
INTERNET-DRAFT Canonical XML
Expires May 2001 November 2000

Canonical XML
Version 1.0

 <draft-ietf-xmldsig-canonical-00.txt>

 John Boyer

 Status of This Document

 This document is a product of the joint IETF/W3C XMLDSIG working
 group. It is intended to become an Informational RFC version of the
 W3C Candidate Recommendation of the same name
 <http://www.w3.org/TR/2000/CR-xml-c14n-20001026>. Distribution of
 this document is unlimited. Comments should be sent to the XMLDSIG WG
 mailing list <w3c-ietf-xmldsig@w3.org> or to the author.

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (c) 2000 The Internet Society & W3C (MIT, INRIA, Keio), All
 Rights Reserved. W3C liability, trademark, document use and software
 licensing rules apply.

https://datatracker.ietf.org/doc/html/draft-ietf-xmldsig-canonical-00.txt
http://www.w3.org/TR/2000/CR-xml-c14n-20001026
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

J. Boyer [Page 1]

INTERNET-DRAFT Canonical XML November 2000

Abstract

 Any XML document is part of a set of XML documents that are logically
 equivalent within an application context, but which vary in physical
 representation based on syntactic changes permitted by XML 1.0 [XML]
 and Namespaces in XML [Names]. This specification describes a method
 for generating a physical representation, the canonical form, of an
 XML document that accounts for the permissible changes. Except for
 limitations regarding a few unusual cases, if two documents have the
 same canonical form, then the two documents are logically equivalent
 within the given application context. Note that two documents may
 have differing canonical forms yet still be equivalent in a given
 context based on application-specific equivalence rules for which no
 generalized XML specification could account.

Acknowledgements

 The following people provided valuable feedback that improved the
 quality of this specification:

 * Doug Bunting, Ariba
 * John Cowan, Reuters
 * Martin J. Durst, W3C
 * Merlin Hughes, Baltimore
 * Gregor Karlinger, IAIK TU Graz
 * Susan Lesch, W3C
 * Jonathan Marsh, Microsoft
 * Joseph Reagle, W3C
 * Petteri Stenius, Done360
 * Kent TAMURA, IBM

J. Boyer [Page 2]

INTERNET-DRAFT Canonical XML November 2000

Table of Contents

 Status of This Document....................................1
 Copyright Notice...1

 Abstract...2
 Acknowledgements...2

 Table of Contents..3

1. Introduction..4
1.1 Terminology..4
1.2 Applications...5
1.3 Limitations..6
2. XML Canonicalization....................................7
2.1 Data Model...7
2.2 Document Order..11
2.3 Processing Model......................................11
2.4 Document Subsets......................................14
3 Examples of XML Canonicalization........................15
3.1 PIs, Comments, and Outside of Document Element........15
3.2 Whitespace in Document Content........................16
3.3 Start and End Tags....................................17
3.4 Character Modifications and Character References......19
3.5 Entity References.....................................20
3.6 UTF-8 Encoding..21
3.7 Document Subsets......................................21
4 Resolutions...22
4.1 No XML Declaration....................................22
4.2 No Character Model Normalization......................23
4.3 Handling of Whitespace Outside Document Element.......23
4.4 No Namespace Prefix Rewriting.........................23
4.5 Order of Namespace Declarations and Attributes........24
4.6 Superfluous Namespace Declarations....................25

 4.7 Propagation of Default Namespace Declaration in Document
 Subsets...25

4.8 Sorting Attributes by Namespace URI...................26
 References..26

 Author's Address..28
 Expiration and File Name..................................28

J. Boyer [Page 3]

INTERNET-DRAFT Canonical XML November 2000

1. Introduction

 The XML 1.0 Recommendation [XML] specifies the syntax of a class of
 resources called XML documents. The XML Namespaces Recommendation
 [Names] specifies additional syntax and semantics for XML documents.
 It is possible for XML documents which are equivalent for the
 purposes of many applications to differ in physical representation.
 For example, they may differ in their entity structure, attribute
 ordering, and character encoding. It is the goal of this
 specification to establish a method for determining whether two
 documents are identical, or whether an application has not changed a
 document, except for transformations permitted by XML 1.0 and
 Namespaces.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [Keywords].

 See [Names] for the definition of QName.

 A document subset is a portion of an XML document indicated by a
 node-set that may not include all of the nodes in the document.

 The canonical form of an XML document is physical representation of
 the document produced by the method described in this specification.
 The changes are summarized in the following list:

 * The document is encoded in UTF-8
 * Line breaks normalized to #xA on input, before parsing
 * Attribute values are normalized, as if by a validating processor
 * Character and parsed entity references are replaced
 * CDATA sections are replaced with their character content
 * The XML declaration and document type declaration (DTD) are
 removed
 * Empty elements are converted to start-end tag pairs
 * Whitespace outside of the document element and within start and
 end tags are normalized
 * All whitespace in character content is retained (excluding
 characters removed during linefeed normalization)
 * Attribute value delimiters are set to double quotes
 * Special characters in attribute values and character content are
 replaced by character references
 * Superfluous namespace declarations are removed from each element
 * Default attributes are added to each element
 * Lexicographic order is imposed on the namespace declarations and

https://datatracker.ietf.org/doc/html/rfc2119

 attributes of each element

J. Boyer [Page 4]

INTERNET-DRAFT Canonical XML November 2000

 The term canonical XML refers to XML that is in canonical form. The
 XML canonicalization method is the algorithm defined by this
 specification that generates the canonical form of a given XML
 document or document subset. The term XML canonicalization refers to
 the process of applying the XML canonicalization method to an XML
 document or document subset.

 The XPath 1.0 Recommendation [XPath] defines the term node-set and
 specifies a data model for representing an input XML document as a
 set of nodes of various types (element, attribute, namespace, text,
 comment, processing instruction, and root). The nodes are included in
 or excluded from a node-set based on the evaluation of an expression.
 Within this specification, a node-set is used to directly indicate
 whether or not each node should be rendered in the canonical form (in
 this sense, it is used as a formal mathematical set). A node that is
 excluded from the set is not rendered in the canonical form being
 generated, even if its parent node is included in the node-set.
 However, an omitted node may still impact the rendering of its
 descendants (e.g. by augmenting the namespace context of the
 descendants).

1.2 Applications

 Since the XML 1.0 Recommendation [XML] and the Namespaces in XML
 Recommendation [Names] define multiple syntactic methods for
 expressing the same information, XML applications tend to take
 liberties with changes that have no impact on the information content
 of the document. XML canonicalization is designed to be useful to
 applications that require the ability to test whether the information
 content of a document or document subset has been changed. This is
 done by comparing the canonical form of the original document before
 application processing with the canonical form of the document result
 of the application processing.

 For example, a digital signature over the canonical form of an XML
 document or document subset would allow the signature digest
 calculations to be oblivious to changes in the original document's
 physical representation, provided that the changes are defined to be
 logically equivalent by the XML 1.0 or Namespaces in XML. During
 signature generation, the digest is computed over the canonical form
 of the document. The document is then transferred to the relying
 party, which validates the signature by reading the document and
 computing a digest of the canonical form of the received document.
 The equivalence of the digests computed by the signing and relying
 parties (and hence the equivalence of the canonical forms over which
 they were computed) ensures that the information content of the

 document has not been altered since it was signed.

J. Boyer [Page 5]

INTERNET-DRAFT Canonical XML November 2000

1.3 Limitations

 Two XML documents may have differing information content that is
 nonetheless logically equivalent within a given application context.
 Although two XML documents are equivalent (aside from limitations
 given in this section) if their canonical forms are identical, it is
 not a goal of this work to establish a method such that two XML
 documents are equivalent if and only if their canonical forms are
 identical. Such a method is unachievable, in part due to
 application-specific rules such as those governing unimportant
 whitespace and equivalent data (e.g. <color>black</color> versus
 <color>rgb(0,0,0)</color>). There are also equivalencies established
 by other W3C Recommendations and Working Drafts. Accounting for
 these additional equivalence rules is beyond the scope of this work.
 They can be applied by the application or become the subject of
 future specifications.

 The canonical form of an XML document may not be completely
 operational within the application context, though the circumstances
 under which this occurs are unusual. This problem may be of concern
 in certain applications since a canonical form and its canonical form
 are equivalent. For example, in a digital signature application, the
 canonical form can be substituted for the original document without
 changing the digest calculation. However, the security risk only
 occurs in the unusual circumstances described below, which can all be
 resolved or at least detected prior to digital signature generation.

 The difficulties arise due to the loss of the following information
 not available in the data model:

 1. base URI, especially in content derived from the replacement
 text of external general parsed entity references
 2. notations and external unparsed entity references
 3. attribute types in the document type declaration

 In the first case, note that a document containing a relative URI
 [URI] is only operational when accessed from a specific URI that
 provides the proper base URI. In addition, if the document contains
 external general parsed entity references to content containing
 relative URIs, then the relative URIs will not be operational in the
 canonical form, which replaces the entity reference with internal
 content (thereby implicitly changing the default base URI of that
 content). Both of these problems can typically be solved by adding
 support for the xml:base attribute [XBase] to the application, then
 adding appropriate xml:base attributes to document element and all
 top-level elements in external entities. In addition, applications
 often have an opportunity to resolve relative URIs prior to the need
 for a canonical form. For example, in a digital signature

 application, a document is often retrieved and processed prior to
 signature generation. The processing SHOULD create a new document in

J. Boyer [Page 6]

INTERNET-DRAFT Canonical XML November 2000

 which relative URIs have been converted to absolute URIs, thereby
 mitigating any security risk for the new document.

 In the second case, the loss of external unparsed entity references
 and the notations that bind them to applications means that canonical
 forms cannot properly distinguish among XML documents that
 incorporate unparsed data via this mechanism. This is an unusual case
 precisely because most XML processors currently discard the document
 type declaration, which discards the notation, the entity's binding
 to a URI, and the attribute type that binds the attribute value to an
 entity name. For documents that must be subjected to more than one
 XML processor, the XML design typically indicates a reference to
 unparsed data using a URI in the attribute value.

 In the third case, the loss of attribute types can affect the
 canonical form in different ways depending on the type. Attributes of
 type ID cease to be ID attributes. Hence, any XPath expressions that
 refer to the canonical form using the id() function cease to operate.
 The attribute types ENTITY and ENTITIES are not part of this case;
 they are covered in the second case above. Attributes of enumerated
 type and of type ID, IDREF, IDREFS, NMTOKEN, NMTOKENS, and NOTATION
 fail to be appropriately constrained during future attempts to change
 the attribute value if the canonical form replaces the original
 document during application processing. Applications can avoid the
 difficulties of this case by ensuring that an appropriate document
 type declaration is prepended prior to using the canonical form in
 further XML processing. This is likely to be an easy task since
 attribute lists are usually acquired from a standard external DTD
 subset, and any entity and notation declarations not also in the
 external DTD subset are typically constructed from application
 configuration information and added to the internal DTD subset.

 While these limitations are not severe, it would be possible to
 resolve them in a future version of XML canonicalization if, for
 example, a new version of XPath were created based on the XML
 Information Set [InfoSet] currently under development at the W3C.

2. XML Canonicalization

2.1 Data Model

 The data model defined in the XPath 1.0 Recommendation [XPath] is
 used to represent the input XML document or document subset.
 Implementations SHOULD but need not be based on an XPath
 implementation. XML canonicalization is defined in terms of the XPath

 definition of a node-set, and implementations MUST produce equivalent

J. Boyer [Page 7]

INTERNET-DRAFT Canonical XML November 2000

 results.

 The first parameter of input to the XML canonicalization method is
 either an XPath node-set or an octet stream containing a well-formed
 XML document. Implementations MUST support the octet stream input
 and SHOULD also support the document subset feature via node-set
 input. For the purpose of describing canonicalization in terms of an
 XPath node-set, this section describes how an octet stream is
 converted to an XPath node-set.

 The second parameter of input to the XML canonicalization method is a
 boolean flag indicating whether or not comments should be included in
 the canonical form output by the XML canonicalization method. If a
 canonical form contains comments corresponding to the comment nodes
 in the input node-set, the result is called canonical XML with
 comments. Note that the XPath data model does not create comment
 nodes for comments appearing within the document type declaration
 (DTD). Implementations are REQUIRED to be capable of producing
 canonical XML excluding all comments that may have appeared in the
 input document or document subset. Support for canonical XML with
 comments is RECOMMENDED.

 If an XML document must be converted to a node-set, XPath REQUIRES
 that an XML processor be used to create the nodes of its data model
 to fully represent the document. The XML processor performs the
 following tasks in order:

 1. normalize linefeeds
 2. normalize attribute values
 3. replace CDATA sections with their character content
 4. resolve character and parsed entity references

 The input octet stream MUST contain a well-formed XML document, but
 the input need not be validated. However, the attribute value
 normalization and entity reference resolution MUST be performed in
 accordance with the behaviors of a validating XML processor. As well,
 nodes for default attributes (declared in the ATTLIST with an
 AttValue but not specified) are created in each element. Thus, the
 declarations in the document type declaration are used to help create
 the canonical form, even though the document type declaration is not
 retained in the canonical form.

 The XPath data model represents data using UCS characters.
 Implementations MUST use XML processors that support UTF-8 and UTF-16
 and translate to the UCS character domain. For UTF-16, the leading
 byte order mark is treated as an artifact of encoding and stripped
 from the UCS character data (subsequent zero width non-breaking
 spaces appearing within the UTF-16 data are not removed) [UTF-16,

Section 3.2]. Support for ISO-8859-1 encoding is RECOMMENDED, and all
 other character encodings are OPTIONAL.

J. Boyer [Page 8]

INTERNET-DRAFT Canonical XML November 2000

 All whitespace within the root document element MUST be preserved
 (except for any #xD characters deleted by line delimiter
 normalization). This includes all whitespace in external entities.
 Whitespace outside of the root document element MUST be discarded.

 In the XPath data model, there exist the following node types: root,
 element, comment, processing instruction, text, attribute and
 namespace. There exists a single root node whose children are
 processing instruction nodes and comment nodes to represent
 information outside of the document element (and outside of the
 document type declaration). The root node also has a single element
 node representing the top-level document element. Each element node
 can have child nodes of type element, text, processing instruction,
 and comment. The attributes and namespaces associated with an element
 are not considered to be child nodes of the element, but they are
 associated with the element by inclusion in the element's attribute
 and namespace axes. Note that attribute and namespace axes may not
 directly correspond to the text appearing in the element's start tag
 in the original document.

 Note: An element has attribute nodes to represent the non-namespace
 attribute declarations appearing in its start tag as well as
 nodes to represent the default attributes.

 By virtue of the XPath data model, XML canonicalization is
 namespace-aware [Names]. However, it cannot and therefore does not
 account for namespace equivalencies using namespace prefix rewriting
 (see explanation in Section 4). In the XPath data model, each element
 and attribute has a name returned by the function name() which can,
 at the discretion of the application, be the QName appearing in the
 original document. XML canonicalization REQUIRES that the XML
 processor retain sufficient information such that the QName of the
 element as it appeared in the original document can be provided.

 Note: An element E has namespace nodes that represent its namespace
 declarations as well as any namespace declarations made by its
 ancestors that have not been overridden in E's declarations,
 the default namespace if it is non-empty, and the declaration
 of the prefix xml.

 Note: This specification supports the recent XML plenary decision to
 deprecate relative namespace URIs as follows: implementations
 of XML canonicalization MUST report an operation failure on
 documents containing relative namespace URIs. XML
 canonicalization MUST NOT be implemented with an XML parser
 that converts relative URIs to absolute URIs.

 Character content is represented in the XPath data model with text

 nodes. All consecutive characters are placed into a single text
 node. Furthermore, the text node's characters are represented in the

J. Boyer [Page 9]

INTERNET-DRAFT Canonical XML November 2000

 UCS character domain. The XML canonicalization method does not
 perform character model normalization (see explanation in Section 4).
 However, the XML processor used to prepare the XPath data model input
 is REQUIRED to use Normalization Form C [NFC] when converting an XML
 document to the UCS character domain from a non-Unicode encoding.

 Since XML canonicalization converts an XPath node-set into a
 canonical form, the first parameter MUST either be an XPath node-set
 or it must be converted from an octet stream to a node-set by
 performing the XML processing necessary to create the XPath nodes
 described above, then setting an initial XPath evaluation context of:

 * A context node, initialized to the root node of the input XML
 document.
 * A context position, initialized to 1.
 * A context size, initialized to 1.
 * Any library of functions conforming to the XPath Recommendation.
 * An empty set of variable bindings.
 * An empty set of namespace declarations.

 and evaluating the following default expression:

 Comment Parameter Value Default XPath Expression
 ----------------------- ------------------------

 Without (false):
 (//. | //@* |//namespace::*)[not(self::comment())]

 With (true):
 (//. | //@* | //namespace::*)

 The expressions in this table generate a node-set containing every
 node of the XML document (except the comments if the comment
 parameter value is false).

 If the input is an XPath node-set, then the node-set must explicitly
 contain every node to be rendered to the canonical form. For example,
 the result of the XPath expression id("E") is a node-set containing
 only the node corresponding to the element with an ID attribute value
 of "E". Since none of its descendant nodes, attribute nodes and
 namespace nodes are in the set, the canonical form would consist
 solely of the element's start and end tags, less the attribute and
 namespace declarations, with no internal content. Section 3.7
 exemplifies how to serialize an identified element along with its
 internal content, attributes and namespace declarations.

J. Boyer [Page 10]

INTERNET-DRAFT Canonical XML November 2000

2.2 Document Order

 Although an XPath node-set is defined to be unordered, the XPath 1.0
 Recommendation [XPath] defines the term document order to be the
 order in which the first character of the XML representation of each
 node occurs in the XML representation of the document after expansion
 of general entities, except for namespace and attribute nodes whose
 document order is application-dependent.

 The XML canonicalization method processes a node-set by imposing the
 following additional document order rules on the namespace and
 attribute nodes of each element:

 * An element's namespace and attribute nodes have a document order
 position greater than the element but less than any child node
 of the element.
 * Namespace nodes have a lesser document order position than
 attribute nodes.
 * An element's namespace nodes are sorted lexicographically by
 local name (the default namespace node, if one exists, has no
 local name and is therefore lexicographically least).
 * An element's attribute nodes are sorted lexicographically with
 namespace URI as the primary key and local name as the secondary
 key (an empty namespace URI is lexicographically least).

 Lexicographic comparison, which orders strings from least to greatest
 alphabetically, is based on the UCS codepoint values, which is
 equivalent to lexicographic ordering based on UTF-8.

2.3 Processing Model

 The XPath node-set is converted into an octet stream, the canonical
 form, by generating the representative UCS characters for each node
 in the node-set in ascending document order, then encoding the result
 in UTF-8 (without a leading byte order mark). No node is processed
 more than once. Note that processing an element node E includes the
 processing of all members of the node-set for which E is an ancestor.
 Therefore, directly after the representative text for E is generated,
 E and all nodes for which E is an ancestor are removed from the
 node-set (or some logically equivalent operation occurs such that the
 node-set's next node in document order has not been processed). Note,
 however, that an element node is not removed from the node-set until
 after its children are processed.

 The result of processing a node depends on its type and on whether or
 not it is in the node-set. If a node is not in the node-set, then no
 text is generated for the node except for the result of processing

 its namespace and attribute axes (elements only) and its children

J. Boyer [Page 11]

INTERNET-DRAFT Canonical XML November 2000

 (elements and the root node). If the node is in the node-set, then
 text is generated to represent the node in the canonical form in
 addition to the text generated by processing the node's namespace and
 attribute axes and child nodes.

 Note: The node-set is treated as a set of nodes, not a list of
 subtrees. To canonicalize an element including its namespaces,
 attributes, and content, the node-set must actually contain all
 of the nodes corresponding to these parts of the document, not
 just the element node.

 The text generated for a node is dependent on the node type and given
 in the following list:

 * Root Node- The root node is the parent of the top-level document
 element. The result of processing each of its child nodes that
 is in the node-set in document order. The root node does not
 generate a byte order mark, XML declaration, nor anything from
 within the document type declaration.

 * Element Nodes- If the element is not in the node-set, then the
 result is obtained by processing the namespace axis, then the
 attribute axis, then processing the child nodes of the element
 that are in the node-set (in document order). If the element is
 in the node-set, then the result is an open angle bracket (<),
 the element QName, the result of processing the namespace axis,
 the result of processing the attribute axis, a close angle
 bracket (>), the result of processing the child nodes of the
 element that are in the node-set (in document order), an open
 angle bracket, a forward slash (/), the element QName, and a
 close angle bracket.

 *
 o Namespace Axis- Consider a list L containing only namespace
 nodes in the axis and in the node-set in lexicographic order
 (ascending). To begin processing L, if the first node is not
 the default namespace node (a node with no namespace URI and
 no local name), then generate a space followed by xmlns=3D""
 if and only if the following conditions are met:

 + the element E that owns the axis is in the node-set
 + The nearest ancestor element of E in the node-set has a
 default namespace node in the node-set (default namespace
 nodes always have non-empty values in XPath)

 The latter condition eliminates unnecessary occurrences of
 xmlns="" in the canonical form since an element only receives
 an xmlns="" if its default namespace is empty and if it has

 an immediate parent in the canonical form that has a non-
 empty default namespace. To finish processing L, simply

J. Boyer [Page 12]

INTERNET-DRAFT Canonical XML November 2000

 process every namespace node in L, except omit namespace node
 with local name xml, which defines the xml prefix, if its
 string value is http://www.w3.org/XML/1998/namespace.

 o Attribute Axis- In lexicographic order (ascending), process
 each node that is in the element's attribute axis and in the
 node-set.

 * Namespace Nodes- A namespace node N is ignored if the nearest
 ancestor element of the node's parent element that is in the
 node-set has a namespace node in the node-set with the same
 local name and value as N. Otherwise, process the namespace node
 N in the same way as an attribute node, except assign the local
 name xmlns to the default namespace node if it exists (in XPath,
 the default namespace node has an empty URI and local name).

 * Attribute Nodes- a space, the node's QName, an equals sign, an
 open double quote, the modified string value, and a close double
 quote. The string value of the node is modified by replacing
 all ampersands (&) with &, all open angle brackets (<) with
 <, all double quote characters with ", and the
 whitespace characters #x9, #xA, and #xD, with character
 references. The character references are written in uppercase
 hexadecimal with no leading zeroes (for example, #xD is
 represented by the character reference ).

 * Text Nodes- the string value, except all ampersands are replaced
 by &, all open angle brackets (<) are replaced by <, all
 closing angle brackets (>) are replaced by >, and all #xD
 characters are replaced by .

 * Processing Instruction (PI) Nodes- The opening PI symbol (<?,
 the PI target name of the node, a leading space and the string
 value if it is not empty, and the closing PI symbol (?>). If the
 string value is empty, then the leading space is not added.
 Also, a trailing #xA is rendered after the closing PI symbol for
 PI children of the root node with a lesser document order than
 the document element, and a leading #xA is rendered before the
 opening PI symbol of PI children of the root node with a greater
 document order than the document element.

 * Comment Nodes- Nothing if generating canonical XML without
 comments. For canonical XML with comments, generate the opening
 comment symbol (<!--), the string value of the node, and the
 closing comment symbol (-->). Also, a trailing #xA is rendered
 after the closing comment symbol for comment children of the
 root node with a lesser document order than the document
 element, and a leading #xA is rendered before the opening

http://www.w3.org/XML/1998/namespace

 comment symbol of comment children of the root node with a
 greater document order than the document element. (Comment

J. Boyer [Page 13]

INTERNET-DRAFT Canonical XML November 2000

 children of the root node represent comments outside of the
 top-level document element and outside of the document type
 declaration).

 The QName of a node is either the local name if the namespace prefix
 string is empty or the namespace prefix, a colon, then the local name
 of the element. The namespace prefix used in the QName MUST be the
 same one which appeared in the input document.

2.4 Document Subsets

 Some applications require the ability to create a physical
 representation for an XML document subset (other than the one
 generated by default, which can be a proper subset of the document if
 the comments are omitted). Implementations of XML canonicalization
 that are based on XPath can provide this functionality with little
 additional overhead by accepting a node-set as input rather than an
 octet stream.

 The processing of an element node E MUST be modified slightly when an
 XPath node-set is given as input and the element's parent is omitted
 from the node-set. The method for processing the attribute axis of an
 element E in the node-set is enhanced. All element nodes along E's
 ancestor axis are examined for nearest occurences of attributes in
 the xml namespace, such as xml:lang and xml:space (whether or not
 they are in the node-set). From this list of attributes, remove any
 that are in E's attribute axis (whether or not they are in the node-
 set). Then, lexicographically merge this attribute list with the
 nodes of E's attribute axis that are in the node-set. The result of
 visiting the attribute axis is computed by processing the attribute
 nodes in this merged attribute list.

 Note: XML entities can derive application-specific meaning from
 anywhere in the XML markup as well as by rules not expressed in
 XML 1.0 and the Namespaces Recommendations. Clearly, these
 rules cannot be specified in this document, so the creator of
 the input node-set must be responsible for preserving the
 information necessary to capture the full semantics of the
 members of the resulting node-set.

 The canonical XML generated for an entire XML document is well-
 formed. The canonical form of an XML document subset may not be
 well-formed XML. However, since the canonical form may be subjected
 to further XML processing, most XPath node-sets provided for
 canonicalization will be designed to produce a canonical form that is
 a well-formed XML document or external general parsed entity. Whether
 from a full document or a document subset, if the canonical form is

 well-formed XML, then subsequent applications of the same XML

J. Boyer [Page 14]

INTERNET-DRAFT Canonical XML November 2000

 canonicalization method to the canonical form make no changes.

3 Examples of XML Canonicalization

 The examples in this section assume a non-validating processor,
 primarily so that a document type declaration can be used to declare
 entities as well as default attributes and attributes of various
 types (such as ID and enumerated) without having to declare all
 attributes for all elements in the document. As well, one example
 contains an element that deliberately violates a validity constraint
 (because it is still well-formed).

3.1 PIs, Comments, and Outside of Document Element

Input Document

<?xml version="1.0"?>

<?xml-stylesheet href="doc.xsl"
 type="text/xsl" ?>

<!DOCTYPE doc SYSTEM "doc.dtd">

<doc>Hello, world!<!-- Comment 1 --></doc>

<?pi-without-data ?>

<!-- Comment 2 -->

<!-- Comment 3 -->

Canonical Form (uncommented)

<?xml-stylesheet href="doc.xsl"
 type="text/xsl" ?>
<doc>Hello, world!</doc>
<?pi-without-data?>

Canonical Form (commented)

<?xml-stylesheet href="doc.xsl"
 type="text/xsl" ?>
<doc>Hello, world!<!-- Comment 1 --></doc>
<?pi-without-data?>
<!-- Comment 2 -->

<!-- Comment 3 -->

J. Boyer [Page 15]

INTERNET-DRAFT Canonical XML November 2000

 Demonstrates:

 * Loss of XML declaration
 * Loss of DTD
 * Normalization of whitespace outside of document element (first
 character of both canonical forms is '<'; single line breaks
 separate PIs and comments outside of document element)
 * Loss of whitespace between PITarget and its data
 * Retention of whitespace inside PI data
 * Comment removal from uncommented canonical form, including
 delimiter for comments outside document element (the last
 character in both canonical forms is '>')

3.2 Whitespace in Document Content

Input Document

<doc>
 <clean> </clean>
 <dirty> A B </dirty>
 <mixed>
 A
 <clean> </clean>
 B
 <dirty> A B </dirty>
 C
 </mixed>
</doc>

Canonical Form

<doc>
 <clean> </clean>
 <dirty> A B </dirty>
 <mixed>
 A
 <clean> </clean>
 B
 <dirty> A B </dirty>
 C
 </mixed>
</doc>

J. Boyer [Page 16]

INTERNET-DRAFT Canonical XML November 2000

 Demonstrates:

 * Retain all whitespace between consecutive start tags, clean or
 dirty
 * Retain all whitespace between consecutive end tags, clean or
 dirty
 * Retain all whitespace between end tag/start tag pair, clean or
 dirty
 * Retain all whitespace in character content, clean or dirty

 Note: In this example, the input document and canonical form are
 identical. Both end with '>' character.

3.3 Start and End Tags

Input Document

<!DOCTYPE doc [<!ATTLIST e9 attr CDATA "default">]>
<doc>
 <e1 />
 <e2 ></e2>
 <e3 name = "elem3" id="elem3" />
 <e4 name="elem4" id="elem4" ></e4>
 <e5 a:attr="out" b:attr="sorted" attr2="all" attr="I'm"
 xmlns:b="http://www.ietf.org"
 xmlns:a="http://www.w3.org"
 xmlns="http://www.uvic.ca"/>
 <e6 xmlns="" xmlns:a="http://www.w3.org">
 <e7 xmlns="http://www.ietf.org">
 <e8 xmlns="" xmlns:a="http://www.w3.org">
 <e9 xmlns="" xmlns:a="http://www.ietf.org"/>
 </e8>
 </e7>
 </e6>
</doc>

J. Boyer [Page 17]

INTERNET-DRAFT Canonical XML November 2000

Canonical Form

<doc>
 <e1></e1>
 <e2></e2>
 <e3 id="elem3" name="elem3"></e3>
 <e4 id="elem4" name="elem4"></e4>
 <e5 xmlns="http://www.uvic.ca" xmlns:a="http://www.w3.org"
xmlns:b="http://www.ietf.org" attr="I'm" attr2="all" b:attr="sorted"
a:attr="out"></e5>
 <e6 xmlns:a="http://www.w3.org">
 <e7 xmlns="http://www.ietf.org">
 <e8 xmlns="">
 <e9 xmlns:a="http://www.ietf.org" attr="default"></e9>
 </e8>
 </e7>
 </e6>
</doc>

 Demonstrates:

 * Empty element conversion to start-end tag pair
 * Normalization of whitespace in start and end tags
 * Relative order of namespace and attribute axes
 * Lexicographic ordering of namespace and attribute axes
 * Retention of namespace prefixes from original document
 * Elimination of superfluous namespace declarations
 * Addition of default attribute

 Note: Some start tags in the canonical form are very long, but each
 start tag in this example is entirely on a single line.

 Note: In e5, b:attr precedes a:attr because the primary key is
 namespace URI not namespace prefix, and attr2 precedes b:attr
 because the default namespace is not applied to unqualified
 attributes (so the namespace URI for attr2 is empty).

J. Boyer [Page 18]

INTERNET-DRAFT Canonical XML November 2000

3.4 Character Modifications and Character References

Input Document

<!DOCTYPE doc [
<!ATTLIST normId id ID #IMPLIED>
<!ATTLIST normNames attr NMTOKENS #IMPLIED>
]>
<doc>
 <text>First line
Second line</text>
 <value>2</value>
 <compute><![CDATA[value>"0" && value<"10" ?"valid":"error"]]></compute>
 <compute expr='value>"0" && value<"10"
?"valid":"error"'>valid</compute>
 <norm attr=' ' 
	 ' '/>
 <normNames attr=' A 
	 B '/>
 <normId id=' ' 
	 ' '/>
</doc>

Canonical Form

<doc>
 <text>First line
Second line</text>
 <value>2</value>
 <compute>value>"0" && value<"10" ?"valid":"error"</compute>
 <compute expr="value>"0" && value<"10"
?"
valid":"error"">valid</compute>
 <norm attr=" ' 
	 ' "></norm>
 <normNames attr="A 
	 B"></normNames>
 <normId id="' 
	 '"></normId>
</doc>

 Demonstrates:

 * Character reference replacement
 * Attribute value delimiters set to double quotes
 * Attribute value normalization
 * CDATA section replacement
 * Encoding of special characters as character references in
 attribute values (&, <, ", ,
,)
 * Encoding of special characters as character references in text
 (&, <, >, )

 Note: The last element, normId, is well-formed but violates a
 validity constraint for attributes of type ID. For testing
 canonical XML implementations based on validating processors,
 remove the line containing this element from the input and

 canonical form. In general, XML consumers should be discouraged
 from using this feature of XML.

J. Boyer [Page 19]

INTERNET-DRAFT Canonical XML November 2000

 Note: Whitespace characters references other than are not
 affected by attribute value normalization [XML Errata, E70].

 Note: In the canonical form, the value of the attribute named attr in
 the element norm begins with a space, a single quote, then four
 spaces before the first character reference.

 Note: The expr attribute of the second compute element contains no
 line breaks.

3.5 Entity References

Input Document

<!DOCTYPE doc [
<!ATTLIST doc attrExtEnt ENTITY #IMPLIED>
<!ENTITY ent1 "Hello">
<!ENTITY ent2 SYSTEM "world.txt">
<!ENTITY entExt SYSTEM "earth.gif" NDATA gif>
<!NOTATION gif SYSTEM "viewgif.exe">
]>
<doc attrExtEnt="entExt">
 &ent1;, &ent2;!
</doc>

<!-- Let world.txt contain "world" (excluding the quotes) -->

Canonical Form (uncommented)

<doc attrExtEnt="entExt">
 Hello, world!
</doc>

 Demonstrates:

 * Internal parsed entity reference replacement
 * External parsed entity reference replacement (including
 whitespace outside elements and PIs)
 * External unparsed entity reference

J. Boyer [Page 20]

INTERNET-DRAFT Canonical XML November 2000

3.6 UTF-8 Encoding

Input Document

<?xml version="1.0" encoding="ISO-8859-1"?>
<doc>©</doc>

Canonical Form

<doc>#xC2#xA9</doc>

 Demonstrates:

 * Effect of transcoding from a sample encoding to UTF-8

 Note: The content of the doc element is NOT the string #xC2#xA9 but
 rather the two octets whose hexadecimal values are C2 and A9,
 which is the UTF-8 encoding of the UCS codepoint for the
 copyright symbol (c).

3.7 Document Subsets

Input Document

<!DOCTYPE doc [
<!ATTLIST e2 xml:space (default|preserve) 'preserve'>
<!ATTLIST e3 id ID #IMPLIED>
]>
<doc xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org">
 <e1>
 <e2 xmlns="">
 <e3 id="E3"/>
 </e2>
 </e1>
</doc>

Document Subset Expression

(//. | //@* | //namespace::*)
[

 self::ietf:e1 or (parent::ietf:e1 and not(self::text() or self::e2))
 or
 count(id("E3")|ancestor-or-self::node()) =
count(ancestor-or-self::node())
]

J. Boyer [Page 21]

INTERNET-DRAFT Canonical XML November 2000

Canonical Form

<e1 xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org"><e3
xmlns="" id="E3" xml:space="preserve"></e3></e1>

 Demonstrates:

 * Empty default namespace propagation from omitted parent element
 * Propagation of attributes in xml namespace in document subsets
 * Persistence of omitted namespace declarations in descendants

 Note: In the document subset expression, the subexpression (//. |
 //@* | //namespace::*) selects all nodes in the input document,
 subjecting each to the predicate expression in square brackets.
 The expression is true for e1 and its implicit namespace nodes,
 and it is true if the element identified by E3 is in the
 ancestor-or-self path of the context node (such that ancestor-
 or-self stays the same size under union with the element
 identified by E3).

 Note: The canonical form contains no line delimiters.

4 Resolutions

 This section discusses a number of key decision points as well as a
 rationale for each decision. Although this specification now defines
 XML canonicalization in terms of the XPath data model rather than XML
 InfoSet, the canonical form described in this document is quite
 similar in most respects to the canonical form described in the
 January 2000 Canonical XML draft [C14N-20000119]. However, some
 differences exist, and a number of the subsections discuss the
 changes.

4.1 No XML Declaration

 The XML declaration, including version number and character encoding
 is omitted from the canonical form. The encoding is not needed since
 the canonical form is encoded in UTF-8. The version is not needed
 since the absence of a version number unambiguously indicates XML
 1.0.

 Future versions of XML will be required to include an XML declaration
 to indicate the version number. However, canonicalization method
 described in this specification may not be applicable to future
 versions of XML without some modifications. When canonicalization of

 a new version of XML is required, this specification could be updated

J. Boyer [Page 22]

INTERNET-DRAFT Canonical XML November 2000

 to include the XML declaration as presumably the absence of the XML
 declaration from the XPath data model can be remedied by that time
 (e.g. by reissuing a new XPath based on the InfoSet data model).

4.2 No Character Model Normalization

 The Unicode standard [Unicode] allows multiple different
 representations of certain "precomposed characters" (a simple example
 is +U00E7, "LATIN SMALL LETTER C WITH CEDILLA"). Thus two XML
 documents with content that is equivalent for the purposes of most
 applications may contain differing character sequences. The W3C is
 preparing a normalized representation [CharModel]. The C14N-20000119
 Canonical XML draft used this normalized form. However, many XML 1.0
 processors do not perform this normalization. Furthermore,
 applications that must solve this problem typically enforce character
 model normalization at all times starting when character content is
 created in order to avoid processing failures that could otherwise
 result (e.g. see example from Cowan). Therefore, character model
 normalization has been moved out of scope for XML canonicalization.
 However, the XML processor used to prepare the XPath data model input
 is required (by the Data Model) to use Normalization Form C [NFC]
 when converting an XML document to the UCS character domain from a
 non-Unicode encoding.

4.3 Handling of Whitespace Outside Document Element

 The C14N-20000119 Canonical XML draft placed a #xA after each PI
 outside of the document element as well as a #xA after the end tag of
 the document element. The method in this specification performs the
 same function except for omitting the final #xA after the last PI (or
 comment or end tag of the document element). This technique ensures
 that PI (and comment) children of the root are separated from markup
 by a linefeed even if root node or the document element are omitted
 from the output node-set.

4.4 No Namespace Prefix Rewriting

 The C14N-20000119 Canonical XML draft described a method for
 rewriting namespace prefixes such that two documents having logically
 equivalent namespace declarations would also have identical namespace
 prefixes. The goal was to eliminate dependence on the particular
 namespace prefixes in a document when testing for logical
 equivalence. However, there now exist a number of contexts in which
 namespace prefixes can impart information value in an XML document.

 For example, an XPath expression in an attribute value or element

J. Boyer [Page 23]

INTERNET-DRAFT Canonical XML November 2000

 content can reference a namespace prefix. Thus, rewriting the
 namespace prefixes would damage such a document by changing its
 meaning (and it cannot be logically equivalent if its meaning has
 changed).

 More formally, let D1 be a document containing an XPath in an
 attribute value or element content that refers to namespace prefixes
 used in D1. Further assume that the namespace prefixes in D1 will
 all be rewritten by the canonicalization method. Let D23D D1, then
 modify the namespace prefixes in D2 and modify the XPath expression's
 references to namespace prefixes such that D2 and D1 remain logically
 equivalent. Since namespace rewriting does not include occurences of
 namespace references in attribute values and element content, the
 canonical form of D1 does not equal the canonical form of D2 because
 the XPath will be different. Thus, although namespace rewriting
 normalizes the namespace declarations, the goal eliminating
 dependence on the particular namespace prefixes in the document is
 not achieved.

 Moreover, it is possible to prove that namespace rewriting is
 harmful, rather than simply ineffective. Let D1 be a document
 containing an XPath in an attribute value or element content that
 refers to namespace prefixes used in D1. Further assume that the
 namespace prefixes in D1 will all be rewritten by the
 canonicalization method. Now let D2 be the canonical form of D1.
 Clearly, the canonical forms of D1 and D2 are equivalent (since D2 is
 the canonical form of the canonical form of D1), yet D1 and D2 are
 not logically equivalent because the aforementioned XPath works in D1
 and doesn't work in D2.

 Note that an argument similar to this can be leveled against the XML
 canonicalization method based on any of the cases in the Limitations,
 the problems cannot easily be fixed in those cases, whereas here we
 have an opportunity to avoid purposefully introducing such a
 limitation.

 Applications that must test for logical equivalence must perform more
 sophisticated tests than mere octet stream comparison. However, this
 is quite likely to be necessary in any case in order to test for
 logical equivalencies based on application rules as well as rules
 from other XML-related recommendations, working drafts, and future
 works.

4.5 Order of Namespace Declarations and Attributes

 The C14N-20000119 Canonical XML draft alternated between namespace
 declarations and attribute declarations. This is part of the

 namespace prefix rewriting scheme, which this specification

J. Boyer [Page 24]

INTERNET-DRAFT Canonical XML November 2000

 eliminates. This specification follows the XPath data model of
 putting all namespace nodes before all attribute nodes.

4.6 Superfluous Namespace Declarations

 Unnecessary namespace declarations are not made in the canonical
 form. Whether for an empty default namespace, a non-empty default
 namespace, or a namespace prefix binding, the XML canonicalization
 method omits a declaration if it determines that the immediate parent
 element in the canonical form contains an equivalent declaration. The
 root document element is handled specially since it has no parent
 element. All namespace declarations in it are retained, except the
 declaration of an empty default namespace is automatically omitted.

 Relative to the method of simply rendering the entire namespace
 context of each element, implementations are not hindered by more
 than a constant factor in processing time and memory use. The
 advantages include:

 * Eliminates overrun of xmlns="" from canonical forms of
 applications that may not even use namespaces, or support them
 only minimally.
 * Eliminates namespace declarations from elements where they may
 not belong according to the application's content model, thereby
 simplifying the task of reattaching a document type declaration
 to a canonical form.

 Note that in document subsets, an element with omissions from its
 ancestral element chain will be rendered to the canonical form with
 namespace declarations that may have been made in its omitted
 ancestors, thus preserving the meaning of the element.

4.7 Propagation of Default Namespace Declaration in Document Subsets

 The XPath data model represents an empty default namespace with the
 absence of a node, not with the presence of a default namespace node
 having an empty value. Thus, with respect to the fact that element e3
 in the following examples is not namespace qualified, we cannot tell
 the difference between <e1 xmlns="a:b"><e2 xmlns=""><e3/></e2></e1>
 versus <e1 xmlns="a:b"><e2><e3 xmlns=""/></e2></e1>. All we know is
 that e3 was not namespace qualified on input, so we preserve this
 information on output if e2 is omitted so that e3 does not take on
 the default namespace qualification of e1.

J. Boyer [Page 25]

INTERNET-DRAFT Canonical XML November 2000

4.8 Sorting Attributes by Namespace URI

 Given the requirement to preserve the namespace prefixes declared in
 a document, sorting attributes with the prefix, rather than the
 namespace URI, as the primary key is viable and easier to implement.

 However, the namespace URI was selected as the primary key because
 this is closer to the intent of the XML Names specification, which is
 to identify namespaces by URI and local name, not by a prefix and
 local name. The effect of the sort is to group together all
 attributes that are in the same namespace.

References

 [C14N-20000119] Canonical XML Version 1.0, W3C Working Draft. T.
 Bray, J. Clark, J. Tauber, and J. Cowan. January 19, 2000.

http://www.w3.org/TR/2000/WD-xml-c14n-20000119.html.

 [CharModel] Character Model for the World Wide Web, W3C Working
 Draft. ed. Martin J. Durst, Francois Yergeau.

http://www.w3.org/TR/charmod/.

 [Cowan] Example of Harmful Effect of Character Model Normalization,
 Letter in XML Signature Working Group Mail Archive. John Cowan,
 July 7, 2000 http://lists.w3.org/Archives/Public/w3c-ietf-

xmldsig/2000JulSep/0038.html.

 [InfoSet] XML Information Set, W3C Working Draft. ed. John Cowan.
http://www.w3.org/TR/xml-infoset.

 [ISO-8859-1] ISO-8859-1 Latin 1 Character Set.
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html or
http://www.iso.ch/cate/cat.html.

 [Keywords] Key words for use in RFCs to Indicate Requirement Levels,
 IETF RFC 2119. S. Bradner. March 1997.

http://www.ietf.org/rfc/rfc2119.txt.

 [Namespaces] Namespaces in XML, W3C Recommendation. eds. Tim Bray,
 Dave Hollander, and Andrew Layman. http://www.w3.org/TR/REC-xml-

names/.

 [NFC] TR15, Unicode Normalization Forms. M. Davis, M. Durst. Revision
 18: November 1999.

http://www.unicode.org/unicode/reports/tr15/tr15-18.html.

http://www.w3.org/TR/2000/WD-xml-c14n-20000119.html
http://www.w3.org/TR/charmod/
http://lists.w3.org/Archives/Public/w3c-ietf-xmldsig/2000JulSep/0038.html
http://lists.w3.org/Archives/Public/w3c-ietf-xmldsig/2000JulSep/0038.html
http://www.w3.org/TR/xml-infoset
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html
http://www.iso.ch/cate/cat.html
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.unicode.org/unicode/reports/tr15/tr15-18.html

J. Boyer [Page 26]

INTERNET-DRAFT Canonical XML November 2000

 [Unicode] The Unicode Standard, version 3.0. The Unicode Consortium.
 ISBN 0-201-61633-5.

http://www.unicode.org/unicode/standard/versions/Unicode3.0.html.

 [UTF-16] UTF-16, an encoding of ISO 10646, IETF RFC 2781. P. Hoffman,
 F. Yergeau. February 2000. http://www.ietf.org/rfc/rfc2781.txt.

 [UTF-8] UTF-8, a transformation format of ISO 10646, IETF RFC 2279.
 F. Yergeau. January 1998. http://www.ietf.org/rfc/rfc2279.txt.

 [URI] Uniform Resource Identifiers (URI): Generic Syntax, IETF RFC
2396. T. Berners-Lee, R. Fielding, L. Masinter. August 1998
http://www.ietf.org/rfc/rfc2396.txt.

 [XBase] XML Base ed. Jonathan Marsh. 07 June 2000.
http://www.w3.org/TR/xmlbase/.

 [XML] Extensible Markup Language (XML) 1.0, W3C Recommendation. eds.
 Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. 10 February
 1998. http://www.w3.org/TR/REC-xml.

 [XML DSig] XML-Signature Syntax and Processing, Joint IETF/W3C
 Working Draft. D. Eastlake, J. Reagle, D. Solo, M. Bartel, J.
 Boyer, B. Fox, and E. Simon. July 2000.

http://www.w3.org/TR/xmldsig-core/.

 [XML Errata] Errata in REC-xml-19980210, W3C Document. August 2000.
http://www.w3.org/XML/xml-19980210-errata.

 [XML Plenary Decision] W3C XML Plenary Decision on relative URI
 References In namespace declarations, W3C Document. 11 September
 2000. http://lists.w3.org/Archives/Public/xml-

uri/2000Sep/0083.html.

 [XPath] XML Path Language (XPath) Version 1.0, , W3C Recommendation.
 eds. James Clark and Steven DeRose. 16 November 1999.

http://www.w3.org/TR/1999/REC-xpath-19991116.

http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
https://datatracker.ietf.org/doc/html/rfc2781
http://www.ietf.org/rfc/rfc2781.txt
https://datatracker.ietf.org/doc/html/rfc2279
http://www.ietf.org/rfc/rfc2279.txt
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2396
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/XML/xml-19980210-errata
http://lists.w3.org/Archives/Public/xml-uri/2000Sep/0083.html
http://lists.w3.org/Archives/Public/xml-uri/2000Sep/0083.html
http://www.w3.org/TR/1999/REC-xpath-19991116

J. Boyer [Page 27]

INTERNET-DRAFT Canonical XML November 2000

Author's Address

 John Boyer
 PureEdge Solutions Inc.

 tel: 1-888-517-2675
 email: jboyer@PureEdge.com

Expiration and File Name

 This draft expires May 2001.

 Its file name is draft-ietf-xmldsig-canon-00.txt.

https://datatracker.ietf.org/doc/html/draft-ietf-xmldsig-canon-00.txt

J. Boyer [Page 28]

