
Network Working Group P. Saint-Andre
Internet-Draft J. Miller
Expires: August 4, 2003 Jabber Software Foundation
 February 03, 2003

XMPP Core
draft-ietf-xmpp-core-02

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 4, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes the core features of the eXtensible Messaging
 and Presence Protocol (XMPP), a protocol for streaming XML in near-
 real-time that is used mainly for the purpose of instant messaging
 and presence by the servers, clients, and other applications that
 comprise the Jabber network.

Saint-Andre & Miller Expires August 4, 2003 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft XMPP Core February 2003

Table of Contents

1. Introduction . 4
1.1 Overview . 4
1.2 Terminology . 4
1.3 Discussion Venue . 4
1.4 Intellectual Property Notice 4
2. Generalized Architecture 5
2.1 Overview . 5
2.2 Server . 5
2.3 Client . 6
2.4 Gateway . 6
2.5 Network . 6
3. Addressing Scheme . 7
3.1 Overview . 7
3.2 Domain Identifier . 7
3.3 Node Identifier . 7
3.4 Resource Identifier . 8
4. XML Streams . 9
4.1 Overview . 9
4.2 Restrictions . 10
4.3 Stream Attributes . 10
4.4 Namespace Declarations 11
4.5 Stream Features . 12
4.6 Stream Errors . 12
4.7 Simple Streams Example 13
5. Stream Authentication 15
5.1 SASL Authentication . 15
5.1.1 Overview . 15
5.1.2 Client-Server Example 16
5.2 Dialback Authentication 18
5.2.1 Dialback Protocol . 20
6. Stream Encryption . 23
6.1 Overview . 23
6.2 Client-Server Example 24
6.3 Certificate-Based Authentication 25
7. XML Stanzas . 26
7.1 Overview . 26
7.2 Common Attributes . 26
7.2.1 to . 26
7.2.2 from . 26
7.2.3 id . 26
7.2.4 type . 27
7.2.5 xml:lang . 27
7.3 Message Stanzas . 27
7.3.1 Types of Message . 27
7.3.2 Children . 28
7.4 Presence Stanzas . 29

Saint-Andre & Miller Expires August 4, 2003 [Page 2]

Internet-Draft XMPP Core February 2003

7.4.1 Types of Presence . 29
7.4.2 Children . 30
7.5 IQ Stanzas . 31
7.5.1 Overview . 31
7.5.2 Types of IQ . 32
7.5.3 Children . 33
7.6 Extended Namespaces . 33
8. XML Usage within XMPP 34
8.1 Namespaces . 34
8.2 Validation . 34
8.3 Character Encodings . 34
8.4 Inclusion of Text Declaration 34
9. IANA Considerations . 35
10. Internationalization Considerations 36
11. Security Considerations 37
11.1 Client-to-Server Communications 37
11.2 Server-to-Server Communications 37
11.3 Minimum Security Mechanisms 37
11.4 Firewalls . 38

 References . 39
 Authors' Addresses . 41

A. Standard Error Codes . 42
B. Formal Definitions . 44
B.1 streams namespace . 44
B.1.1 DTD . 44
B.1.2 Schema . 45
B.2 SASL namespace . 45
B.2.1 DTD . 46
B.2.2 Schema . 47
B.3 jabber:client namespace 47
B.3.1 DTD . 47
B.3.2 Schema . 48
B.4 jabber:server namespace 51
B.4.1 DTD . 51
B.4.2 Schema . 52
C. Revision History . 56
C.1 Changes from draft-ietf-xmpp-core-01 56
C.2 Changes from draft-ietf-xmpp-core-00 56
C.3 Changes from draft-miller-xmpp-core-02 56

 Full Copyright Statement 58

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-00
https://datatracker.ietf.org/doc/html/draft-miller-xmpp-core-02

Saint-Andre & Miller Expires August 4, 2003 [Page 3]

Internet-Draft XMPP Core February 2003

1. Introduction

1.1 Overview

 The eXtensible Messaging and Presence Protocol (XMPP) is an open XML
 [1] protocol for near-real-time messaging and presence. The protocol
 was developed originally within the Jabber community starting in
 1998, and since 2001 has continued to evolve under the auspices of
 the Jabber Software Foundation and now the XMPP WG. Currently, there
 exist multiple implementations of the protocol, mostly offered under
 the name of Jabber. In addition, there are countless deployments of
 these implementations, which provide instant messaging (IM) and
 presence services at and among tens of thousands of domains to a user
 base that is estimated at over five million end users. The current
 document defines the core features of XMPP; XMPP IM [2] defines the
 extensions necessary to provide basic instant messaging and presence
 functionality that addresses the requirements defined in RFC 2779
 [3].

1.2 Terminology

 The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [4].

1.3 Discussion Venue

 The authors welcome discussion and comments related to the topics
 presented in this document. The preferred forum is the
 <xmppwg@jabber.org> mailing list, for which archives and subscription
 information are available at <http://www.jabber.org/cgi-bin/mailman/

listinfo/xmppwg/>.

1.4 Intellectual Property Notice

 This document is in full compliance with all provisions of Section 10
 of RFC 2026. Parts of this specification use the term "jabber" for
 identifying namespaces and other protocol syntax. Jabber[tm] is a
 registered trademark of Jabber, Inc. Jabber, Inc. grants permission
 to the IETF for use of the Jabber trademark in association with this
 specification and its successors, if any.

https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/
http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026#section-10

Saint-Andre & Miller Expires August 4, 2003 [Page 4]

Internet-Draft XMPP Core February 2003

2. Generalized Architecture

2.1 Overview

 Although XMPP is not wedded to any specific network architecture, to
 this point it has usually been implemented via a typical client-
 server architecture, wherein a client utilizing XMPP accesses a
 server over a TCP [5] socket.

 The following diagram provides a high-level overview of this
 architecture (where "-" represents communications that use XMPP and
 "=" represents communications that use any other protocol).

 C1 - S1 - S2 - C3
 / \
 C2 - G1 = FN1 = FC1

 The symbols are as follows:

 o C1, C2, C3 -- XMPP clients

 o S1, S2 -- XMPP servers

 o G1 -- A gateway that translates between XMPP and the protocol(s)
 used on a foreign (non-XMPP) messaging network

 o FN1 -- A foreign messaging network

 o FC1 -- A client on a foreign messaging network

2.2 Server

 A server acts as an intelligent abstraction layer for XMPP
 communications. Its primary responsibilities are to manage
 connections from or sessions for other entities (in the form of XML
 streams to and from authorized clients and other servers) and to
 route appropriately-addressed XML data "stanzas" among such entities
 over XML streams. Most XMPP-compliant servers also assume
 responsibility for the storage of data that is used by clients (e.g.,
 the contact list for each IM user); in this case, the XML data is
 processed directly by the server itself on behalf of the client and
 is not routed to another entity. Compliant server implementations
 MUST ensure in-order processing of XML stanzas received from
 connected clients, servers, and services.

Saint-Andre & Miller Expires August 4, 2003 [Page 5]

Internet-Draft XMPP Core February 2003

2.3 Client

 Most clients connect directly to a server over a TCP socket and use
 XMPP to take full advantage of the functionality provided by a server
 and any associated services. (Clients on foreign messaging networks
 may also be part of the architecture, made accessable via a gateway
 to that network.) Multiple resources (e.g., devices or locations) MAY
 connect simultaneously to a server on behalf of each authorized
 client, with each resource connecting over a discrete TCP socket and
 differentiated by the resource identifier of a JID (Section 3) (e.g.,
 user@domain/home vs. user@domain/work). The port assigned by the
 IANA [6] for connections between a Jabber client and a Jabber server
 is 5222. For further details about client-to-server communications
 expressly for the purpose of instant messaging and presence, refer to
 XMPP IM [2].

2.4 Gateway

 A gateway is a special-purpose server-side service whose primary
 function is to translate XMPP into the protocol(s) of another
 messaging system, as well as to translate the return data back into
 XMPP. Examples are gateways to Internet Relay Chat (IRC), Short
 Message Service (SMS), SMTP, and foreign instant messaging networks
 such as Yahoo!, MSN, ICQ, and AIM. Communications between gateways
 and servers, and between gateways and the foreign messaging system,
 are not defined in this document.

2.5 Network

 Because each server is identified by a network address (typically a
 DNS hostname) and because server-to-server communications are a
 straightforward extension of the client-to-server protocol, in
 practice the system consists of a network of servers that inter-
 communicate. Thus user-a@domain1 is able to exchange messages,
 presence, and other information with user-b@domain2. This pattern is
 familiar from messaging protocols (such as SMTP) that make use of
 network addressing standards. The usual method for providing a
 connection between two servers is to open a TCP socket on the IANA-
 assigned port 5269 and to negotiate a connection using the Dialback
 Protocol (Section 5.2) defined in this document.

Saint-Andre & Miller Expires August 4, 2003 [Page 6]

Internet-Draft XMPP Core February 2003

3. Addressing Scheme

3.1 Overview

 Any entity that can be considered a network endpoint (i.e., an ID on
 the network) and that can communicate using XMPP is considered a
 Jabber Entity. All such entities are uniquely addressable in a form
 that is consistent with RFC 2396 [7]. In particular, a valid Jabber
 Identifier (JID) contains a set of ordered elements formed of a
 domain identifier, node identifier, and resource identifier in the
 following format: [node@]domain[/resource].

 All JIDs are based on the foregoing structure. The most common use
 of this structure is to identify an IM user, the server to which the
 user connects, and the user's active session or connection (e.g., a
 specific client) in the form of user@domain/resource. However, node
 types other than clients are possible; for example, a specific chat
 room offered by a multi-user chat service could be addressed as
 room@service (where "room" is the name of the chat room and "service"
 is the hostname of the multi-user chat service) and a specific
 occupant of such a room could be addressed as room@service/nick
 (where "nick" is the occupant's room nickname).

3.2 Domain Identifier

 The domain identifier is the primary identifier and is the only
 REQUIRED element of a JID (a mere domain identifier is a valid JID).
 It usually represents the network gateway or "primary" server to
 which other entities connect for XML routing and data management
 capabilities. However, the entity referenced by a domain identifier
 is not always a server, and may be a service that is addressed as a
 subdomain of a server and that provides functionality above and
 beyond the capabilities of a server (a multi-user chat service, a
 user directory, a gateway to a foreign messaging system, etc.).

 The domain identifier for every server or service that will
 communicate over a network SHOULD resolve to a Fully Qualified Domain
 Name. A domain identifier MUST conform to RFC 952 [8] and RFC 1123
 [9]. A domain identifier MUST be no more than 1023 bytes in length,
 and is subject to comparison in accordance with the rules defined in
 nameprep [10] profile of stringprep [11].

3.3 Node Identifier

 The node identifier is an optional secondary identifier. It usually
 represents the entity requesting and using network access provided by
 the server or gateway (e.g., a client), although it can also
 represent other kinds of entities (e.g., a multi-user chat room

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123

Saint-Andre & Miller Expires August 4, 2003 [Page 7]

Internet-Draft XMPP Core February 2003

 associated with a multi-user chat service). The entity represented
 by a node identifier is addressed within the context of a specific
 domain (e.g., user@domain).

 A node identifier MUST be no more than 1023 bytes in length and MUST
 conform to the nodeprep [12] profile of stringprep [11].

3.4 Resource Identifier

 The resource identifer is an optional third identifier. It
 represents a specific session, connection (e.g., a device or
 location), or object (e.g., a participant in a multi-user chat room)
 belonging to the entity associated with a node identifier. An entity
 may maintain multiple resources simultaneously.

 A resource identifier MUST be no more than 1023 bytes in length and
 MUST conform to the resourceprep [13] profile of stringprep [11].

Saint-Andre & Miller Expires August 4, 2003 [Page 8]

Internet-Draft XMPP Core February 2003

4. XML Streams

4.1 Overview

 Two fundamental concepts make possible the rapid, asynchronous
 exchange of relatively small payloads of structured information
 between presence-aware entities: XML streams and, as a result,
 discrete units of structured information that are referred to as "XML
 stanzas". (Note: in this overview we use the example of
 communications between a client and server; however XML streams are
 more generalized and may be used for communications from server to
 server and from service to server as well.)

 In order to connect to a server, a client must initiate an XML stream
 by sending a <stream> tag to the server, optionally preceded by a
 text declaration specifying the XML version supported and the
 character encoding. A compliant entity SHOULD accept any namespace
 prefix on the <stream/> element; however, for historical reasons some
 entities MAY accept only a 'stream' prefix, resulting in use of a
 <stream:stream/> element. The server SHOULD then reply with a second
 XML stream back to the client, again optionally preceded by a text
 declaration.

 Within the context of an XML stream, a sender is able to send a
 discrete semantic unit of structured information to any recipient.
 This unit of structured information is a well-balanced XML stanza,
 such as a message, presence, or IQ stanza (a stanza of an XML
 document is said to be well-balanced if it matches production [43]
 content of the XML specification [1]). These stanzas exist at the
 direct child level of the root <stream/> element. The start of any
 XML stanza is unambiguously denoted by the element start tag at
 depth=1 (e.g., <presence>), and the end of any XML stanza is
 unambiguously denoted by the corresponding close tag at depth=1
 (e.g., </presence>). Each XML stanza MAY contain child elements or
 CDATA sections as necessary in order to convey the desired
 information from the sender to the recipient. The session is closed
 at the client's request by sending a closing </stream> tag to the
 server (a session may also be closed by the server).

 Thus a client's session with a server can be seen as two open-ended
 XML documents that are built up through the accumulation of the XML
 stanzas that are sent over the course of the session (one from the
 client to the server and one from the server to the client), and the
 root <stream/> element can be considered the document entity for
 those streams. In essence, then, an XML stream acts as an envelope
 for all the XML stanzas sent during a session. We can represent this
 graphically as follows:

Saint-Andre & Miller Expires August 4, 2003 [Page 9]

Internet-Draft XMPP Core February 2003

 |-------------------|
<stream>
<message to=''>
<body/>
</message>

<presence to=''>
<show/>
</presence>

<iq to=''>
<query/>
</iq>

...

</stream>

4.2 Restrictions

 XML streams are used to transport a subset of XML. Specifically, XML
 streams SHOULD NOT contain processing instructions, predefined
 entities (as defined in Section 4.6 of the XML specification [1]),
 comments, or DTDs. Any such XML data SHOULD be ignored by a
 compliant implementation.

4.3 Stream Attributes

 The attributes of the stream element are as follows (we now
 generalize the endpoints by using the terms "initiating entity" and
 "receiving entity"):

 o to -- The 'to' attribute SHOULD be used only in the XML stream
 from the initiating entity to the receiving entity, and MUST be
 set to the JID of the receiving entity. There SHOULD be no 'to'
 attribute set in the XML stream by which the receiving entity
 replies to the initiating entity; however, if a 'to' attribute is
 included, it SHOULD be ignored by the initiating entity.

 o from -- The 'from' attribute SHOULD be used only in the XML stream
 from the receiving entity to the initiating entity, and MUST be
 set to the JID of the receiving entity granting access to the
 initiating entity. There SHOULD be no 'from' attribute on the XML
 stream sent from the initiating entity to the receiving entity;
 however, if a 'from' attribute is included, it SHOULD be ignored

Saint-Andre & Miller Expires August 4, 2003 [Page 10]

Internet-Draft XMPP Core February 2003

 by the receiving entity.

 o id -- The 'id' attribute SHOULD be used only in the XML stream
 from the receiving entity to the initiating entity. This
 attribute is a unique identifier created by the receiving entity
 to function as a session key for the initiating entity's session
 with the receiving entity. There SHOULD be no 'id' attribute on
 the XML stream sent from the initiating entity to the receiving
 entity; however, if an 'id' attribute is included, it SHOULD be
 ignored by the receiving entity.

 o version -- The 'version' attribute MAY be used in the XML stream
 from the initiating entity to the receiving entity in order signal
 compliance with the protocol defined herein; this is done by
 setting the value of the attribute to "1.0". If the initiating
 entity includes the version attribute, the receiving entity MUST
 reciprocate by including the attribute in its response (if the
 receiving entity supports XMPP 1.0).

 We can summarize these values as follows:

 | initiating to receiving | receiving to initiating
 --
 to | JID of receiver | ignored
 from | ignored | JID of receiver
 id | ignored | session key
 version | signals XMPP 1.0 support | signals XMPP 1.0 support

4.4 Namespace Declarations

 The stream element MAY also contain namespace declarations as defined
 in the XML namespaces specification [14].

 A default namespace declaration ('xmlns') is REQUIRED and is used in
 both XML streams in order to scope the allowable first-level children
 of the root stream element for both streams. This namespace
 declaration MUST be the same for the initiating stream and the
 responding stream so that both streams are scoped consistently. The
 default namespace declaration applies to the stream and all stanzas
 sent within a stream.

 A stream namespace declaration (e.g., 'xmlns:stream') is REQUIRED in
 both XML streams. A compliant entity SHOULD accept any namespace
 prefix on the <stream/> element; however, for historical reasons some
 entities MAY accept only a 'stream' prefix, resulting in use of a
 <stream:stream/> element as the stream root. The value of the stream
 namespace MUST be "http://etherx.jabber.org/streams".

Saint-Andre & Miller Expires August 4, 2003 [Page 11]

Internet-Draft XMPP Core February 2003

 XML streams function as containers for any XML stanzas sent
 asynchronously between network endpoints. It should be possible to
 scope an XML stream with any default namespace declaration, i.e., it
 should be possible to send any properly-namespaced XML stanza over an
 XML stream. A compliant implementation MUST support the following
 two namespaces (for historical reasons, existing implementations MAY
 support only these two default namespaces):

 o jabber:client -- this default namespace is declared when the
 stream is used for communications between a client and a server

 o jabber:server -- this default namespace is declared when the
 stream is used for communications between two servers

 The jabber:client and jabber:server namespaces are nearly identical
 but are used in different contexts (client-to-server communications
 for jabber:client and server-to-server communications for
 jabber:server). The only difference between the two is that the 'to'
 and 'from' attributes are OPTIONAL on stanzas sent within
 jabber:client, whereas they are REQUIRED on stanzas sent within
 jabber:server. If a compliant implementation accepts a stream that
 is scoped by the 'jabber:client' or 'jabber:server' namespace, it
 MUST support all three core stanza types (message, presence, and IQ)
 as described herein and defined in the DTD and schema.

4.5 Stream Features

 The root stream element MAY contain a features child element (e.g.,
 <stream:features/> if the stream namespace prefix is 'stream'). This
 is used to communicate generic stream-level capabilities including
 stream-level features that can be negotiated as the streams are set
 up. If the initiating entity sends a "version='1.0'" attribute in
 its initiating stream element, the receiving entity MUST send a
 features child element to the initiating entity if there are any
 capabilities that need to be advertised or features that can be
 negotiated for the stream. Currently this is used for SASL and TLS
 negotiation only, but it could be used for other negotiable features
 in the future (examples are shown under Stream Authentication
 (Section 5) below). If an entity does not understand or support some
 features, it SHOULD ignore them.

4.6 Stream Errors

 The root stream element MAY contain an error child element (e.g.,
 <stream:error/> if the stream namespace prefix is 'stream'). The
 error child SHOULD be sent by a Jabber entity (usually a server
 rather than a client) if it perceives that a stream-level error has
 occurred. Examples include the sending of invalid XML, the shutdown

Saint-Andre & Miller Expires August 4, 2003 [Page 12]

Internet-Draft XMPP Core February 2003

 of a server, an internal server error such as the shutdown of a
 session manager, and an attempt by a client to authenticate as the
 same resource that is currently connected. If an error occurs at the
 level of the stream, the entity (initiating entity or receiving
 entity) that detects the error SHOULD send a stream error to the
 other entity specifying why the streams are being closed and then
 send a closing </stream> tag. XML of the following form is sent
 within the context of an existing stream:

 <stream:stream ...>
 ...
 <stream:error>
 Error message (e.g., "Invalid XML")
 </stream:error>
 </stream:stream>

4.7 Simple Streams Example

 The following is a stream-based session of a client on a server
 (where the "C" lines are sent from the client to the server, and the
 "S" lines are sent from the server to the client):

 A basic session:

 C: <?xml version='1.0'?>
 <stream:stream
 to='server'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 S: <?xml version='1.0'?>
 <stream:stream
 from='server'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 ... authentication ...
 C: <message from='alex@graham-bell' to='watson@graham-bell'>
 C: <body>Watson come here, I want you!</body>
 C: </message>
 S: <message from='watson@graham-bell' to='alex@graham-bell'>
 S: <body>I'm on my way!</body>
 S: </message>
 C: </stream:stream>
 S: </stream:stream>

Saint-Andre & Miller Expires August 4, 2003 [Page 13]

Internet-Draft XMPP Core February 2003

 These are in actuality a sending stream and a receiving stream, which
 can be viewed a-chronologically as two XML documents:

 C: <?xml version='1.0'?>
 <stream:stream
 to='server'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 C: <message from='alex@graham-bell' to='watson@graham-bell'>
 C: <body>Watson come here, I want you!</body>
 C: </message>
 C: </stream:stream>

 S: <?xml version='1.0'?>
 <stream:stream
 from='server'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 S: <message from='watson@graham-bell' to='alex@graham-bell'>
 S: <body>I'm on my way!</body>
 S: </message>
 S: </stream:stream>

 A session gone bad:

 C: <?xml version='1.0'?>
 <stream:stream
 to='server'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 S: <?xml version='1.0'?>
 <stream:stream
 from='server'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 C: <message><body>Bad XML, no closing body tag!</message>
 S: <stream:error>Invalid XML</stream:error>
 S: </stream:stream>

Saint-Andre & Miller Expires August 4, 2003 [Page 14]

Internet-Draft XMPP Core February 2003

5. Stream Authentication

 XMPP includes two methods for enforcing authentication at the level
 of XML streams. When one entity is already known to another (i.e.,
 there is an existing trust relationship between the entities such as
 that established when a user registers with a server or an
 administrator configures a server to trust another server), the
 preferred method for authenticating streams between the two entities
 uses an XMPP adaptation of the Simple Authentication and Security
 Layer (SASL) [15]. When there is no existing trust relationship
 between the two entities, such trust MAY be established based on
 existing trust in DNS; the authentication method used when two such
 entities are servers is the server dialback protocol that is native
 to XMPP (no such ad-hoc method is defined between a client and a
 server). Both of these methods are described in this section.

5.1 SASL Authentication

5.1.1 Overview

 The Simple Authentication and Security Layer (SASL) provides a
 generalized method for adding authentication support to connection-
 based protocols. XMPP uses a generic XML namespace profile for SASL
 that conforms to section 4 ("Profiling Requirements") of RFC 2222
 [15] (the namespace identifier for this protocol is 'http://
 www.iana.org/assignments/sasl-mechanisms'). If an entity (client or
 server) is capable of authenticating by means of SASL, it MUST
 include a 'version' attribute (set to a value of "1.0") within the
 opening <stream/> tag.

 The following example shows the use of SASL in client authentication
 with a server, for which the steps involved are as follows:

 1. The client requests SASL authentication by including a 'version'
 attribute in the opening XML stream header sent to the server,
 with the value set to "1.0".

 2. After sending an XML stream header in response, the server sends
 a list of available SASL authentication mechanisms, each of which
 is a <mechanism/> element included as a child within a
 <mechanisms/> container element that is sent as a first-level
 child of the root <stream/> element.

 3. The client selects a mechanism by sending an <auth/> element to
 the server; this element MAY optionally contain character data if
 the mechanism supports or requires it.

 4. If necessary, the server challenges the client by sending a

https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires August 4, 2003 [Page 15]

Internet-Draft XMPP Core February 2003

 <challenge/> element to the client; this element MAY optionally
 contain character data.

 5. The client responds to the challenge by sending a <response/>
 element to the server; this element MAY optionally contain
 character data.

 6. If necessary, the server sends more challenges and the client
 sends more responses.

 This series of challenge/response pairs continues until one of three
 things happens:

 o The client aborts the handshake by sending an <abort/> element to
 the server.

 o The server reports failure by sending a <failure/> element to the
 client.

 o The server reports success by sending a <success/> element to the
 client; this element MAY optionally contain character data.

 Any character data contained within these elements MUST be encoded
 using base64.

5.1.2 Client-Server Example

 The following example shows the data flow for a client authenticating
 with a server using SASL.

 Step 1: Client initiates stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='capulet.com'
 version='1.0'>

 Step 2: Server responds with a stream tag sent to the client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='12345678'
 version='1.0'>

Saint-Andre & Miller Expires August 4, 2003 [Page 16]

Internet-Draft XMPP Core February 2003

 Step 3: Server informs client of available authentication mechanisms:

 <stream:features>
 <mechanisms xmlns='http://www.iana.org/assignments/sasl-mechanisms'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Client selects an authentication mechanism:

 <auth
 xmlns='http://www.iana.org/assignments/sasl-mechanisms'
 mechanism='DIGEST-MD5'/>

 Step 5: Server sends a base64-encoded challenge to the client:

 <challenge xmlns='http://www.iana.org/assignments/sasl-mechanisms'>
 cmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIi
 xxb3A9ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNz
 </challenge>

 The decoded challenge is:

 realm="cataclysm.cx",nonce="OA6MG9tEQGm2hh",\ qop="auth",charset=utf-
 8,algorithm=md5-sess

 Step 6: Client responds to the challenge:

 <response xmlns='http://www.iana.org/assignments/sasl-mechanisms'>
 dXNlcm5hbWU9InJvYiIscmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik
 9BNk1HOXRFUUdtMmhoIixjbm9uY2U9Ik9BNk1IWGg2VnFUclJrIixuYz0w
 MDAwMDAwMSxxb3A9YXV0aCxkaWdlc3QtdXJpPSJqYWJiZXIvY2F0YWNseX
 NtLmN4IixyZXNwb25zZT1kMzg4ZGFkOTBkNGJiZDc2MGExNTIzMjFmMjE0
 M2FmNyxjaGFyc2V0PXV0Zi04
 </response>

 The decoded response is:

 username="rob",realm="cataclysm.cx",nonce="OA6MG9tEQGm2hh",\
 cnonce="OA6MHXh6VqTrRk",nc=00000001,qop=auth,\ digest-uri="jabber/
 cataclysm.cx",\
 response=d388dad90d4bbd760a152321f2143af7,charset=utf-8

Saint-Andre & Miller Expires August 4, 2003 [Page 17]

Internet-Draft XMPP Core February 2003

 Step 7: Server sends another challenge to the client:

 <challenge xmlns='http://www.iana.org/assignments/sasl-mechanisms'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZA==
 </challenge>

 The decoded challenge is:

 rspauth=ea40f60335c427b5527b84dbabcdfffd

 Step 8: Client responds to the challenge:

 <response xmlns='http://www.iana.org/assignments/sasl-mechanisms'/>

 Step 9: Server informs client of successful authentication:

 <success xmlns='http://www.iana.org/assignments/sasl-mechanisms'/>

 Step 9 (alt): Server informs client of failed authentication:

 <failure xmlns='http://www.iana.org/assignments/sasl-mechanisms'/>

5.2 Dialback Authentication

 XMPP includes a protocol-level method for verifying that a connection
 between two servers can be trusted (at least as much as the DNS can
 be trusted). The method is called dialback and is used only within
 XML streams that are declared under the "jabber:server" namespace.

 The purpose of the dialback protocol is to make server spoofing more
 difficult, and thus to make it more difficult to forge XML stanzas.
 Dialback is not intended as a mechanism for securing or encrypting
 the streams between servers, only for helping to prevent the spoofing
 of a server and the sending of false data from it. Dialback is made
 possible by the existence of DNS, since one server can verify that
 another server which is connecting to it is authorized to represent a
 given server on the Jabber network. All DNS hostname resolutions
 MUST first resolve the hostname using an SRV [22] record of
 _jabber._tcp.server. If the SRV lookup fails, the fallback is a
 normal A lookup to determine the IP address, using the jabber-server
 port of 5269 assigned by the Internet Assigned Numbers Authority [6].

 Note that the method used to generate and verify the keys used in the
 dialback protocol MUST take into account the hostnames being used,
 along with a secret known only by the receiving server and the random
 ID generated for the stream. Generating unique but verifiable keys
 is important to prevent common man-in-the-middle attacks and server

Saint-Andre & Miller Expires August 4, 2003 [Page 18]

Internet-Draft XMPP Core February 2003

 spoofing.

 In the description that follows we use the following terminology:

 o Originating Server -- the server that is attempting to establish a
 connection between the two servers

 o Receiving Server -- the server that is trying to authenticate that
 Originating Server represents the Jabber server which it claims to
 be

 o Authoritative Server -- the server that is given when a DNS lookup
 is performed on the name that Originating Server initially gave;
 for basic environments this will be Originating Server, but it
 could be a separate machine in Originating Server's network

 The following is a brief summary of the order of events in dialback:

 1. Originating Server establishes a connection to Receiving Server.

 2. Originating Server sends a 'key' value over the connection to
 Receiving Server.

 3. Receiving Server establishes a connection to Authoritative
 Server.

 4. Receiving Server sends the same 'key' value to Authoritative
 Server.

 5. Authoritative Server replies that key is valid or invalid.

 6. Receiving Server tells Originating Server whether it is
 authenticated or not.

 We can represent this flow of events graphically as follows:

 Originating Receiving
 Server Server
 ----------- ---------
 | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | establish connection |
 | <---------------------- |

Saint-Andre & Miller Expires August 4, 2003 [Page 19]

Internet-Draft XMPP Core February 2003

 | |
 | send stream header |
 | <---------------------- |
 | | Authoritative
 | send dialback key | Server
 | ----------------------> | -------------
 | | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | establish connection |
 | <---------------------- |
 | |
 | send stream header |
 | <---------------------- |
 | |
 | send dialback key |
 | ----------------------> |
 | |
 | validate dialback key |
 | <---------------------- |
 |
 | report dialback result |
 | <---------------------- |
 | |

5.2.1 Dialback Protocol

 The traffic sent between the servers is as follows:

 1. Originating Server establishes TCP connection to Receiving
 Server

 2. Originating Server sends a stream header to Receiving Server
 (the 'to' and 'from' attributes are NOT REQUIRED on the root
 stream element):

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 Note: the value of the xmlns:db namespace declaration indicates
 to Receiving Server that Originating Server supports dialback.

Saint-Andre & Miller Expires August 4, 2003 [Page 20]

Internet-Draft XMPP Core February 2003

 3. Receiving Server sends a stream header back to Originating
 Server (the 'to' and 'from' attributes are NOT REQUIRED on the
 root stream element):

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='457F9224A0...'>

 4. Originating Server sends a dialback key to Receiving Server:

 <db:result
 to='Receiving Server'
 from='Originating Server'>
 98AF014EDC0...
 </db:result>

 Note: this key is not examined by Receiving Server, since
 Receiving Server does not keep information about Originating
 Server between sessions.

 5. Receiving Server now establishes a connection back to
 Originating Server, getting Authoritative Server.

 6. Receiving Server sends Authoritative Server a stream header (the
 'to' and 'from' attributes are NOT REQUIRED on the root stream
 element):

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 7. Authoritative Server sends Receiving Server a stream header:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='1251A342B...'>

 8. Receiving Server sends Authoritative Server a stanza indicating
 it wants Authoritative Server to verify a key:

Saint-Andre & Miller Expires August 4, 2003 [Page 21]

Internet-Draft XMPP Core February 2003

 <db:verify
 from='Receiving Server'
 to='Originating Server'
 id='457F9224A0...'>
 98AF014EDC0...
 </db:verify>

 Note: passed here are the hostnames, the original identifier
 from Receiving Server's stream header to Originating Server in
 step 2, and the key Originating Server gave Receiving Server in
 step 3. Based on this information and shared secret information
 within the 'Originating Server' network, the key is verified.
 Any verifiable method can be used to generate the key.

 9. Authoritative Server sends a stanza back to Receiving Server
 verifying whether the key was valid or invalid:

 <db:verify
 from='Originating Server'
 to='Receiving Server'
 type='valid'
 id='457F9224A0...'/>

 or

 <db:verify
 from='Originating Server'
 to='Receiving Server'
 type='invalid'
 id='457F9224A0...'/>

 10. Receiving Server informs Originating Server of the result:

 <db:result
 from='Receiving Server'
 to='Originating Server'
 type='valid'/>

 Note: At this point the connection has either been validated via
 a type='valid', or reported as invalid. Once the connection is
 validated, data can be sent by Originating Server and read by
 Receiving Server; before that, all data stanzas sent to
 Receiving Server SHOULD be dropped. As a final guard against
 domain spoofing, Receiving Server MUST verify that all XML
 stanzas received from Originating Server include a 'from'
 attribute and that the value of that attribute includes the
 validated domain. In addition, all XML stanzas MUST include a
 'to' attribute.

Saint-Andre & Miller Expires August 4, 2003 [Page 22]

Internet-Draft XMPP Core February 2003

6. Stream Encryption

6.1 Overview

 XMPP includes a method for securing the stream from tampering and
 eavesdropping. This channel encryption method makes use of the
 Transport Layer Security (TLS) [16] protocol, along with a "STARTTLS"
 extension that is modelled on similar extensions for the IMAP [17],
 POP3 [18], and ACAP [19] protocols as described in RFC 2595 [20].

 The namespace identifier for the STARTTLS extension is 'http://
 www.ietf.org/rfc/rfc2595.txt'. If an entity (client or server) is
 capable of using this extension, it MUST include the <starttls/>
 element in this namespace with the list of features that it sends in
 response to the opening stream tag that was used to initiate
 communications.

 The following example shows the use of STARTTLS by a client to secure
 a session with a server, for which the steps involved are as follows:

 1. The client opens a TCP connection and initiates the stream by
 sending the opening XML stream header to the server.

 2. The server responds by opening a TCP connection and sending an
 XML stream header to the client.

 3. The server offers the STARTTLS extension to the client by
 including it in the list of supported stream features.

 4. The client issues the STARTTLS command to instruct the server
 that it wishes to begin a TLS negotiation to secure the stream.

 5. The server closes the XML stream, but keeps the underlying TCP
 connection open. If the server is unable to prepare for the TLS
 negotiation for some reason, it returns an error.

 6. The client begins a TLS negotiation according to RFC 2246 [16].
 Upon completion of the negotiation, the client initiates a new
 stream by sending a new opening XML stream header to the server.

 7. The server responds by sending an XML stream header to the
 client.

 Once the stream is secured, the server MUST NOT offer the STARTTLS
 extension to the client.

https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc2246

Saint-Andre & Miller Expires August 4, 2003 [Page 23]

Internet-Draft XMPP Core February 2003

6.2 Client-Server Example

 The following example shows the data flow for a client securing a
 stream using STARTTLS.

 Step 1: Client initiates stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='capulet.com'
 version='1.0'>

 Step 2: Server responds by sending a stream tag to the client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='12345678'
 version='1.0'>

 Step 3: Server sends STARTTLS extensions to the client along with
 authentication mechanisms and any other stream features:

 <stream:features>
 <starttls xmlns='http://www.ietf.org/rfc/rfc2595.txt'/>
 <mechanisms xmlns='http://www.iana.org/assignments/sasl-mechanisms'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Client sends the STARTTLS command to the server:

 <starttls xmlns='http://www.ietf.org/rfc/rfc2595.txt'/>

 Step 5: Server closes the stream:

 </stream:stream>

 Step 5 (alt): Server fails to prepare for the TLS negotiation:

 <error xmlns='http://www.ietf.org/rfc/rfc2595.txt'/>

Saint-Andre & Miller Expires August 4, 2003 [Page 24]

Internet-Draft XMPP Core February 2003

 Step 6: Client begins TLS negotiation. When it has finished, it
 initiates a new stream to the server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='capulet.com'
 version='1.0'>

 Step 7: Server responds by sending a stream tag to the client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='12345678'
 version='1.0'>
 <stream:features>
 <mechanisms xmlns='http://www.iana.org/assignments/sasl-mechanisms'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <mechanism>EXTERNAL</mechanism>
 </mechanisms>
 </stream:features>

6.3 Certificate-Based Authentication

 If the client presents a valid client certificate during the TLS
 negotiation, the server MAY offer the SASL EXTERNAL mechanism to the
 client (see RFC 2222 [15]). If the client selects this mechanism for
 authentication, the authentication credentials shall be taken from
 the presented certificate.

https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires August 4, 2003 [Page 25]

Internet-Draft XMPP Core February 2003

7. XML Stanzas

7.1 Overview

 Once the XML streams in each direction have been authenticated and
 (if desired) encrypted, XML stanzas can be sent over the streams.
 XML stanzas are the three core data elements for XMPP communications:
 <message/>, <presence/>, and <iq/>. These elements are sent as
 direct (depth=1) children of the root <stream/> element and are
 scoped by one of the default namespaces identified in Section 4.4.

7.2 Common Attributes

 Five attributes are common to message, presence, and IQ stanzas.
 These are defined below.

7.2.1 to

 The 'to' attribute specifies the JID of the intended recipient for
 the stanza. In the 'jabber:client' namespace, a stanza SHOULD
 possess a 'to' attribute, although a stanza sent from a client to a
 server for handling by that server (e.g., presence sent to the server
 for broadcasting to other entities) MAY legitimately lack a 'to'
 attribute. In the 'jabber:server' namespace, a stanza MUST possess a
 'to' attribute.

7.2.2 from

 The 'from' attribute specifies the JID of the sender.

 In the 'jabber:client' namespace, a client MUST NOT include a 'from'
 attribute on the stanzas it sends to a server; if a server receives a
 stanza from a client and the stanza possesses a 'from' attribute, it
 MUST ignore the value of the 'from' attribute. In addition, a server
 MUST stamp stanzas received from a client with the user@domain/
 resource (full JID) of the connected resource that generated the
 stanza.

 In the 'jabber:server' namespace, a stanza MUST possess a 'from'
 attribute. In particular, a server MUST include a 'from' attribute
 on stanzas it routes to other servers. The domain identifier of the
 JID contained in the 'from' attribute MUST match the hostname of the
 server as communicated in the dialback negotiation (or a subdomain
 thereof).

7.2.3 id

 The optional 'id' attribute MAY be used to track stanzas sent and

Saint-Andre & Miller Expires August 4, 2003 [Page 26]

Internet-Draft XMPP Core February 2003

 received. The 'id' attribute is generated by the sender. An 'id'
 attribute included in an IQ request of type "get" or "set" SHOULD be
 returned to the sender in any IQ response of type "result" or "error"
 generated by the recipient of the request. A recipient of a message
 or presence stanza MAY return that 'id' in any replies, but is NOT
 REQUIRED to do so.

 The value of the 'id' attribute is not intended to be unique --
 globally, within a domain, or within a stream. It is generated by a
 sender only for internal tracking of information within the sending
 application.

7.2.4 type

 The 'type' attribute specifies detailed information about the purpose
 or context of the message, presence, or IQ stanza. The particular
 allowable values for the 'type' attribute vary depending on whether
 the stanza is a message, presence, or IQ, and thus are specified in
 the following sections.

7.2.5 xml:lang

 Any message or presence stanza MAY possess an 'xml:lang' attribute
 specifying the default language of any CDATA sections of the stanza
 or its child elements. An IQ stanza SHOULD NOT possess an 'xml:lang'
 attribute, since it is merely a vessel for data in other namespaces
 and does not itself contain children that have CDATA. The value of
 the 'xml:lang' attribute MUST be an NMTOKEN and MUST conform to the
 format defined in RFC 3066 [21].

7.3 Message Stanzas

 Message stanzas in the 'jabber:client' or 'jabber:server' namespace
 are used to "push" information to another entity. Common uses in the
 context of instant messaging include single messages, messages sent
 in the context of a chat conversation, messages sent in the context
 of a multi-user chat room, headlines, and errors. These messages
 types are identified more fully below.

7.3.1 Types of Message

 The 'type' attribute of a message stanza is optional and specifies
 the conversational context of the message. The sending of a message
 stanza without a 'type' attribute signals that the message stanza is
 a single message. However, the 'type' attribute MAY also have one of
 the following values:

 o chat -- The message is sent in the context of a one-to-one chat

https://datatracker.ietf.org/doc/html/rfc3066

Saint-Andre & Miller Expires August 4, 2003 [Page 27]

Internet-Draft XMPP Core February 2003

 conversation.

 o groupchat -- The message is sent in the context of a multi-user
 chat environment.

 o headline -- The message is generated by an automated service that
 delivers content (news, sports, market information, etc.).

 o error - A message returned to a sender specifying an error
 associated with a previous message sent by the sender (for a full
 list of error messages, see error codes (Appendix A))

 For detailed information about the meaning of these message types,
 refer to XMPP IM [2].

7.3.2 Children

 If a message stanza in the 'jabber:client' or 'jabber:server'
 namespace has no 'type' attribute or has a 'type' attribute with a
 value of "chat", "groupchat", or "headline", it MAY contain any of
 the following child elements (which MUST NOT contain mixed content):

 o body -- The textual contents of the message; normally included but
 NOT REQUIRED. The <body/> element MUST NOT possess any
 attributes, with the exception of the 'xml:lang' attribute.
 Multiple instances of the <body/> element MAY be included but only
 if each instance possesses an 'xml:lang' attribute with a distinct
 language value.

 o subject -- The subject of the message. The <subject/> element
 MUST NOT possess any attributes, with the exception of the
 'xml:lang' attribute. Multiple instances of the <subject/>
 element MAY be included for the purpose of providing alternate
 versions of the same subject, but only if each instance possesses
 an 'xml:lang' attribute with a distinct language value.

 o thread -- A random string that is generated by the sender and that
 MAY be copied back in replies; it is used for tracking a
 conversation thread (sometimes referred to as an "IM session")
 between two entities. If used, it MUST be unique to that
 conversation thread within the stream and MUST be consistent
 throughout that conversation. The use of the <thread/> element is
 optional and is not used to identify individual messages, only
 conversations. The method for generating thread IDs SHOULD be as
 follows: (1) concatenate the sender's full JID (user@host/
 resource) with the recipient's full JID; (2) concatenate these JID
 strings with a full ISO-8601 timestamp including year, month, day,
 hours, minutes, seconds, and UTC offset if appropriate in the

Saint-Andre & Miller Expires August 4, 2003 [Page 28]

Internet-Draft XMPP Core February 2003

 following format: yyyy-mm-dd-Thh:mm:ss-hh:mm; (3) hash the
 resulting string according to the SHA1 algorithm; (4) convert the
 hexidecimal SHA1 output to all lowercase. Only one <thread/>
 element MAY be included in a message stanza, and it MUST NOT
 possess any attributes. The <thread/> element MUST be treated as
 an opaque string by entities; no semantic meaning may be derived
 from it, and only exact, case-insensitve comparisons can be made
 against it.

 If the message stanza is of type "error", it MUST include an <error/>
 child, which in turn MUST possess a 'code' attribute corresponding to
 one of the standard error codes (Appendix A), MAY possess an
 'xml:lang' attribute, and MAY also contain PCDATA corresponding to a
 natural-language description of the error. An <error/> child MUST
 NOT be included if the stanza type is anything other than "error".
 An entity that receives a message stanza of type 'error' MUST NOT
 respond to the stanza by sending a further message stanza of type
 'error'; this helps to prevent looping.

 As described under extended namespaces (Section 7.6), a message
 stanza MAY also contain any properly-namespaced child element (other
 than the core data elements, stream elements, or defined children
 thereof).

7.4 Presence Stanzas

 Presence stanzas are used in the 'jabber:client' or 'jabber:server'
 namespace to express an entity's current availability status (offline
 or online, along with various sub-states of the latter and optional
 user-defined descriptive tex and optional user-defined descriptive
 textt) and to communicate that status to other entities. They are
 also used to negotiate and manage subscriptions to the presence of
 other entities.

7.4.1 Types of Presence

 The 'type' attribute of a presence stanza is optional. A presence
 stanza that does not have a 'type' attribute is used to signal to the
 server that the sender is online and available for communication. If
 included, the 'type' attribute specifies the availability state of
 the sender, a request to manage a subscription to another entity's
 presence, a request for another entity's current presence, or an
 error related to a previously-sent presence stanza. The 'type'
 attribute MAY have one of the following values:

 o unavailable -- Signals that the entity is no longer available for
 communication.

Saint-Andre & Miller Expires August 4, 2003 [Page 29]

Internet-Draft XMPP Core February 2003

 o subscribe -- The sender wishes to subscribe to the recipient's
 presence.

 o subscribed -- The sender has allowed the recipient to receive
 their presence.

 o unsubscribe -- A notification that an entity is unsubscribing from
 another entity's presence.

 o unsubscribed -- The subscription request has been denied or a
 previously-granted subscription has been cancelled.

 o probe -- A request for an entity's current presence. In general
 SHOULD NOT be sent by a client.

 o error -- An error has occurred regarding processing or delivery of
 a previously-sent presence stanza.

 Information about the subscription model used within XMPP can be
 found in XMPP IM [2].

7.4.2 Children

 If a presence stanza possesses no 'type' attribute, it MAY contain
 any of the following child elements (note that the <status/> child
 MAY be sent in a presence stanza of type "unavailable" or, for
 historical reasons, "subscribe"):

 o show -- Describes the availability status of an entity or specific
 resource. Only one <show/> element MAY be included in a presence
 stanza, and it MUST NOT possess any attributes. The value SHOULD
 be one of the following (values other than these four MAY be
 ignored; additional availability types could be defined through a
 properly-namespaced child element of the presence stanza):

 * away -- The entity or resource is temporarily away.

 * chat -- The entity or resource is actively interested in
 chatting.

 * xa -- The entity or resource is away for an extended period (xa
 = "eXtended Away").

 * dnd -- The entity or resource is busy (dnd = "Do Not Disturb").

 o status -- An optional natural-language description of availability
 status. Normally used in conjunction with the show element to
 provide a detailed description of an availability state (e.g., "In

Saint-Andre & Miller Expires August 4, 2003 [Page 30]

Internet-Draft XMPP Core February 2003

 a meeting"). The <status/> element MUST NOT possess any
 attributes, with the exception of the 'xml:lang' attribute.
 Multiple instances of the <status/> element MAY be included but
 only if each instance possesses an 'xml:lang' attribute with a
 distinct language value.

 o priority -- An optional element specifying the priority level of
 the connected resource. The value may be any integer between -128
 to 127. Only one <priority/> element MAY be included in a
 presence stanza, and it MUST NOT possess any attributes.

 If the presence stanza is of type "error", it MUST include an <error/
 > child, which in turn MUST possess a 'code' attribute corresponding
 to one of the standard error codes (Appendix A) and MAY contain
 PCDATA corresponding to a natural-language description of the error.
 An <error/> child MUST NOT be included if the stanza type is anything
 other than "error". An entity that receives a presence stanza of
 type 'error' MUST NOT respond to the stanza by sending a further
 presence stanza of type 'error'; this helps to prevent looping.

 As described under extended namespaces (Section 7.6), a presence
 stanza MAY also contain any properly-namespaced child element (other
 than the core data elements, stream elements, or defined children
 thereof).

7.5 IQ Stanzas

7.5.1 Overview

 Info/Query, or IQ, is a request-response mechanism. Just as HTTP is
 a request-response medium, so IQ stanzas in the 'jabber:client' or
 'jabber:server' namespace enable an entity to make a request of, and
 receive a response from, another entity. The data content of the
 request and response is defined by the namespace declaration of a
 direct child element of the IQ element, and the interaction is
 tracked by the requesting entity through use of the 'id' attribute,
 which responding entities SHOULD return in any response.

 Most IQ interactions follow a common pattern of structured data
 exchange such as get/result or set/result (although an error may be
 returned in response to a request if appropriate):

Saint-Andre & Miller Expires August 4, 2003 [Page 31]

Internet-Draft XMPP Core February 2003

 Requesting Responding
 Entity Entity
 ---------- ----------
 | |
 | <iq type='get' id='1'> |
 | ------------------------> |
 | |
 | <iq type='result' id='1'> |
 | <------------------------ |
 | |
 | <iq type='set' id='2'> |
 | ------------------------> |
 | |
 | <iq type='result' id='2'> |
 | <------------------------ |
 | |

 An entity that receives an IQ request of type 'get' or 'set' MUST
 reply with an IQ response of type 'result' or 'error' (which response
 SHOULD preserve the 'id' attribute of the request). An entity that
 receives a stanza of type 'result' or 'error' MUST NOT respond to the
 stanza by sending a further IQ response of type 'result' or 'error';
 however, as shown above, the requesting entity MAY send another
 request (e.g., an IQ of type 'set' in order to provide required
 information discovered through a get/result pair).

7.5.2 Types of IQ

 The 'type' attribute of an IQ stanza is REQUIRED. The 'type'
 attribute specifies a distinct step within a request-response
 interaction. The value SHOULD be one of the following (all other
 values MAY be ignored):

 o get -- The stanza is a request for information.

 o set -- The stanza provides required data, sets new values, or
 replaces existing values.

 o result -- The stanza is a response to a successful get or set
 request.

 o error -- An error has occurred regarding processing or delivery of
 a previously-sent get or set.

Saint-Andre & Miller Expires August 4, 2003 [Page 32]

Internet-Draft XMPP Core February 2003

7.5.3 Children

 An IQ stanza contains no children in the 'jabber:client' or
 'jabber:server' namespace since it is a vessel for XML in another
 namespace. As described under extended namespaces (Section 7.6), an
 IQ stanza MAY contain any properly-namespaced child element (other
 than the core data elements, stream elements, or defined children
 thereof).

 If the IQ stanza is of type "error", it MUST include an <error/>
 child, which in turn MUST possess a 'code' attribute corresponding to
 one of the standard error codes (Appendix A) and MAY contain PCDATA
 corresponding to a natural-language description of the error. An
 <error/> child MUST NOT be included if the stanza type is anything
 other than "error". An entity that receives an IQ stanza of type
 'error' MUST NOT respond to the stanza by sending a further IQ stanza
 of type 'error'; this helps to prevent looping.

7.6 Extended Namespaces

 While the core data elements defined in this document provide a basic
 level of functionality for messaging and presence, XMPP uses XML
 namespaces to extend the core data elements for the purpose of
 providing additional functionality. Thus a message, presence, or IQ
 stanza MAY house one or more optional child elements containing
 content that extends the meaning of the message (e.g., an encrypted
 form of the message body). This child element MAY be any element
 (other than the core data elements, stream elements, or defined
 children thereof). The child element MUST possess an 'xmlns'
 namespace declaration (other than the stream namespace and the
 default namespace) that defines all data contained within the child
 element.

 Support for any given extended namespace is OPTIONAL on the part of
 any implementation. If an entity does not understand such a
 namespace, it MUST ignore the associated XML data (if the stanza is
 being routed on to another entity, ignore means "pass it on
 untouched"). If an entity receives an IQ stanza in a namespace it
 does not understand, the entity SHOULD return an IQ stanza of type
 "error" with an error element of code 400 (bad request). If an
 entity receives a message or presence stanza that contains XML data
 in an extended namespace it does not understand, the portion of the
 stanza that is in the unknown namespace SHOULD be ignored. If an
 entity receives a message stanza without a <body/> element but
 containing only a child element bound by a namespace it does not
 understand, it MUST ignore the entire stanza.

Saint-Andre & Miller Expires August 4, 2003 [Page 33]

Internet-Draft XMPP Core February 2003

8. XML Usage within XMPP

8.1 Namespaces

 XML Namespaces [14] are used within all XMPP-compliant XML to create
 strict boundaries of data ownership. The basic function of
 namespaces is to separate different vocabularies of XML elements that
 are structurally mixed together. Ensuring that XMPP-compliant XML is
 namespace-aware enables any XML to be structurally mixed with any
 data element within XMPP. Mainly for historical reasons, the default
 namespace for XMPP data stanzas MUST be one of the namespaces
 identified in Section 4.4.

 Additionally, XMPP is more strict about namespace prefixes than the
 XML namespace specification requires.

8.2 Validation

 A server is not responsible for validating the XML elements forwarded
 to a client; an implementation MAY choose to provide only validated
 data elements but is NOT REQUIRED to do so. Clients SHOULD NOT rely
 on the ability to send data which does not conform to the schemas,
 and SHOULD ignore any non-conformant elements or attributes on the
 incoming XML stream. Validation of XML streams and stanzas is NOT
 REQUIRED or recommended, and DTDs and schemas are included herein for
 descriptive purposes only.

8.3 Character Encodings

 Software implementing XML streams MUST support the UTF-8 (RFC 2279
 [24]) and UTF-16 (RFC 2781 [25]) transformations of Universal
 Character Set (ISO/IEC 10646-1 [26]) characters. Software MUST NOT
 attempt to use any other encoding for transmitted data. The
 encodings of the transmitted and received streams are independent.
 Software MAY select either UTF-8 or UTF-16 for the transmitted
 stream, and SHOULD deduce the encoding of the received stream as
 described in the XML specification [1]. For historical reasons,
 existing implementations MAY support UTF-8 only.

8.4 Inclusion of Text Declaration

 An application MAY send a text declaration. Applications MUST follow
 the rules in the XML specification [1] regarding the circumstances in
 which a text declaration is included.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2781

Saint-Andre & Miller Expires August 4, 2003 [Page 34]

Internet-Draft XMPP Core February 2003

9. IANA Considerations

 The IANA registers "jabber-client" and "jabber-server" as service
 names associated with TCP ports 5222 and 5269 respectively.

Saint-Andre & Miller Expires August 4, 2003 [Page 35]

Internet-Draft XMPP Core February 2003

10. Internationalization Considerations

 Usage of the 'xml:lang' attribute is described above. If a client
 includes an 'xml:lang' attribute in a stanza, the server MUST NOT
 modify or delete it.

Saint-Andre & Miller Expires August 4, 2003 [Page 36]

Internet-Draft XMPP Core February 2003

11. Security Considerations

11.1 Client-to-Server Communications

 The SASL protocol for authenticating XML streams negotiated between a
 client and a server (defined under Section 5.1 above) provides a
 reliable mechanism for validating that a client connecting to a
 server is who it claims to be.

 The IP address and method of access of clients MUST NOT be made
 available by a server, nor are any connections other than the
 original server connection required. This helps protect the client's
 server from direct attack or identification by third parties.

 End-to-end encryption of message bodies and presence status
 information MAY be effected through use of the methods defined in
 End-to-End Object Encryption in XMPP [27].

11.2 Server-to-Server Communications

 It is OPTIONAL for any given server to communicate with other
 servers, and server-to-server communications MAY be disabled by the
 administrator of any given deployment.

 If two servers would like to enable communications between
 themselves, they MUST form a relationship of trust at some level,
 either based on trust in DNS or based on a pre-existing trust
 relationship (e.g., through exchange of certificates). If two
 servers have a pre-existing trust relationship, they MAY use SASL
 Authentication (Section 5.1) for the purpose of authenticating each
 other. If they do not have a pre-existing relationship, they MUST
 use the Dialback Protocol (Section 5.2), which provides a reliable
 mechanism for preventing the spoofing of servers.

11.3 Minimum Security Mechanisms

 Although service provisioning is a policy matter, at a minimum, all
 implementations MUST support the following mechanisms:

 for authentication: the SASL DIGEST-MD5 mechanism

 for confidentiality: TLS (using the TLS_RSA_WITH_3DES_EDE_CBC_SHA
 cipher)

 for both: TLS (using the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher
 supporting client-side certificates)

Saint-Andre & Miller Expires August 4, 2003 [Page 37]

Internet-Draft XMPP Core February 2003

11.4 Firewalls

 Communications using XMPP occur over TCP sockets on port 5222
 (client-to-server) or port 5269 (server-to-server), as registered
 with the IANA [6]. Use of these well-known ports allows
 administrators to easily enable or disable XMPP activity through
 existing and commonly-deployed firewalls.

Saint-Andre & Miller Expires August 4, 2003 [Page 38]

Internet-Draft XMPP Core February 2003

References

 [1] World Wide Web Consortium, "Extensible Markup Language (XML)
 1.0 (Second Edition)", W3C xml, October 2000, <http://

www.w3.org/TR/2000/REC-xml-20001006>.

 [2] Saint-Andre, P. and J. Miller, "XMPP Instant Messaging (draft-
ietf-xmpp-im-02, work in progress)", February 2003.

 [3] Day, M., Aggarwal, S., Mohr, G. and J. Vincent, "A Model for
 Presence and Instant Messaging", RFC 2779, February 2000,
 <http://www.ietf.org/rfc/rfc2779.txt>.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] University of Southern California, "Transmission Control
 Protocol", RFC 793, September 1981, <http://www.ietf.org/rfc/

rfc0793.txt>.

 [6] Internet Assigned Numbers Authority, "Internet Assigned Numbers
 Authority", January 1998, <http://www.iana.org/>.

 [7] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998, <http://www.ietf.org/rfc/rfc2396.txt>.

 [8] Harrenstien, K., Stahl, M. and E. Feinler, "DoD Internet host
 table specification", RFC 952, October 1985.

 [9] Braden, R., "Requirements for Internet Hosts - Application and
 Support", STD 3, RFC 1123, October 1989.

 [10] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile
 for Internationalized Domain Names (draft-ietf-idn-nameprep-11,
 work in progress)", June 2002.

 [11] Hoffman, P. and M. Blanchet, "Preparation of Internationalized
 Strings ("stringprep")", RFC 3454, December 2002.

 [12] Saint-Andre, P. and J. Hildebrand, "Nodeprep: A Stringprep
 Profile for Node Identifiers in XMPP (draft-ietf-xmpp-nodeprep-

00, work in progress)", February 2003.

 [13] Saint-Andre, P. and J. Hildebrand, "Resourceprep: A Stringprep
 Profile for Resource Identifiers in XMPP (draft-ietf-xmpp-

resourceprep-00, work in progress)", February 2003.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-im-02
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-im-02
https://datatracker.ietf.org/doc/html/rfc2779
http://www.ietf.org/rfc/rfc2779.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
http://www.ietf.org/rfc/rfc0793.txt
http://www.ietf.org/rfc/rfc0793.txt
http://www.iana.org/
https://datatracker.ietf.org/doc/html/rfc2396
http://www.ietf.org/rfc/rfc2396.txt
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/draft-ietf-idn-nameprep-11
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-nodeprep-00
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-nodeprep-00
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-resourceprep-00
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-resourceprep-00

Saint-Andre & Miller Expires August 4, 2003 [Page 39]

Internet-Draft XMPP Core February 2003

 [14] World Wide Web Consortium, "Namespaces in XML", W3C xml-names,
 January 1999, <http://www.w3.org/TR/1999/REC-xml-names-

19990114/>.

 [15] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 [16] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A. and
 P. Kocher, "The TLS Protocol Version 1.0", RFC 2246, January
 1999.

 [17] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, December 1996.

 [18] Myers, J. and M. Rose, "Post Office Protocol - Version 3", STD
 53, RFC 1939, May 1996.

 [19] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [20] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
 June 1999.

 [21] Alvestrand, H., "Tags for the Identification of Languages", BCP
47, RFC 3066, January 2001.

 [22] Gulbrandsen, A. and P. Vixie, "A DNS RR for specifying the
 location of services (DNS SRV)", RFC 2052, October 1996.

 [23] Elkins, M., Del Torto, D., Levien, R. and T. Roessler, "MIME
 Security with OpenPGP", RFC 3156, August 2001.

 [24] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
2279, January 1998.

 [25] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO 10646",
RFC 2781, February 2000.

 [26] International Organization for Standardization, "Information
 Technology - Universal Multiple-octet coded Character Set (UCS)
 - Amendment 2: UCS Transformation Format 8 (UTF-8)", ISO
 Standard 10646-1 Addendum 2, October 1996.

 [27] Saint-Andre, P. and J. Hildebrand, "End-to-End Object
 Encryption in XMPP (draft-ietf-xmpp-e2e-00, work in progress)",
 February 2003.

http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2060
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc3066
https://datatracker.ietf.org/doc/html/rfc2052
https://datatracker.ietf.org/doc/html/rfc3156
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2781
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-e2e-00

Saint-Andre & Miller Expires August 4, 2003 [Page 40]

Internet-Draft XMPP Core February 2003

Authors' Addresses

 Peter Saint-Andre
 Jabber Software Foundation

 EMail: stpeter@jabber.org
 URI: http://www.jabber.org/people/stpeter.php

 Jeremie Miller
 Jabber Software Foundation

 EMail: jeremie@jabber.org
 URI: http://www.jabber.org/people/jer.php

Saint-Andre & Miller Expires August 4, 2003 [Page 41]

http://www.jabber.org/people/stpeter.php
http://www.jabber.org/people/jer.php

Internet-Draft XMPP Core February 2003

Appendix A. Standard Error Codes

 A standard error element is used for failed processing of XML
 stanzas. This element is a child of the failed stanza and MUST
 include a 'code' attribute corresponding to one of the following
 error codes.

 o 302 (Redirect) - Whereas HTTP contains eight different codes for
 redirection, XMPP contains only one (which is intended to stand
 for any redirection error). However, code 302 is being reserved
 for future functionality and is not implemented at this time.

 o 400 (Bad Request) - Code 400 is used to inform a sender that a
 request could not be understood by the recipient. This might be
 generated when, for example, an entity sends a message that does
 not have a 'to' attribute.

 o 401 (Unauthorized) - Code 401 is used to inform clients that they
 have provided incorrect authorization information, e.g., an
 incorrect password or unknown username when attempting to
 authenticate with a service.

 o 402 (Payment Required) - Code 402 is being reserved for future
 use.

 o 403 (Forbidden) - Code 403 is used to inform an entity that its
 request was understood but that the recipient is refusing to
 fulfill it, e.g., if a user attempts to set information associated
 with another user.

 o 404 (Not Found) - Code 404 is used to inform a sender that no
 recipient was found matching the JID to which an XML stanza was
 sent, e.g., if a sender has attempted to send a message to a JID
 that does not exist. (Note: if the server of the intended
 recipient cannot be reached, an error code from the 500 series
 must be sent.)

 o 405 (Not Allowed) - Code 405 is used when the action requested is
 not allowed for the JID identified by the 'from' address, e.g., if
 a client attempts to set the time or version of a server.

 o 406 (Not Acceptable) - Code 406 is used when an XML stanza is for
 some reason not acceptable to a server or other entity. This
 might be generated when, for example, a user attempts to register
 with a service using an empty password.

 o 407 (Registration Required) - Code 407 is used when a message or
 request is sent to a service that requires prior registration,

Saint-Andre & Miller Expires August 4, 2003 [Page 42]

Internet-Draft XMPP Core February 2003

 e.g., if a user attempts to send a message through a gateway to a
 foreign messaging system without having first registered with that
 gateway.

 o 408 (Request Timeout) - Code 408 is returned when a recipient does
 not produce a response within the time that the sender was
 prepared to wait.

 o 500 (Internal Server Error) - Code 500 is used when a server or
 service encounters an unexpected condition which prevents it from
 handling an XML stanza from a sender, e.g., if an authentication
 request is not handled by a server because the password could not
 be retrieved.

 o 501 (Not Implemented) - Code 501 is used when the recipient does
 not support the functionality being requested by a sender, e.g.,
 if a user attempts to register with a server that does not allow
 registration.

 o 502 (Remote Server Error) - Code 502 is used when delivery of an
 XML stanza fails because of an inability to reach the intended
 remote server or service, e.g., because a remote server's hostname
 could not be resolved.

 o 503 (Service Unavailable) - Code 503 is used when a sender
 requests a service that a recipient is temporarily unable to
 offer.

 o 504 (Remote Server Timeout) - Code 504 is used when attempts to
 contact a remote server timeout, e.g., if an incorrect hostname is
 specified.

Saint-Andre & Miller Expires August 4, 2003 [Page 43]

Internet-Draft XMPP Core February 2003

Appendix B. Formal Definitions

B.1 streams namespace

 The namespace declaration for the root stream element is 'http://
 etherx.jabber.org/streams'.

B.1.1 DTD

 <?xml version='1.0' encoding='UTF-8'?>
 <!ELEMENT stream (#PCDATA | error?)*>
 <!ATTLIST stream
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id ID #IMPLIED
 version CDATA #IMPLIED
 >
 <!ELEMENT error (#PCDATA)>
 <!ELEMENT features (#PCDATA)>

Saint-Andre & Miller Expires August 4, 2003 [Page 44]

Internet-Draft XMPP Core February 2003

B.1.2 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://etherx.jabber.org/streams'
 xmlns='http://etherx.jabber.org/streams'
 elementFormDefault='qualified'>

 <xsd:element name='stream'>
 <xsd:complexType mixed='true'>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:choice>
 <xsd:any
 namespace='jabber:client'
 maxOccurs='1'/>
 <xsd:any
 namespace='jabber:server'
 maxOccurs='1'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:ID' use='optional'/>
 <xsd:attribute name='version' type='xsd:decimal' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='error' type='xsd:string'/>

 </xsd:schema>

B.2 SASL namespace

 The namespace declaration for SASL-related elements is 'http://
 www.iana.org/assignments/sasl-mechanisms'.

Saint-Andre & Miller Expires August 4, 2003 [Page 45]

Internet-Draft XMPP Core February 2003

B.2.1 DTD

 <?xml version='1.0' encoding='UTF-8'?>
 <!ELEMENT mechanisms (mechanism)*>
 <!ELEMENT mechanism (#PCDATA)>
 <!ELEMENT auth (#PCDATA)>
 <!ATTLIST auth mechanism CDATA #REQUIRED>
 <!ELEMENT challenge (#PCDATA)>
 <!ELEMENT response (#PCDATA)>
 <!ELEMENT abort (#PCDATA)>
 <!ELEMENT success (#PCDATA)>
 <!ELEMENT failure (#PCDATA)>

Saint-Andre & Miller Expires August 4, 2003 [Page 46]

Internet-Draft XMPP Core February 2003

B.2.2 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.iana.org/assignments/sasl-mechanisms'
 xmlns='http://www.iana.org/assignments/sasl-mechanisms'
 elementFormDefault='qualified'>

 <xsd:element name='mechanisms'>
 <xsd:complexType>
 <xsd:sequence minOccurs='0' maxOccurs='unbounded'>
 <xsd:element ref='mechanism'/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='mechanism'/>

 <xsd:element name='auth'>
 <xsd:complexType mixed='true'>
 <xsd:attribute name='mechanism' type='xsd:string' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='challenge' type='xsd:string'/>
 <xsd:element name='response' type='xsd:string'/>
 <xsd:element name='abort' type='xsd:string'/>
 <xsd:element name='success' type='xsd:string'/>
 <xsd:element name='failure' type='xsd:string'/>

 </xsd:schema>

B.3 jabber:client namespace

B.3.1 DTD

 <?xml version='1.0' encoding='UTF-8'?>
 <!ELEMENT message ((body* | subject* | thread? |
 error? | (#PCDATA))*)>

 <!ATTLIST message
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id ID #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 type (chat | groupchat | headline | error) #IMPLIED

Saint-Andre & Miller Expires August 4, 2003 [Page 47]

Internet-Draft XMPP Core February 2003

 >

 <!ELEMENT body (#PCDATA)>
 <!ATTLIST body xml:lang NMTOKEN #IMPLIED>
 <!ELEMENT subject (#PCDATA)>
 <!ATTLIST subject xml:lang NMTOKEN #IMPLIED>
 <!ELEMENT thread (#PCDATA)>

 <!ELEMENT presence ((show? | status* | priority? | error?)*)>

 <!ATTLIST presence
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id ID #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 type (subscribe | subscribed | unsubscribe |
 unsubscribed | unavailable | error) #IMPLIED
 >

 <!ELEMENT show (#PCDATA)>
 <!ELEMENT status (#PCDATA)>
 <!ATTLIST status xml:lang NMTOKEN #IMPLIED>
 <!ELEMENT priority (#PCDATA)>

 <!ELEMENT iq (error | (#PCDATA))*>

 <!ATTLIST iq
 to CDATA #IMPLIED
 from CDATA #IMPLIED
 id ID #IMPLIED
 type (get | set | result | error) #REQUIRED
 >

 <!ELEMENT error (#PCDATA)>
 <!ATTLIST error
 code CDATA #REQUIRED
 xml:lang NMTOKEN #IMPLIED
 >

B.3.2 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'
 elementFormDefault='qualified'>

Saint-Andre & Miller Expires August 4, 2003 [Page 48]

Internet-Draft XMPP Core February 2003

 <xsd:element name='message'>
 <xsd:complexType mixed='true'>
 <xsd:choice maxOccurs='unbounded'>
 <xsd:element ref='body' minOccurs='0' maxOccurs='unbounded'/>
 <xsd:element ref='subject' minOccurs='0' maxOccurs='unbounded'/>
 <xsd:element ref='thread' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:ID' use='optional'/>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 <xsd:attribute name='type' use='optional'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='chat'/>
 <xsd:enumeration value='groupchat'/>
 <xsd:enumeration value='headline'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='body' type='xsd:string'>
 <xsd:complexType>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='subject' type='xsd:string'>
 <xsd:complexType>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='thread' type='xsd:string'/>

 <xsd:element name='presence'>
 <xsd:complexType>
 <xsd:choice maxOccurs='unbounded'>
 <xsd:element ref='show' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='status' minOccurs='0' maxOccurs='unbounded'/>

Saint-Andre & Miller Expires August 4, 2003 [Page 49]

Internet-Draft XMPP Core February 2003

 <xsd:element ref='priority' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:ID' use='optional'/>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 <xsd:attribute name='type' use='optional'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='subscribe'/>
 <xsd:enumeration value='subscribed'/>
 <xsd:enumeration value='unsubscribe'/>
 <xsd:enumeration value='unsubscribed'/>
 <xsd:enumeration value='unavailable'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='show'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='away'/>
 <xsd:enumeration value='chat'/>
 <xsd:enumeration value='xa'/>
 <xsd:enumeration value='dnd'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name='status' type='xsd:string'>
 <xsd:complexType>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='priority' type='xsd:byte'/>

 <xsd:element name='iq'>
 <xsd:complexType mixed='true'>
 <xsd:choice maxOccurs='unbounded'>

Saint-Andre & Miller Expires August 4, 2003 [Page 50]

Internet-Draft XMPP Core February 2003

 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='optional'/>
 <xsd:attribute name='from' type='xsd:string' use='optional'/>
 <xsd:attribute name='id' type='xsd:ID' use='optional'/>
 <xsd:attribute name='type' use='required'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='get'/>
 <xsd:enumeration value='set'/>
 <xsd:enumeration value='result'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='error'>
 <xsd:complexType>
 <xsd:attribute
 name='code'
 type='xsd:nonNegativeInteger'
 use='required'/>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>

B.4 jabber:server namespace

B.4.1 DTD

 <?xml version='1.0' encoding='UTF-8'?>
 <!ELEMENT message ((body* | subject* | thread? |
 error? | (#PCDATA))*)>

 <!ATTLIST message
 to CDATA #REQUIRED
 from CDATA #REQUIRED
 id ID #IMPLIED
 xml:lang NMTOKEN #IMPLIED

Saint-Andre & Miller Expires August 4, 2003 [Page 51]

Internet-Draft XMPP Core February 2003

 type (chat | groupchat | headline | error) #IMPLIED
 >

 <!ELEMENT body (#PCDATA)>
 <!ATTLIST body xml:lang NMTOKEN #IMPLIED>
 <!ELEMENT subject (#PCDATA)>
 <!ATTLIST subject xml:lang NMTOKEN #IMPLIED>
 <!ELEMENT thread (#PCDATA)>

 <!ELEMENT presence ((show? | status* | priority? | error?)*)>

 <!ATTLIST presence
 to CDATA #REQUIRED
 from CDATA #REQUIRED
 id ID #IMPLIED
 xml:lang NMTOKEN #IMPLIED
 type (subscribe | subscribed | unsubscribe |
 unsubscribed | unavailable | error) #IMPLIED
 >

 <!ELEMENT show (#PCDATA)>
 <!ELEMENT status (#PCDATA)>
 <!ATTLIST status xml:lang NMTOKEN #IMPLIED>
 <!ELEMENT priority (#PCDATA)>

 <!ELEMENT iq (error | (#PCDATA))*>

 <!ATTLIST iq
 to CDATA #REQUIRED
 from CDATA #REQUIRED
 id ID #IMPLIED
 type (get | set | result | error) #REQUIRED
 >

 <!ELEMENT error (#PCDATA)>
 <!ATTLIST error
 code CDATA #REQUIRED
 xml:lang NMTOKEN #IMPLIED
 >

B.4.2 Schema

 <?xml version='1.0' encoding='UTF-8'?>
 <xsd:schema
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://www.jabber.org/protocol'
 xmlns='http://www.jabber.org/protocol'

Saint-Andre & Miller Expires August 4, 2003 [Page 52]

Internet-Draft XMPP Core February 2003

 elementFormDefault='qualified'>

 <xsd:element name='message'>
 <xsd:complexType mixed='true'>
 <xsd:choice maxOccurs='unbounded'>
 <xsd:element ref='body' minOccurs='0' maxOccurs='unbounded'/>
 <xsd:element ref='subject' minOccurs='0' maxOccurs='unbounded'/>
 <xsd:element ref='thread' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='required'/>
 <xsd:attribute name='from' type='xsd:string' use='required'/>
 <xsd:attribute name='id' type='xsd:ID' use='optional'/>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 <xsd:attribute name='type' use='optional'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='chat'/>
 <xsd:enumeration value='groupchat'/>
 <xsd:enumeration value='headline'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='body' type='xsd:string'>
 <xsd:complexType>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='subject' type='xsd:string'>
 <xsd:complexType>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='thread' type='xsd:string'/>

 <xsd:element name='presence'>
 <xsd:complexType>
 <xsd:choice maxOccurs='unbounded'>

Saint-Andre & Miller Expires August 4, 2003 [Page 53]

Internet-Draft XMPP Core February 2003

 <xsd:element ref='show' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='status' minOccurs='0' maxOccurs='unbounded'/>
 <xsd:element ref='priority' minOccurs='0' maxOccurs='1'/>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='required'/>
 <xsd:attribute name='from' type='xsd:string' use='required'/>
 <xsd:attribute name='id' type='xsd:ID' use='optional'/>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 <xsd:attribute name='type' use='optional'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='subscribe'/>
 <xsd:enumeration value='subscribed'/>
 <xsd:enumeration value='unsubscribe'/>
 <xsd:enumeration value='unsubscribed'/>
 <xsd:enumeration value='unavailable'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='show'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='away'/>
 <xsd:enumeration value='chat'/>
 <xsd:enumeration value='xa'/>
 <xsd:enumeration value='dnd'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name='status' type='xsd:string'>
 <xsd:complexType>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='priority' type='xsd:byte'/>

 <xsd:element name='iq'>

Saint-Andre & Miller Expires August 4, 2003 [Page 54]

Internet-Draft XMPP Core February 2003

 <xsd:complexType mixed='true'>
 <xsd:choice maxOccurs='unbounded'>
 <xsd:element ref='error' minOccurs='0' maxOccurs='1'/>
 <xsd:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xsd:choice>
 <xsd:attribute name='to' type='xsd:string' use='required'/>
 <xsd:attribute name='from' type='xsd:string' use='required'/>
 <xsd:attribute name='id' type='xsd:ID' use='optional'/>
 <xsd:attribute name='type' use='required'>
 <xsd:simpleType>
 <xsd:restriction base='xsd:NCName'>
 <xsd:enumeration value='get'/>
 <xsd:enumeration value='set'/>
 <xsd:enumeration value='result'/>
 <xsd:enumeration value='error'/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name='error'>
 <xsd:complexType>
 <xsd:attribute
 name='code'
 type='xsd:nonNegativeInteger'
 use='required'/>
 <xsd:attribute name='xml:lang' type='xsd:NMTOKEN' use='optional'/>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>

Saint-Andre & Miller Expires August 4, 2003 [Page 55]

Internet-Draft XMPP Core February 2003

Appendix C. Revision History

 Note to RFC editor: please remove this entire appendix, and the
 corresponding entries in the table of contents, prior to publication.

C.1 Changes from draft-ietf-xmpp-core-01

 o Updated the addressing restrictions per list discussion and added
 references to the new nodeprep and resourceprep profiles.

 o Corrected error in Stream Authentication regarding version='1.0'
 flag.

 o Made numerous small editorial changes.

C.2 Changes from draft-ietf-xmpp-core-00

 o Added information about TLS from list discussion.

 o Clarified meaning of "ignore" based on list discussion.

 o Clarified information about Universal Character Set data and
 character encodings.

 o Provided base64-decoded information for examples.

 o Fixed several errors in the schemas.

 o Made numerous small editorial fixes.

C.3 Changes from draft-miller-xmpp-core-02

 o Brought Streams Authentication section into line with discussion
 on list and at IETF 55 meeting.

 o Added information about the optional 'xml:lang' attribute per
 discussion on list and at IETF 55 meeting.

 o Specified that validation is neither required nor recommended, and
 that the formal definitions (DTDs and schemas) are included for
 descriptive purposes only.

 o Specified that the response to an IQ stanza of type 'get' or 'set'
 must be an IQ stanza of type 'result' or 'error'.

 o Specified that compliant server implementations must process

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-00
https://datatracker.ietf.org/doc/html/draft-miller-xmpp-core-02

Saint-Andre & Miller Expires August 4, 2003 [Page 56]

Internet-Draft XMPP Core February 2003

 stanzas in order.

 o Specified that for historical reasons some server implementations
 may accept 'stream:' as the only valid namespace prefix on the
 root stream element.

 o Clarified the difference between 'jabber:client' and
 'jabber:server' namespaces, namely, that 'to' and 'from'
 attributes are required on all stanzas in the latter but not the
 former.

 o Fixed typo in Step 9 of the dialback protocol (changed db:result
 to db:verify).

 o Removed references to TLS pending list discussion.

 o Removed the non-normative appendix on OpenPGP usage pending its
 inclusion in a separate I-D.

 o Simplified the architecture diagram, removed most references to
 services, and removed references to the 'jabber:component:*'
 namespaces.

 o Noted that XMPP activity respects firewall administration
 policies.

 o Further specified the scope and uniqueness of the 'id' attribute
 in all stanza types and the <thread/> element in message stanzas.

 o Nomenclature changes: (1) from "chunks" to "stanzas"; (2) from
 "host" to "server" and from "node" to "client" (except with regard
 to definition of the addressing scheme).

Saint-Andre & Miller Expires August 4, 2003 [Page 57]

Internet-Draft XMPP Core February 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Saint-Andre & Miller Expires August 4, 2003 [Page 58]

