsByref-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByRefResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByRefResponseType -->

 <xs:element name="sidebarsByRefResponse"

Barnes, et al. Expires January 13, 2011 [Page 40]

Internet-Draft CCMP July 2010

 type="sidebarsByRefResponseType" />

 <xs:complexType name="sidebarsByRefResponseType">
 <xs:sequence>
 <xs:element name="sidebarsByRefInfo"
 type="info:uris-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 15: Structure of the sidebarsByRefRequest and
 sidebarsByRefResponse messages

5.3.10. sidebarByRefRequest and sidebarByRefResponse

 A sidebarByRefRequest message MUST contain the "operation" parameter
 which discriminates among retrieval, creation, modification and
 deletion of a specific sidebar. The other required parameters depend
 upon the type of operation.

 In the case of a "create" operation, the "confObjID" parameter MUST
 be included in the sidebyRefRequest message. In this case, the
 "confObjID" parameter contains the XCON-URI of the main conference in
 which the sidebar has to be created. If no "sidebarByRefInfo"
 parameter is included, as envisaged in the XCON framework
 ([RFC5239]), the sidebar is created by cloning the main conference,
 following the implementation specific cloning rules. Otherwise,
 similarly to the case of direct creation, the sidebar conference
 object is built on the basis of the "sidebarByRefInfo" parameter
 provided by the requestor. If the creation of the sidebar is
 successful, the conference server MUST update the "sidebars-by-ref"
 element in the conference object from which the sidebar was created
 (i.e., as identified by the "confObjID" in the original sidebarByRef
 request), with the URI of the newly created sidebar. The newly
 created conference object MAY be included in the response in the
 "sidebarByRefInfo" parameter with a "response-code" of "200". The
 URI for the conference object associated with the newly created
 sidebar object MUST appear in the "confObjID" parameter of the
 response. The conference server can notify any conferencing clients
 that have subscribed to the conference event package, and are
 authorized to receive the notifications, of the addition of the
 sidebar to the conference.

 In the case of a "sidebarByRef" request with an operation of
 "retrieve", the URI for the conference object created for the sidebar

https://datatracker.ietf.org/doc/html/rfc5239

Barnes, et al. Expires January 13, 2011 [Page 41]

Internet-Draft CCMP July 2010

 MUST be included in the "confObjID" parameter in the request. A
 "retrieve" operation on the "sidebarByRefInfo" is handled by the
 conference server in the same manner as a "retrieve" operation on the
 confInfo included in a confRequest message as detailed in

Section 5.3.4.

 In the case of a "sidebarByRef" request with an operation of
 "update", the URI for the conference object created for the sidebar
 MUST be included in the "confObjID" parameter in the request. The
 "sidebarByRefInfo" MUST also be included in the request in the case
 of an "operation" of "update". An "update" operation on the
 "sidebarByRefInfo" is handled by the conference server in the same
 manner as an "update" operation on the confInfo included in a
 confRequest message as detailed in Section 5.3.4. A
 "sidebarByRefResponse" message MUST carry back to the client a
 "version" element related to the current version of the sidebar whose
 identifier is contained in the "confObjId" field of the request.

 If an "operation" of "delete" is included in the sidebarByRef
 request, the "sidebarByRefInfo" parameter MUST NOT be included in the
 request. Any "sidebarByRefInfo" included in the request MUST be
 ignored by the conference server. The URI for the conference object
 for the sidebar MUST be included in the "confObjID" parameter in the
 request. If the specific conferencing user as reflected by the
 "confUserID" in the request is authorized to delete the conference,
 the conference server SHOULD delete the conference object reflected
 by the "confObjID" parameter and SHOULD update the "sidebars-by-ref"
 element in the conference object from which the sidebar was
 originally cloned. The conference server can notify any conferencing
 clients that have subscribed to the conference event package, and are
 authorized to receive the notifications, of the deletion of the
 sidebar.

 If a sidebarByRefRequest with an "operation" of "retrieve", "update"
 or "delete" carries a "confObjID" which is not associated with any
 existing sidebar-by-ref, a confResponse message containing a "404"
 error code will be generated on the server's side. This holds also
 for the case in which the mentioned "confObjID" is related to an
 existing conference object stored at the server, but associated with
 a blueprint or with an actual conference or with a sidebar-by-val
 rather than a sidebar-by-ref.

 <!-- sidebarByRefRequest -->

 <xs:complexType name="ccmp-sidebarByRef-request-message-type">
 <xs:complexContent>

Barnes, et al. Expires January 13, 2011 [Page 42]

Internet-Draft CCMP July 2010

 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByRefRequest"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByRefRequestType -->

 <xs:element name="sidebarByRefRequest"
 type="sidebarByRefRequestType" />

 <xs:complexType name="sidebarByRefRequestType">
 <xs:sequence>
 <xs:element name="sidebarByRefInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarByRefResponse -->

 <xs:complexType name="ccmp-sidebarByRef-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByRefResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByRefResponseType -->

 <xs:element name="sidebarByRefResponse"
 type="sidebarByRefResponseType" />

 <xs:complexType name="sidebarByRefResponseType">
 <xs:sequence>
 <xs:element name="sidebarByRefInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>

Barnes, et al. Expires January 13, 2011 [Page 43]

Internet-Draft CCMP July 2010

 </xs:complexType>

 Figure 16: Structure of the sidebarByRefRequest and
 sidebarByRefResponse messages

5.3.11. extendedRequest and extendedResponse

 In order to facilitate the possibility of specifying new request/
 response pairs for conference control, CCMP makes available the
 "extendedRequest" and "extendedResponse" messages. Such messages
 constitute a CCMP skeleton in which implementors can transport the
 information needed to realize conference control mechanisms not
 explicitly envisioned in the CCMP specification; these mechanisms are
 called, in this context, "extensions". Each extension is assumed to
 be characterized by an appropriate name that MUST be carried in the
 extendedRequest/extendedResponse pair in the provided <extensionName>
 field. Extension-specific information can be transported in the form
 of schema-defined XML elements inside the <any> element present in
 both extendedRequest and extendedResponse.

 The conferencing client SHOULD be able to be informed about the
 extensions supported by a CCMP server and to recover the XML Schema
 defining the related specific elements by means of an optionsRequest/
 optionsResponse CCMP transaction (see Section 5.3.12).

 The meaning of the common CCMP parameters inherited by the
 extendedRequest and extendedResponse from the basic CCMP request and
 response messages SHOULD be preserved and exploited appropriately
 while defining an extension.

 <!-- extendedRequest -->

 <xs:complexType name="ccmp-extended-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="extendedRequest"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- extendedRequestType -->

 <xs:element name="extendedRequest" type="extendedRequestType"/>

Barnes, et al. Expires January 13, 2011 [Page 44]

Internet-Draft CCMP July 2010

 <xs:complexType name="extendedRequestType">
 <xs:sequence>
 <xs:element name="extensionName"
 type="xs:string" minOccurs="1"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <!-- extendedResponse -->

 <xs:complexType name="ccmp-extended-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="extendedResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- extendedResponseType -->

 <xs:element name="extendedResponse" type="extendedResponseType"/>

 <xs:complexType name="extendedResponseType">
 <xs:sequence>
 <xs:element name="extensionName"
 type="xs:string"
 minOccurs="1"/>
 <xs:any namespace="##other"
 processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 Figure 17: Structure of the extendedRequest and extendedResponse
 messages

5.3.12. optionsRequest and optionsResponse

 An "optionsRequest" (Figure 18) message is a basic CCMP message, i.e.
 it does not represent a specialization of the general CCMP request.
 It allows a CCMP client to become aware of CCMP server capabilities
 in terms of CCMP supported messages.

Barnes, et al. Expires January 13, 2011 [Page 45]

Internet-Draft CCMP July 2010

 Indeed, the "optionsResponse" returns, in the appropriate <options>
 field, information about both standard (i.e. IETF-defined) CCMP
 messages and extension messages the server is able to handle.
 Supported messages are listed into two separate groups, namely
 <standard-message-list> and <extended-message-list>. Such groups are
 represented, respectively, by a <standard-message> entry (for
 standard messages) and an <extended-message> entry (for extensions).
 In both cases, for each message the following information is
 provided:
 o <name> (mandatory): in case of standard messages, it can be one of
 the ten standard message names defined in this document (i.e.
 "blueprintsRequest", "confsRequest", etc.). In case of
 extensions, this element MUST carry the same value of the
 <extension-name> inserted in the corresponding extendedRequest/
 extendedResponse message pair
 o <operations> (optional): this field is a list of <operation>
 entries, each representing the CRUD operation supported by the
 server for the message. If this optional element is absent, the
 client SHOULD assume the server is able to handle the entire set
 of CRUD operations or, in case of standard messages, all the
 operations envisioned for that message in this document.
 o <schema-ref> (optional): since all CCMP messages can potentially
 contain XML elements not envisioned in the CCMP schema (due to the
 presence of <any> elements and attributes), a reference to a
 proper schema definition specifying such new elements/attributes
 can also be sent back to the clients by means of such field. If
 this element is absent, no new elements are introduced in the
 messages further than those explicitly defined in the CCMP
 specification.
 o <description> (optional): human readable information about the
 related message

 The only parameter needed in the optionsRequest is the sender
 confUserID, which is mirrored in the homologous parameter of the
 corresponding optionsResponse.

 The <standard-message-list> MUST appear in the optionsResponse and
 MUST NOT be void, since a CCMP server MUST be able to handle at least
 one of the standard messages in at least one of the envisioned
 operations, i.e. the aforementioned list MUST carry at least one
 <standard-message> containing at least one <operation> element.

 <!-- optionsRequest -->

 <xs:complexType name="ccmp-options-request-message-type">

Barnes, et al. Expires January 13, 2011 [Page 46]

Internet-Draft CCMP July 2010

 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type"/>
 </xs:complexContent>
 </xs:complexType>

 <!-- optionsResponse -->

 <xs:complexType name="ccmp-options-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="optionsResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- optionsResponseType -->

 <xs:element name="optionsResponse"
 type="optionsResponseType" />

 <xs:complexType name="optionsResponseType">
 <xs:sequence>
 <xs:element name="options"
 type="options-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- options-type -->

 <xs:complexType name="options-type">
 <xs:sequence>
 <xs:element name="standard-message-list"
 type="standard-message-list-type"
 minOccurs="1"/>
 <xs:element name="extended-message-list"
 type="extended-message-list-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

Barnes, et al. Expires January 13, 2011 [Page 47]

Internet-Draft CCMP July 2010

 <!-- standard-message-list-type -->

 <xs:complexType name="standard-message-list-type">
 <xs:sequence>
 <xs:element name="standard-message"
 type="standard-message-type"
 minOccurs="1" maxOccurs="10"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- standard-message-type -->

 <xs:complexType name="standard-message-type">
 <xs:sequence>
 <xs:element name="name"
 type="standard-message-name-type"
 minOccurs="1"/>
 <xs:element name="operations"
 type="operations-type"
 minOccurs="0"/>
 <xs:element name="schema-def"
 type="xs:string" minOccurs="0"/>
 <xs:element name="description"
 type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- standard-message-name-type -->

 <xs:simpleType name="standard-message-name-type">
 <xs:restriction base="xs:token">
 <xs:enumeration value="confsRequest"/>
 <xs:enumeration value="confRequest"/>
 <xs:enumeration value="blueprintsRequest"/>
 <xs:enumeration value="blueprintRequest"/>
 <xs:enumeration value="usersRequest"/>
 <xs:enumeration value="userRequest"/>
 <xs:enumeration value="sidebarsByValRequest"/>
 <xs:enumeration value="sidebarByValRequest"/>
 <xs:enumeration value="sidebarsByRefRequest"/>
 <xs:enumeration value="sidebarByRefRequest"/>
 </xs:restriction>

Barnes, et al. Expires January 13, 2011 [Page 48]

Internet-Draft CCMP July 2010

 </xs:simpleType>

 <!-- operations-type -->

 <xs:complexType name="operations-type">
 <xs:sequence>
 <xs:element name="operation" type="operation-type"
 minOccurs="1" maxOccurs="4"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 Figure 18: Structure of the optionsRequest and optionsResponse
 messages

5.4. CCMP Response Codes

 All CCMP response messages MUST include a ""response-code"". The
 following summarizes the CCMP response codes:

 200 Success: Successful completion of the requested operation.
 400 Bad Request: Syntactically malformed request.
 401 Unauthorized: User not allowed to perform the required
 operation.
 403 Forbidden: Operation not allowed (e.g., cancellation of a
 blueprint).
 404 Object Not Found: Target conference object missing at the server
 (it refers to the "confObjID" parameter in the generic request
 message)
 409 Conflict: A generic error associated with all those situations
 in which a requested client operation cannot be successfully
 completed by the server. An example of such situation is when the
 modification of an object cannot be applied due to conflicts
 arising at the server's side, e.g. because the client version of
 the object is an obsolete one and the requested modifications
 collide with the up-to-date state of the object stored at the
 server. Such code would also be used if a client attempts to
 create an object (conference or user) with an entity that already
 exists.
 420 User Not Found: Target user missing at the server (it is related
 to the XCON-USERID in the "entity" attribute of the "userInfo"
 parameter when it is included in userRequests)
 421 Invalid confUserID: User missing at the server (this code is
 returned in the case of requests in which the "confUserID" of the
 sender is invalid).

Barnes, et al. Expires January 13, 2011 [Page 49]

Internet-Draft CCMP July 2010

 422 Invalid Conference Password: Target conference object's password
 contained in the request is wrong.
 423 Conference Password Required: "conference-password" missing in a
 request to access a password-protected conference object.
 424 Authentication Required: User's authentication information is
 missing or invalid.
 425 Forbidden Delete Parent: Cancel operation failed since the
 target object is a parent of child objects which depend on it, or
 because it effects, based on the "parent-enforceable" mechanism,
 the corresponding element in a child object.
 426 Forbidden Change Protected: Update refused by the server because
 the target element cannot be modified due to its implicit
 dependence on the value of a parent object ("parent-enforceable"
 mechanism).
 500 Server Internal Error: The server cannot complete the required
 service due to a system internal error.
 501 Not Implemented: Operation envisaged in the protocol, but not
 implemented in the contacted server.
 510 Request Timeout: The time required to serve the request has
 exceeded the envisaged service threshold.
 511 Resources Not Available: This code is used when the CCMP server
 cannot execute a command because of resource issues, e.g. it
 cannot create a sub conference because the system has reached its
 limits on the number of sub conferences, or if a request for
 adding a new user fails because the max number of users has been
 reached for the conference or the max number of users has been
 reached for the conferencing system.

 The handling of a "response-code" of "404", "409", "420", "421",
 "425" and "426" are only applicable to specific operations for
 specialized message responses and the details are provided in

Section 5.3. The following table summarizes these response codes and
 the specialized message and operation to which they are applicable:

Barnes, et al. Expires January 13, 2011 [Page 50]

Internet-Draft CCMP July 2010

 +---------------+------------+------------+------------+------------+
 | Response code | Create | Retrieve | Update | Delete |
 +---------------+------------+------------+------------+------------+
404	userReques	All	All update	All delete
	t,	retrieve	requests	requests
	sidebarBy	requests,		
	ValRequest	EXCEPT:		
	sidebars	blueprints		
	ByRefReque	Request,		
	st	confsRequ		
		est		
409	N/A	N/A	All update	N/A
			requests	
-------------	----------	----------	----------	----------
420	userReques	userReques	userReques	userReques
	t(3rd part	t	t	t
	yinvite			
	with thir			
	duser			
	entity)			
	(*)			
-------------	----------	----------	----------	----------
421	All create	All	All update	All delete
	requests,	retrieve	requests	requests
	EXCEPT:	requests		
	userReques			
	twith no			
	confUserI			
	D(**)			
-------------	----------	----------	----------	----------
425	N/A	N/A	N/A	All delete
				request
-------------	----------	----------	----------	----------
426	N/A	N/A	All update	N/A
			requests	
 +---------------+------------+------------+------------+------------+

 Table 2: Response codes and associated operations

 (*) "420" in answer to a "userRequest/create" operation: in the case
 of a third-party invite, this code can be returned if the
 "confUserID" (contained in the "entity" attribute of the "userInfo"
 parameter) of the user to be added is unknown. In the case above, if
 instead it is the "confUserID" of the sender of the request that is
 invalid, a "421" error code is returned to the client.

 (**) "421" is not sent in answers to "userRequest/create" messages

Barnes, et al. Expires January 13, 2011 [Page 51]

Internet-Draft CCMP July 2010

 having a "null" confUserID, since this case is associated with a user
 who is unaware of his own XCON-USERID, but wants to enter a known
 conference.

 In the case of a response code of "510", a conferencing client MAY
 re-attempt the request within a period of time that would be specific
 to a conference control client or conference control server.

 A response code of "400" indicates that the conference control client
 sent a malformed request, which is indicative of an error in the
 conference control client or in the conference control server. The
 handling is specific to the conference control client implementation
 (e.g., generate a log, display an error message, etc.). It is NOT
 RECOMMENDED that the client re-attempt the request in this case.

 Response codes such as "401" and "403" indicate the client does not
 have the appropriate permissions, or there is an error in the
 permissions: re-attempting the request would likely not succeed and
 thus it is NOT RECOMMENDED.

 Any unexpected or unknown "response-code" SHOULD be treated by the
 client in the same manner as a "500" "response-code", the handling of
 which is specific to the conference control client implementation.

6. A complete example of the CCMP in action

 In this section a typical, not normative, scenario in which the CCMP
 comes into play is described, by showing the actual composition of
 the various CCMP messages. In the call flows of the example, the
 Conference Control Client is a CCMP-enabled client, whereas the
 Conference Control Server is a CCMP-enabled server. The "confUserID"
 of the client, Alice, is "xcon-userid:Alice@example.com" and appears
 in all requests. The sequence of operations is as follows:

 1. Alice retrieves from the server the list of available blueprints
 (Section 6.1);
 2. Alice asks for detailed information about a specific blueprint
 (Section 6.2);
 3. Alice decides to create a new conference by cloning the retrieved
 blueprint (Section 6.3);
 4. Alice modifies information (e.g. XCON-URI, name, description)
 associated with the newly created blueprint (Section 6.4);
 5. Alice specifies a list of users to be contacted when the
 conference is activated (Section 6.5);
 6. Alice joins the conference (Section 6.6);

Barnes, et al. Expires January 13, 2011 [Page 52]

Internet-Draft CCMP July 2010

 7. Alice lets a new user, Ciccio, (whose "confUserID" is
 "xcon-userid:Ciccio@example.com") join the conference
 (Section 6.7).
 8. Alice asks for the CCMP server capabilities (Section 6.8);
 9. Alice exploits an extension of the CCMP server (Section 6.9).

 Note, the examples do not include any details beyond the basic
 operation.

 In the following sections we deal with each of the above mentioned
 actions separately.

6.1. Alice retrieves the available blueprints

 This section illustrates the transaction associated with retrieval of
 the blueprints, together with a dump of the two messages exchanged
 ("blueprintsRequest" and "blueprintsResponse"). As it comes out from
 the figure, the "blueprintsResponse" message contains, in the
 "blueprintsInfo" parameter, information about the available
 blueprints, in the form of the standard XCON-URI of the blueprint,
 plus additional (and optional) information, like its display-text and
 purpose.

 Alice retrieves from the server the list of available blueprints:

 CCMP Client CCMP Server
 | |
 | CCMP blueprintsRequest message |
 | - confUserID: Alice |
 | - confObjID: (null) |
 |-->|
 | |
 | CMP blueprintsResponse message |
 | - confUserID: Alice |
 | - confObjID: (null) |
 | - response-code: 200 |
 | - blueprintsInfo: bp123,bp124,.. |
 |<--|
 | |
 . .
 . .

 1. blueprintsRequest message:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Barnes, et al. Expires January 13, 2011 [Page 53]

Internet-Draft CCMP July 2010

 <ccmp:ccmpRequest xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xcon:ccmp-blueprints-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 </ccmpRequest>
 </ccmp:ccmpRequest>

 2. blueprintsResponse message form the server:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">
 <ccmpResponse
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-blueprints-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <ccmp:response-code>200</ccmp:response-code>
 <ccmp:blueprintsResponse>
 <blueprintsInfo>
 <info:entry>
 <info:uri>xcon:AudioRoom@example.com</info:uri>
 <info:display-text>AudioRoom</info:display-text>
 <info:purpose>Simple Room:
 conference room with public access,
 where only audio is available, more users
 can talk at the same time
 and the requests for the AudioFloor
 are automatically accepted.
 </info:purpose>
 </info:entry>
 <info:entry>
 <info:uri>xcon:VideoRoom@example.com</info:uri>
 <info:display-text>VideoRoom</info:display-text>
 <info:purpose>Video Room:
 conference room with public access,
 where both audio and video are available,
 8 users can talk and be seen at the same time,
 and the floor requests are automatically accepted.
 </info:purpose>
 </info:entry>
 <info:entry>
 <info:uri>xcon:AudioConference1@example.com</info:uri>
 <info:display-text>AudioConference1</info:display-text>
 <info:purpose>Public Audio Conference:

Barnes, et al. Expires January 13, 2011 [Page 54]

Internet-Draft CCMP July 2010

 conference with public access,
 where only audio is available,
 only one user can talk at the same time,
 and the requests for the AudioFloor MUST
 be accepted by a Chair.
 </info:purpose>
 </info:entry>
 <info:entry>
 <info:uri>xcon:VideoConference1@example.com</info:uri>
 <info:display-text>VideoConference1</info:display-text>
 <info:purpose>Public Video Conference: conference
 where both audio and video are available,
 only one user can talk
 </info:purpose>
 </info:entry>
 <info:entry>
 <info:uri>xcon:AudioConference2@example.com</info:uri>
 <info:display-text>AudioConference2</info:display-text>
 <info:purpose>Basic Audio Conference:
 conference with private access,
 where only audio is available,
 only one user can talk at the same time,
 and the requests for the AudioFloor MUST
 be accepted by a Chair.
 </info:purpose>
 </info:entry>
 </blueprintsInfo>
 </ccmp:blueprintsResponse>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 19: Getting blueprints from the server

6.2. Alice gets detailed information about a specific blueprint

 This section illustrates the second transaction in the overall flow.
 In this case, Alice, who now knows the XCON-URIs of the blueprints
 available at the server, makes a drill-down query, in the form of a
 CCMP "blueprintRequest" message, to get detailed information about
 one of them (the one called with XCON-URI
 "xcon:AudioRoom@example.com"). The picture shows such transaction.
 Notice that the response contains, in the "blueprintInfo" parameter,
 a document compliant with the standard XCON data model.

 Alice retrieves detailed information about a specified blueprint:

Barnes, et al. Expires January 13, 2011 [Page 55]

Internet-Draft CCMP July 2010

 CCMP Client CCMP Server
 | |
 | CCMP blueprintRequest message |
 | - confUserID: Alice |
 | - confObjID: bp123 |
 | - operation: retrieve |
 | - blueprintInfo: (null) |
 |-->|
 | |
 | CCMP blueprintResponse message |
 | - confUserID: Alice |
 | - confObjID: bp123 |
 | - operation: retrieve |
 | - response-code: 200 |
 | - blueprintInfo: bp123Info |
 |<--|
 | |
 . .
 . .

 1. blueprintRequest message:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-blueprint-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:AudioRoom@example.com</confObjID>
 <operation>retrieve</operation>
 <ccmp:blueprintRequest/>
 </ccmpRequest>
 </ccmp:ccmpRequest>

 2. blueprintResponse message form the server:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">
 <ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-blueprint-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:AudioRoom@example.com</confObjID>
 <operation>retrieve</operation>

Barnes, et al. Expires January 13, 2011 [Page 56]

Internet-Draft CCMP July 2010

 <ccmp:response-code>200</ccmp:response-code>
 <ccmp:blueprintResponse>
 <blueprintInfo entity="xcon:AudioRoom@example.com">
 <info:conference-description>
 <info:display-text>AudioRoom</info:display-text>
 <info:maximum-user-count>2</info:maximum-user-count>
 <info:available-media>
 <info:entry label="audioLabel">
 <info:type>audio</info:type>
 </info:entry>
 </info:available-media>
 </info:conference-description>
 <info:users>
 <xcon:join-handling>allow</xcon:join-handling>
 </info:users>
 <xcon:floor-information>
 <xcon:floor-request-handling>confirm
 </xcon:floor-request-handling>
 <xcon:conference-floor-policy>
 <xcon:floor id="audioLabel"></xcon:floor>
 </xcon:conference-floor-policy>
 </xcon:floor-information>
 </blueprintInfo>
 </ccmp:blueprintResponse>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 20: Getting info about a specific blueprint

6.3. Alice creates a new conference through a cloning operation

 This section illustrates the third transaction in the overall flow.
 Alice decides to create a new conference by cloning the blueprint
 having XCON-URI "xcon:AudioRoom@example.com", for which she just
 retrieved detailed information through the "blueprintRequest"
 message. This is achieved by sending a "confRequest/create" message
 having the blueprint's URI in the "confObjID" parameter. The picture
 shows such transaction. Notice that the response contains, in the
 "confInfo" parameter, the document associated with the newly created
 conference, which is compliant with the standard XCON data model.
 The "confObjID" in the response is set to the XCON-URI of the new
 conference (in this case, "xcon:8977794@example.com"). We also
 notice that this value is equal to the value of the "entity"
 attribute of the <conference-info> element of the document
 representing the newly created conference object.

Barnes, et al. Expires January 13, 2011 [Page 57]

Internet-Draft CCMP July 2010

 Alice creates a new conference by cloning the
 "xcon:AudioRoom@example.com" blueprint:

 CCMP Client CCMP Server
 | |
 | CCMP confRequest message |
 | - confUserID: Alice |
 | - confObjID: AudioRoom |
 | - operation: create |
 | - confInfo: (null) |
 |-->|
 | |
 | CCMP confResponse message |
 | - confUserID: Alice |
 | - confObjID: newConfId |
 | - operation: create |
 | - response-code: 200 |
 | - version: 1 |
 | - confInfo: newConfInfo |
 |<--|
 | |
 . .
 . .

 1. confRequest message:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpRequest
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-conf-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:AudioRoom@example.com</confObjID>
 <operation>create</operation>
 <ccmp:confRequest/>
 </ccmpRequest>
 </ccmp:ccmpRequest>

 2. confResponse message from the server:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Barnes, et al. Expires January 13, 2011 [Page 58]

Internet-Draft CCMP July 2010

 <ccmp:ccmpResponse
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">
 <ccmpResponse
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-conf-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>create</operation>
 <ccmp:response-code>200</ccmp:response-code>
 <ccmp:version>1</ccmp:version>
 <ccmp:confResponse>
 <confInfo entity="xcon:8977794@example.com">
 <info:conference-description>
 <info:display-text>
 New conference by Alice cloned from AudioRoom
 </info:display-text>
 <info:conf-uris>
 <info:entry>
 <info:uri>
 xcon:8977794@example.com
 </info:uri>
 <info:display-text>
 conference xcon-uri
 </info:display-text>
 </info:entry>
 </info:conf-uris>
 <info:maximum-user-count>10</info:maximum-user-count>
 <info:available-media>
 <info:entry label="11">
 <info:type>audio</info:type>
 </info:entry>
 </info:available-media>
 </info:conference-description>
 <info:users>
 <xcon:join-handling>allow</xcon:join-handling>
 </info:users>
 <xcon:floor-information>
 <xcon:floor-request-handling>
 confirm</xcon:floor-request-handling>
 <xcon:conference-floor-policy>
 <xcon:floor id="11"/>
 </xcon:conference-floor-policy>
 </xcon:floor-information>
 </confInfo>
 </ccmp:confResponse>
 </ccmpResponse>

Barnes, et al. Expires January 13, 2011 [Page 59]

Internet-Draft CCMP July 2010

 </ccmp:ccmpResponse>

 Figure 21: Creating a new conference by cloning a blueprint

6.4. Alice updates conference information

 This section illustrates the fourth transaction in the overall flow.
 Alice decides to modify some of the details associated with the
 conference she just created. More precisely, she changes the
 <display-text> element under the <conference-description> element of
 the document representing the conference. This is achieved through a
 "confRequest/update" message carrying the fragment of the conference
 document to which the required changes have to be applied. As shown
 in the picture, the response contains a code of "200", which
 acknowledges the modifications requested by the client, while also
 updating the conference version number from 1 to 2, as reflected in
 the "version" parameter.

 Alice updates information about the conference she just created:

 CCMP Client CCMP Server
 | |
 | CCMP confRequest message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: update |
 | - confInfo: confUpdates |
 |-->|
 | |
 | CCMP confResponse message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: update |
 | - response-code: 200 |
 | - version: 2 |
 | - confInfo: (null) |
 |<--|
 | |
 . .
 . .

Barnes, et al. Expires January 13, 2011 [Page 60]

Internet-Draft CCMP July 2010

 1. confRequest message:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpRequest
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-conf-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>update</operation>
 <ccmp:confRequest>
 <confInfo entity="xcon:8977794@example.com">
 <info:conference-description>
 <info:display-text>
 Alice's conference
 </info:display-text>
 </info:conference-description>
 </confInfo>
 </ccmp:confRequest>
 </ccmpRequest>
 </ccmp:ccmpRequest>

 2. confResponse message form the server:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">
 <ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-conf-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>update</operation>
 <ccmp:response-code>200</ccmp:response-code>
 <ccmp:version>2</ccmp:version>
 <ccmp:confResponse/>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 22: Updating conference information

Barnes, et al. Expires January 13, 2011 [Page 61]

Internet-Draft CCMP July 2010

6.5. Alice inserts a list of users in the conference object

 This section illustrates the fifth transaction in the overall flow.
 Alice modifies the <allowed-users-list> under the <users> element in
 the document associated with the conference she created. To the
 purpose, she exploits the "usersRequest" message provided by the
 CCMP. The picture below shows the transaction.

 Alice updates information about the list of users to whom access to
 the conference is permitted:

 CCMP Client CCMP Server
 | |
 | CCMP usersRequest message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: update |
 | - usersInfo: usersUpdates |
 |-->|
 | |
 | CCMP usersResponse message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: update |
 | - response-code: 200 |
 | - version: 3 |
 | - usersInfo: (null) |
 |<--|
 | |
 . .
 . .

 1. usersRequest message:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">
 <ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-users-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>update</operation>
 <ccmp:usersRequest>
 <usersInfo>

Barnes, et al. Expires January 13, 2011 [Page 62]

Internet-Draft CCMP July 2010

 <xcon:allowed-users-list>
 <xcon:target method="dial out"
 uri="xmpp:cicciolo@pippozzo.com"/>
 <xcon:target method="refer"
 uri="tel:+390817683823"/>
 <xcon:target method="refer"
 uri="sip:Carol@example.com"/>
 </xcon:allowed-users-list>
 </usersInfo>
 </ccmp:usersRequest>
 </ccmpRequest>
 </ccmp:ccmpRequest>

 2. usersResponse message form the server:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp">
 <ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-conf-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>update</operation>
 <ccmp:response-code>200</ccmp:response-code>
 <ccmp:version>3</ccmp:version>
 <ccmp:confResponse/>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 23: Updating the list of allowed users for the conference
 'xcon:8977794@example.com'

6.6. Alice joins the conference

 This section illustrates the sixth transaction in the overall flow.
 Alice uses the CCMP to add herself to the newly created conference.
 This is achieved through a "userRequest/create" message containing,
 in the "userInfo" parameter, a <user> element compliant with the XCON
 data model representation. Notice that such element includes
 information about the user's Address of Records, as well as her
 current end-point. The picture below shows the transaction. Notice
 how the "confUserID" parameter is equal to the "entity" attribute of
 the <userInfo> element, which indicates that the request issued by

Barnes, et al. Expires January 13, 2011 [Page 63]

Internet-Draft CCMP July 2010

 the client is a first-party one.

 Alice joins the conference by issuing a "userRequest/create" message
 with her own id to the server:

 CCMP Client CCMP Server
 | |
 | CCMP userRequest message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: create |
 | - userInfo: AliceUserInfo |
 |-->|
 | |
 | CCMP userResponse message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: create |
 | - response-code: 200 |
 | - version: 4 |
 | - userInfo: (null) |
 |<--|
 | |
 . .
 . .

 1. userRequest message:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-user-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>create</operation>
 <ccmp:userRequest>
 <userInfo entity="xcon-userid:Alice@example.com">
 <info:associated-aors>
 <info:entry>
 <info:uri>
 mailto:Alice83@example.com
 </info:uri>
 <info:display-text>email</info:display-text>

Barnes, et al. Expires January 13, 2011 [Page 64]

Internet-Draft CCMP July 2010

 </info:entry>
 </info:associated-aors>
 <info:endpoint entity="sip:alice_789@example.com"/>
 </userInfo>
 </ccmp:userRequest>
 </ccmpRequest>
 </ccmp:ccmpRequest>

 2. userResponse message form the server:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-user-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>create</operation>
 <ccmp:response-code>200</ccmp:response-code>
 <ccmp:version>4</ccmp:version>
 <ccmp:userResponse/>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 24: Alice joins the conference through the CCMP

6.7. Alice adds a new user to the conference

 This section illustrates the seventh and last transaction in the
 overall flow. Alice uses the CCMP to add a new conferencing system
 user, Ciccio, to the conference. This "third-party" request is
 realized through a "userRequest/create" message containing, in the
 "userInfo" parameter, a <user> element compliant with the XCON data
 model representation. Notice that such element includes information
 about Ciccio's Address of Records, as well as his current end-point,
 but has a fake "entity" attribute, since it is unknown to Alice, in
 this example. Thus, the server is in charge of generating a new
 XCON-USERID for the user Alice indicates, and returning it in the
 "entity" attribute of the "userInfo" parameter carried in the
 response, as well as adding the user to the conference. The picture
 below shows the transaction.

 Alice adds user "Ciccio" to the conference by issuing a third-party

Barnes, et al. Expires January 13, 2011 [Page 65]

Internet-Draft CCMP July 2010

 "userRequest/create" message to the server:

 CCMP Client CCMP Server
 | |
 | CCMP userRequest message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: create |
 | - userInfo: CiccioUserInfo(with dummy "entity") |
 |-->|
 | |
 | CCMP optionsResponse message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: create |
 | - response-code: 200 |
 | - version: 5 |
 | - userInfo: CiccioUserInfo |
 | (with actual "entity") |
 |<--|
 | |
 . .
 . .

 1. "third party" userRequest message from Alice:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-user-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>create</operation>
 <ccmp:userRequest>
 <userInfo entity="xcon-userid:AUTO_GENERATE@example.com">
 <info:associated-aors>
 <info:entry>
 <info:uri>
 mailto:Ciccio@example.com
 </info:uri>
 <info:display-text>email</info:display-text>
 </info:entry>
 </info:associated-aors>

Barnes, et al. Expires January 13, 2011 [Page 66]

Internet-Draft CCMP July 2010

 <info:endpoint entity="sip:Ciccio@example.com"/>
 </userInfo>
 </ccmp:userRequest>
 </ccmpRequest>
 </ccmp:ccmpRequest>

 2. "third party" userResponse message from the server:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-user-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>create</operation>
 <ccmp:response-code>200</ccmp:response-code>
 <ccmp:version>5</ccmp:version>
 <ccmp:userResponse>
 <userInfo entity="xcon-userid:Ciccio@example.com">
 <info:associated-aors>
 <info:entry>
 <info:uri>
 mailto:Ciccio@example.com
 </info:uri>
 <info:display-text>email</info:display-text>
 </info:entry>
 </info:associated-aors>
 <info:endpoint entity="sip:Ciccio@example.com"/>
 </userInfo>
 </ccmp:userResponse>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 25: Alice adds a new user to the conference through the CCMP

6.8. Alice asks for the CCMP server capabilities

 This section illustrates how Alice can discover which standard CCMP
 messages and what extensions are supported by the CCMP server she
 interacts with through an optionsRequest/optionsResponse transaction.

 To prepare the optionsRequest, Alice just puts her XCON-USERID in the

Barnes, et al. Expires January 13, 2011 [Page 67]

Internet-Draft CCMP July 2010

 confUserID parameter. Looking at the <options> element in the
 received optionsResponse, Alice infers the following server
 capabilities as regards standard CCMP messages:
 o the server doesn't support neither sidebarsByValRequest nor
 sidebarByValRequest messages, since they do not appear in the
 <standard-message-list>;
 o the only implemented operation for the blueprintRequest message is
 "retrieve", since no other <operation> entries are included in the
 related <operations> field.

 Besides, by analyzing the <extended-message-list>, Alice discovers
 the server implements an extension named "confSummaryRequest"
 allowing conferencing clients to recover via CCMP a brief description
 of a specific conference; the XML elements involved in this extended
 conference control transaction are available at the URL indicated in
 the <schema-ref> element and the only operation envisioned for this
 extension is "retrieve". To better understand how Alice can exploit
 the "confSummaryRequest" extension via CCMP, see Section 6.9.

 The picture below shows the optionsRequest/optionsResponse message
 exchanging between Alice and the CCMP server.

 CCMP Client CCMP Server
 | |
 | CCMP optionsRequest message |
 | - confUserID: Alice |
 |-->|
 | |
 | CCMP userResponse message |
 | - confUserID: Alice |
 | - response-code: 200 |
 | - options (list of both |
 | standard and extended |
 | supported messages) |
 |<--|
 | |
 . .
 . .

1. optionsRequest (Alice asks for CCMP server capabilities)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">

Barnes, et al. Expires January 13, 2011 [Page 68]

Internet-Draft CCMP July 2010

 <ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-options-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 </ccmpRequest>
 </ccmp:ccmpRequest>

2. optionsResponse (the server returns the list of its conference
 control capabilities)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info">
 <ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-options-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <response-code>200</response-code>
 <response-string>success</response-string>
 <ccmp:optionsResponse>
 <options>
 <standard-message-list>
 <standard-message>
 <name>blueprintsRequest</name>
 </standard-message>
 </standard-message>
 <name>blueprintRequest</name>
 <operations>
 <operation>retrieve</operation>
 </operations>
 <standard-message>
 </standard-message>
 <name>confsRequest</name>
 <standard-message>
 <name>confRequest</name>
 </standard-message>
 <standard-message>
 <name>usersRequest</name>
 </standard-message>
 <standard-message>
 <name>userRequest</name>
 </standard-message>
 <standard-message>
 <name>sidebarsByRefRequest</name>
 </standard-message>
 <standard-message>
 <name>sidebarByRefRequest</name>
 </standard-message>

Barnes, et al. Expires January 13, 2011 [Page 69]

Internet-Draft CCMP July 2010

 </standard-message-list>
 <extended-message-list>
 <extended-message>
 <name>confSummaryRequest</name>
 <operations>
 <operation>request</operation>
 </operations>
 <schema-ref>
 http://example.com/ccmp-extension-schema.xsd
 </schema-ref>
 <description>
 confSummaryRequest is intented
 to allow the requestor to retrieve
 a brief description
 of the conference indicated in the
 confObjID request parameter
 </description>
 </extended-message>
 </extended-message-list>
 </options>
 </ccmp:optionsResponse>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 26: Alice asks for the server control capabilities

6.9. Alice exploits a CCMP server extension

 In this section, a very simple example of CCMP extension support is
 provided. Alice can recover information about this and other server-
 supported extensions by issuing an optionsRequest (see Section 6.8).

 The extension in question is named "confSummaryRequest" and is
 conceived to allow a CCMP client to obtain from the CCMP server
 synthetic information about a specific conference. The conference
 summary is carried in the form of an XML element, <confSummary>,
 defined by the following XML schema:

Barnes, et al. Expires January 13, 2011 [Page 70]

Internet-Draft CCMP July 2010

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="confSummary" type="conf-summary-type"/>

 <xs:complexType name="conf-summary-type">
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="status" type="xs:string"/>
 <xs:element name="public" type="xs:boolean"/>
 <xs:element name="media" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 </xs:schema

 Figure 27: Example of XML Schema defining an extension parameter
 (ccmp-extension-schema.xsd)

 As it can be inferred from the schema file, the <confSummary> element
 contains conference information related to:

 o title
 o status (active or registered)
 o participation modality (if everyone is allowed to participate, the
 boolean <public> element is set to "true")
 o involved media

 In order to retrieve a conference summary related to the conference
 she participates in, Alice then sends to the CCMP server an
 extendedRequest with a "confSummaryRequest" <extensionName>,
 specifying the conference xcon-uri in the confObjID request
 parameter, as depicted in the figure below.

 CCMP Client CCMP Server
 | |
 | CCMP extendedRequest message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: retrieve |
 | - extensionName: confSummaryRequest |
 |-->|
 | |

Barnes, et al. Expires January 13, 2011 [Page 71]

Internet-Draft CCMP July 2010

 | CCMP extendedResponse message |
 | - confUserID: Alice |
 | - confObjID: 8977794 |
 | - operation: retrieve |
 | - response-code: 200 |
 | - extensionName: |
 | confSummaryRequest |
 | - confSummary |
 |<--|
 | |
 . .
 . .

1. extendedRequest (Alice makes use of the "confSummaryRequest")

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpRequest xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:example="http://example.com/ccmp-extension-schema.xsd">
 <ccmpRequest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-extended-request-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>retrieve</operation>
 <ccmp:extendedRequest>
 <extensionName>confRequestSummary</extensionName>
 </ccmp:extendedRequest>
 </ccmpRequest>
 </ccmp:ccmpRequest>

2. extendedResponse (the server provides Alice with a brief description
 of the desired conference)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <ccmp:ccmpResponse xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:ccmp="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xcon="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:example="http://example.com/ccmp-extension-schema.xsd">
 <ccmpResponse xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ccmp:ccmp-extended-response-message-type">
 <confUserID>xcon-userid:Alice@example.com</confUserID>
 <confObjID>xcon:8977794@example.com</confObjID>
 <operation>retrieve</operation>
 <response-code>200</response-code>
 <response-string>success</response-string>
 <ccmp:extendedResponse>

Barnes, et al. Expires January 13, 2011 [Page 72]

Internet-Draft CCMP July 2010

 <extensionName>confSummaryRequest</extensionName>
 <example:confSummary>
 <title> Alice's conference </title>
 <status> active </status>
 <public> true </public>
 <media> audio </media>
 </example:confSummary>
 </ccmp:extendedResponse>
 </ccmpResponse>
 </ccmp:ccmpResponse>

 Figure 28: Alice exploits the 'confSummaryRequest' extension

7. Locating a Conference Control Server

 If a conference control client is not pre-configured to use a
 specific conference control server for the requests, the client MUST
 first discover the conference control server before it can send any
 requests. The result of the discovery process, is the address of the
 server supporting conferencing. In this document, the result is an
 http: or https: URI, which identifies a conference server.

 This document proposes the use of DNS to locate the conferencing
 server. U-NAPTR resolution for conferencing takes a domain name as
 input and produces a URI that identifies the conferencing server.
 This process also requires an Application Service tag and an
 Application Protocol tag, which differentiate conferencing-related
 NAPTR records from other records for that domain.

Section 12.4.1 defines an Application Service tag of "XCON", which is
 used to identify the centralized conferencing (XCON) server for a
 particular domain. The Application Protocol tag "CCMP", defined in

Section 12.4.2, is used to identify an XCON server that understands
 the CCMP protocol.

 The NAPTR records in the following example Figure 29 demonstrate the
 use of the Application Service and Protocol tags. Iterative NAPTR
 resolution is used to delegate responsibility for the conferencing
 service from "zonea.example.com." and "zoneb.example.com." to
 "outsource.example.com.".

Barnes, et al. Expires January 13, 2011 [Page 73]

Internet-Draft CCMP July 2010

 zonea.example.com.
 ;; order pref flags
 IN NAPTR 100 10 "" "XCON:CCMP" (; service
 "" ; regex
 outsource.example.com. ; replacement
)
 zoneb.example.com.
 ;; order pref flags
 IN NAPTR 100 10 "" "XCON:CCMP" (; service
 "" ; regex
 outsource.example.com. ; replacement
)
 outsource.example.com.
 ;; order pref flags
 IN NAPTR 100 10 "u" "XCON:CCMP" (; service
 "!*.!https://confs.example.com/!" ; regex
 . ; replacement
)

 Figure 29: Sample XCON:CCMP Service NAPTR Records

 Details for the "XCON" Application Service tag and the "CCMP"
 Application Protocol tag are included in Section 12.4.

8. Managing Notifications

 As per [RFC5239], the CCMP is one of the following four protocols
 which have been formally identified within the XCON framework:
 Conference Control Protocol: between Conference and Media Control
 Client and Conference Server. Such protocol is the subject of the
 present document.
 Binary floor Control Protocol: between the Floor Control Client and
 the Floor Control Server. Such protocol is the BFCP, specified in
 [RFC4582].
 Call Signaling Protocol: between the Call Signaling Client and the
 Focus. Such protocol can be either SIP or any other call
 signaling protocol (e.g. H.323, IAX, etc.) capable of negotiating
 a conferencing session.
 Notification Protocol: between the Notification Client and the XCON
 Notification Service. Such protocol has not been identified as
 yet.

 The CCMP protocol specified in this document is a pro-active one and
 is used by a conferencing client to send requests to a conferencing
 server in order to retrieve information about the conference objects
 it stores and potentially manipulate them. Though, it stands clear

https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/rfc4582

Barnes, et al. Expires January 13, 2011 [Page 74]

Internet-Draft CCMP July 2010

 that a complete conferencing solution cannot refrain from providing
 clients with a means for receiving asynchronous updates about the
 status of the objects available at the server. The notification
 protocol to be adopted in XCON, while conceptually independent of all
 the mentioned companion protocols, can nonetheless be chosen in a way
 that is consistent with the overall protocol architecture
 characterizing a specific deployment, as it is discussed in the
 following.

 When the conference control client uses SIP [RFC3261] as the
 signaling protocol to participate in the conference, SIP event
 notification can be used. In such a case, the conference control
 client MUST implement the Conference event package for XCON
 [I-D.ietf-xcon-event-package]. This is the default mechanism for
 conferencing clients as is SIP for signaling per the XCON Framework
 [RFC5239].

 In the case where the interface to the conference server is entirely
 web based, there is a common mechanism for web-based systems that
 could be used - a "call back". With this mechanism, the conference
 client provides the conference server with an HTTP URL which is
 invoked when a change occurs. This is a common implementation
 mechanism for e-commerce. This works well in the scenarios whereby
 the conferencing client is a web server that provides the graphical
 HTML user interface and uses CCMP as the backend interface to the
 conference server. And, this model can co-exist with the SIP event
 notification model. PC-based clients behind NATs could provide a SIP
 event URI, whereas web-based clients using CCMP in the backend would
 probably find the HTTP call back approach much easier. The details
 of this approach are out of scope for the CCMP per se, thus the
 expectation is that a future specification will document this
 solution.

9. HTTP Transport

 This section describes the use of HTTP [RFC2616] and HTTP Over TLS
 [RFC2818] as transport mechanisms for the CCMP protocol, which a
 conforming conference Server and Conferencing client MUST support.

 Although CCMP uses HTTP as a transport, it uses a strict subset of
 HTTP features, and due to the restrictions of some features, a
 conferencing server may not be a fully compliant HTTP server. It is
 intended that a conference server can easily be built using an HTTP
 server with extensibility mechanisms, and that a conferencing client
 can trivially use existing HTTP libraries. This subset of
 requirements helps implementors avoid ambiguity with the many options
 the full HTTP protocol offers.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires January 13, 2011 [Page 75]

Internet-Draft CCMP July 2010

 A conferencing client that conforms to this specification is not
 required to support HTTP authentication [RFC2617] or cookies
 [RFC2965]. These mechanism are unnecessary because CCMP requests
 carry their own authentication information (in the "subject" field;
 see Section 5.1).

 A CCMP request is carried in the body of an HTTP POST request. The
 conferencing client MUST include a Host header in the request.

 The MIME type of CCMP request and response bodies is "application/
 ccmp+xml". The conference server and conferencing client MUST
 provide this value in the HTTP Content-Type and Accept header fields.
 If the conference server does not receive the appropriate Content-
 Type and Accept header fields, the conference server SHOULD fail the
 request, returning a 406 (not acceptable) response. CCMP responses
 SHOULD include a Content-Length header.

 Conferencing clients MUST NOT use the "Expect" header or the "Range"
 header in CCMP requests. The conference server MAY return 501 (not
 implemented) errors if either of these HTTP features are used. In
 the case that the conference server receives a request from the
 conferencing client containing a If-* (conditional) header, the
 conference server SHOULD return a 412 (precondition failed) response.

 The POST method is the only method REQUIRED for CCMP. If a
 conference server chooses to support GET or HEAD, it SHOULD consider
 the kind of application doing the GET. Since a conferencing client
 only uses a POST method, the GET or HEAD MUST be either an escaped
 URL (e.g., somebody found a URL in protocol traces or log files and
 fed it into their browser) or somebody doing testing/ debugging. The
 conference server could provide information in the CCMP response
 indicating that the URL corresponds to a conference server and only
 responds to CCMP POST requests or the conference server could instead
 try to avoid any leak of information by returning a very generic HTTP
 error message such as 405 (method not allowed).

 The conference server populates the HTTP headers of responses so that
 they are consistent with the contents of the message. In particular,
 the "CacheControl" header SHOULD be set to disable caching of any
 conference information by HTTP intermediaries. Otherwise, there is
 the risk of stale information and/or the unauthorized disclosure of
 the information. The HTTP status code MUST indicate a 2xx series
 response for all CCMP Response and Error messages.

 The conference server MAY redirect a CCMP request. A conferencing
 client MUST handle redirects, by using the Location header provided
 by the server in a 3xx response. When redirecting, the conferencing
 client MUST observe the delay indicated by the Retry-After header.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2965

Barnes, et al. Expires January 13, 2011 [Page 76]

Internet-Draft CCMP July 2010

 The conferencing client MUST authenticate the server that returns the
 redirect response before following the redirect. A conferencing
 client SHOULD authenticate the conference server indicated in a
 redirect.

 The conference server SHOULD support persistent connections and
 request pipelining. If pipelining is not supported, the conference
 server MUST NOT allow persistent connections. The conference server
 MUST support termination of a response by the closing of a
 connection.

 Implementations of CCMP that implement HTTP transport MUST implement
 transport over TLS [RFC2818]. TLS provides message integrity and
 confidentiality between the conference control client and the
 conference control server. The conferencing client MUST implement
 the server authentication method described in HTTPS [RFC2818]. The
 device uses the URI obtained during conference server discovery to
 authenticate the server. The details of this authentication method
 are provided in section 3.1 of HTTPS [RFC2818]. When TLS is used,
 the conferencing client SHOULD fail a request if server
 authentication fails.

10. Security Considerations

 As identified in the XCON framework [RFC5239], there are a wide
 variety of potential attacks related to conferencing, due to the
 natural involvement of multiple endpoints and the capability to
 manipulate the data on the conference server using CCMP. Examples of
 attacks include the following: an endpoint attempting to listen to
 conferences in which it is not authorized to participate, an endpoint
 attempting to disconnect or mute other users, and theft of service by
 an endpoint in attempting to create conferences it is not allowed to
 create.

 The following summarizes the security considerations for CCMP:
 1. The client MUST determine the proper conference server. The
 conference server discovery is described in Section 7.
 2. The client MUST connect to the proper conference server. The
 mechanisms for addressing this security consideration are
 described in Section 10.1.
 3. The protocol MUST support a confidentiality and integrity
 mechanism. As described in Section 9, implementations of CCMP
 MUST implement the HTTP transport over TLS [RFC2818].
 4. There are security issues associated with the authorization to
 perform actions on the conferencing system to invoke specific
 capabilities. A conference server SHOULD ensure that only
 authorized entities can manipulate the conference data. The

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/rfc2818

Barnes, et al. Expires January 13, 2011 [Page 77]

Internet-Draft CCMP July 2010

 mechanisms for addressing this security consideration are
 described in Section 10.2.
 5. The privacy and security of the identity of a user in the
 conference MUST be assured. The mechanisms to ensure the
 security and privacy of identity are discussed in Section 10.3.
 6. A final issue is related to Denial of Service (DoS) attacks on
 the conferencing server itself. In order to minimize the
 potential for DoS attacks, it is RECOMMENDED that conferencing
 systems require user authentication and authorization for any
 client participating in a conference. This can be accomplished
 through the use of the mechanisms described in Section 10.2, as
 well as by using the security mechanisms associated with the
 specific signaling (e.g., SIPS) and media protocols (e.g., SRTP).

10.1. Assuring that the Proper Conferencing Server has been contacted

 When the CCMP transaction is conducted using TLS [RFC5246], the
 conference server can authenticate its identity, either as a domain
 name or as an IP address, to the conference client by presenting a
 certificate containing that identifier as a subjectAltName (i.e., as
 an iPAddress or dNSName, respectively). With the use of HTTP as a
 transport for CCMP, this is exactly the authentication described by
 TLS [RFC2818]. If the client has external information as to the
 expected identity or credentials of the proper conference server
 (e.g., a certificate fingerprint), these checks MAY be omitted. Any
 implementation of CCMP MUST be capable of being transacted over TLS
 so that the client can request the above authentication, and a
 conference server implementation MUST include this feature. Note
 that in order for the presented certificate to be valid at the
 client, the client must be able to validate the certificate. In
 particular, the validation path of the certificate must end in one of
 the client's trust anchors, even if that trust anchor is the
 conference server certificate itself.

10.2. User Authentication and Authorization

 Many policy authorization decisions are based on the identity of the
 user or the role that a user may have. The conferencing server MUST
 implement mechanisms for authentication of users to validate their
 identity. There are several ways that a user might authenticate its
 identity to the system. For users joining a conference using one of
 the call signaling protocols, the user authentication mechanisms for
 the specific protocol can be used. For the case of users joining the
 conference using the CCMP, TLS is RECOMMENDED.

 The XCON Framework [RFC5239] provides an overview of other
 authorization mechanisms. In the cases where a user is authorized
 via multiple mechanisms, it is RECOMMENDED that the conference server

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc5239

Barnes, et al. Expires January 13, 2011 [Page 78]

Internet-Draft CCMP July 2010

 correlate the authorization of the CCMP interface with other
 authorization mechanisms - e.g., PSTN users that join with a PIN and
 control the conference using CCMP. When a conference server presents
 the identity of authorized users, it MAY provide information about
 the way the identity was proven or verified by the system. A
 conference server can also allow a completely unauthenticated user
 into the system - this information SHOULD also be communicated to
 interested parties.

 Once a user is authenticated and authorized through the various
 mechanisms available on the conference server, the conference server
 MUST allocate a conference user identifier (XCON-USERID) and SHOULD
 associate the XCON-USERID with any signaling specific user
 identifiers that were used for authentication and authorization.
 This XCON-USERID can be provided to a specific user through the
 conference notification interface and MUST be provided to users that
 interact with the conferencing system using the CCMP (i.e., in the
 appropriate CCMP response messages). This conference user identifier
 is REQUIRED for any subsequent operations on the conference object.

 We herein remark that the definition of a complete solution for
 policy-based management of an XCON-compliant conference system is out
 of the scope of this document, as well as of the XCON WG. We believe
 that the specification of such a framework is orthogonal to the
 overall XCON architecture, especially if a Role Based Access Control
 (RBAC) approach is embraced. In RBAC, the following elements are
 identified: (i) Users; (ii) Roles; (iii) Objects; (iv) Operations;
 (v) Permissions. For all of the above elements a direct mapping
 exists onto the main XCON entities. As an example, RBAC objects map
 onto XCON data model objects and RBAC operations map onto CCMP
 operations.

 Future documents might work on the definition of an RBAC framework
 for XCON, by first focusing on the definition of roles and eventually
 arriving at the specification of the needed permission policy sets
 and role policy sets (used to associate policy permission sets with
 specific roles). With these policies in place, access to a
 conference object compliant with the XCON data model can be
 appropriately controlled. Finally, coming to the issue of assigning
 users to roles, this can be done through so-called role-assignment
 policies. Such assignment should be under the responsibility of an
 ad-hoc dedicated Role Assignment entity.

10.3. Security and Privacy of Identity

 An overview of the required privacy and anonymity for users of a
 conferencing system are provided in the XCON Framework [RFC5239].
 The security of the identity in the form of the XCON-USERID is

https://datatracker.ietf.org/doc/html/rfc5239

Barnes, et al. Expires January 13, 2011 [Page 79]

Internet-Draft CCMP July 2010

 provided in the CCMP protocol through the use of TLS.

 The conference server SHOULD provide mechanisms to ensure the privacy
 of the XCON-USERID. This is accomplished by the conference client
 manipulation of the "provide-anonymity" element defined in the XCON
 data model ([I-D.ietf-xcon-common-data-model]. The "provide-
 anonymity" element controls the degree to which a user reveals their
 identity. The conference client MUST set the "provide-anonymity"
 element to "hidden" if the user does not want other participants to
 even be aware that there is an additional participant in the
 conference. The conference client MUST set the "provide-anonymity"
 field to "private" if the user wants to be entirely "anonymous"
 (i.e., other participants are aware that there is another
 participant, but have no information as to their identity). The
 conference client MUST set the "provide-anonymity" field to "semi-
 private" if their identity is only to be revealed to other
 participants or users that have a higher level authorization (e.g., a
 conferencing system can be configured such that an administrator can
 see all users). To provide the required privacy, the conference
 client SHOULD include the "provide-anonymity" element in the
 "confInfo" parameter in a CCMP confRequest message with an "update"
 or "create" operation or in the "userInfo" parameter in a CCMP
 userRequest message with an "update" or "create" operation, to ensure
 the user is provided the appropriate level of privacy. If the
 "provide-anonymity" element is not included in the conference object,
 then other users can see the participant's identity.

11. XML Schema

 This section provides the XML schema definition of the "application/
 ccmp+xml" format.

<?xml version="1.0" encoding="utf-8"?>

 <xs:schema
 targetNamespace="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:tns="urn:ietf:params:xml:ns:xcon:ccmp"
 xmlns:dm="urn:ietf:params:xml:ns:xcon-conference-info"
 xmlns:info="urn:ietf:params:xml:ns:conference-info"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="urn:ietf:params:xml:ns:xcon-conference-info"
 schemaLocation="DataModel.xsd"/>

Barnes, et al. Expires January 13, 2011 [Page 80]

Internet-Draft CCMP July 2010

 <xs:import namespace="urn:ietf:params:xml:ns:conference-info"
 schemaLocation="rfc4575.xsd"/>

 <xs:element name="ccmpRequest" type="ccmp-request-type" />
 <xs:element name="ccmpResponse" type="ccmp-response-type" />

<!-- CCMP request definition -->

 <xs:complexType name="ccmp-request-type">
 <xs:sequence>
 <xs:element name="ccmpRequest"
 type="ccmp-request-message-type" />
 </xs:sequence>
 </xs:complexType>

 <!-- ccmp-request-message-type -->

 <xs:complexType abstract="true"
 name="ccmp-request-message-type">
 <xs:sequence>
 <xs:element name="subject" type="subject-type"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="confUserID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="confObjID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="operation" type="operationType"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="conference-password" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

<!-- CCMP response definition -->

 <xs:complexType name="ccmp-response-type">
 <xs:sequence>
 <xs:element name="ccmpResponse"
 type="ccmp-response-message-type" />
 </xs:sequence>
 </xs:complexType>

 <!-- ccmp-response-message-type -->

 <xs:complexType abstract="true" name="ccmp-response-message-type">

https://datatracker.ietf.org/doc/html/rfc4575

Barnes, et al. Expires January 13, 2011 [Page 81]

Internet-Draft CCMP July 2010

 <xs:sequence>
 <xs:element name="confUserID" type="xs:string"
 minOccurs="1" maxOccurs="1" />
 <xs:element name="confObjID" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="operation" type="operationType"
 minOccurs="0"
 maxOccurs="1" />
 <xs:element ref="response-code" minOccurs="1"
 maxOccurs="1" />
 <xs:element name="response-string" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="version" type="xs:positiveInteger"
 minOccurs="0" maxOccurs="1" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

<!-- CCMP REQUESTS -->

 <!-- blueprintsRequest -->

 <xs:complexType name="ccmp-blueprints-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="blueprintsRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintsRequestType -->

 <xs:element name="blueprintsRequest" type="blueprintsRequestType"/>

 <xs:complexType name="blueprintsRequestType">
 <xs:sequence>
 <xs:element name="xpathFilter" type="xs:string"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

Barnes, et al. Expires January 13, 2011 [Page 82]

Internet-Draft CCMP July 2010

 <!-- blueprintRequest -->

 <xs:complexType name="ccmp-blueprint-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="blueprintRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintRequestType -->

 <xs:element name="blueprintRequest" type="blueprintRequestType" />

 <xs:complexType name="blueprintRequestType">
 <xs:sequence>
 <xs:element name="blueprintInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- confsRequest -->

 <xs:complexType name="ccmp-confs-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="confsRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confsRequestType -->

 <xs:element name="confsRequest" type="confsRequestType" />

 <xs:complexType name="confsRequestType">
 <xs:sequence>
 <xs:element name="xpathFilter" type="xs:string"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>

Barnes, et al. Expires January 13, 2011 [Page 83]

Internet-Draft CCMP July 2010

 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- confRequest -->

 <xs:complexType name="ccmp-conf-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="confRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confRequestType -->

 <xs:element name="confRequest" type="confRequestType" />

 <xs:complexType name="confRequestType">
 <xs:sequence>
 <xs:element name="confInfo" type="info:conference-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- usersRequest -->

 <xs:complexType name="ccmp-users-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="usersRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- usersRequestType -->

 <xs:element name="usersRequest" type="usersRequestType" />

 <xs:complexType name="usersRequestType">
 <xs:sequence>

Barnes, et al. Expires January 13, 2011 [Page 84]

Internet-Draft CCMP July 2010

 <xs:element name="usersInfo" type="info:users-type"
 minOccurs="0" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- userRequest -->

 <xs:complexType name="ccmp-user-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="userRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- userRequestType -->

 <xs:element name="userRequest" type="userRequestType" />

 <xs:complexType name="userRequestType">
 <xs:sequence>
 <xs:element name="userInfo" type="info:user-type"
 minOccurs="0" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarsByValRequest -->

 <xs:complexType name="ccmp-sidebarsByVal-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByValRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByValRequestType -->

Barnes, et al. Expires January 13, 2011 [Page 85]

Internet-Draft CCMP July 2010

 <xs:element name="sidebarsByValRequest"
 type="sidebarsByValRequestType" />

 <xs:complexType name="sidebarsByValRequestType">
 <xs:sequence>
 <xs:element name="xpathFilter"
 type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarsByRefRequest -->

 <xs:complexType name="ccmp-sidebarsByRef-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByRefRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByRefRequestType -->

 <xs:element name="sidebarsByRefRequest"
 type="sidebarsByRefRequestType" />

 <xs:complexType name="sidebarsByRefRequestType">
 <xs:sequence>
 <xs:element name="xpathFilter" type="xs:string"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarByValRequest -->

 <xs:complexType name="ccmp-sidebarByVal-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByValRequest" />
 </xs:sequence>

Barnes, et al. Expires January 13, 2011 [Page 86]

Internet-Draft CCMP July 2010

 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByValRequestType -->

 <xs:element name="sidebarByValRequest"
 type="sidebarByValRequestType"/>

 <xs:complexType name="sidebarByValRequestType">
 <xs:sequence>
 <xs:element name="sidebarByValInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarByRefRequest -->

 <xs:complexType name="ccmp-sidebarByRef-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByRefRequest" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByRefRequestType -->

 <xs:element name="sidebarByRefRequest"
 type="sidebarByRefRequestType" />

 <xs:complexType name="sidebarByRefRequestType">
 <xs:sequence>
 <xs:element name="sidebarByRefInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- extendedRequest -->

Barnes, et al. Expires January 13, 2011 [Page 87]

Internet-Draft CCMP July 2010

 <xs:complexType name="ccmp-extended-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 <xs:sequence>
 <xs:element ref="extendedRequest"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- extendedRequestType -->

 <xs:element name="extendedRequest" type="extendedRequestType"/>

 <xs:complexType name="extendedRequestType">
 <xs:sequence>
 <xs:element name="extensionName"
 type="xs:string" minOccurs="1"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <!-- optionsRequest -->

 <xs:complexType name="ccmp-options-request-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-request-message-type">
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

<!-- CCMP RESPONSES -->

 <!-- blueprintsResponse -->

 <xs:complexType name="ccmp-blueprints-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="blueprintsResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintsResponseType -->

Barnes, et al. Expires January 13, 2011 [Page 88]

Internet-Draft CCMP July 2010

 <xs:element name="blueprintsResponse" type="blueprintsResponseType"/>

 <xs:complexType name="blueprintsResponseType">
 <xs:sequence>
 <xs:element name="blueprintsInfo" type="info:uris-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- blueprintResponse -->

 <xs:complexType name="ccmp-blueprint-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="blueprintResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- blueprintResponseType -->

 <xs:element name="blueprintResponse" type="blueprintResponseType"/>

 <xs:complexType name="blueprintResponseType">
 <xs:sequence>
 <xs:element name="blueprintInfo" type="info:conference-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- confsResponse -->

 <xs:complexType name="ccmp-confs-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="confsResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>

Barnes, et al. Expires January 13, 2011 [Page 89]

Internet-Draft CCMP July 2010

 </xs:complexType>

 <!-- confsResponseType -->

 <xs:element name="confsResponse" type="confsResponseType" />

 <xs:complexType name="confsResponseType">
 <xs:sequence>
 <xs:element name="confsInfo" type="info:uris-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- confResponse -->

 <xs:complexType name="ccmp-conf-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="confResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- confResponseType -->

 <xs:element name="confResponse" type="confResponseType" />

 <xs:complexType name="confResponseType">
 <xs:sequence>
 <xs:element name="confInfo" type="info:conference-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- usersResponse -->

 <xs:complexType name="ccmp-users-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>

Barnes, et al. Expires January 13, 2011 [Page 90]

Internet-Draft CCMP July 2010

 <xs:element ref="usersResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- usersResponseType -->

 <xs:element name="usersResponse" type="usersResponseType" />

 <xs:complexType name="usersResponseType">
 <xs:sequence>
 <xs:element name="usersInfo" type="info:users-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- userResponse -->

 <xs:complexType name="ccmp-user-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="userResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- userResponseType -->

 <xs:element name="userResponse" type="userResponseType" />

 <xs:complexType name="userResponseType">
 <xs:sequence>
 <xs:element name="userInfo" type="info:user-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarsByValResponse -->

Barnes, et al. Expires January 13, 2011 [Page 91]

Internet-Draft CCMP July 2010

 <xs:complexType name="ccmp-sidebarsByVal-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByValResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByValResponseType -->

 <xs:element name="sidebarsByValResponse"
 type="sidebarsByValResponseType" />

 <xs:complexType name="sidebarsByValResponseType">
 <xs:sequence>
 <xs:element name="sidebarsByValInfo"
 type="info:sidebars-by-val-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarsByRefResponse -->

 <xs:complexType name="ccmp-sidebarsByRef-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarsByRefResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarsByRefResponseType -->

 <xs:element name="sidebarsByRefResponse"
 type="sidebarsByRefResponseType" />

 <xs:complexType name="sidebarsByRefResponseType">
 <xs:sequence>
 <xs:element name="sidebarsByRefInfo" type="info:uris-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>

Barnes, et al. Expires January 13, 2011 [Page 92]

Internet-Draft CCMP July 2010

 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarByValResponse -->

 <xs:complexType name="ccmp-sidebarByVal-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByValResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByValResponseType -->

 <xs:element name="sidebarByValResponse"
 type="sidebarByValResponseType" />

 <xs:complexType name="sidebarByValResponseType">
 <xs:sequence>
 <xs:element name="sidebarByValInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- sidebarByRefResponse -->

 <xs:complexType name="ccmp-sidebarByRef-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="sidebarByRefResponse" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- sidebarByRefResponseType -->

 <xs:element name="sidebarByRefResponse"
 type="sidebarByRefResponseType" />

Barnes, et al. Expires January 13, 2011 [Page 93]

Internet-Draft CCMP July 2010

 <xs:complexType name="sidebarByRefResponseType">
 <xs:sequence>
 <xs:element name="sidebarByRefInfo"
 type="info:conference-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- extendedResponse -->

 <xs:complexType name="ccmp-extended-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="extendedResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- extendedResponseType -->

 <xs:element name="extendedResponse" type="extendedResponseType"/>

 <xs:complexType name="extendedResponseType">
 <xs:sequence>
 <xs:element name="extensionName"
 type="xs:string" minOccurs="1"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <!-- optionsResponse -->

 <xs:complexType name="ccmp-options-response-message-type">
 <xs:complexContent>
 <xs:extension base="tns:ccmp-response-message-type">
 <xs:sequence>
 <xs:element ref="optionsResponse"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Barnes, et al. Expires January 13, 2011 [Page 94]

Internet-Draft CCMP July 2010

 <!-- optionsResponseType -->

 <xs:element name="optionsResponse"
 type="optionsResponseType" />

 <xs:complexType name="optionsResponseType">
 <xs:sequence>
 <xs:element name="options"
 type="options-type" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

<!-- CCMP ELEMENT TYPES -->

 <!-- response-codeType-->

 <xs:element name="response-code" type="response-codeType" />

 <xs:simpleType name="response-codeType">
 <xs:restriction base="xs:positiveInteger">
 <xs:pattern value="[0-9][0-9][0-9]" />
 </xs:restriction>
 </xs:simpleType>

 <!-- operationType -->

 <xs:simpleType name="operationType">
 <xs:restriction base="xs:token">
 <xs:enumeration value="retrieve"/>
 <xs:enumeration value="create"/>
 <xs:enumeration value="update"/>
 <xs:enumeration value="delete"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- subject-type -->

 <xs:complexType name="subject-type">
 <xs:sequence>
 <xs:element name="username" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="password" type="xs:string"
 minOccurs="0" maxOccurs="1" />
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>

Barnes, et al. Expires January 13, 2011 [Page 95]

Internet-Draft CCMP July 2010

 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- options-type -->

 <xs:complexType name="options-type">
 <xs:sequence>
 <xs:element name="standard-message-list"
 type="standard-message-list-type"
 minOccurs="1"/>
 <xs:element name="extended-message-list"
 type="extended-message-list-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- standard-message-list-type -->

 <xs:complexType name="standard-message-list-type">
 <xs:sequence>
 <xs:element name="standard-message"
 type="standard-message-type"
 minOccurs="1" maxOccurs="10"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- standard-message-type -->

 <xs:complexType name="standard-message-type">
 <xs:sequence>
 <xs:element name="name"
 type="standard-message-name-type"
 minOccurs="1"/>
 <xs:element name="operations"
 type="operations-type"
 minOccurs="0"/>
 <xs:element name="schema-def" type="xs:string" minOccurs="0"/>
 <xs:element name="description" type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

Barnes, et al. Expires January 13, 2011 [Page 96]

Internet-Draft CCMP July 2010

 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- standard-message-name-type -->

 <xs:simpleType name="standard-message-name-type">
 <xs:restriction base="xs:token">
 <xs:enumeration value="confsRequest"/>
 <xs:enumeration value="confRequest"/>
 <xs:enumeration value="blueprintsRequest"/>
 <xs:enumeration value="blueprintRequest"/>
 <xs:enumeration value="usersRequest"/>
 <xs:enumeration value="userRequest"/>
 <xs:enumeration value="sidebarsByValRequest"/>
 <xs:enumeration value="sidebarByValRequest"/>
 <xs:enumeration value="sidebarsByRefRequest"/>
 <xs:enumeration value="sidebarByRefRequest"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- operations-type -->

 <xs:complexType name="operations-type">
 <xs:sequence>
 <xs:element name="operation" type="operation-type"
 minOccurs="1" maxOccurs="4"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- extended-message-list-type -->

 <xs:complexType name="extended-message-list-type">
 <xs:sequence>
 <xs:element name="extended-message"
 type="extended-message-type"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 <!-- extended-message-type -->

 <xs:complexType name="extended-message-type">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />

Barnes, et al. Expires January 13, 2011 [Page 97]

Internet-Draft CCMP July 2010

 <xs:element name="operations"
 type="operations-type"
 minOccurs="0"/>
 <xs:element name="schema-def" type="xs:string" />
 <xs:element name="description"
 type="xs:string"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

 </xs:schema>

 Figure 30

12. IANA Considerations

 This document registers a new XML namespace, a new XML schema, and
 the MIME type for the schema. This document also registers the
 "XCON" Application Service tag and the "CCMP" Application Protocol
 tag. This document also defines registries for the CCMP operation
 types and response codes.

12.1. URN Sub-Namespace Registration

 This section registers a new XML namespace,
 ""urn:ietf:params:xml:ns:xcon:ccmp"".

 URI: "urn:ietf:params:xml:ns:xcon:ccmp"
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org),
 Mary Barnes (mary.ietf.barnes@gmail.com).
 XML:

Barnes, et al. Expires January 13, 2011 [Page 98]

Internet-Draft CCMP July 2010

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>CCMP Messages</title>
 </head>
 <body>
 <h1>Namespace for CCMP Messages</h1>
 <h2>urn:ietf:params:xml:ns:xcon:ccmp</h2>
 [[NOTE TO IANA/RFC-EDITOR: Please update RFC URL and replace XXXX
 with the RFC number for this specification.]]
 <p>See RFCXXXX.</p>
 </body>
 </html>
 END

12.2. XML Schema Registration

 This section registers an XML schema as per the guidelines in
 [RFC3688].

 URI: urn:ietf:params:xml:schema:xcon:ccmp
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org), Mary
 Barnes (mary.ietf.barnes@gmail.com).
 Schema: The XML for this schema can be found as the entirety of

Section 11 of this document.

12.3. MIME Media Type Registration for 'application/ccmp+xml'

 This section registers the "application/ccmp+xml" MIME type.

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/ccmp+xml
 MIME media type name: application
 MIME subtype name: ccmp+xml
 Required parameters: (none)
 Optional parameters: charset
 Indicates the character encoding of enclosed XML for which the
 default is UTF-8.
 Encoding considerations: Uses XML, which can employ 8-bit
 characters, depending on the character encoding used. See RFC

3023 [RFC3023], section 3.2.

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-3.2

Barnes, et al. Expires January 13, 2011 [Page 99]

Internet-Draft CCMP July 2010

 Security considerations: This content type is designed to carry
 protocol data related conference control. Some of the data could
 be considered private and thus should be protected.
 Interoperability considerations: None.
 Published specification: RFC XXXX [[NOTE TO IANA/RFC-EDITOR: Please
 replace XXXX with the RFC number for this specification.]]
 Applications which use this media type: Centralized Conferencing
 control clients and servers.
 Additional Information: Magic Number(s): (none)
 File extension(s): .xml
 Macintosh File Type Code(s): (none)
 Person & email address to contact for further information: Mary
 Barnes <mary.ietf.barnes@gmail.com>
 Intended usage: LIMITED USE
 Author/Change controller: The IETF
 Other information: This media type is a specialization of
 application/xml [RFC3023], and many of the considerations
 described there also apply to application/ccmp+xml.

12.4. DNS Registrations

Section 12.4.1 defines an Application Service tag of "XCON", which is
 used to identify the centralized conferencing (XCON) server for a
 particular domain. The Application Protocol tag "CCMP", defined in

Section 12.4.2, is used to identify an XCON server that understands
 the CCMP protocol.

12.4.1. Registration of a Conference Control Server Application Service
 Tag

 This section registers a new S-NAPTR/U-NAPTR Application Service tag
 for XCON, as mandated by [RFC3958].

 Application Service Tag: XCON

 Intended usage: Identifies a server that supports centralized
 conferencing.

 Defining publication: RFCXXXX

 Contact information: The authors of this document

 Author/Change controller: The IESG

12.4.2. Registration of a Conference Control Server Application
 Protocol Tag for CCMP

 This section registers a new S-NAPTR/U-NAPTR Application Protocol tag

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3958

Barnes, et al. Expires January 13, 2011 [Page 100]

Internet-Draft CCMP July 2010

 for the CCMP protocol, as mandated by [RFC3958].

 Application Service Tag: CCMP

 Intended Usage: Identifies the Centralized Conferencing (XCON)
 Manipulation Protocol.

 Applicable Service Tag(s): XCON

 Terminal NAPTR Record Type(s): U

 Defining Publication: RFCXXXX

 Contact Information: The authors of this document

 Author/Change Controller: The IESG

12.5. CCMP Protocol Registry

 This document requests that the IANA create a new registry for the
 CCMP protocol including an initial registry for operation types and
 response codes.

12.5.1. CCMP Message Types

 The CCMP messages are described in Section 4.1 and defined in the XML
 schema in Section 11. The following summarizes the requested
 registry:

 Related Registry: CCMP Message Types Registry
 Defining RFC: RFC XXXX [NOTE TO IANA/RFC-EDITOR: Please replace XXXX
 with the RFC number for this specification.]
 Registration/Assignment Procedures: New CCMP message types are
 allocated on a specification required basis.
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org), Mary
 Barnes (mary.ietf.barnes@gmail.com).

 This section pre-registers the following initial CCMP message types:

 optionsRequest: Used by a conference control client to query a
 conferencing system for its capabilities, in terms of supported
 messages (both standard and non-standard).
 optionsResponse: The optionsResponse returns a list of CCMP messages
 (both standard and non-standard) supported by the specific
 conference server.

https://datatracker.ietf.org/doc/html/rfc3958

Barnes, et al. Expires January 13, 2011 [Page 101]

Internet-Draft CCMP July 2010

 blueprintsRequest: Used by a conference control client to query a
 conferencing system for its capabilities, in terms of available
 conference blueprints.
 blueprintsResponse: The blueprintsResponse returns a list of
 blueprints supported by the specific conference server.
 confsRequest: Used by a conference control client to query a
 conferencing system for its scheduled/active conferences.
 confsResponse: The "confsResponse" returns the list of the currently
 activated/scheduled conferences at the server.
 confRequest: The "confRequest" is used to create a conference object
 and/or to request an operation on the conference object as a
 whole.
 confResponse: The "confResponse" indicates the result of the
 operation on the conference object as a whole.
 userRequest: The "userRequest" is used to request an operation on
 the "user" element in the conference object.
 userResponse: The "userResponse" indicates the result of the
 requested operation on the "user" element in the conference
 object.
 usersRequest This "usersRequest" is used to manipulate the "users"
 element in the conference object, including parameters such as the
 "allowed-users-list", "join-handling", etc.
 usersResponse: This "usersResponse" indicates the result of the
 request to manipulate the "users" element in the conference
 object.
 sidebarRequest: This "sidebarRequest" is used to retrieve the
 information related to a sidebar or to create, change or delete a
 specific sidebar.
 sidebarResponse: This "sidebarResponse" indicates the result of the
 sidebarRequest.

12.5.2. CCMP Response Codes

 The following summarizes the requested registry for CCMP Response
 codes:

 Related Registry: CCMP Response Code Registry
 Defining RFC: RFC XXXX [NOTE TO IANA/RFC-EDITOR: Please replace XXXX
 with the RFC number for this specification.]
 Registration/Assignment Procedures: New response codes are allocated
 on a first-come/first-serve basis with specification required.
 Registrant Contact: IETF, XCON working group, (xcon@ietf.org), Mary
 Barnes (mary.ietf.barnes@gmail.com).

 This section pre-registers the following thirteen initial response
 codes as described above in Section 4.1:

Barnes, et al. Expires January 13, 2011 [Page 102]

Internet-Draft CCMP July 2010

 200: This code indicates that the request was successfully
 processed.
 409: This code indicates that a requested "update" cannot be
 successfully completed by the server. An example of such
 situation is when the modification of an object cannot be applied
 due to conflicts arising at the server's side (e.g. because the
 client version of the object is an obsolete one and the requested
 modifications collide with the up-to-date state of the object
 stored at the server).
 400: This code indicates that the request was badly formed in some
 fashion.
 401: This code indicates that the user was not authorized for the
 specific operation on the conference object.
 403: This code indicates that the specific operation is not valid
 for the target conference object.
 404: This code indicates that the specific conference object was not
 found.
 420: This code is returned in answer to a "userRequest/create"
 operation, in the case of a third-party invite, when the
 "confUserID" (contained in the "entity" attribute of the
 "userInfo" parameter) of the user to be added is unknown.
 421: This code is returned in the case of requests in which the
 "confUserID" of the sender is invalid.
 422: This code is returned in response to all requests wishing to
 access/manipulate a password-protected conference object, when the
 "conference-password" parameter contained in the request is wrong.
 423: This code is returned in response to all requests wishing to
 access/manipulate a password-protected conference object, when the
 "conference-password" parameter is missing in the request.
 424: This code is returned in response whenever the server wants to
 authenticate the requestor through the "subject" parameter and
 such a parameter is not provided in the request.
 425: This code indicates that the conferencing system cannot delete
 the specific conference object because it is a parent for another
 conference object.
 426: This code indicates that the target conference object cannot be
 changed (e.g., due to policies, roles, privileges, etc.).
 510: This code indicates that the request could not be processed
 within a reasonable time, with the time specific to a conferencing
 system implementation.
 500: This code indicates that the conferencing system experienced
 some sort of internal error.
 501: This code indicates that the specific operation is not
 implemented on that conferencing system.

Barnes, et al. Expires January 13, 2011 [Page 103]

Internet-Draft CCMP July 2010

13. Acknowledgments

 The authors appreciate the feedback provided by Dave Morgan, Pierre
 Tane, Lorenzo Miniero, Tobia Castaldi, Theo Zourzouvillys, Sean
 Duddy, Oscar Novo, Richard Barnes and Simo Veikkolainen. Special
 thanks go to Roberta Presta for her invaluable contribution to this
 document. Roberta has worked on the specification of the CCMP
 protocol at the University of Napoli for the preparation of her
 Master thesis. She has also implemented the CCMP prototype used for
 the trials and from which the dumps provided in Section 6 have been
 extracted.

14. Changes since last Version

 NOTE TO THE RFC-Editor: Please remove this section prior to
 publication as an RFC.

 The following summarizes the changes between the WG 03 and the 04:

 1. Re-organized document based on feedback from Richard Barnes.
 2. Editorial clarifications and nits, including those identified by
 Richard and Simo Veikkolainen.

 The following summarizes the changes between the WG 07 and the 08:

 1. Added a new "optionsRequest" message (and related
 "optionsResponse" message) to the list of CCMP messages.
 2. Clarified discussion about notifications management, by
 clarifying they are out of the scope of the present document, but
 at the same time providing some pointers to potential ways for
 implementing them.
 3. Clarified discussion about policies in XCON, by clarifying they
 are out of the scope of the present document, but at the same
 time providing some pointers to potential ways for implementing
 them.
 4. Corrected minor typos in the schema.
 5. Corrected schema definitions which brought to Unique Particle
 Attribution exceptions.
 6. Added the newly defined "optionsRequest" and "optionsResponse"
 messages to the schema.
 7. Misc editorial nits...

 The following summarizes the changes between the WG 08 and the 09:

 1. Added a section on the extendedRequest/extendedResponse message
 pair.

Barnes, et al. Expires January 13, 2011 [Page 104]

Internet-Draft CCMP July 2010

 2. Added a section on the optionsRequest/optionsResponse message
 pair.
 3. Added an example sub-section about the use of the optionsRequest/
 optionsResponse message pair.
 4. Added an example sub-section about the use of the
 extendedRequest/extendedResponse message pair.
 5. Updated the schema in order to reflect the latest modifications
 and add-ons.
 6. Misc editorial nits...

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, October 2000.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5239] Barnes, M., Boulton, C., and O. Levin, "A Framework for
 Centralized Conferencing", RFC 5239, June 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [I-D.ietf-xcon-common-data-model]
 Novo, O., Camarillo, G., Morgan, D., and J. Urpalainen,
 "Conference Information Data Model for Centralized
 Conferencing (XCON)", draft-ietf-xcon-common-data-model-19
 (work in progress), May 2010.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc5239
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-xcon-common-data-model-19

Barnes, et al. Expires January 13, 2011 [Page 105]

Internet-Draft CCMP July 2010

15.2. Informative References

 [REST] Fielding, "Architectural Styles and the Design of Network-
 based Software Architectures", 2000.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3958] Daigle, L. and A. Newton, "Domain-Based Application
 Service Location Using SRV RRs and the Dynamic Delegation
 Discovery Service (DDDS)", RFC 3958, January 2005.

 [RFC4582] Camarillo, G., Ott, J., and K. Drage, "The Binary Floor
 Control Protocol (BFCP)", RFC 4582, November 2006.

 [I-D.ietf-xcon-event-package]
 Camarillo, G., Srinivasan, S., Even, R., and J.
 Urpalainen, "Conference Event Package Data Format
 Extension for Centralized Conferencing (XCON)",

draft-ietf-xcon-event-package-01 (work in progress),
 September 2008.

 [W3C.REC-soap12-part1-20030624]
 Nielsen, H., Gudgin, M., Hadley, M., Moreau, J., and N.
 Mendelsohn, "SOAP Version 1.2 Part 1: Messaging
 Framework", World Wide Web Consortium FirstEdition REC-
 soap12-part1-20030624, June 2003,
 <http://www.w3.org/TR/2003/REC-soap12-part1-20030624>.

 [W3C.REC-soap12-part2-20030624]
 Mendelsohn, N., Nielsen, H., Moreau, J., Hadley, M., and
 M. Gudgin, "SOAP Version 1.2 Part 2: Adjuncts", World Wide
 Web Consortium FirstEdition REC-soap12-part2-20030624,
 June 2003,
 <http://www.w3.org/TR/2003/REC-soap12-part2-20030624>.

Appendix A. Appendix A: Other protocol models and transports considered
 for CCMP

 The operations on the objects can be implemented in at least two
 different ways, namely as remote procedure calls - using SOAP as
 described in Appendix A.1 and by defining resources following a

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3958
https://datatracker.ietf.org/doc/html/rfc4582
https://datatracker.ietf.org/doc/html/draft-ietf-xcon-event-package-01
http://www.w3.org/TR/2003/REC-soap12-part1-20030624
http://www.w3.org/TR/2003/REC-soap12-part2-20030624

Barnes, et al. Expires January 13, 2011 [Page 106]

Internet-Draft CCMP July 2010

 RESTful architecture Appendix A.2.

 In both approaches, servers will have to recreate their internal
 state representation of the object with each update request, checking
 parameters and triggering function invocations. In the SOAP
 approach, it would be possible to describe a separate operation for
 each atomic element, but that would greatly increase the complexity
 of the protocol. A coarser-grained approach to the CCMP does require
 that the server process XML elements in updates that have not changed
 and that there can be multiple changes in one update.

 For CCMP, the resource (REST) model might appear more attractive,
 since the conference operations fit the CRUD approach.

 Neither of these approaches were considered ideal as SOAP was not
 considered to be general purpose enough for use in a broad range of
 operational environments. It is quite awkward to apply a RESTful
 approach since the CCMP requires a more complex request/response
 protocol in order to maintain the data both in the server and at the
 client. This doesn't map very elegantly to the basic request/
 response model, whereby a response typically indicates whether the
 request was successful or not, rather than providing additional data
 to maintain the synchronization between the client and server data.
 In addition, the CCMP clients may also receive the data in
 Notifications. While the notification method or protocol used by
 some conferencing clients can be independent of the CCMP, the same
 data in the server is used for both the CCMP and Notifications - this
 requires a server application above the transport layer (e.g., HTTP)
 for maintaining the data, which in the CCMP model is transparent to
 the transport protocol.

A.1. Using SOAP for the CCMP

 A remote procedure call (RPC) mechanism for the CCMP could use SOAP
 (Simple Object Access Protocol[W3C.REC-soap12-part1-20030624][W3C.REC
 -soap12-part2-20030624]), where conferences and the other objects are
 modeled as services with associated operations. Conferences and
 other objects are selected by their own local identifiers, such as
 email-like names for users. This approach has the advantage that it
 can easily define atomic operations that have well-defined error
 conditions.

 All SOAP operations would use a single HTTP verb. While the RESTful
 approach requires the use of a URI for each object, SOAP can use any
 token.

Barnes, et al. Expires January 13, 2011 [Page 107]

Internet-Draft CCMP July 2010

A.2. A RESTful approach for the CCMP

 Conference objects can also be modeled as resources identified by
 URIs, with the basic CRUD operations mapped to the HTTP methods POST/
 PUT for creating objects, GET for reading objects, PATCH/POST/PUT for
 changing objects and DELETE for deleting them. Many of the objects,
 such as conferences, already have natural URIs.

 CCMP can be mapped into the CRUD (Create, Read, Update, Delete)
 design pattern. The basic CRUD operations are used to manipulate
 conference objects, which are XML documents containing the
 information characterizing a specified conference instance, be it an
 active conference or a conference blueprint used by the conference
 server to create new conference instances through a simple clone
 operation.

 Following the CRUD approach, CCMP could use a general-purpose
 protocol such as HTTP [RFC2616] to transfer domain-specific XML-
 encoded data objects defined in the Conference Information Data Model
 for Centralized Conferencing [I-D.ietf-xcon-common-data-model].

 Following on the CRUD approach, CCMP could follow the well-known REST
 (REpresentational State Transfer) architectural style [REST]. The
 CCMP could map onto the REST philosophy, by specifying resource URIs,
 resource formats, methods supported at each URI and status codes that
 have to be returned when a certain method is invoked on a specific
 URI. A REST-style approach must ensure sure that all operations can
 be mapped to HTTP operations.

 The following summarizes the specific HTTP method that could be used
 for each of the CCMP Requests:

 Retrieve: HTTP GET could be used on XCON-URIs, so that clients can
 obtain data about conference objects in the form of XML data model
 documents.

 Create: HTTP PUT could be used to create a new object as identified
 by the XCON-URI or XCON-USERID.

 Change: Either HTTP PATCH or HTTP POST could be used to change the
 conference object identified by the XCON-URI.

 Delete: HTTP DELETE could be used to delete conference objects and
 parameters within conference objects identified by the XCON-URI.

https://datatracker.ietf.org/doc/html/rfc2616

Barnes, et al. Expires January 13, 2011 [Page 108]

Internet-Draft CCMP July 2010

Authors' Addresses

 Mary Barnes
 Polycom
 TX
 US

 Email: mary.ietf.barnes@gmail.com

 Chris Boulton
 NS-Technologies

 Email: chris@ns-technologies.com

 Simon Pietro Romano
 University of Napoli
 Via Claudio 21
 Napoli 80125
 Italy

 Email: spromano@unina.it

 Henning Schulzrinne
 Columbia University
 Department of Computer Science
 450 Computer Science Building
 New York, NY 10027

 Email: hgs+xcon@cs.columbia.edu

Barnes, et al. Expires January 13, 2011 [Page 109]

