
Network Working Group P. Saint-Andre
Internet-Draft J. Miller
Expires: December 28, 2003 Jabber Software Foundation
 June 29, 2003

XMPP Core
draft-ietf-xmpp-core-15

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 28, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes the core features of the Extensible Messaging
 and Presence Protocol (XMPP), a protocol for streaming XML elements
 in order to exchange messages and presence information in close to
 real time. While XMPP provides a generalized, extensible framework
 for transporting structured information, it is used mainly for the
 purpose of building instant messaging and presence applications that
 meet the requirements of RFC 2779.

Saint-Andre & Miller Expires December 28, 2003 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2779

Internet-Draft XMPP Core June 2003

Table of Contents

1. Introduction . 5
1.1 Overview . 5
1.2 Terminology . 5
1.3 Discussion Venue . 5
1.4 Intellectual Property Notice 5
2. Generalized Architecture 6
2.1 Overview . 6
2.2 Server . 6
2.3 Client . 6
2.4 Gateway . 7
2.5 Network . 7
3. Addressing Scheme . 8
3.1 Overview . 8
3.2 Domain Identifier . 8
3.3 Node Identifier . 9
3.4 Resource Identifier . 9
4. XML Streams . 10
4.1 Overview . 10
4.2 Stream Attributes . 11
4.2.1 Version Support . 12
4.3 Namespace Declarations 13
4.4 Stream Features . 13
4.5 Stream Encryption and Authentication 13
4.6 Stream Errors . 14
4.6.1 Rules . 14
4.6.2 Syntax . 14
4.6.3 Defined Conditions . 15
4.6.4 Application-Specific Conditions 17
4.7 Simple Streams Example 17
5. Stream Encryption . 20
5.1 Overview . 20
5.2 Narrative . 22
5.3 Client-to-Server Example 23
5.4 Server-to-Server Example 24
6. Stream Authentication 27
6.1 Overview . 27
6.2 Narrative . 28
6.3 SASL Errors . 30
6.4 SASL Definition . 31
6.5 Client-to-Server Example 31
6.6 Server-to-Server Example 34
7. Server Dialback . 38
7.1 Overview . 38
7.2 Protocol . 40
8. XML Stanzas . 45
8.1 Overview . 45

Saint-Andre & Miller Expires December 28, 2003 [Page 2]

Internet-Draft XMPP Core June 2003

8.2 Common Attributes . 45
8.2.1 to . 45
8.2.2 from . 45
8.2.3 id . 46
8.2.4 type . 46
8.2.5 xml:lang . 46
8.3 Message Stanzas . 47
8.3.1 Types of Message . 47
8.3.2 Children . 47
8.4 Presence Stanzas . 49
8.4.1 Types of Presence . 49
8.4.2 Children . 49
8.5 IQ Stanzas . 51
8.5.1 Overview . 51
8.5.2 Types of IQ . 52
8.5.3 Children . 52
8.6 Extended Namespaces . 52
8.7 Stanza Errors . 53
8.7.1 Rules . 54
8.7.2 Syntax . 54
8.7.3 Defined Conditions . 55
8.7.4 Application-Specific Conditions 57
9. XML Usage within XMPP 58
9.1 Restrictions . 58
9.2 XML Namespace Names and Prefixes 58
9.2.1 Stream Namespace . 58
9.2.2 Default Namespace . 59
9.2.3 Dialback Namespace . 59
9.3 Validation . 60
9.4 Character Encodings . 60
9.5 Inclusion of Text Declaration 60
10. IANA Considerations . 61
10.1 XML Namespace Name for TLS Data 61
10.2 XML Namespace Name for SASL Data 61
10.3 XML Namespace Name for Stream Errors 61
10.4 XML Namespace Name for Stanza Errors 62
10.5 Existing Registrations 62
11. Internationalization Considerations 63
12. Security Considerations 64
12.1 High Security . 64
12.2 Client-to-Server Communications 64
12.3 Server-to-Server Communications 65
12.4 Order of Layers . 66
12.5 Firewalls . 66
12.6 Mandatory to Implement Technologies 66

 Normative References . 67
 Informative References 69
 Authors' Addresses . 69

Saint-Andre & Miller Expires December 28, 2003 [Page 3]

Internet-Draft XMPP Core June 2003

A. XML Schemas . 70
A.1 Stream namespace . 70
A.2 Stream error namespace 71
A.3 TLS namespace . 72
A.4 SASL namespace . 72
A.5 Dialback namespace . 74
A.6 Client namespace . 75
A.7 Server namespace . 79
A.8 Stanza error namespace 83
B. Revision History . 85
B.1 Changes from draft-ietf-xmpp-core-14 85
B.2 Changes from draft-ietf-xmpp-core-13 85
B.3 Changes from draft-ietf-xmpp-core-12 85
B.4 Changes from draft-ietf-xmpp-core-11 86
B.5 Changes from draft-ietf-xmpp-core-10 86
B.6 Changes from draft-ietf-xmpp-core-09 86
B.7 Changes from draft-ietf-xmpp-core-08 86
B.8 Changes from draft-ietf-xmpp-core-07 87
B.9 Changes from draft-ietf-xmpp-core-06 87
B.10 Changes from draft-ietf-xmpp-core-05 87
B.11 Changes from draft-ietf-xmpp-core-04 87
B.12 Changes from draft-ietf-xmpp-core-03 88
B.13 Changes from draft-ietf-xmpp-core-02 88
B.14 Changes from draft-ietf-xmpp-core-01 88
B.15 Changes from draft-ietf-xmpp-core-00 88
B.16 Changes from draft-miller-xmpp-core-02 89

 Intellectual Property and Copyright Statements 90

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-14
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-13
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-12
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-11
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-10
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-09
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-08
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-07
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-06
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-05
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-04
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-03
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-02
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-00
https://datatracker.ietf.org/doc/html/draft-miller-xmpp-core-02

Saint-Andre & Miller Expires December 28, 2003 [Page 4]

Internet-Draft XMPP Core June 2003

1. Introduction

1.1 Overview

 The Extensible Messaging and Presence Protocol (XMPP) is an open XML
 [1] protocol for near-real-time messaging, presence, and
 request-response services. The basic syntax and semantics were
 developed originally within the Jabber open-source community, mainly
 in 1999. In 2002, the XMPP WG was chartered with developing an
 adaptation of the Jabber protocol that would be suitable as an IETF
 instant messaging (IM) and presence technology. As a result of work
 by the XMPP WG, the current document defines the core features of
 XMPP; XMPP IM [23] defines the extensions required to provide the
 instant messaging and presence functionality defined in RFC 2779 [2].

1.2 Terminology

 The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [3].

1.3 Discussion Venue

 The authors welcome discussion and comments related to the topics
 presented in this document. The preferred forum is the
 <xmppwg@jabber.org> mailing list, for which archives and subscription
 information are available at <http://www.jabber.org/cgi-bin/mailman/

listinfo/xmppwg/>.

1.4 Intellectual Property Notice

 This document is in full compliance with all provisions of Section 10
 of RFC 2026. Parts of this specification use the term "jabber" for
 identifying namespaces and other protocol syntax. Jabber[tm] is a
 registered trademark of Jabber, Inc. Jabber, Inc. grants permission
 to the IETF for use of the Jabber trademark in association with this
 specification and its successors, if any.

https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/
http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026#section-10

Saint-Andre & Miller Expires December 28, 2003 [Page 5]

Internet-Draft XMPP Core June 2003

2. Generalized Architecture

2.1 Overview

 Although XMPP is not wedded to any specific network architecture, to
 this point it usually has been implemented via a typical
 client-server architecture, wherein a client utilizing XMPP accesses
 a server over a TCP [4] socket.

 The following diagram provides a high-level overview of this
 architecture (where "-" represents communications that use XMPP and
 "=" represents communications that use any other protocol).

 C1 - S1 - S2 - C3
 / \
 C2 - G1 = FN1 = FC1

 The symbols are as follows:

 o C1, C2, C3 -- XMPP clients

 o S1, S2 -- XMPP servers

 o G1 -- A gateway that translates between XMPP and the protocol(s)
 used on a foreign (non-XMPP) messaging network

 o FN1 -- A foreign messaging network

 o FC1 -- A client on a foreign messaging network

2.2 Server

 A server acts as an intelligent abstraction layer for XMPP
 communications. Its primary responsibilities are to manage
 connections from or sessions for other entities (in the form of XML
 streams to and from authorized clients, servers, and other entities)
 and to route appropriately-addressed XML data "stanzas" among such
 entities over XML streams. Most XMPP-compliant servers also assume
 responsibility for the storage of data that is used by clients (e.g.,
 contact lists for users of XMPP-based instant messaging
 applications); in this case, the XML data is processed directly by
 the server itself on behalf of the client and is not routed to
 another entity. Compliant server implementations MUST ensure in-order
 processing of XML stanzas between any two entities.

2.3 Client

Saint-Andre & Miller Expires December 28, 2003 [Page 6]

Internet-Draft XMPP Core June 2003

 Most clients connect directly to a server over a TCP socket and use
 XMPP to take full advantage of the functionality provided by a server
 and any associated services. Although there is no necessary coupling
 of an XML stream to a TCP socket (e.g., a client COULD connect via
 HTTP polling or some other mechanism), this specification defines a
 binding for XMPP to TCP only. Multiple resources (e.g., devices or
 locations) MAY connect simultaneously to a server on behalf of each
 authorized client, with each resource connecting over a discrete TCP
 socket and differentiated by the resource identifier of a JID (e.g.,
 <user@domain/home> vs. <user@domain/work>) as defined under
 Addressing Scheme (Section 3). The port registered with the IANA for
 connections between a client and a server is 5222 (see IANA
 Considerations (Section 10)).

2.4 Gateway

 A gateway is a special-purpose server-side service whose primary
 function is to translate XMPP into the protocol used by a foreign
 (non-XMPP) messaging system, as well as to translate the return data
 back into XMPP. Examples are gateways to Internet Relay Chat (IRC),
 Short Message Service (SMS), SMTP, and legacy instant messaging
 networks such as AIM, ICQ, MSN Messenger, and Yahoo! Instant
 Messenger. Communications between gateways and servers, and between
 gateways and the foreign messaging system, are not defined in this
 document.

2.5 Network

 Because each server is identified by a network address and because
 server-to-server communications are a straightforward extension of
 the client-to-server protocol, in practice the system consists of a
 network of servers that inter-communicate. Thus user-a@domain1 is
 able to exchange messages, presence, and other information with
 user-b@domain2. This pattern is familiar from messaging protocols
 (such as SMTP) that make use of network addressing standards.
 Communications between any two servers are OPTIONAL; if enabled, such
 communications occur over XML streams that are normally bound to TCP
 sockets, using port 5269 as registered with the IANA (see IANA
 Considerations (Section 10)).

Saint-Andre & Miller Expires December 28, 2003 [Page 7]

Internet-Draft XMPP Core June 2003

3. Addressing Scheme

3.1 Overview

 An entity is anything that can be considered a network endpoint
 (i.e., an ID on the network) and that can communicate using XMPP. All
 such entities are uniquely addressable in a form that is consistent
 with RFC 2396 [24]. For historical reasons, the address of such an
 entity is called a Jabber Identifier or JID. A valid JID contains a
 set of ordered elements formed of a domain identifier, node
 identifier, and resource identifier in the following format:
 [node@]domain[/resource]. Each allowable portion of a JID (node
 identifier, domain identifier, and resource identifier) may be up to
 1023 bytes in length, resulting in a maximum total size (including
 the '@' and '/' separators) of 3071 bytes.

 All JIDs are based on the foregoing structure. The most common use of
 this structure is to identify an instant messaging user, the server
 to which the user connects, and the user's active session or
 connection (e.g., a specific client) in the form of <user@domain/
 resource>. However, node types other than clients are possible; for
 example, a specific chat room offered by a multi-user chat service
 could be addressed as <room@service> (where "room" is the name of the
 chat room and "service" is the hostname of the multi-user chat
 service) and a specific occupant of such a room could be addressed as
 <room@service/nick> (where "nick" is the occupant's room nickname).
 Many other JID types are possible (e.g., <domain/resource> could be a
 server-side script or service).

3.2 Domain Identifier

 The domain identifier is the primary identifier and is the only
 REQUIRED element of a JID (a mere domain identifier is a valid JID).
 It usually represents the network gateway or "primary" server to
 which other entities connect for XML routing and data management
 capabilities. However, the entity referenced by a domain identifier
 is not always a server, and may be a service that is addressed as a
 subdomain of a server and that provides functionality above and
 beyond the capabilities of a server (e.g., a multi-user chat service,
 a user directory, or a gateway to a foreign messaging system).

 The domain identifier for every server or service that will
 communicate over a network SHOULD resolve to a Fully Qualified Domain
 Name. A domain identifier MUST conform to RFC 952 [6] and RFC 1123
 [7]. In addition, a domain identifier MUST be no more than 1023 bytes
 in length and MUST conform to the nameprep [8] profile of stringprep
 [9].

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123

Saint-Andre & Miller Expires December 28, 2003 [Page 8]

Internet-Draft XMPP Core June 2003

3.3 Node Identifier

 The node identifier is an optional secondary identifier placed before
 the domain identifier and separated from the latter by the '@'
 character. It usually represents the entity requesting and using
 network access provided by the server or gateway (i.e., a client),
 although it can also represent other kinds of entities (e.g., a chat
 room associated with a multi-user chat service). The entity
 represented by a node identifier is addressed within the context of a
 specific domain; within instant messaging applications of XMPP this
 address is called a "bare JID" and is of the form <node@domain>.

 A node identifier MUST be no more than 1023 bytes in length and MUST
 conform to the nodeprep [10] profile of stringprep [9].

3.4 Resource Identifier

 The resource identifier is an optional tertiary identifier placed
 after the domain identifier and separated from the latter by the '/'
 character. A resource identifier may modify either a <user@domain> or
 mere <domain> address. It usually represents a specific session,
 connection (e.g., a device or location), or object (e.g., a
 participant in a multi-user chat room) belonging to the entity
 associated with a node identifier. A resource identifier is opaque to
 both servers and other clients, and is typically defined by a client
 implementation as the authzid value provided during stream
 authentication. An entity may maintain multiple resources
 simultaneously.

 A resource identifier MUST be no more than 1023 bytes in length and
 MUST conform to the resourceprep [11] profile of stringprep [9].

Saint-Andre & Miller Expires December 28, 2003 [Page 9]

Internet-Draft XMPP Core June 2003

4. XML Streams

4.1 Overview

 Two fundamental concepts make possible the rapid, asynchronous
 exchange of relatively small payloads of structured information
 between presence-aware entities: XML streams and XML stanzas. These
 terms may be defined as follows:

 Definition of XML Stream: An XML stream is a container for the
 exchange of XML elements between any two entities over a network.
 An XML stream is negotiated from an initiating entity (usually a
 client or server) to a receiving entity (usually a server),
 normally over a TCP socket, and corresponds to the initiating
 entity's "session" with the receiving entity. The start of the XML
 stream is denoted unambiguously by an opening XML <stream> tag
 with appropriate attributes and namespace declarations, and the
 end of the XML stream is denoted unambiguously by a closing XML </
 stream> tag. An XML stream is unidirectional; in order to enable
 bidirectional information exchange, the initiating entity and
 receiving entity MUST negotiate one stream in each direction,
 normally over the same TCP connection.

 Definition of XML Stanza: An XML stanza is a discrete semantic unit
 of structured information that is sent from one entity to another
 over an XML stream. An XML stanza exists at the direct child level
 of the root <stream/> element and is said to be well-balanced if
 it matches production [43] content of the XML specification [1]).
 The start of any XML stanza is denoted unambiguously by the
 element start tag at depth=1 of the XML stream (e.g., <presence>),
 and the end of any XML stanza is denoted unambiguously by the
 corresponding close tag at depth=1 (e.g., </presence>). An XML
 stanza MAY contain child elements (with accompanying attributes,
 elements, and CDATA) as necessary in order to convey the desired
 information. An XML element sent for the purpose of stream
 encryption, stream authentication, or server dialback is not
 considered to be an XML stanza.

 Consider the example of a client's session with a server. In order to
 connect to a server, a client MUST initiate an XML stream by sending
 an opening <stream> tag to the server, optionally preceded by a text
 declaration specifying the XML version supported and the character
 encoding (see also Character Encodings (Section 9.4)). The server
 SHOULD then reply with a second XML stream back to the client, again
 optionally preceded by a text declaration. Once the client has
 authenticated with the server (see Section 6), the client MAY send an
 unlimited number of XML stanzas over the stream to any recipient on
 the network. When the client desires to close the stream, it simply

Saint-Andre & Miller Expires December 28, 2003 [Page 10]

Internet-Draft XMPP Core June 2003

 sends a closing </stream> tag to the server (alternatively, the
 stream may be closed by the server), after which both the client and
 server SHOULD close the underlying TCP connection as well.

 Those who are accustomed to thinking of XML in a document-centric
 manner may wish to view a client's session with a server as
 consisting of two open-ended XML documents: one from the client to
 the server and one from the server to the client. From this
 perspective, the root <stream/> element can be considered the
 document entity for each "document", and the two "documents" are
 built up through the accumulation of XML stanzas sent over the two
 XML streams. However, this perspective is a convenience only, and
 XMPP does not deal in documents but in XML streams and XML stanzas.

 In essence, then, an XML stream acts as an envelope for all the XML
 stanzas sent during a session. We can represent this graphically as
 follows:

 |--------------------|
<stream>
<presence>
<show/>
</presence>

<message to='foo'>
<body/>
</message>

<iq to='bar'>
<query/>
</iq>

...

</stream>

4.2 Stream Attributes

 The attributes of the stream element are as follows:

 o to -- The 'to' attribute SHOULD be used only in the XML stream
 header from the initiating entity to the receiving entity, and
 MUST be set to the JID of the receiving entity. There SHOULD be no
 'to' attribute set in the XML stream header by which the receiving
 entity replies to the initiating entity; however, if a 'to'

Saint-Andre & Miller Expires December 28, 2003 [Page 11]

Internet-Draft XMPP Core June 2003

 attribute is included, it SHOULD be silently ignored by the
 initiating entity.

 o from -- The 'from' attribute SHOULD be used only in the XML stream
 header from the receiving entity to the initiating entity, and
 MUST be set to the JID of the receiving entity granting access to
 the initiating entity. There SHOULD be no 'from' attribute on the
 XML stream header sent from the initiating entity to the receiving
 entity; however, if a 'from' attribute is included, it SHOULD be
 silently ignored by the receiving entity.

 o id -- The 'id' attribute SHOULD be used only in the XML stream
 header from the receiving entity to the initiating entity. This
 attribute is a unique identifier created by the receiving entity
 to function as a session key for the initiating entity's streams
 with the receiving entity, and MUST be unique within the receiving
 application (normally a server). There SHOULD be no 'id' attribute
 on the XML stream header sent from the initiating entity to the
 receiving entity; however, if an 'id' attribute is included, it
 SHOULD be silently ignored by the receiving entity.

 o version -- The presence of the version attribute set to a value of
 "1.0" indicates compliance with this specification. Detailed rules
 regarding generation and handling of this attribute are defined
 below.

 We can summarize as follows:

 | initiating to receiving | receiving to initiating
 --
 to | hostname of receiver | silently ignored
 from | silently ignored | hostname of receiver
 id | silently ignored | session key
 version | signals XMPP 1.0 support | signals XMPP 1.0 support

4.2.1 Version Support

 The following rules apply to the generation and handling of the
 'version' attribute:

 1. If the initiating entity complies with the protocol defined
 herein, it MUST include the 'version' attribute in the XML stream
 header it sends to the receiving entity, and it MUST set the
 value of the 'version' attribute to "1.0".

 2. If the initiating entity includes the 'version' attribute set to
 a value of "1.0" in its stream header and the receiving entity

Saint-Andre & Miller Expires December 28, 2003 [Page 12]

Internet-Draft XMPP Core June 2003

 supports XMPP 1.0, the receiving entity MUST reciprocate by
 including the 'version' attribute set to a value of "1.0" in its
 stream header response.

 3. If the initiating entity does not include the 'version' attribute
 in its stream header, the receiving entity still SHOULD include
 the 'version' attribute set to a value of "1.0" in its stream
 header response.

 4. If the initiating entity includes the 'version' attribute set to
 a value other than "1.0", the receiving entity SHOULD include the
 'version' attribute set to a value of "1.0" in its stream header
 response, but MAY at its discretion generate an
 <unsupported-version/> stream error and terminate the XML stream
 and underlying TCP connection.

 5. If the receiving entity includes the 'version' attribute set to a
 value other than "1.0" in its stream header response, the
 initiating entity SHOULD generate an <unsupported-version/>
 stream error and terminate the XML stream and underlying TCP
 connection.

4.3 Namespace Declarations

 The stream element MUST possess both a stream namespace declaration
 and a default namespace declaration (as "namespace declaration" is
 defined in the XML namespaces specification [12]). For detailed
 information regarding the stream namespace and default namespace, see
 Namespace Names and Prefixes (Section 9.2).

4.4 Stream Features

 If the initiating entity includes the 'version' attribute set to a
 value of "1.0" in its initiating stream element, the receiving entity
 MUST send a <features/> child element (prefixed by the stream
 namespace prefix) to the initiating entity in order to announce any
 stream-level features that can be negotiated (or capabilities that
 otherwise need to be advertised). Currently this is used for TLS and
 SASL negotiation only, but it could be used for other negotiable
 features in the future (usage is defined under Stream Encryption
 (Section 5) and Stream Authentication (Section 6) below). If an
 entity does not understand or support some features, it SHOULD
 silently ignore them.

4.5 Stream Encryption and Authentication

 XML streams in XMPP 1.0 SHOULD be encrypted as defined under Stream

Saint-Andre & Miller Expires December 28, 2003 [Page 13]

Internet-Draft XMPP Core June 2003

 Encryption (Section 5) and MUST be authenticated as defined under
 Stream Authentication (Section 6). If the initiating entity attempts
 to send an XML stanza before the stream is authenticated, the
 receiving entity SHOULD return a <not-authorized/> stream error to
 the initiating entity and then terminate both the XML stream and the
 underlying TCP connection.

4.6 Stream Errors

 The root stream element MAY contain an <error/> child element that is
 prefixed by the stream namespace prefix. The error child MUST be sent
 by a compliant entity (usually a server rather than a client) if it
 perceives that a stream-level error has occurred.

4.6.1 Rules

 The following rules apply to stream-level errors:

 o It is assumed that all stream-level errors are unrecoverable;
 therefore, if an error occurs at the level of the stream, the
 entity that detects the error MUST send a stream error to the
 other entity, send a closing </stream> tag, and terminate the
 underlying TCP connection.

 o If the error occurs while the stream is being set up, the
 receiving entity MUST still send the opening <stream> tag, include
 the <error/> element as a child of the stream element, send the
 closing </stream> tag, and terminate the underlying TCP
 connection. In this case, if the initiating entity provides an
 unknown host in the 'to' attribute (or provides no 'to' attribute
 at all), the server SHOULD provide the server's authoritative
 hostname in the 'from' attribute of the stream header sent before
 termination.

4.6.2 Syntax

 The syntax for stream errors is as follows:

 <stream:error>
 <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
 <text xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
 OPTIONAL descriptive text
 </text>
 [OPTIONAL application-specific condition element]
 </stream:error>

 The <error/> element:

Saint-Andre & Miller Expires December 28, 2003 [Page 14]

Internet-Draft XMPP Core June 2003

 o MUST contain a child element corresponding to one of the defined
 stanza error conditions defined below; this element MUST be
 qualified by the 'urn:ietf:params:xml:ns:xmpp-streamstreams'
 namespace

 o MAY contain a <text/> child containing CDATA that describes the
 error in more detail; this element MUST be qualified by the
 'urn:ietf:params:xml:ns:xmpp-streams' namespace and SHOULD possess
 an 'xml:lang' attribute

 o MAY contain a child element for an application-specific error
 condition; this element MUST be qualified by an
 application-defined namespace, and its structure is defined by
 that namespace

 The <text/> element is OPTIONAL. If included, it SHOULD be used only
 to provide descriptive or diagnostic information that supplements the
 meaning of a defined condition or application-specific condition. It
 SHOULD NOT be interpreted programmatically by an application. It
 SHOULD NOT be used as the error message presented to user, but MAY be
 shown in addition to the error message associated with the included
 condition element (or elements).

 Note: the XML namespace name 'urn:ietf:params:xml:ns:xmpp-streams'
 that qualifies the descriptive element adheres to the format defined
 in The IETF XML Registry [25].

4.6.3 Defined Conditions

 The following stream-level error conditions are defined:

 o <host-gone/> -- the value of the 'to' attribute provided by the
 initiating entity in the stream header corresponds to a hostname
 that is no longer hosted by the server.

 o <host-unknown/> -- the value of the 'to' attribute provided by the
 initiating entity in the stream header does not correspond to a
 hostname that is hosted by the server.

 o <improper-addressing/> -- a stanza sent between two servers lacks
 a 'to' or 'from' attribute (or the attribute has no value).

 o <internal-server-error/> -- the server has experienced a
 misconfiguration or an otherwise-undefined internal error that
 prevents it from servicing the stream.

 o <invalid-id/> -- the stream ID or dialback ID is invalid or does
 not match an ID previously provided.

Saint-Andre & Miller Expires December 28, 2003 [Page 15]

Internet-Draft XMPP Core June 2003

 o <invalid-namespace/> -- the stream namespace name is something
 other than "http://etherx.jabber.org/streams" or the dialback
 namespace name is something other than "jabber:server:dialback".

 o <nonmatching-hosts/> -- the hostname provided in a 'from' address
 does not match the hostname (or other validated domain) negotiated
 via SASL or dialback.

 o <not-authorized/> -- the entity has attempted to send data before
 authenticating, or otherwise is not authorized to perform an
 action related to stream negotiation; the receiving entity SHOULD
 silently drop the offending stanza and MUST NOT process it before
 sending the stream error.

 o <remote-connection-failed/> -- the server is unable to properly
 connect to a remote resource that is required for authentication
 or authorization.

 o <resource-constraint/> -- the server is resource-contrained and is
 unable to service the stream.

 o <see-other-host/> -- the server will not provide service to the
 initiating entity but is redirecting traffic to another host; this
 element SHOULD contain CDATA specifying the alternate hostname or
 IP address to which the initiating entity MAY attempt to connect.

 o <system-shutdown/> -- the server is being shut down and all active
 streams are being closed.

 o <undefined-condition/> -- the error condition is not one of those
 defined by the other conditions in this list; this error condition
 SHOULD be used only in conjuction with an application-specific
 condition.

 o <unsupported-stanza-type/> -- the initiating entity has sent a
 first-level child of the stream that is not supported by the
 server.

 o <unsupported-version/> -- the value of the 'version' attribute
 provided by the initiating entity in the stream header specifies a
 version of XMPP that is not supported by the server; this element
 MAY contain CDATA specifying the XMPP version(s) supported by the
 server.

 o <xml-not-well-formed/> -- the initiating entity has sent XML that
 is not well-formed as defined by the XML specification [1].

Saint-Andre & Miller Expires December 28, 2003 [Page 16]

Internet-Draft XMPP Core June 2003

4.6.4 Application-Specific Conditions

 As noted, an application MAY provide application-specific stream
 error information by including a properly-namespaced child in the
 error element. The application-specific element SHOULD supplement or
 further qualify a defined element. Thus the <error/> element will
 contain two or three child elements:

 <stream:error>
 <xml-not-well-formed
 xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
 <text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
 Some special application diagnostic information!
 </text>
 <escape-your-data xmlns='application-ns'/>
 </stream:error>
 </stream:stream>

4.7 Simple Streams Example

 The following is a stream-based session of a client on a server
 (where the "C" lines are sent from the client to the server, and the
 "S" lines are sent from the server to the client):

Saint-Andre & Miller Expires December 28, 2003 [Page 17]

Internet-Draft XMPP Core June 2003

 A basic session:

 C: <?xml version='1.0'?>
 <stream:stream
 to='shakespeare.lit'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 S: <?xml version='1.0'?>
 <stream:stream
 from='shakespeare.lit'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 ... authentication ...
 C: <message from='juliet@shakespeare.lit'
 to='romeo@shakespeare.lit'
 xml:lang='en'>
 C: <body>Art thou not Romeo, and a Montague?</body>
 C: </message>
 S: <message from='romeo@shakespeare.lit'
 to='juliet@shakespeare.lit'
 xml:lang='en'>
 S: <body>Neither, fair saint, if either thee dislike.</body>
 S: </message>
 C: </stream:stream>
 S: </stream:stream>

Saint-Andre & Miller Expires December 28, 2003 [Page 18]

Internet-Draft XMPP Core June 2003

 A stream gone bad:

 C: <?xml version='1.0'?>
 <stream:stream
 to='shakespeare.lit'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 S: <?xml version='1.0'?>
 <stream:stream
 from='shakespeare.lit'
 id='id_123456789'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 ... authentication ...
 C: <message xml:lang='en'>
 <body>Bad XML, no closing body tag!
 </message>
 S: <stream:error>
 <xml-not-well-formed
 xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
 </stream:error>
 S: </stream:stream>

Saint-Andre & Miller Expires December 28, 2003 [Page 19]

Internet-Draft XMPP Core June 2003

5. Stream Encryption

5.1 Overview

 XMPP includes a method for securing the stream from tampering and
 eavesdropping. This channel encryption method makes use of the
 Transport Layer Security (TLS) [13] protocol, along with a "STARTTLS"
 extension that is modelled after similar extensions for the IMAP
 [26], POP3 [27], and ACAP [28] protocols as described in RFC 2595
 [29]. The namespace name for the STARTTLS extension is
 'urn:ietf:params:xml:ns:xmpp-tls', which adheres to the format
 defined in The IETF XML Registry [25].

 An administrator of a given domain MAY require the use of TLS for
 client-to-server communications, server-to-server communications, or
 both. Servers SHOULD use TLS betweeen two domains for the purpose of
 securing server-to-server communications. See Mandatory to Implement
 Technologies (Section 12.6) regarding mechanisms that MUST be
 supported.

 The following rules apply:

 1. An initiating entity that complies with this specification MUST
 include the 'version' attribute set to a value of "1.0" in the
 initiating stream header.

 2. If the TLS negotiation occurs between two servers,
 communications MUST NOT proceed until the DNS hostnames asserted
 by the servers have been resolved (see Server-to-Server
 Communications (Section 12.3)).

 3. When a receiving entity that complies with this specification
 receives an initiating stream header that includes the 'version'
 attribute set to a value of "1.0", after sending a stream header
 in reply (including the version flag) it MUST include a
 <starttls/> element (qualified by the
 'urn:ietf:params:xml:ns:xmpp-tls' namespace) along with the list
 of other stream features it supports.

 4. If the initiating entity chooses to use TLS for stream
 encryption, TLS negotiation MUST be completed before proceeding
 to SASL negotiation.

 5. The receiving entity MUST consider the TLS negotiation to have
 begun immediately after sending the closing ">" of the <proceed/
 > element. The initiating entity MUST consider the TLS
 negotiation to have begun immediately after receiving the
 closing ">" of the <proceed/> element from the receiving entity.

https://datatracker.ietf.org/doc/html/rfc2595

Saint-Andre & Miller Expires December 28, 2003 [Page 20]

Internet-Draft XMPP Core June 2003

 6. The initiating entity MUST validate the certificate presented by
 the receiving entity; there are two cases:

 Case 1 -- The initiating entity has been configured with a set
 of trusted root certificates: Normal certificate validation
 processing is appropriate, and SHOULD follow the rules
 defined for HTTP over TLS [14]. The trusted roots may be
 either a well-known public set or a manually configured Root
 CA (e.g., an organization's own Certificate Authority or a
 self-signed Root CA for the service as described under High
 Security (Section 12.1)). This case is RECOMMENDED.

 Case 2 -- The initiating entity has been configured with the
 receiving entity's self-signed service certificate: Simple
 comparison of public keys is appropriate. This case is NOT
 RECOMMENDED (see High Security (Section 12.1) for details).

 If the above methods fail, the certificate SHOULD be presented
 to a human (e.g., an end user or server administrator) for
 approval; if presented, the receiver MUST deliver the entire
 certificate chain to the human, who SHOULD be given the option
 to store the Root CA certificate (not the service or End Entity
 certificate) and to not be queried again regarding acceptance of
 the certificate for some reasonable period of time.

 7. If the TLS negotiation is successful, the receiving entity MUST
 discard any knowledge obtained from the initiating entity before
 TLS takes effect.

 8. If the TLS negotiation is successful, the initiating entity MUST
 discard any knowledge obtained from the receiving entity before
 TLS takes effect.

 9. If the TLS negotiation is successful, the receiving entity MUST
 NOT offer the STARTTLS extension to the initiating entity along
 with the other stream features that are offered when the stream
 is restarted.

 10. If the TLS negotiation is successful, the initiating entity
 SHOULD continue with SASL negotiation.

 11. If the TLS negotiation results in failure, the receiving entity
 MUST terminate both the XML stream and the underlying TCP
 connection.

Saint-Andre & Miller Expires December 28, 2003 [Page 21]

Internet-Draft XMPP Core June 2003

5.2 Narrative

 When an initiating entity secures a stream with a receiving entity,
 the steps involved are as follows:

 1. The initiating entity opens a TCP connection and initiates the
 stream by sending the opening XML stream header to the receiving
 entity, including the 'version' attribute set to a value of
 "1.0".

 2. The receiving entity responds by opening a TCP connection and
 sending an XML stream header to the initiating entity, including
 the 'version' attribute set to a value of "1.0".

 3. The receiving entity offers the STARTTLS extension to the
 initiating entity by including it with the list of other
 supported stream features (if TLS is required for interaction
 with the receiving entity, it SHOULD signal that fact by
 including a <required/> element as a child of the <starttls/>
 element).

 4. The initiating entity issues the STARTTLS command (i.e., a
 <starttls/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-tls' namespace) to instruct the
 receiving entity that it wishes to begin a TLS negotiation to
 secure the stream.

 5. The receiving entity MUST reply with either a <proceed/> element
 or a <failure/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-tls' namespace. If the failure case
 occurs, the receiving entity MUST terminate both the XML stream
 and the underlying TCP connection. If the proceed case occurs,
 the receiving entity MUST ignore any further XML data sent over
 the XML stream but keep the underlying TCP connection open for
 the purpose of completing the TLS negotiation.

 6. The initiating entity and receiving entity attempt to complete a
 TLS negotiation in accordance with RFC 2246 [13].

 7. If the TLS negotiation is unsuccessful, the receiving entity MUST
 terminate the TCP connection. If the TLS negotiation is
 successful, the initiating entity MUST initiate a new stream by
 sending an opening XML stream header to the receiving entity.

 8. Upon receiving the new stream header from the initiating entity,
 the receiving entity MUST respond by sending a new XML stream
 header to the initiating entity along with the remaining
 available features (but NOT including the STARTTLS feature).

https://datatracker.ietf.org/doc/html/rfc2246

Saint-Andre & Miller Expires December 28, 2003 [Page 22]

Internet-Draft XMPP Core June 2003

5.3 Client-to-Server Example

 The following example shows the data flow for a client securing a
 stream using STARTTLS (the IANA-registered port 5222 SHOULD be used;
 see IANA Considerations (Section 10)).

 Step 1: Client initiates stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='capulet.com'
 version='1.0'>

 Step 2: Server responds by sending a stream tag to client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='12345678'
 from='capulet.com'
 version='1.0'>

 Step 3: Server sends the STARTTLS extension to client along with
 authentication mechanisms and any other stream features:

 <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
 <required/>
 </starttls>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Client sends the STARTTLS command to server:

 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 Step 5: Server informs client to proceed:

 <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 23]

Internet-Draft XMPP Core June 2003

 Step 5 (alt): Server informs client that TLS negotiation has failed
 and closes both stream and TCP connection:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 </stream:stream>

 Step 6: Client and server attempt to complete TLS negotiation over
 the existing TCP connection.

 Step 7: If TLS negotiation is successful, client initiates a new
 stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='capulet.com'
 version='1.0'>

 Step 7 (alt): If TLS negotiation is unsuccessful, server MUST close
 TCP connection.

 Step 8: Server responds by sending a stream header to client along
 with any remaining negotiable stream features:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='capulet.com'
 id='12345678'
 version='1.0'>
 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <mechanism>EXTERNAL</mechanism>
 </mechanisms>
 </stream:features>

 Step 9: Client SHOULD continue with Stream Authentication (Section
6).

5.4 Server-to-Server Example

 The following example shows the data flow for two servers securing a
 stream using STARTTLS (the IANA-registered port 5269 SHOULD be used;
 see IANA Considerations (Section 10)).

Saint-Andre & Miller Expires December 28, 2003 [Page 24]

Internet-Draft XMPP Core June 2003

 Step 1: Server1 initiates stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='montague.net'
 version='1.0'>

 Step 2: Server2 responds by sending a stream tag to Server1:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='montague.net'
 id='12345678'
 version='1.0'>

 Step 3: Server2 sends the STARTTLS extension to Server1 along with
 authentication mechanisms and any other stream features:

 <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 <required/>
 </starttls>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>KERBEROS_V4</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Server1 sends the STARTTLS command to Server2:

 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 Step 5: Server2 informs Server1 to proceed:

 <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 Step 5 (alt): Server2 informs Server1 that TLS negotiation has failed
 and closes stream:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 </stream:stream>

 Step 6: Server1 and Server2 attempt to complete TLS negotiation via
 TCP.

Saint-Andre & Miller Expires December 28, 2003 [Page 25]

Internet-Draft XMPP Core June 2003

 Step 7: If TLS negotiation is successful, Server1 initiates a new
 stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='montague.net'
 version='1.0'>

 Step 7 (alt): If TLS negotiation is unsuccessful, server MUST close
 TCP connection.

 Step 8: Server2 responds by sending a stream header to Server1 along
 with any remaining negotiable stream features:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='montague.net'
 id='12345678'
 version='1.0'>
 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>KERBEROS_V4</mechanism>
 <mechanism>EXTERNAL</mechanism>
 </mechanisms>
 </stream:features>

 Step 9: Server1 SHOULD continue with Stream Authentication (Section
6).

Saint-Andre & Miller Expires December 28, 2003 [Page 26]

Internet-Draft XMPP Core June 2003

6. Stream Authentication

6.1 Overview

 XMPP includes a method for authenticating a stream using an XMPP
 adaptation of the Simple Authentication and Security Layer (SASL)
 [15]. SASL provides a generalized method for adding authentication
 support to connection-based protocols, and XMPP uses a generic XML
 namespace profile for SASL that conforms to section 4 ("Profiling
 Requirements") of RFC 2222 [15] (the XMPP-specific namespace name is
 'urn:ietf:params:xml:ns:xmpp-sasl', which adheres to the format
 defined in The IETF XML Registry [25]). Finally, see Mandatory to
 Implement Technologies (Section 12.6) regarding mechanisms that MUST
 be supported.

 The following rules apply:

 1. If the SASL negotiation occurs between two servers,
 communications MUST NOT proceed until the DNS hostnames asserted
 by the servers have been resolved (see Server-to-Server
 Communications (Section 12.3)).

 2. If TLS is used for stream encryption, SASL SHOULD NOT be used for
 anything except stream authentication (i.e., a security layer
 SHOULD NOT be negotiated using SASL). Conversely, if a security
 layer is to be negotiated via SASL, TLS SHOULD NOT be used.

 3. If the initiating entity is capable of authenticating via SASL,
 it MUST include the 'version' attribute set to a value of "1.0"
 in the initiating stream header.

 4. If the receiving entity is capable of negotiating authentication
 via SASL, it MUST send one or more authentication mechanisms
 within a <mechanisms/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace in response to the
 opening stream tag received from the initiating entity (if the
 opening stream tag included the 'version' attribute set to a
 value of "1.0").

 5. Upon successful SASL negotiation that involves negotiation of a
 security layer, the receiving entity MUST discard any knowledge
 obtained from the initiating entity which was not obtained from
 the SASL negotiation itself.

 6. Upon successful SASL negotiation that involves negotiation of a
 security layer, the initiating entity MUST discard any knowledge
 obtained from the receiving entity which was not obtained from
 the SASL negotiation itself.

https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires December 28, 2003 [Page 27]

Internet-Draft XMPP Core June 2003

 7. The initiating entity MUST provide an authzid during SASL
 negotiation. The authzid-value MUST be a valid JID of the form
 <domain> (i.e., a domain identifier only) for servers and of the
 form <user@domain/resource> (i.e., node identifier, domain
 identifier, and resource identifier) for clients. The initiating
 entity MAY process the authzid-value in accordance with the rules
 defined in Addressing Scheme (Section 3) before providing it to
 the receiving entity, but is NOT REQUIRED to do so.

 8. Any character data contained within the XML elements used during
 SASL negotiation MUST be encoded using base64.

6.2 Narrative

 When an initiating entity authenticates with a receiving entity, the
 steps involved are as follows:

 1. The initiating entity requests SASL authentication by including
 the 'version' attribute in the opening XML stream header sent to
 the receiving entity, with the value set to "1.0".

 2. After sending an XML stream header in response, the receiving
 entity sends a list of available SASL authentication mechanisms;
 each of these is a <mechanism/> element included as a child
 within a <mechanisms/> container element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace, which in turn is a
 child of a <features/> element in the streams namespace. If
 channel encryption needs to be established before a particular
 authentication mechanism may be used, the receiving entity MUST
 NOT provide that mechanism in the list of available SASL
 authentication methods prior to channel encryption. If the
 initiating entity presents a valid certificate during prior TLS
 negotiation, the receiving entity MAY offer the SASL EXTERNAL
 mechanism to the initiating entity during stream authentication
 (refer to RFC 2222 [15]).

 3. The initiating entity selects a mechanism by sending an <auth/>
 element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
 namespace to the receiving entity and including an appropriate
 value for the 'mechanism' attribute; this element MAY optionally
 contain character data (in SASL terminology the "initial
 response") if the mechanism supports or requires it. If the
 initiating entity selects the EXTERNAL mechanism for
 authentication, the authentication credentials shall be taken
 from the certificate presented during prior TLS negotiation.

 4. If necessary, the receiving entity challenges the initiating

https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires December 28, 2003 [Page 28]

Internet-Draft XMPP Core June 2003

 entity by sending a <challenge/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
 entity; this element MAY optionally contain character data (which
 MUST be computed in accordance with the SASL mechanism chosen by
 the initiating entity).

 5. The initiating entity responds to the challenge by sending a
 <response/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the receiving
 entity; this element MAY optionally contain character data (which
 MUST be computed in accordance with the SASL mechanism chosen by
 the initiating entity).

 6. If necessary, the receiving entity sends more challenges and the
 initiating entity sends more responses.

 This series of challenge/response pairs continues until one of three
 things happens:

 1. The initiating entity aborts the handshake by sending an <abort/>
 element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
 namespace to the receiving entity. Upon receiving the <abort/>
 element, the receiving entity MUST terminate the TCP connection.

 2. The receiving entity reports failure of the handshake by sending
 a <failure/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
 entity (the particular cause of failure SHOULD be communicated in
 an appropriate child element of the <failure/> element as defined
 under SASL Errors (Section 6.3)). Immediately after sending the
 <failure/> element, the receiving entity MUST terminate the TCP
 connection.

 3. The receiving entity reports success of the handshake by sending
 a <success/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
 entity; this element MAY optionally contain character data (in
 SASL terminology "additional data with success"). Upon receiving
 the <success/> element, the initiating entity MUST initiate a new
 stream by sending an opening XML stream header to the receiving
 entity (it is not necessary to send a closing </stream:stream>
 element first, since the receiving entity and initiating entity
 MUST consider the original stream to be closed upon sending or
 receiving the <success/> element). Upon receiving the new stream
 header from the initiating entity, the receiving entity MUST
 respond by sending a new XML stream header to the initiating
 entity, along with any remaining available features (but NOT
 including the STARTTLS feature or any authentication mechanisms)

Saint-Andre & Miller Expires December 28, 2003 [Page 29]

Internet-Draft XMPP Core June 2003

 or an empty features element (to signify that no additional
 features are available); note that any such additional features
 are not defined herein, and MUST be defined by the relevant
 extension to XMPP.

6.3 SASL Errors

 The following SASL-related error conditions are defined:

 o <bad-protocol/> -- The data provided by the initiating entity does
 not adhere to the protocol for the requested mechanism; sent in
 response to the <response/> element.

 o <encryption-required/> -- The mechanism chosen by the initiating
 entity may be used only if the stream is already encrypted; sent
 in response to the <auth/> element.

 o <invalid-authzid/> -- The authzid provided by the initiating
 entity is invalid, either because it is incorrectly formatted or
 because the initiating entity does not have permissions to
 authorize that ID; sent in response to a <response/> element.

 o <invalid-mechanism/> -- The initiating entity did not provide a
 mechanism or requested a mechanism that is not supported by the
 receiving entity; sent in response to the <auth/> element.

 o <invalid-realm/> -- The realm provided by the initiating entity
 (in mechanisms that support the concept of a realm) does not match
 one of the hostnames served by the receiving entity; sent in
 response to a <response/> element.

 o <mechanism-too-weak/> -- The mechanism requested by the initiating
 entity is weaker than server policy permits for that initiating
 entity; sent in response to the <response/> element.

 o <not-authorized/> -- The authentication failed because the
 initiating entity did not provide valid credentials (this includes
 the case of an unknown username); sent in response to a <response/
 > element.

 o <temporary-auth-failure/> -- The authentication failed because of
 a temporary error condition within the receiving entity; sent in
 response to an <auth/> element or <response/> element.

Saint-Andre & Miller Expires December 28, 2003 [Page 30]

Internet-Draft XMPP Core June 2003

6.4 SASL Definition

Section 4 of the SASL specification [15] requires that the following
 information be supplied by a protocol definition:

 service name: "xmpp"

 initiation sequence: After the initiating entity provides an opening
 XML stream header and the receiving entity replies in kind, the
 receiving entity provides a list of acceptable authentication
 methods. The initiating entity chooses one method from the list
 and sends it to the receiving entity as the value of the
 'mechanism' attribute possessed by an <auth/> element, optionally
 including an initial response to avoid a round trip.

 exchange sequence: Challenges and responses are carried through the
 exchange of <challenge/> elements from receiving entity to
 initiating entity and <response/> elements from initiating entity
 to receiving entity. The receiving entity reports failure by
 sending a <failure/> element and success by sending a <success/>
 element; the initiating entity aborts the exchange by sending an
 <abort/> element. (All of these elements are qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace.) Upon successful
 negotiation, both sides consider the original XML stream closed
 and new <stream> headers are sent by both entities.

 security layer negotiation: The security layer takes effect
 immediately after sending the closing ">" character of the
 <success/> element for the server, and immediately after receiving
 the closing ">" character of the <success/> element for the client
 (this element is qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace).

 use of the authorization identity: The authorization identity is used
 by xmpp to denote the "full JID" (<user@domain/resource>) of a
 client or the sending domain of a server.

6.5 Client-to-Server Example

 The following example shows the data flow for a client authenticating
 with a server using SASL (the IANA-registered port 5222 SHOULD be
 used; see IANA Considerations (Section 10)).

Saint-Andre & Miller Expires December 28, 2003 [Page 31]

Internet-Draft XMPP Core June 2003

 Step 1: Client initiates stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='capulet.com'
 version='1.0'>

 Step 2: Server responds with a stream tag sent to client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='12345678'
 from='capulet.com'
 version='1.0'>

 Step 3: Server informs client of available authentication mechanisms:

 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Client selects an authentication mechanism:

 <auth
 xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='DIGEST-MD5'/>

 Step 5: Server sends a base64-encoded challenge to client:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIi
 xxb3A9ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNz
 </challenge>

 The decoded challenge is:

 realm="cataclysm.cx",nonce="OA6MG9tEQGm2hh",\
 qop="auth",charset=utf-8,algorithm=md5-sess

Saint-Andre & Miller Expires December 28, 2003 [Page 32]

Internet-Draft XMPP Core June 2003

 Step 5 (alt): Server returns error to client:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism-too-weak/>
 </failure>

 Step 6: Client responds to the challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InJvYiIscmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik
 9BNk1HOXRFUUdtMmhoIixjbm9uY2U9Ik9BNk1IWGg2VnFUclJrIixuYz0w
 MDAwMDAwMSxxb3A9YXV0aCxkaWdlc3QtdXJpPSJ4bXBwL2NhdGFjbHlzbS
 5jeCIscmVzcG9uc2U9ZDM4OGRhZDkwZDRiYmQ3NjBhMTUyMzIxZjIxNDNh
 ZjcsY2hhcnNldD11dGYtOCxhdXRoemlkPSJyb2JAY2F0YWNseXNtLmN4L2
 15UmVzb3VyY2Ui
 </response>

 The decoded response is:

 username="rob",realm="cataclysm.cx",\
 nonce="OA6MG9tEQGm2hh",cnonce="OA6MHXh6VqTrRk",\
 nc=00000001,qop=auth,digest-uri="xmpp/cataclysm.cx",\
 response=d388dad90d4bbd760a152321f2143af7,charset=utf-8,\
 authzid="rob@cataclysm.cx/myResource"

 Step 7: Server sends another challenge to client:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZA==
 </challenge>

 The decoded challenge is:

 rspauth=ea40f60335c427b5527b84dbabcdfffd

 Step 7 (alt): Server returns error to client:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <invalid-realm/>
 </failure>

 Step 8: Client responds to the challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 33]

Internet-Draft XMPP Core June 2003

 Step 9: Server informs client of successful authentication:

 <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 9 (alt): Server informs client of failed authentication:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <temporary-auth-failure/>
 </failure>

 Step 10: Client initiates a new stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='capulet.com'
 version='1.0'>

 Step 11: Server responds by sending a stream header to client along
 with any additional features (or an empty features element):

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='12345678'
 from='capulet.com'
 version='1.0'>
 <stream:features/>

6.6 Server-to-Server Example

 The following example shows the data flow for a server authenticating
 with another server using SASL (the IANA-registered port 5269 SHOULD
 be used; see IANA Considerations (Section 10)).

 Step 1: Server1 initiates stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='montague.net'
 version='1.0'>

Saint-Andre & Miller Expires December 28, 2003 [Page 34]

Internet-Draft XMPP Core June 2003

 Step 2: Server2 responds with a stream tag sent to Server1:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='montague.net'
 id='12345678'
 version='1.0'>

 Step 3: Server2 informs Server1 of available authentication
 mechanisms:

 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>KERBEROS_V4</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Server1 selects an authentication mechanism:

 <auth
 xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='DIGEST-MD5'/>

 Step 5: Server2 sends a base64-encoded challenge to Server1:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIi
 xxb3A9ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNz
 </challenge>

 The decoded challenge is:

 realm="cataclysm.cx",nonce="OA6MG9tEQGm2hh",\
 qop="auth",charset=utf-8,algorithm=md5-sess

 Step 5 (alt): Server2 returns error to Server1:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <encryption-required/>
 </failure>

Saint-Andre & Miller Expires December 28, 2003 [Page 35]

Internet-Draft XMPP Core June 2003

 Step 6: Server1 responds to the challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09ImNhdGFjbHlzbS5jeCIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIi
 xjbm9uY2U9Ik9BNk1IWGg2VnFUclJrIixuYz0wMDAwMDAwMSxxb3A9YXV0
 aCxkaWdlc3QtdXJpPSJ4bXBwL2NhdGFjbHlzbS5jeCIscmVzcG9uc2U9ZD
 M4OGRhZDkwZDRiYmQ3NjBhMTUyMzIxZjIxNDNhZjcsY2hhcnNldD11dGYt
 OAo=
 </response>

 The decoded response is:

 realm="cataclysm.cx",nonce="OA6MG9tEQGm2hh",cnonce="OA6MHXh6VqTrRk",\
 nc=00000001,qop=auth,digest-uri="xmpp/cataclysm.cx",\
 response=d388dad90d4bbd760a152321f2143af7,charset=utf-8

 Step 7: Server2 sends another challenge to Server1:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZA==
 </challenge>

 The decoded challenge is:

 rspauth=ea40f60335c427b5527b84dbabcdfffd

 Step 5 (alt): Server2 returns error to Server1:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <invalid-authzid/>
 </failure>

 Step 8: Server1 responds to the challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 9: Server2 informs Server1 of successful authentication:

 <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 9 (alt): Server2 informs Server1 of failed authentication:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <temporary-auth-failure/>
 </failure>

Saint-Andre & Miller Expires December 28, 2003 [Page 36]

Internet-Draft XMPP Core June 2003

 Step 10: Server1 initiates a new stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='montague.net'
 version='1.0'>

 Step 11: Server2 responds by sending a stream header to Server1 along
 with any additional features (or an empty features element):

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='montague.net'
 id='12345678'
 version='1.0'>
 <stream:features/>

Saint-Andre & Miller Expires December 28, 2003 [Page 37]

Internet-Draft XMPP Core June 2003

7. Server Dialback

7.1 Overview

 The Jabber protocol from which XMPP was adapted includes a "server
 dialback" method for protecting against domain spoofing, thus making
 it more difficult to spoof XML stanzas (see Server-to-Server
 Communications (Section 12.3) regarding this method's security
 characteristics). Server dialback also makes it easier to deploy
 systems in which outbound messages and inbound messages are handled
 by different machines for the same domain. The server dialback method
 is made possible by the existence of DNS, since one server can
 (normally) discover the authoritative server for a given domain.

 Because dialback depends on the Domain Name System, inter-domain
 communications MUST NOT proceed until the DNS hostnames asserted by
 the servers have been resolved (see Server-to-Server Communications
 (Section 12.3)).

 The method for generating and verifying the keys used in server
 dialback MUST take into account the hostnames being used, the random
 ID generated for the stream, and a secret known by the authoritative
 server's network.

 Any error that occurs during dialback negotiation MUST be considered
 a stream error, resulting in termination of the stream and of the
 underlying TCP connection. The possible error conditions are
 specified in the protocol description below.

 The following terminology applies:

 o Originating Server -- the server that is attempting to establish a
 connection between two domains.

 o Receiving Server -- the server that is trying to authenticate that
 Originating Server represents the domain which it claims to be.

 o Authoritative Server -- the server that answers to the DNS
 hostname asserted by Originating Server; for basic environments
 this will be Originating Server, but it could be a separate
 machine in Originating Server's network.

 The following is a brief summary of the order of events in dialback:

 1. Originating Server establishes a connection to Receiving Server.

 2. Originating Server sends a 'key' value over the connection to
 Receiving Server.

Saint-Andre & Miller Expires December 28, 2003 [Page 38]

Internet-Draft XMPP Core June 2003

 3. Receiving Server establishes a connection to Authoritative
 Server.

 4. Receiving Server sends the same 'key' value to Authoritative
 Server.

 5. Authoritative Server replies that key is valid or invalid.

 6. Receiving Server informs Originating Server whether it is
 authenticated or not.

 We can represent this flow of events graphically as follows:

Saint-Andre & Miller Expires December 28, 2003 [Page 39]

Internet-Draft XMPP Core June 2003

 Originating Receiving
 Server Server
 ----------- ---------
 | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | send stream header |
 | <---------------------- |
 | | Authoritative
 | send dialback key | Server
 | ----------------------> | -------------
 | | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | establish connection |
 | <---------------------- |
 | |
 | send stream header |
 | <---------------------- |
 | |
 | send dialback key |
 | ----------------------> |
 | |
 | validate dialback key |
 | <---------------------- |
 |
 | report dialback result |
 | <---------------------- |
 | |

7.2 Protocol

 The interaction between the servers is as follows:

 1. Originating Server establishes TCP connection to Receiving
 Server.

 2. Originating Server sends a stream header to Receiving Server:

Saint-Andre & Miller Expires December 28, 2003 [Page 40]

Internet-Draft XMPP Core June 2003

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 Note: the 'to' and 'from' attributes are NOT REQUIRED on the
 root stream element. The inclusion of the xmlns:db namespace
 declaration with the name shown indicates to Receiving Server
 that Originating Server supports dialback. If the namespace name
 is incorrect, then Receiving Server MUST generate an
 <invalid-namespace/> stream error condition and terminate both
 the XML stream and the underlying TCP connection.

 3. Receiving Server SHOULD send a stream header back to Originating
 Server, including a unique ID for this interaction:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='457F9224A0...'>

 Note: The 'to' and 'from' attributes are NOT REQUIRED on the
 root stream element. If the namespace name is incorrect, then
 Originating Server MUST generate an <invalid-namespace/> stream
 error condition and terminate both the XML stream and the
 underlying TCP connection. Note well that Receiving Server is
 NOT REQUIRED to reply and MAY silently terminate the XML stream
 and underlying TCP connection depending on security policies in
 place.

 4. Originating Server sends a dialback key to Receiving Server:

 <db:result
 to='Receiving Server'
 from='Originating Server'>
 98AF014EDC0...
 </db:result>

 Note: this key is not examined by Receiving Server, since
 Receiving Server does not keep information about Originating
 Server between sessions. The key generated by Originating Server
 MUST be based in part on the value of the ID provided by
 Receiving Server in the previous step, and in part on a secret
 shared by Originating Server and Authoritative Server. If the
 value of the 'to' address does not match a hostname recognized
 by Receiving Server, then Receiving Server MUST generate a
 <host-unknown/> stream error condition and terminate both the

Saint-Andre & Miller Expires December 28, 2003 [Page 41]

Internet-Draft XMPP Core June 2003

 XML stream and the underlying TCP connection. If the value of
 the 'from' address matches a domain with which Receiving Server
 already has an established connection, then Receiving Server
 MUST maintain the existing connection until it validates whether
 the new connection is legitimate; additionally, Receiving Server
 MAY choose to generate a <not-authorized/> stream error
 condition for the new connection and then terminate both the XML
 stream and the underlying TCP connection related to the new
 request.

 5. Receiving Server establishes a TCP connection back to the domain
 name asserted by Originating Server, as a result of which it
 connects to Authoritative Server. (Note: as an optimization, an
 implementation MAY reuse an existing trusted connection here
 rather than opening a new TCP connection.)

 6. Receiving Server sends Authoritative Server a stream header:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 Note: the 'to' and 'from' attributes are NOT REQUIRED on the
 root stream element. If the namespace name is incorrect, then
 Authoritative Server MUST generate an <invalid-namespace/>
 stream error condition and terminate both the XML stream and the
 underlying TCP connection.

 7. Authoritative Server sends Receiving Server a stream header:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='1251A342B...'>

 Note: if the namespace name is incorrect, then Receiving Server
 MUST generate an <invalid-namespace/> stream error condition and
 terminate both the XML stream and the underlying TCP connection
 between it and Authoritative Server. If the ID does not match
 that provided by Receiving Server in Step 3, then Receiving
 Server MUST generate an <invalid-id/> stream error condition and
 terminate both the XML stream and the underlying TCP connection
 between it and Authoritative Server. If either of the foregoing
 stream errors occurs between Receiving Server and Authoritative
 Server, then Receiving Server MUST generate a
 <remote-connection-failed/> stream error condition and terminate

Saint-Andre & Miller Expires December 28, 2003 [Page 42]

Internet-Draft XMPP Core June 2003

 both the XML stream and the underlying TCP connection between it
 and Originating Server.

 8. Receiving Server sends Authoritative Server a stanza requesting
 that Authoritative Server verify a key:

 <db:verify
 from='Receiving Server'
 to='Originating Server'
 id='457F9224A0...'>
 98AF014EDC0...
 </db:verify>

 Note: passed here are the hostnames, the original identifier
 from Receiving Server's stream header to Originating Server in
 Step 3, and the key that Originating Server sent to Receiving
 Server in Step 4. Based on this information as well as shared
 secret information within the Authoritative Server's network,
 the key is verified. Any verifiable method MAY be used to
 generate the key. If the value of the 'to' address does not
 match a hostname recognized by Authoritative Server, then
 Authoritative Server MUST generate a <host-unknown/> stream
 error condition and terminate both the XML stream and the
 underlying TCP connection. If the value of the 'from' address
 does not match the hostname represented by Receiving Server when
 opening the TCP connection (or any validated domain), then
 Authoritative Server MUST generate a <nonmatching-hosts/> stream
 error condition and terminate both the XML stream and the
 underlying TCP connection.

 9. Authoritative Server sends a stanza back to Receiving Server
 verifying whether the key was valid or invalid:

 <db:verify
 from='Originating Server'
 to='Receiving Server'
 type='valid'
 id='457F9224A0...'/>

 or

 <db:verify
 from='Originating Server'
 to='Receiving Server'
 type='invalid'
 id='457F9224A0...'/>

 Note: if the ID does not match that provided by Receiving Server

Saint-Andre & Miller Expires December 28, 2003 [Page 43]

Internet-Draft XMPP Core June 2003

 in Step 3, then Receiving Server MUST generate an <invalid-id/>
 stream error condition and terminate both the XML stream and the
 underlying TCP connection. If the value of the 'to' address does
 not match a hostname recognized by Receiving Server, then
 Receiving Server MUST generate a <host-unknown/> stream error
 condition and terminate both the XML stream and the underlying
 TCP connection. If the value of the 'from' address does not
 match the hostname represented by Originating Server when
 opening the TCP connection (or any validated domain), then
 Receiving Server MUST generate a <nonmatching-hosts/> stream
 error condition and terminate both the XML stream and the
 underlying TCP connection.

 10. Receiving Server informs Originating Server of the result:

 <db:result
 from='Receiving Server'
 to='Originating Server'
 type='valid'/>

 Note: At this point the connection has either been validated via
 a type='valid', or reported as invalid. If the connection is
 invalid, then Receiving Server MUST terminate both the XML
 stream and the underlying TCP connection. If the connection is
 validated, data can be sent by Originating Server and read by
 Receiving Server; before that, all data stanzas sent to
 Receiving Server SHOULD be silently dropped.

 Even if dialback negotiation is successful, a server MUST verify that
 all XML stanzas received from the other server include a 'from'
 attribute and a 'to' attribute; if a stanza does not meet this
 restriction, the server that receives the stanza MUST generate an
 <improper-addressing/> stream error condition and terminate both the
 XML stream and the underlying TCP connection. Furthermore, a server
 MUST verify that the 'from' attribute of stanzas received from the
 other server includes a validated domain for the stream; if a stanza
 does not meet this restriction, the server that receives the stanza
 MUST generate a <nonmatching-hosts/> stream error condition and
 terminate both the XML stream and the underlying TCP connection. Both
 of these checks help to prevent spoofing related to particular
 stanzas.

Saint-Andre & Miller Expires December 28, 2003 [Page 44]

Internet-Draft XMPP Core June 2003

8. XML Stanzas

8.1 Overview

 Once XML streams in both directions have been authenticated and (if
 desired) encrypted, XML stanzas can be sent over the streams. Three
 XML stanza types are defined for the 'jabber:client' and
 'jabber:server' namespaces: <message/>, <presence/>, and <iq/>.

 In essence, the <message/> stanza type can be seen as a "push"
 mechanism whereby one entity pushes information to another entity,
 similar to the communications that occur in a system such as email.
 The <presence/> element can be seen as a basic broadcast or
 "publish-subscribe" mechanism, whereby multiple entities receive
 information (in this case, presence information) about an entity to
 which they have subscribed. The <iq/> element can be seen as a
 "request-response" mechanism similar to HTTP, whereby two entities
 can engage in a structured conversation using 'get' or 'set' requests
 and 'result' or 'error' responses.

8.2 Common Attributes

 The following five attributes are common to message, presence, and IQ
 stanzas:

8.2.1 to

 The 'to' attribute specifies the JID of the intended recipient for
 the stanza.

 In the 'jabber:client' namespace, a stanza SHOULD possess a 'to'
 attribute, although a stanza sent from a client to a server for
 handling by that server (e.g., presence sent to the server for
 broadcasting to other entities) SHOULD NOT possess a 'to' attribute.

 In the 'jabber:server' namespace, a stanza MUST possess a 'to'
 attribute; if a server receives a stanza that does not meet this
 restriction, it MUST generate an <improper-addressing/> stream error
 condition and terminate both the XML stream and the underlying TCP
 connection with the offending server.

 If the value of the 'to' attribute is invalid or cannot be contacted,
 the entity discovering that fact (usually the sender's or recipient's
 server) MUST return an appropriate error to the sender.

8.2.2 from

 The 'from' attribute specifies the JID of the sender.

Saint-Andre & Miller Expires December 28, 2003 [Page 45]

Internet-Draft XMPP Core June 2003

 In the 'jabber:client' namespace, a client MUST NOT include a 'from'
 attribute on the stanzas it sends to a server; if a server receives
 an XML stanza from a client and the stanza possesses a 'from'
 attribute, it MUST ignore the value of the 'from' attribute and MAY
 return an error to the sender. When a client sends an XML stanza
 within the context of an authenticated stream, the server MUST stamp
 the stanza with the full JID (<user@domain/resource>) of the
 connected resource that generated the stanza as defined by the
 authzid provided in the SASL negotiation. If a client attempts to
 send an XML stanza before the stream is authenticated, the server
 SHOULD return a <not-authorized/> stream error to the client and then
 terminate both the XML stream and the underlying TCP connection.

 In the 'jabber:server' namespace, a stanza MUST possess a 'from'
 attribute; if a server receives a stanza that does not meet this
 restriction, it MUST generate an <improper-addressing/> stream error
 condition. Furthermore, the domain identifier portion of the JID
 contained in the 'from' attribute MUST match the hostname of the
 sending server (or any validated domain) as communicated in the SASL
 negotiation or dialback negotiation; if a server receives a stanza
 that does not meet this restriction, it MUST generate a
 <nonmatching-hosts/> stream error condition. Both of these conditions
 MUST result in closing of the stream and termination of the
 underlying TCP connection.

8.2.3 id

 The optional 'id' attribute MAY be used by a sending entity for
 internal tracking of stanzas that it sends and receives (especially
 for tracking the request-response interaction inherent in the use of
 IQ stanzas). If the stanza sent by the sending entity is an IQ stanza
 of type "get" or "set", the receiving entity MUST include an 'id'
 attribute with the same value in any replies of type "result" or
 "error". The value of the 'id' attribute is NOT REQUIRED to be unique
 either globally, within a domain, or within a stream.

8.2.4 type

 The 'type' attribute specifies detailed information about the purpose
 or context of the message, presence, or IQ stanza. The particular
 allowable values for the 'type' attribute vary depending on whether
 the stanza is a message, presence, or IQ, and thus are defined in the
 following sections.

8.2.5 xml:lang

 A stanza SHOULD possess an 'xml:lang' attribute (as defined in
Section 2.12 of the XML specification [1]) if the stanza contains XML

Saint-Andre & Miller Expires December 28, 2003 [Page 46]

Internet-Draft XMPP Core June 2003

 character data that is intended to be presented to a human user (as
 explained in RFC 2277 [31], "internationalization is for humans").
 The value of the 'xml:lang' attribute specifies the default language
 of any such XML character data, which MAY be overridden by the
 'xml:lang' attribute of a specific child element. The value of the
 attribute MUST be an NMTOKEN and MUST conform to the format defined
 in RFC 3066 [17].

8.3 Message Stanzas

 Message stanzas in the 'jabber:client' or 'jabber:server' namespace
 are used to "push" information to another entity. Common uses in the
 context of instant messaging include single messages, messages sent
 in the context of a chat conversation, messages sent in the context
 of a multi-user chat room, headlines, and errors.

8.3.1 Types of Message

 The 'type' attribute of a message stanza is RECOMMENDED; if included,
 it specifies the conversational context of the message. The 'type'
 attribute SHOULD have one of the following values:

 o chat

 o error

 o groupchat

 o headline

 o normal

 A message stanza with a different value, or without a 'type'
 attribute, SHOULD be handled as if the 'type' were "normal".

 For information regarding the meaning of these message types in the
 context of XMPP-based instant messaging and presence applications,
 refer to XMPP IM [23].

8.3.2 Children

 As described under extended namespaces (Section 8.6), a message
 stanza MAY contain any properly-namespaced child element.

 In accordance with the default namespace declaration, by default a
 message stanza is in the 'jabber:client' or 'jabber:server'
 namespace, which defines certain allowable children of message
 stanzas. If the message stanza is of type "error", it MUST include an

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc3066

Saint-Andre & Miller Expires December 28, 2003 [Page 47]

Internet-Draft XMPP Core June 2003

 <error/> child; for details, see Stanza Errors (Section 8.7).
 Otherwise, the message stanza MAY contain any of the following child
 elements without an explicit namespace declaration:

 1. <subject/>

 2. <body/>

 3. <thread/>

8.3.2.1 Subject

 The <subject/> element specifies the topic of the message. The
 <subject/> element SHOULD NOT possess any attributes, with the
 exception of the 'xml:lang' attribute. Multiple instances of the
 <subject/> element MAY be included for the purpose of providing
 alternate versions of the same subject, but only if each instance
 possesses an 'xml:lang' attribute with a distinct language value. The
 <subject/> element MUST NOT contain mixed content.

8.3.2.2 Body

 The <body/> element contains the textual contents of the message;
 this child element is normally included but NOT REQUIRED. The <body/>
 element SHOULD NOT possess any attributes, with the exception of the
 'xml:lang' attribute. Multiple instances of the <body/> element MAY
 be included but only if each instance possesses an 'xml:lang'
 attribute with a distinct language value. The <body/> element MUST
 NOT contain mixed content.

8.3.2.3 Thread

 The <thread/> element contains a string that is generated by the
 sender and that SHOULD be copied back in replies; it is used for
 tracking a conversation thread (sometimes referred to as an "instant
 messaging session") between two entities. If used, it MUST be unique
 to that conversation thread within the stream and MUST be consistent
 throughout that conversation (a client that receives a message from
 the same full JID but with a different thread ID MUST assume that the
 message in question exists outside the context of the existing
 conversation thread). The use of the <thread/> element is OPTIONAL
 and is not used to identify individual messages, only conversations.
 Only one <thread/> element MAY be included in a message stanza, and
 it MUST NOT possess any attributes. The <thread/> element MUST be
 treated as an opaque string by entities; no semantic meaning may be
 derived from it, and only exact comparisons may be made against it.
 The <thread/> element MUST NOT contain mixed content.

Saint-Andre & Miller Expires December 28, 2003 [Page 48]

Internet-Draft XMPP Core June 2003

8.4 Presence Stanzas

 Presence stanzas are used in the 'jabber:client' or 'jabber:server'
 namespace to express an entity's current availability status (offline
 or online, along with various sub-states of the latter and optional
 user-defined descriptive text) and to communicate that status to
 other entities. Presence stanzas are also used to negotiate and
 manage subscriptions to the presence of other entities.

8.4.1 Types of Presence

 The 'type' attribute of a presence stanza is OPTIONAL. A presence
 stanza that does not possess a 'type' attribute is used to signal to
 the server that the sender is online and available for communication.
 If included, the 'type' attribute specifies a lack of availability, a
 request to manage a subscription to another entity's presence, a
 request for another entity's current presence, or an error related to
 a previously-sent presence stanza. The 'type' attribute MAY have one
 of the following values:

 o unavailable -- Signals that the entity is no longer available for
 communication.

 o subscribe -- The sender wishes to subscribe to the recipient's
 presence.

 o subscribed -- The sender has allowed the recipient to receive
 their presence.

 o unsubscribe -- A notification that an entity is unsubscribing from
 another entity's presence.

 o unsubscribed -- The subscription request has been denied or a
 previously-granted subscription has been cancelled.

 o probe -- A request for an entity's current presence; in general,
 SHOULD NOT be sent by a client.

 o error -- An error has occurred regarding processing or delivery of
 a previously-sent presence stanza.

 For information regarding presence semantics and the subscription
 model used in the context of XMPP-based instant messaging and
 presence applications, refer to XMPP IM [23].

8.4.2 Children

 As described under extended namespaces (Section 8.6), a presence

Saint-Andre & Miller Expires December 28, 2003 [Page 49]

Internet-Draft XMPP Core June 2003

 stanza MAY contain any properly-namespaced child element.

 In accordance with the default namespace declaration, by default a
 presence stanza is in the 'jabber:client' or 'jabber:server'
 namespace, which defines certain allowable children of presence
 stanzas. If the presence stanza is of type "error", it MUST include
 an <error/> child; for details, see Stanza Errors (Section 8.7). If
 the presence stanza possesses no 'type' attribute, it MAY contain any
 of the following child elements (note that the <status/> child MAY be
 sent in a presence stanza of type "unavailable" or, for historical
 reasons, "subscribe"):

 1. <show/>

 2. <status/>

 3. <priority/>

8.4.2.1 Show

 The OPTIONAL <show/> element specifies the particular availability
 status of an entity or specific resource (if a <show/> element is not
 provided, default availability is assumed). Only one <show/> element
 MAY be included in a presence stanza, and it SHOULD NOT possess any
 attributes. The CDATA value SHOULD be one of the following (values
 other than these four SHOULD be ignored; additional availability
 types could be defined through a properly-namespaced child element of
 the presence stanza):

 o away

 o chat

 o dnd

 o xa

 For information regarding the meaning of these values in the context
 of XMPP-based instant messaging and presence applications, refer to
 XMPP IM [23].

8.4.2.2 Status

 The OPTIONAL <status/> element contains a natural-language
 description of availability status. It is normally used in
 conjunction with the show element to provide a detailed description
 of an availability state (e.g., "In a meeting"). The <status/>

Saint-Andre & Miller Expires December 28, 2003 [Page 50]

Internet-Draft XMPP Core June 2003

 element SHOULD NOT possess any attributes, with the exception of the
 'xml:lang' attribute. Multiple instances of the <status/> element MAY
 be included but only if each instance possesses an 'xml:lang'
 attribute with a distinct language value.

8.4.2.3 Priority

 The OPTIONAL <priority/> element specifies the priority level of the
 connected resource. The value may be any integer between -128 and
 +127. Only one <priority/> element MAY be included in a presence
 stanza, and it MUST NOT possess any attributes. If no priority is
 provided, a server SHOULD consider the priority to be zero. For
 information regarding the semantics of priority values in stanza
 routing within instant messaging applications, refer to XMPP IM [23].

8.5 IQ Stanzas

8.5.1 Overview

 Info/Query, or IQ, is a request-response mechanism, similar in some
 ways to HTTP [32]. IQ stanzas in the 'jabber:client' or
 'jabber:server' namespace enable an entity to make a request of, and
 receive a response from, another entity. The data content of the
 request and response is defined by the namespace declaration of a
 direct child element of the IQ element, and the interaction is
 tracked by the requesting entity through use of the 'id' attribute.

 Most IQ interactions follow a common pattern of structured data
 exchange such as get/result or set/result (although an error may be
 returned in response to a request if appropriate):

 Requesting Responding
 Entity Entity
 ---------- ----------
 | |
 | <iq type='get' id='1'> |
 | ------------------------> |
 | |
 | <iq type='result' id='1'> |
 | <------------------------ |
 | |
 | <iq type='set' id='2'> |
 | ------------------------> |
 | |
 | <iq type='error' id='2'> |
 | <------------------------ |
 | |

Saint-Andre & Miller Expires December 28, 2003 [Page 51]

Internet-Draft XMPP Core June 2003

 An entity that receives an IQ request of type "get" or "set" MUST
 reply with an IQ response of type "result" or "error" (which response
 MUST preserve the 'id' attribute of the request, if provided). An
 entity that receives a stanza of type "result" or "error" MUST NOT
 respond to the stanza by sending a further IQ response of type
 "result" or "error"; however, as shown above, the requesting entity
 MAY send another request (e.g., an IQ of type "set" in order to
 provide required information discovered through a get/result pair).

8.5.2 Types of IQ

 The 'type' attribute of an IQ stanza is REQUIRED. The 'type'
 attribute specifies a distinct step within a request-response
 interaction. The value SHOULD be one of the following (all other
 values SHOULD be ignored):

 o get -- The stanza is a request for information or requirements.

 o set -- The stanza provides required data, sets new values, or
 replaces existing values.

 o result -- The stanza is a response to a successful get or set
 request.

 o error -- An error has occurred regarding processing or delivery of
 a previously-sent get or set.

8.5.3 Children

 As described under extended namespaces (Section 8.6), an IQ stanza
 MAY contain any properly-namespaced child element. Note that an IQ
 stanza of type "get", "set", or "result" contains no children in the
 'jabber:client' or 'jabber:server' namespace since it is a vessel for
 XML in another namespace.

 An IQ stanza of type "get" or "set" MUST include one and only one
 child element. An IQ stanza of type "result" MUST include zero or one
 child elements. An IQ stanza of type "error" SHOULD include the child
 element contained in the associated "get" or "set" and MUST include
 an <error/> child; for details, see Stanza Errors (Section 8.7).

8.6 Extended Namespaces

 While the three XML stanza types defined in the "jabber:client" or
 "jabber:server" namespace (along with their attributes and child
 elements) provide a basic level of functionality for messaging and
 presence, XMPP uses XML namespaces to extend the stanzas for the

Saint-Andre & Miller Expires December 28, 2003 [Page 52]

Internet-Draft XMPP Core June 2003

 purpose of providing additional functionality. Thus a message,
 presence, or IQ stanza MAY house one or more optional child elements
 containing content that extends the meaning of the message (e.g., an
 XHTML-formatted version of the message body). This child element MAY
 have any name and MUST possess an 'xmlns' namespace declaration
 (other than "jabber:client", "jabber:server", or "http://
 etherx.jabber.org/streams") that defines all data contained within
 the child element.

 Support for any given extended namespace is OPTIONAL on the part of
 any implementation. If an entity does not understand such a
 namespace, the entity's expected behavior depends on whether the
 entity is (1) the recipient or (2) an entity that is routing the
 stanza to the recipient:

 Recipient: If a recipient receives a stanza that contains a child
 element it does not understand, it SHOULD ignore that specific XML
 data, i.e., it SHOULD not process it or present it to a user or
 associated application (if any). In particular:

 * If an entity receives a message or presence stanza that
 contains XML data qualified by a namespace it does not
 understand, the portion of the stanza that is in the unknown
 namespace SHOULD be ignored.

 * If an entity receives a message stanza containing only a child
 element qualified by a namespace it does not understand, it
 MUST ignore the entire stanza.

 * If an entity receives an IQ stanza of type "get" or "set"
 containing a child element qualified by a namespace it does not
 understand, the entity SHOULD return an IQ stanza of type
 "error" with an error condition of <feature-not-implemented/>.

 Router: If a routing entity (usually a server) handles a stanza that
 contains a child element it does not understand, it SHOULD ignore
 the associated XML data by passing it on untouched to the
 recipient.

8.7 Stanza Errors

 Stanza-related errors are handled in a manner similar to stream
 errors (Section 4.6), except that hints are also provided to the
 receiving application regarding actions to take in reponse to the
 error.

Saint-Andre & Miller Expires December 28, 2003 [Page 53]

Internet-Draft XMPP Core June 2003

8.7.1 Rules

 The following rules apply to stanza-related errors:

 o A stanza whose 'type' attribute has a value of "error" MUST
 contain an <error/> child element.

 o The receiving or processing entity that returns an error to the
 sending entity SHOULD include the original XML sent so that the
 sender can inspect and if necessary correct the XML before
 re-sending.

 o An entity that receives a stanza whose 'type' attribute has a
 value of "error" MUST NOT respond to the stanza with a further
 stanza of type "error"; this helps to prevent looping.

 o An <error/> child MUST NOT be included if the 'type' attribute has
 a value other than "error" (or if there is no 'type' attribute).

8.7.2 Syntax

 The syntax for stanza-related errors is as follows:

 <stanza-name to='sender' type='error'>
 [RECOMMENDED to include sender XML here]
 <error type='error-type'>
 <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <text xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
 OPTIONAL descriptive text
 </text>
 [OPTIONAL application-specific condition element]
 </error>
 </stanza-name>

 The stanza-name is one of message, presence, or iq.

 The value of the <error/> element's 'type' attribute MUST be one of
 the following:

 o cancel -- do not retry (the error is unrecoverable)

 o continue -- proceed (the condition was only a warning)

 o modify -- retry after changing the data sent

 o auth -- retry after providing credentials

Saint-Andre & Miller Expires December 28, 2003 [Page 54]

Internet-Draft XMPP Core June 2003

 o wait -- retry after waiting (the error is temporary)

 The <error/> element:

 o MUST contain a child element corresponding to one of the defined
 stanza error conditions defined below; this element MUST be
 qualified by the 'urn:ietf:params:xml:ns:xmpp-stanzas' namespace

 o MAY contain a <text/> child containing CDATA that describes the
 error in more detail; this element MUST be qualified by the
 'urn:ietf:params:xml:ns:xmpp-stanzas' namespace and SHOULD possess
 an 'xml:lang' attribute

 o MAY contain a child element for an application-specific error
 condition; this element MUST be qualified by an
 application-defined namespace, and its structure is defined by
 that namespace

 The <text/> element is OPTIONAL. If included, it SHOULD be used only
 to provide descriptive or diagnostic information that supplements the
 meaning of a defined condition or application-specific condition. It
 SHOULD NOT be interpreted programmatically by an application. It
 SHOULD NOT be used as the error message presented to user, but MAY be
 shown in addition to the error message associated with the included
 condition element (or elements).

 Note: the XML namespace name 'urn:ietf:params:xml:ns:xmpp-stanzas'
 that qualifies the descriptive element adheres to the format defined
 in The IETF XML Registry [25].

8.7.3 Defined Conditions

 The following stanza-related error conditions are defined for use in
 stanza errors.

 o <bad-request/> -- the sender has sent XML that is malformed or
 that cannot be processed (e.g., a client-generated stanza includes
 a 'from' address, or an IQ stanza includes an unrecognized value
 of the 'type' attribute); the associated error type SHOULD be
 "modify".

 o <conflict/> -- access cannot be granted because an existing
 resource or session exists with the same name or address; the
 associated error type SHOULD be "cancel".

 o <feature-not-implemented/> -- the feature requested is not
 implemented by the recipient or server and therefore cannot be
 processed; the associated error type SHOULD be "cancel".

Saint-Andre & Miller Expires December 28, 2003 [Page 55]

Internet-Draft XMPP Core June 2003

 o <forbidden/> -- the requesting entity does not possess the
 required permissions to perform the action; the associated error
 type SHOULD be "auth".

 o <internal-server-error/> -- the server could not process the
 stanza because of a misconfiguration or an otherwise-undefined
 internal server error; the associated error type SHOULD be "wait".

 o <item-not-found/> -- the addressed JID or item requested cannot be
 found; the associated error type SHOULD be "cancel".

 o <jid-malformed/> -- the value of the 'to' attribute in the
 sender's stanza does not adhere to the syntax defined in
 Addressing Scheme (Section 3); the associated error type SHOULD be
 "modify".

 o <not-allowed/> -- the recipient does not allow any entity to
 perform the action; the associated error type SHOULD be "cancel".

 o <recipient-unavailable/> -- the specific recipient requested is
 currently unavailable; the associated error type SHOULD be "wait".

 o <registration-required/> -- the user is not authorized to access
 the requested service because registration is required; the
 associated error type SHOULD be "auth".

 o <remote-server-not-found/> -- a remote server or service specified
 as part or all of the JID of the intended recipient does not
 exist; the associated error type SHOULD be "cancel".

 o <remote-server-timeout/> -- a remote server or service specified
 as part or all of the JID of the intended recipient could not be
 contacted within a reasonable amount of time; the associated error
 type SHOULD be "wait".

 o <resource-constraint/> -- the server is resource-contrained and is
 unable to service the request; the associated error type SHOULD be
 "wait".

 o <service-unavailable/> -- the service requested is currently
 unavailable on the server; the associated error type SHOULD be
 "cancel".

 o <subscription-required/> -- the user is not authorized to access
 the requested service because a subscription is required; the
 associated error type SHOULD be "auth".

 o <undefined-condition/> -- the error condition is not one of those

Saint-Andre & Miller Expires December 28, 2003 [Page 56]

Internet-Draft XMPP Core June 2003

 defined by the other conditions in this list; any error type may
 be associated with this condition, and it SHOULD be used only in
 conjuction with an application-specific condition.

 o <unexpected-request/> -- the recipient understood the request but
 was not expecting it at this time (e.g., the request was out of
 order); the associated error type SHOULD be "wait".

8.7.4 Application-Specific Conditions

 As noted, an application MAY provide application-specific stanza
 error information by including a properly-namespaced child in the
 error element. The application-specific element SHOULD supplement or
 further qualify a defined element. Thus the <error/> element will
 contain two or three child elements:

 <iq type='error' id='some-id'>
 <error type='modify'>
 <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <too-many-parameters xmlns='application-ns'/>
 </error>
 </iq>

 <message type='error' id='another-id'>
 <error type='modify'>
 <undefined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
 Some special application diagnostic information!
 </text>
 <special-application-condition xmlns='application-ns'/>
 </error>
 </message>

Saint-Andre & Miller Expires December 28, 2003 [Page 57]

Internet-Draft XMPP Core June 2003

9. XML Usage within XMPP

9.1 Restrictions

 XMPP is a simplified and specialized protocol for streaming XML
 elements in order to exchange messages and presence information in
 close to real time. Because XMPP does not require the parsing of
 arbitrary and complete XML documents, there is no requirement that
 XMPP needs to support the full XML specification [1]. In particular,
 the following restrictions apply.

 With regard to XML generation, an XMPP implementation MUST NOT inject
 into an XML stream any of the following:

 o comments (as defined in Section 2.5 of the XML specification [1])

 o processing instructions (Section 2.6)

 o internal or external DTD subsets (Section 2.8)

 o internal or external entity references (Section 4.2) with the
 exception of predefined entities (Section 4.6)

 o character data or attribute values containing unescaped characters
 that map to the predefined entities (Section 4.6); such characters
 MUST be escaped

 With regard to XML processing, if an XMPP implementation receives
 such restricted XML data, it MUST ignore the data.

9.2 XML Namespace Names and Prefixes

 XML Namespaces [12] are used within all XMPP-compliant XML to create
 strict boundaries of data ownership. The basic function of namespaces
 is to separate different vocabularies of XML elements that are
 structurally mixed together. Ensuring that XMPP-compliant XML is
 namespace-aware enables any XML to be structurally mixed with any
 data element within XMPP. Rules for XML namespace names and prefixes
 are defined below.

9.2.1 Stream Namespace

 A stream namespace declaration is REQUIRED in both XML stream
 headers. The name of the stream namespace MUST be 'http://
 etherx.jabber.org/streams'. The element names of the <stream/>
 element and its <features/> and <error/> children MUST be qualified
 by the stream namespace prefix in all instances. An implementation
 SHOULD generate only the 'stream:' prefix for these elements, and for

Saint-Andre & Miller Expires December 28, 2003 [Page 58]

Internet-Draft XMPP Core June 2003

 historical reasons MAY accept only the 'stream:' prefix.

9.2.2 Default Namespace

 A default namespace declaration is REQUIRED and is used in both XML
 streams in order to define the allowable first-level children of the
 root stream element. This namespace declaration MUST be the same for
 the initiating stream and the responding stream so that both streams
 are qualified consistently. The default namespace declaration applies
 to the stream and all stanzas sent within a stream (unless explicitly
 qualified by another namespace, or by the prefix of the stream
 namespace or the dialback namespace).

 A server implementation MUST support the following two default
 namespaces (for historical reasons, some implementations MAY support
 only these two default namespaces):

 o jabber:client -- this default namespace is declared when the
 stream is used for communications between a client and a server

 o jabber:server -- this default namespace is declared when the
 stream is used for communications between two servers

 A client implementation MUST support the 'jabber:client' default
 namespace, and for historical reasons MAY support only that default
 namespace.

 An implementation MUST NOT generate namespace prefixes for elements
 in the default namespace if the default namespace is 'jabber:client'
 or 'jabber:server'. An implementation SHOULD NOT generate namespace
 prefixes for elements qualified by "extended" namespaces as described
 under Extended Namespaces (Section 8.6).

 Note: the 'jabber:client' and 'jabber:server' namespaces are nearly
 identical but are used in different contexts (client-to-server
 communications for 'jabber:client' and server-to-server
 communications for 'jabber:server'). The only difference between the
 two is that the 'to' and 'from' attributes are OPTIONAL on stanzas
 sent within 'jabber:client', whereas they are REQUIRED on stanzas
 sent within 'jabber:server'. If a compliant implementation accepts a
 stream that is qualified by the 'jabber:client' or 'jabber:server'
 namespace, it MUST support all three core stanza types (message,
 presence, and IQ) as described herein and defined in the schema.

9.2.3 Dialback Namespace

 A dialback namespace declaration is REQUIRED for all elements used in
 server dialback. The name of the dialback namespace MUST be

Saint-Andre & Miller Expires December 28, 2003 [Page 59]

Internet-Draft XMPP Core June 2003

 'jabber:server:dialback'. All elements qualified by this namespace
 MUST be prefixed. An implementation SHOULD generate only the 'db:'
 prefix for such elements and MAY accept only the 'db:' prefix.

9.3 Validation

 Except as noted with regard to 'to' and 'from' addresses for stanzas
 within the 'jabber:server' namespace, a server is not responsible for
 validating the XML elements forwarded to a client or another server;
 an implementation MAY choose to provide only validated data elements
 but is NOT REQUIRED to do so (although an implementation MUST NOT
 accept XML that is not well-formed). Clients SHOULD NOT rely on the
 ability to send data which does not conform to the schemas, and
 SHOULD ignore any non-conformant elements or attributes on the
 incoming XML stream. Validation of XML streams and stanzas is NOT
 REQUIRED or recommended, and schemas are included herein for
 descriptive purposes only.

9.4 Character Encodings

 Software implementing XML streams MUST support the UTF-8 (RFC 2279
 [19]) and UTF-16 (RFC 2781 [20]) transformations of Universal
 Character Set (ISO/IEC 10646-1 [21]) characters. Implementations MUST
 NOT attempt to use any other encoding for transmitted data. The
 encodings of the transmitted and received streams are independent.
 Implementations MAY select either UTF-8 or UTF-16 for the transmitted
 stream, and SHOULD deduce the encoding of the received stream as
 described in the XML specification [1]. For historical reasons,
 existing implementations MAY support UTF-8 only.

9.5 Inclusion of Text Declaration

 An application MAY send a text declaration. Applications MUST follow
 the rules in the XML specification [1] regarding the circumstances
 under which a text declaration is included.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2781

Saint-Andre & Miller Expires December 28, 2003 [Page 60]

Internet-Draft XMPP Core June 2003

10. IANA Considerations

10.1 XML Namespace Name for TLS Data

 A URN sub-namespace for TLS-related data in the Extensible Messaging
 and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-tls

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for TLS-related data in
 the Extensible Messaging and Presence Protocol (XMPP) as defined
 by [RFCXXXX].

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

10.2 XML Namespace Name for SASL Data

 A URN sub-namespace for SASL-related data in the Extensible Messaging
 and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-sasl

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for SASL-related data in
 the Extensible Messaging and Presence Protocol (XMPP) as defined
 by [RFCXXXX].

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

10.3 XML Namespace Name for Stream Errors

 A URN sub-namespace for stream-related error data in the Extensible
 Messaging and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-streams

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for stream-related error
 data in the Extensible Messaging and Presence Protocol (XMPP) as
 defined by [RFCXXXX].

Saint-Andre & Miller Expires December 28, 2003 [Page 61]

Internet-Draft XMPP Core June 2003

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

10.4 XML Namespace Name for Stanza Errors

 A URN sub-namespace for stanza-related error data in the Extensible
 Messaging and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-stanzas

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for stanza-related error
 data in the Extensible Messaging and Presence Protocol (XMPP) as
 defined by [RFCXXXX].

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

10.5 Existing Registrations

 The IANA registers "xmpp" as a GSSAPI [22] service name, as specified
 in SASL Definition (Section 6.4).

 Additionally, the IANA registers "jabber-client" and "jabber-server"
 as keywords for TCP ports 5222 and 5269 respectively. These ports
 SHOULD be used for client-to-server and server-to-server
 communications respectively, but their use is NOT REQUIRED. The use
 of the string "jabber" in these keywords is historical.

Saint-Andre & Miller Expires December 28, 2003 [Page 62]

Internet-Draft XMPP Core June 2003

11. Internationalization Considerations

 Each XML stanza SHOULD include an 'xml:lang' attribute. Servers MUST
 NOT modify or delete 'xml:lang' attributes from stanzas they receive
 from other entities.

Saint-Andre & Miller Expires December 28, 2003 [Page 63]

Internet-Draft XMPP Core June 2003

12. Security Considerations

12.1 High Security

 For the purposes of XMPP communications (client-to-server and
 server-to-server), the term "high security" refers to the use of
 security technologies that provide both mutual authentication and
 integrity-checking; in particular, when using certificate-based
 authentication to provide high security, a chain-of-trust SHOULD be
 established out-of-band, although a shared certificate authority
 signing certificates could allow a previously unknown certificate to
 establish trust in-band.

 Standalone, self-signed service certificates SHOULD NOT be used;
 rather, an entity that wishes to generate a self-signed service
 certificate SHOULD first generate a self-signed Root CA certificate
 and then generate a signed service certificate. Entities that
 communicate with the service SHOULD be configured with the Root CA
 certificate rather than the service certificate; this avoids problems
 associated with simple comparison of service certificates. If a
 self-signed service certificate is used, an entity SHOULD NOT trust
 it if it is changed to another self-signed certificate or a
 certificate signed by an unrecognized authority.

 Implementations MUST support high security. Service provisioning
 SHOULD use high security, subject to local security policies.

12.2 Client-to-Server Communications

 A compliant implementation MUST support both TLS and SASL for
 connections to a server.

 The TLS protocol for encrypting XML streams (defined under Stream
 Encryption (Section 5)) provides a reliable mechanism for helping to
 ensure the confidentiality and data integrity of data exchanged
 between two entities.

 The SASL protocol for authenticating XML streams (defined under
 Stream Authentication (Section 6)) provides a reliable mechanism for
 validating that a client connecting to a server is who it claims to
 be.

 Client-to-server communications MUST NOT proceed until the DNS
 hostname asserted by the server has been resolved. Such resolutions
 SHOULD first attempt to resolve the hostname using an SRV [18]
 Service of "jabber-client" and Proto of "tcp", resulting in resource
 records such as "_jabber-client._tcp.shakespeare.lit." (the use of
 the string "jabber-client" for the service identifier is consistent

Saint-Andre & Miller Expires December 28, 2003 [Page 64]

Internet-Draft XMPP Core June 2003

 with the existing IANA registration). If the SRV lookup fails, the
 fallback is a normal A lookup to determine the IP address, using the
 "jabber-client" port of 5222 assigned by the Internet Assigned
 Numbers Authority [5].

 The IP address and method of access of clients MUST NOT be made
 available by a server, nor are any connections other than the
 original server connection required. This helps to protect the
 client's server from direct attack or identification by third
 parties.

12.3 Server-to-Server Communications

 A compliant implementation MUST support both TLS and SASL for
 inter-domain communications. For historical reasons, a compliant
 implementation SHOULD also support Server Dialback (Section 7).

 Because service provisioning is a matter of policy, it is OPTIONAL
 for any given domain to communicate with other domains, and
 server-to-server communications MAY be disabled by the administrator
 of any given deployment. If a particular domain enables inter-domain
 communications, it SHOULD enable high security.

 Administrators may want to require use of SASL for server-to-server
 communications in order to ensure both authentication and
 confidentiality (e.g., on an organization's private network).
 Compliant implementations SHOULD support SASL for this purpose.

 Inter-domain connections MUST NOT proceed until the DNS hostnames
 asserted by the servers have been resolved. Such resolutions MUST
 first attempt to resolve the hostname using an SRV [18] Service of
 "jabber-server" and Proto of "tcp", resulting in resource records
 such as "_jabber-server._tcp.shakespeare.lit." (the use of the string
 "jabber-server" for the service identifer is consistent with the
 existing IANA registration; note well that the "jabber-server"
 service identifier supersedes the earlier use of a "jabber" service
 identifier, since the earlier usage did not conform to RFC 2782
 [18]). If the SRV lookup fails, the fallback is a normal A lookup to
 determine the IP address, using the "jabber-server" port of 5269
 assigned by the Internet Assigned Numbers Authority [5].

 Server dialback helps protect against domain spoofing, thus making it
 more difficult to spoof XML stanzas. It is not a mechanism for
 authenticating, securing, or encrypting streams between servers as is
 done via SASL and TLS. Furthermore, it is susceptible to DNS
 poisoning attacks unless DNSSec [30] is used, and even if the DNS
 information is accurate, dialback cannot protect from attacks where
 the attacker is capable of hijacking the IP address of the remote

https://datatracker.ietf.org/doc/html/rfc2782

Saint-Andre & Miller Expires December 28, 2003 [Page 65]

Internet-Draft XMPP Core June 2003

 domain. Domains requiring robust security SHOULD use TLS and SASL. If
 SASL is used for server-to-server authentication, dialback SHOULD NOT
 be used since it is unnecessary.

12.4 Order of Layers

 The order of layers in which protocols MUST be stacked is as follows:

 1. TCP

 2. TLS

 3. SASL

 4. XMPP

 The rationale for this order is that TCP is the base connection layer
 used by all of the protocols stacked on top of TCP, TLS is often
 provided at the operating system layer, SASL is often provided at the
 application layer, and XMPP is the application itself.

12.5 Firewalls

 Communications using XMPP normally occur over TCP sockets on port
 5222 (client-to-server) or port 5269 (server-to-server), as
 registered with the IANA [5] (see IANA Considerations (Section 10)).
 Use of these well-known ports allows administrators to easily enable
 or disable XMPP activity through existing and commonly-deployed
 firewalls.

12.6 Mandatory to Implement Technologies

 At a minimum, all implementations MUST support the following
 mechanisms:

 for authentication: the SASL DIGEST-MD5 mechanism

 for confidentiality: TLS (using the TLS_RSA_WITH_3DES_EDE_CBC_SHA
 cipher)

 for both: TLS plus SASL EXTERNAL(using the
 TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher supporting client-side
 certificates)

Saint-Andre & Miller Expires December 28, 2003 [Page 66]

Internet-Draft XMPP Core June 2003

Normative References

 [1] World Wide Web Consortium, "Extensible Markup Language (XML)
 1.0 (Second Edition)", W3C xml, October 2000, <http://

www.w3.org/TR/2000/REC-xml-20001006>.

 [2] Day, M., Aggarwal, S. and J. Vincent, "Instant Messaging /
 Presence Protocol Requirements", RFC 2779, February 2000.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] University of Southern California, "Transmission Control
 Protocol", RFC 793, September 1981, <http://www.ietf.org/rfc/

rfc0793.txt>.

 [5] Internet Assigned Numbers Authority, "Internet Assigned Numbers
 Authority", January 1998, <http://www.iana.org/>.

 [6] Harrenstien, K., Stahl, M. and E. Feinler, "DoD Internet host
 table specification", RFC 952, October 1985.

 [7] Braden, R., "Requirements for Internet Hosts - Application and
 Support", STD 3, RFC 1123, October 1989.

 [8] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile
 for Internationalized Domain Names (draft-ietf-idn-nameprep-11,
 work in progress)", June 2002.

 [9] Hoffman, P. and M. Blanchet, "Preparation of Internationalized
 Strings ("stringprep")", RFC 3454, December 2002.

 [10] Saint-Andre, P. and J. Hildebrand, "Nodeprep: A Stringprep
 Profile for Node Identifiers in XMPP",

draft-ietf-xmpp-nodeprep-03 (work in progress), June 2003.

 [11] Saint-Andre, P. and J. Hildebrand, "Resourceprep: A Stringprep
 Profile for Resource Identifiers in XMPP",

draft-ietf-xmpp-resourceprep-03 (work in progress), June 2003.

 [12] World Wide Web Consortium, "Namespaces in XML", W3C xml-names,
 January 1999, <http://www.w3.org/TR/1999/

REC-xml-names-19990114/>.

 [13] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A. and
 P. Kocher, "The TLS Protocol Version 1.0", RFC 2246, January
 1999.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
http://www.ietf.org/rfc/rfc0793.txt
http://www.ietf.org/rfc/rfc0793.txt
http://www.iana.org/
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/draft-ietf-idn-nameprep-11
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-nodeprep-03
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-resourceprep-03
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
https://datatracker.ietf.org/doc/html/rfc2246

Saint-Andre & Miller Expires December 28, 2003 [Page 67]

Internet-Draft XMPP Core June 2003

 [14] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [15] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 [16] Leach, P. and C. Newman, "Using Digest Authentication as a SASL
 Mechanism", RFC 2831, May 2000.

 [17] Alvestrand, H., "Tags for the Identification of Languages", BCP
47, RFC 3066, January 2001.

 [18] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [19] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
2279, January 1998.

 [20] Hoffman, P. and F. Yergeau, "UTF-16, an encoding of ISO 10646",
RFC 2781, February 2000.

 [21] International Organization for Standardization, "Information
 Technology - Universal Multiple-octet coded Character Set (UCS)
 - Amendment 2: UCS Transformation Format 8 (UTF-8)", ISO
 Standard 10646-1 Addendum 2, October 1996.

 [22] Linn, J., "Generic Security Service Application Program
 Interface, Version 2", RFC 2078, January 1997.

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc3066
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2781
https://datatracker.ietf.org/doc/html/rfc2078

Saint-Andre & Miller Expires December 28, 2003 [Page 68]

Internet-Draft XMPP Core June 2003

Informative References

 [23] Saint-Andre, P. and J. Miller, "XMPP Instant Messaging",
draft-ietf-xmpp-im-14 (work in progress), June 2003.

 [24] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998, <http://www.ietf.org/rfc/rfc2396.txt>.

 [25] Mealling, M., "The IANA XML Registry",
draft-mealling-iana-xmlns-registry-05 (work in progress), June

 2003.

 [26] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, December 1996.

 [27] Myers, J. and M. Rose, "Post Office Protocol - Version 3", STD
 53, RFC 1939, May 1996.

 [28] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [29] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
 June 1999.

 [30] Eastlake, D., "Domain Name System Security Extensions", RFC
2535, March 1999.

 [31] Alvestrand, H., "IETF Policy on Character Sets and Languages",
BCP 18, RFC 2277, January 1998.

 [32] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

Authors' Addresses

 Peter Saint-Andre
 Jabber Software Foundation

 EMail: stpeter@jabber.org

 Jeremie Miller
 Jabber Software Foundation

 EMail: jeremie@jabber.org

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-im-14
https://datatracker.ietf.org/doc/html/rfc2396
http://www.ietf.org/rfc/rfc2396.txt
https://datatracker.ietf.org/doc/html/draft-mealling-iana-xmlns-registry-05
https://datatracker.ietf.org/doc/html/rfc2060
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2616

Saint-Andre & Miller Expires December 28, 2003 [Page 69]

Internet-Draft XMPP Core June 2003

Appendix A. XML Schemas

 The following XML schemas are descriptive, not normative.

A.1 Stream namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://etherx.jabber.org/streams'
 xmlns='http://etherx.jabber.org/streams'
 elementFormDefault='unqualified'>

 <xs:element name='stream'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='features' minOccurs='0' maxOccurs='1'/>
 <xs:choice minOccurs='0' maxOccurs='1'>
 <xs:any namespace='jabber:client'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:any namespace='jabber:server'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xs:choice>
 <xs:element ref='error' minOccurs='0' maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to' type='xs:string' use='optional'/>
 <xs:attribute name='from' type='xs:string' use='optional'/>
 <xs:attribute name='id' type='xs:NMTOKEN' use='optional'/>
 <xs:attribute name='version' type='xs:decimal' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='features'>
 <xs:complexType>
 <xs:sequence>
 <xs:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='error'>
 <xs:complexType>

Saint-Andre & Miller Expires December 28, 2003 [Page 70]

Internet-Draft XMPP Core June 2003

 <xs:sequence>
 <xs:any namespace='urn:ietf:params:xml:ns:xmpp-streams'
 maxOccurs='1'/>
 <xs:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:schema>

A.2 Stream error namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 xmlns:xml='http://www.w3.org/XML/1998/namespace'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-streams'
 xmlns='urn:ietf:params:xml:ns:xmpp-streams'
 elementFormDefault='qualified'>

 <xs:import namespace='http://www.w3.org/XML/1998/namespace'
 schemaLocation='http://www.w3.org/2001/xml.xsd'/>

 <xs:element name='host-gone' type='empty'/>
 <xs:element name='host-unknown' type='empty'/>
 <xs:element name='improper-addressing' type='empty'/>
 <xs:element name='internal-server-error' type='empty'/>
 <xs:element name='invalid-id' type='empty'/>
 <xs:element name='invalid-namespace' type='empty'/>
 <xs:element name='nonmatching-hosts' type='empty'/>
 <xs:element name='not-authorized' type='empty'/>
 <xs:element name='remote-connection-failed' type='empty'/>
 <xs:element name='resource-constraint' type='empty'/>
 <xs:element name='see-other-host' type='xs:string'/>
 <xs:element name='system-shutdown' type='empty'/>
 <xs:element name='undefined-condition' type='empty'/>
 <xs:element name='unsupported-stanza-type' type='empty'/>
 <xs:element name='unsupported-version' type='xs:string'/>
 <xs:element name='xml-not-well-formed' type='empty'/>

 <xs:element name='text' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 71]

Internet-Draft XMPP Core June 2003

 </xs:complexType>
 </xs:element>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

A.3 TLS namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-tls'
 xmlns='urn:ietf:params:xml:ns:xmpp-tls'
 elementFormDefault='qualified'>

 <xs:element name='starttls'>
 <xs:complexType>
 <xs:sequence>
 <xs:element
 ref='required'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='required' type='empty'/>
 <xs:element name='proceed' type='empty'/>
 <xs:element name='failure' type='empty'/>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

A.4 SASL namespace

Saint-Andre & Miller Expires December 28, 2003 [Page 72]

Internet-Draft XMPP Core June 2003

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-sasl'
 xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 elementFormDefault='qualified'>

 <xs:element name='mechanisms'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='mechanism' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='mechanism' type='xs:string'/>

 <xs:element name='auth'>
 <xs:complexType>
 <xs:attribute name='mechanism'
 type='xs:NMTOKEN'
 use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='challenge' type='xs:NMTOKEN'/>
 <xs:element name='response' type='xs:NMTOKEN'/>
 <xs:element name='abort' type='empty'/>
 <xs:element name='success' type='empty'/>

 <xs:element name='failure'>
 <xs:complexType>
 <xs:choice maxOccurs='1'>
 <xs:element ref='bad-protocol'/>
 <xs:element ref='encryption-required'/>
 <xs:element ref='invalid-authzid'/>
 <xs:element ref='invalid-mechanism'/>
 <xs:element ref='invalid-realm'/>
 <xs:element ref='mechanism-too-weak'/>
 <xs:element ref='not-authorized'/>
 <xs:element ref='temporary-auth-failure'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='bad-protocol' type='empty'/>
 <xs:element name='encryption-required' type='empty'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 73]

Internet-Draft XMPP Core June 2003

 <xs:element name='invalid-authzid' type='empty'/>
 <xs:element name='invalid-mechanism' type='empty'/>
 <xs:element name='invalid-realm' type='empty'/>
 <xs:element name='mechanism-too-weak' type='empty'/>
 <xs:element name='not-authorized' type='empty'/>
 <xs:element name='temporary-auth-failure' type='empty'/>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

A.5 Dialback namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='jabber:server:dialback'
 xmlns='jabber:server:dialback'
 elementFormDefault='qualified'>

 <xs:element name='result'>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base='xs:NMTOKEN'>
 <xs:attribute name='from' type='xs:string' use='required'/>
 <xs:attribute name='to' type='xs:string' use='required'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='invalid'/>
 <xs:enumeration value='valid'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <xs:element name='verify'>
 <xs:complexType>
 <xs:simpleContent>

Saint-Andre & Miller Expires December 28, 2003 [Page 74]

Internet-Draft XMPP Core June 2003

 <xs:extension base='xs:NMTOKEN'>
 <xs:attribute name='from' type='xs:string' use='required'/>
 <xs:attribute name='to' type='xs:string' use='required'/>
 <xs:attribute name='id' type='xs:NMTOKEN' use='required'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='invalid'/>
 <xs:enumeration value='valid'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 </xs:schema>

A.6 Client namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 xmlns:xml='http://www.w3.org/XML/1998/namespace'
 targetNamespace='jabber:client'
 xmlns='jabber:client'
 elementFormDefault='qualified'>

 <xs:import namespace='http://www.w3.org/XML/1998/namespace'
 schemaLocation='http://www.w3.org/2001/xml.xsd'/>

 <xs:element name='message'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='subject'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='body'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='thread'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:any namespace='##other'
 minOccurs='0'

Saint-Andre & Miller Expires December 28, 2003 [Page 75]

Internet-Draft XMPP Core June 2003

 maxOccurs='unbounded'/>
 <xs:element ref='error'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to'
 type='xs:string'
 use='optional'/>
 <xs:attribute name='from'
 type='xs:string'
 use='optional'/>
 <xs:attribute name='id'
 type='xs:NMTOKEN'
 use='optional'/>
 <xs:attribute ref='xml:lang' use='optional'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='chat'/>
 <xs:enumeration value='error'/>
 <xs:enumeration value='groupchat'/>
 <xs:enumeration value='headline'/>
 <xs:enumeration value='normal'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name='body' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='subject' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='thread' type='xs:NMTOKEN'/>

 <xs:element name='presence'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='show'
 minOccurs='0'

Saint-Andre & Miller Expires December 28, 2003 [Page 76]

Internet-Draft XMPP Core June 2003

 maxOccurs='1'/>
 <xs:element ref='status'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='priority'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:any namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='error'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to'
 type='xs:string'
 use='optional'/>
 <xs:attribute name='from'
 type='xs:string'
 use='optional'/>
 <xs:attribute name='id'
 type='xs:NMTOKEN'
 use='optional'/>
 <xs:attribute ref='xml:lang' use='optional'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='subscribe'/>
 <xs:enumeration value='subscribed'/>
 <xs:enumeration value='unsubscribe'/>
 <xs:enumeration value='unsubscribed'/>
 <xs:enumeration value='unavailable'/>
 <xs:enumeration value='error'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name='show'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='away'/>
 <xs:enumeration value='chat'/>
 <xs:enumeration value='dnd'/>
 <xs:enumeration value='xa'/>
 </xs:restriction>
 </xs:simpleType>

Saint-Andre & Miller Expires December 28, 2003 [Page 77]

Internet-Draft XMPP Core June 2003

 </xs:element>

 <xs:element name='status' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='priority' type='xs:byte'/>

 <xs:element name='iq'>
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace='##other'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:element ref='error'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to'
 type='xs:string'
 use='optional'/>
 <xs:attribute name='from'
 type='xs:string'
 use='optional'/>
 <xs:attribute name='id'
 type='xs:NMTOKEN'
 use='optional'/>
 <xs:attribute ref='xml:lang' use='optional'/>
 <xs:attribute name='type' use='required'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='get'/>
 <xs:enumeration value='set'/>
 <xs:enumeration value='result'/>
 <xs:enumeration value='error'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name='error'>
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace='urn:ietf:params:xml:ns:xmpp-stanzas'
 maxOccurs='1'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 78]

Internet-Draft XMPP Core June 2003

 <text namespace='urn:ietf:params:xml:ns:xmpp-stanzas'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='type' use='required'/>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='cancel'/>
 <xs:enumeration value='continue'/>
 <xs:enumeration value='modify'/>
 <xs:enumeration value='auth'/>
 <xs:enumeration value='wait'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 </xs:schema>

A.7 Server namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 xmlns:xml='http://www.w3.org/XML/1998/namespace'
 targetNamespace='jabber:server'
 xmlns='jabber:server'
 elementFormDefault='qualified'>

 <xs:import namespace='http://www.w3.org/XML/1998/namespace'
 schemaLocation='http://www.w3.org/2001/xml.xsd'/>

 <xs:element name='message'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='subject'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='body'
 minOccurs='0'
 maxOccurs='unbounded'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 79]

Internet-Draft XMPP Core June 2003

 <xs:element ref='thread'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:any namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='error'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to'
 type='xs:string'
 use='required'/>
 <xs:attribute name='from'
 type='xs:string'
 use='required'/>
 <xs:attribute name='id'
 type='xs:NMTOKEN'
 use='optional'/>
 <xs:attribute ref='xml:lang' use='optional'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='chat'/>
 <xs:enumeration value='error'/>
 <xs:enumeration value='groupchat'/>
 <xs:enumeration value='headline'/>
 <xs:enumeration value='normal'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name='body' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='subject' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='thread' type='xs:NMTOKEN'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 80]

Internet-Draft XMPP Core June 2003

 <xs:element name='presence'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='show'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:element ref='status'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='priority'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:any namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:element ref='error'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to'
 type='xs:string'
 use='required'/>
 <xs:attribute name='from'
 type='xs:string'
 use='required'/>
 <xs:attribute name='id'
 type='xs:NMTOKEN'
 use='optional'/>
 <xs:attribute ref='xml:lang' use='optional'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='subscribe'/>
 <xs:enumeration value='subscribed'/>
 <xs:enumeration value='unsubscribe'/>
 <xs:enumeration value='unsubscribed'/>
 <xs:enumeration value='unavailable'/>
 <xs:enumeration value='error'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name='show'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='away'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 81]

Internet-Draft XMPP Core June 2003

 <xs:enumeration value='chat'/>
 <xs:enumeration value='dnd'/>
 <xs:enumeration value='xa'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

 <xs:element name='status' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='priority' type='xs:byte'/>

 <xs:element name='iq'>
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace='##other'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:element ref='error'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to'
 type='xs:string'
 use='required'/>
 <xs:attribute name='from'
 type='xs:string'
 use='required'/>
 <xs:attribute name='id'
 type='xs:NMTOKEN'
 use='optional'/>
 <xs:attribute ref='xml:lang' use='optional'/>
 <xs:attribute name='type' use='required'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='get'/>
 <xs:enumeration value='set'/>
 <xs:enumeration value='result'/>
 <xs:enumeration value='error'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

Saint-Andre & Miller Expires December 28, 2003 [Page 82]

Internet-Draft XMPP Core June 2003

 <xs:element name='error'>
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace='urn:ietf:params:xml:ns:xmpp-stanzas'
 maxOccurs='1'/>
 <text namespace='urn:ietf:params:xml:ns:xmpp-stanzas'
 minOccurs='0'
 maxOccurs='1'/>
 <xs:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='type' use='required'/>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='cancel'/>
 <xs:enumeration value='continue'/>
 <xs:enumeration value='modify'/>
 <xs:enumeration value='auth'/>
 <xs:enumeration value='wait'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 </xs:schema>

A.8 Stanza error namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 xmlns:xml='http://www.w3.org/XML/1998/namespace'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-stanzas'
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'
 elementFormDefault='qualified'>

 <xs:import namespace='http://www.w3.org/XML/1998/namespace'
 schemaLocation='http://www.w3.org/2001/xml.xsd'/>

 <xs:element name='bad-request' type='empty'/>
 <xs:element name='conflict' type='empty'/>
 <xs:element name='feature-not-implemented' type='empty'/>
 <xs:element name='forbidden' type='empty'/>

Saint-Andre & Miller Expires December 28, 2003 [Page 83]

Internet-Draft XMPP Core June 2003

 <xs:element name='internal-server-error' type='empty'/>
 <xs:element name='item-not-found' type='empty'/>
 <xs:element name='jid-malformed' type='empty'/>
 <xs:element name='not-allowed' type='empty'/>
 <xs:element name='recipient-unavailable' type='empty'/>
 <xs:element name='registration-required' type='empty'/>
 <xs:element name='remote-server-not-found' type='empty'/>
 <xs:element name='remote-server-timeout' type='empty'/>
 <xs:element name='resource-constraint' type='empty'/>
 <xs:element name='service-unavailable' type='empty'/>
 <xs:element name='subscription-required' type='empty'/>
 <xs:element name='undefined-condition' type='empty'/>
 <xs:element name='unexpected-request' type='empty'/>

 <xs:element name='text' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

Saint-Andre & Miller Expires December 28, 2003 [Page 84]

Internet-Draft XMPP Core June 2003

Appendix B. Revision History

 Note to RFC Editor: please remove this entire appendix, and the
 corresponding entries in the table of contents, prior to publication.

B.1 Changes from draft-ietf-xmpp-core-14

 o Added SRV lookup for client-to-server communications.

 o Changed server SRV record to conform to RFC 2782; specifically,
 the service identifier was changed from 'jabber' to
 'jabber-server'.

B.2 Changes from draft-ietf-xmpp-core-13

 o Clarified stream restart after successful TLS and SASL
 negotiation.

 o Clarified requirement for resolution of DNS hostnames.

 o Clarified text regarding namespaces.

 o Clarified examples regarding empty <stream:features/> element.

 o Added several more SASL error conditions.

 o Changed <invalid-xml/> stream error to <improper-addressing/> and
 added to schema.

 o Made small editorial changes and fixed several schema errors.

B.3 Changes from draft-ietf-xmpp-core-12

 o Moved server dialback to a separate section; clarified its
 security characteristics and its role in the protocol.

 o Adjusted error handling syntax and semantics per list discussion.

 o Further clarified length of node identifiers and total length of
 JIDs.

 o Documented message type='normal'.

 o Corrected several small errors in the TLS and SASL sections.

 o Corrected several errors in the schemas.

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-14
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-13
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-12

Saint-Andre & Miller Expires December 28, 2003 [Page 85]

Internet-Draft XMPP Core June 2003

B.4 Changes from draft-ietf-xmpp-core-11

 o Corrected several small errors in the TLS and SASL sections.

 o Made small editorial changes and fixed several schema errors.

B.5 Changes from draft-ietf-xmpp-core-10

 o Adjusted TLS content regarding certificate validation process.

 o Specified that stanza error extensions for specific applications
 are to be properly namespaced children of the relevant descriptive
 element.

 o Clarified rules for inclusion of the 'id' attribute.

 o Specified that the 'xml:lang' attribute SHOULD be included (per
 list discussion).

 o Made small editorial changes and fixed several schema errors.

B.6 Changes from draft-ietf-xmpp-core-09

 o Fixed several dialback error conditions.

 o Cleaned up rules regarding TLS and certificate processing based on
 off-list feedback.

 o Changed <stream-condition/> and <stanza-condition/> elements to
 <condition/>.

 o Added or modified several stream and stanza error conditions.

 o Specified only one child allowed for IQ, or two if type="error".

 o Fixed several errors in the schemas.

B.7 Changes from draft-ietf-xmpp-core-08

 o Incorporated list discussion regarding addressing, SASL, TLS, TCP,
 dialback, namespaces, extensibility, and the meaning of 'ignore'
 for routers and recipients.

 o Specified dialback error conditions.

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-11
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-10
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-09
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-08

Saint-Andre & Miller Expires December 28, 2003 [Page 86]

Internet-Draft XMPP Core June 2003

 o Made small editorial changes to address RFC Editor requirements.

B.8 Changes from draft-ietf-xmpp-core-07

 o Made several small editorial changes.

B.9 Changes from draft-ietf-xmpp-core-06

 o Added text regarding certificate validation in TLS negotiation per
 list discussion.

 o Clarified nature of XML restrictions per discussion with W3C, and
 moved XML Restrictions subsection under "XML Usage within XMPP".

 o Further clarified that XML streams are unidirectional.

 o Changed stream error and stanza error namespace names to conform
 to the format defined in The IETF XML Registry [25].

 o Removed note to RFC Editor regarding provisional namespace names.

B.10 Changes from draft-ietf-xmpp-core-05

 o Added <invalid-namespace/> as a stream error condition.

 o Adjusted security considerations per discussion at IETF 56 and on
 list.

B.11 Changes from draft-ietf-xmpp-core-04

 o Added server-to-server examples for TLS and SASL.

 o Changed error syntax, rules, and examples based on list
 discussion.

 o Added schemas for the TLS, stream error, and stanza error
 namespaces.

 o Added note to RFC Editor regarding provisional namespace names.

 o Made numerous small editorial changes and clarified text
 throughout.

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-07
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-06
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-05
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-04

Saint-Andre & Miller Expires December 28, 2003 [Page 87]

Internet-Draft XMPP Core June 2003

B.12 Changes from draft-ietf-xmpp-core-03

 o Clarified rules and procedures for TLS and SASL.

 o Amplified stream error code syntax per list discussion.

 o Made numerous small editorial changes.

B.13 Changes from draft-ietf-xmpp-core-02

 o Added dialback schema.

 o Removed all DTDs since schemas provide more complete definitions.

 o Added stream error codes.

 o Clarified error code "philosophy".

B.14 Changes from draft-ietf-xmpp-core-01

 o Updated the addressing restrictions per list discussion and added
 references to the new nodeprep and resourceprep profiles.

 o Corrected error in Stream Authentication regarding 'version'
 attribute.

 o Made numerous small editorial changes.

B.15 Changes from draft-ietf-xmpp-core-00

 o Added information about TLS from list discussion.

 o Clarified meaning of "ignore" based on list discussion.

 o Clarified information about Universal Character Set data and
 character encodings.

 o Provided base64-decoded information for examples.

 o Fixed several errors in the schemas.

 o Made numerous small editorial fixes.

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-03
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-02
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-00

Saint-Andre & Miller Expires December 28, 2003 [Page 88]

Internet-Draft XMPP Core June 2003

B.16 Changes from draft-miller-xmpp-core-02

 o Brought Streams Authentication section into line with discussion
 on list and at IETF 55 meeting.

 o Added information about the optional 'xml:lang' attribute per
 discussion on list and at IETF 55 meeting.

 o Specified that validation is neither required nor recommended, and
 that the formal definitions (DTDs and schemas) are included for
 descriptive purposes only.

 o Specified that the response to an IQ stanza of type "get" or "set"
 must be an IQ stanza of type "result" or "error".

 o Specified that compliant server implementations must process
 stanzas in order.

 o Specified that for historical reasons some server implementations
 may accept 'stream:' as the only valid namespace prefix on the
 root stream element.

 o Clarified the difference between 'jabber:client' and
 'jabber:server' namespaces, namely, that 'to' and 'from'
 attributes are required on all stanzas in the latter but not the
 former.

 o Fixed typo in Step 9 of the dialback protocol (changed db:result
 to db:verify).

 o Removed references to TLS pending list discussion.

 o Removed the non-normative appendix on OpenPGP usage pending its
 inclusion in a separate I-D.

 o Simplified the architecture diagram, removed most references to
 services, and removed references to the 'jabber:component:*'
 namespaces.

 o Noted that XMPP activity respects firewall administration
 policies.

 o Further specified the scope and uniqueness of the 'id' attribute
 in all stanza types and the <thread/> element in message stanzas.

 o Nomenclature changes: (1) from "chunks" to "stanzas"; (2) from
 "host" to "server" and from "node" to "client" (except with regard
 to definition of the addressing scheme).

https://datatracker.ietf.org/doc/html/draft-miller-xmpp-core-02

Saint-Andre & Miller Expires December 28, 2003 [Page 89]

Internet-Draft XMPP Core June 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Saint-Andre & Miller Expires December 28, 2003 [Page 90]

Internet-Draft XMPP Core June 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Saint-Andre & Miller Expires December 28, 2003 [Page 91]

