
Network Working Group P. Saint-Andre
Internet-Draft J. Miller
Expires: April 25, 2004 Jabber Software Foundation
 October 26, 2003

XMPP Core
draft-ietf-xmpp-core-19

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 25, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This memo defines the core features of the Extensible Messaging and
 Presence Protocol (XMPP), a protocol for streaming XML [1] elements
 in order to exchange messages and presence information in close to
 real time. While XMPP provides a generalized, extensible framework
 for transporting structured information, it is used mainly for the
 purpose of building instant messaging and presence applications that
 meet the requirements of RFC 2779.

Saint-Andre & Miller Expires April 25, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2779

Internet-Draft XMPP Core October 2003

Table of Contents

1. Introduction . 6
1.1 Overview . 6
1.2 Terminology . 6
1.3 Discussion Venue . 6
1.4 Intellectual Property Notice 6
2. Generalized Architecture 6
2.1 Overview . 6
2.2 Server . 7
2.3 Client . 7
2.4 Gateway . 8
2.5 Network . 8
3. Addressing Scheme . 8
3.1 Overview . 8
3.2 Domain Identifier . 9
3.3 Node Identifier . 9
3.4 Resource Identifier 9
3.5 Formal Syntax . 10
3.6 Determination of Addresses 10
4. XML Streams . 11
4.1 Overview . 11
4.2 Stream Attributes . 13
4.2.1 Version Support . 14
4.3 Namespace Declarations 15
4.4 Stream Features . 15
4.5 Stream Encryption and Authentication 15
4.6 Stream Errors . 15
4.6.1 Rules . 16
4.6.2 Syntax . 16
4.6.3 Defined Conditions . 17
4.6.4 Application-Specific Conditions 19
4.7 Simplified Stream Examples 19
5. Stream Encryption . 21
5.1 Overview . 21
5.2 Narrative . 23
5.3 Client-to-Server Example 24
5.4 Server-to-Server Example 26
6. Stream Authentication 28
6.1 Overview . 28
6.2 Narrative . 29
6.3 SASL Definition . 31
6.4 SASL Errors . 32
6.5 Client-to-Server Example 33
6.6 Server-to-Server Example 36
7. Resource Binding . 39
8. Server Dialback . 41
8.1 Overview . 41

Saint-Andre & Miller Expires April 25, 2004 [Page 2]

Internet-Draft XMPP Core October 2003

8.2 Order of Events . 42
8.3 Protocol . 44
9. XML Stanzas . 47
9.1 Common Attributes . 48
9.1.1 to . 48
9.1.2 from . 48
9.1.3 id . 49
9.1.4 type . 49
9.1.5 xml:lang . 50
9.2 Basic Semantics . 50
9.2.1 Message Semantics . 50
9.2.2 Presence Semantics . 50
9.2.3 IQ Semantics . 51
9.3 Stanza Errors . 52
9.3.1 Rules . 52
9.3.2 Syntax . 53
9.3.3 Defined Conditions . 54
9.3.4 Application-Specific Conditions 56
10. XML Usage within XMPP 57
10.1 Restrictions . 57
10.2 XML Namespace Names and Prefixes 57
10.2.1 Streams Namespace . 57
10.2.2 Default Namespace . 58
10.2.3 Dialback Namespace . 58
10.3 Validation . 59
10.4 Inclusion of Text Declaration 59
10.5 Character Encoding . 59
11. IANA Considerations 59
11.1 XML Namespace Name for TLS Data 59
11.2 XML Namespace Name for SASL Data 60
11.3 XML Namespace Name for Stream Errors 60
11.4 XML Namespace Name for Resource Binding 60
11.5 XML Namespace Name for Stanza Errors 61
11.6 Nodeprep Profile of Stringprep 61
11.7 Resourceprep Profile of Stringprep 61
11.8 GSSAPI Service Name 62
11.9 Port Numbers . 62
12. Internationalization Considerations 62
13. Security Considerations 62
13.1 High Security . 62
13.2 Client-to-Server Communications 63
13.3 Server-to-Server Communications 64
13.4 Order of Layers . 65
13.5 Mandatory-to-Implement Technologies 65
13.6 Firewalls . 65
13.7 Use of base64 in SASL 65
13.8 Stringprep Profiles 66
14. Server Rules for Handling XML Stanzas 67

Saint-Andre & Miller Expires April 25, 2004 [Page 3]

Internet-Draft XMPP Core October 2003

14.1 No 'to' Address . 67
14.2 Foreign Domain . 67
14.3 Subdomain . 68
14.4 Mere Domain or Specific Resource 68
14.5 Node in Same Domain 68
15. Compliance Requirements 69
15.1 Servers . 69
15.2 Clients . 69

 Normative References 70
 Informative References 71
 Authors' Addresses . 72

A. Nodeprep . 72
A.1 Introduction . 72
A.2 Character Repertoire 73
A.3 Mapping . 73
A.4 Normalization . 73
A.5 Prohibited Output . 73
A.6 Bidirectional Characters 74
B. Resourceprep . 74
B.1 Introduction . 75
B.2 Character Repertoire 75
B.3 Mapping . 75
B.4 Normalization . 75
B.5 Prohibited Output . 76
B.6 Bidirectional Characters 76
C. XML Schemas . 76
C.1 Streams namespace . 76
C.2 Stream error namespace 78
C.3 TLS namespace . 79
C.4 SASL namespace . 79
C.5 Resource binding namespace 81
C.6 Dialback namespace . 81
C.7 Stanza error namespace 82
D. Differences Between Core Jabber Protocol and XMPP 83
D.1 Channel Encryption . 84
D.2 Authentication . 84
D.3 Resource Binding . 84
D.4 JID Processing . 84
D.5 Error Handling . 85
D.6 Internationalization 85
D.7 Stream Version Attribute 85
E. Revision History . 85
E.1 Changes from draft-ietf-xmpp-core-18 85
E.2 Changes from draft-ietf-xmpp-core-17 86
E.3 Changes from draft-ietf-xmpp-core-16 87
E.4 Changes from draft-ietf-xmpp-core-15 87
E.5 Changes from draft-ietf-xmpp-core-14 87
E.6 Changes from draft-ietf-xmpp-core-13 88

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-18
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-17
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-16
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-15
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-14
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-13

Saint-Andre & Miller Expires April 25, 2004 [Page 4]

Internet-Draft XMPP Core October 2003

E.7 Changes from draft-ietf-xmpp-core-12 88
E.8 Changes from draft-ietf-xmpp-core-11 88
E.9 Changes from draft-ietf-xmpp-core-10 89
E.10 Changes from draft-ietf-xmpp-core-09 89
E.11 Changes from draft-ietf-xmpp-core-08 89
E.12 Changes from draft-ietf-xmpp-core-07 89
E.13 Changes from draft-ietf-xmpp-core-06 90
E.14 Changes from draft-ietf-xmpp-core-05 90
E.15 Changes from draft-ietf-xmpp-core-04 90
E.16 Changes from draft-ietf-xmpp-core-03 90
E.17 Changes from draft-ietf-xmpp-core-02 91
E.18 Changes from draft-ietf-xmpp-core-01 91
E.19 Changes from draft-ietf-xmpp-core-00 91
E.20 Changes from draft-miller-xmpp-core-02 91

 Intellectual Property and Copyright Statements 93

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-12
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-11
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-10
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-09
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-08
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-07
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-06
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-05
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-04
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-03
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-02
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-00
https://datatracker.ietf.org/doc/html/draft-miller-xmpp-core-02

Saint-Andre & Miller Expires April 25, 2004 [Page 5]

Internet-Draft XMPP Core October 2003

1. Introduction

1.1 Overview

 The Extensible Messaging and Presence Protocol (XMPP) is an open XML
 [1] protocol for near-real-time messaging, presence, and
 request-response services. The basic syntax and semantics were
 developed originally within the Jabber open-source community, mainly
 in 1999. In 2002, the XMPP WG was chartered with developing an
 adaptation of the Jabber protocol that would be suitable as an IETF
 instant messaging (IM) and presence technology. As a result of work
 by the XMPP WG, the current memo defines the core features of XMPP;
 XMPP IM [21] defines the extensions required to provide the instant
 messaging and presence functionality defined in RFC 2779 [2].

1.2 Terminology

 The capitalized key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
 "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [3].

1.3 Discussion Venue

 The authors welcome discussion and comments related to the topics
 presented in this document. The preferred forum is the
 <xmppwg@jabber.org> mailing list, for which archives and subscription
 information are available at <http://www.jabber.org/cgi-bin/mailman/

listinfo/xmppwg/>.

1.4 Intellectual Property Notice

 This document is in full compliance with all provisions of Section 10
 of RFC 2026. Parts of this specification use the term "jabber" for
 identifying namespaces and other protocol syntax. Jabber[tm] is a
 registered trademark of Jabber, Inc. Jabber, Inc. grants permission
 to the IETF for use of the Jabber trademark in association with this
 specification and its successors, if any.

2. Generalized Architecture

2.1 Overview

 Although XMPP is not wedded to any specific network architecture, to
 date it usually has been implemented via a typical client-server
 architecture, wherein a client utilizing XMPP accesses a server over
 a TCP [4] socket.

https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/
http://www.jabber.org/cgi-bin/mailman/listinfo/xmppwg/
https://datatracker.ietf.org/doc/html/rfc2026#section-10
https://datatracker.ietf.org/doc/html/rfc2026#section-10

Saint-Andre & Miller Expires April 25, 2004 [Page 6]

Internet-Draft XMPP Core October 2003

 The following diagram provides a high-level overview of this
 architecture (where "-" represents communications that use XMPP and
 "=" represents communications that use any other protocol).

 C1 - S1 - S2 - C3
 / \
 C2 - G1 = FN1 = FC1

 The symbols are as follows:

 o C1, C2, C3 -- XMPP clients

 o S1, S2 -- XMPP servers

 o G1 -- A gateway that translates between XMPP and the protocol(s)
 used on a foreign (non-XMPP) messaging network

 o FN1 -- A foreign messaging network

 o FC1 -- A client on a foreign messaging network

2.2 Server

 A server acts as an intelligent abstraction layer for XMPP
 communications. Its primary responsibilities are to manage
 connections from or sessions for other entities (in the form of XML
 streams (Section 4) to and from authorized clients, servers, and
 other entities) and to route appropriately-addressed XML stanzas
 (Section 9) among such entities over XML streams. Most XMPP-compliant
 servers also assume responsibility for the storage of data that is
 used by clients (e.g., contact lists for users of XMPP-based instant
 messaging and presence applications); in this case, the XML data is
 processed directly by the server itself on behalf of the client and
 is not routed to another entity. Compliant server implementations
 MUST ensure in-order processing of XML stanzas between any two
 entities.

2.3 Client

 Most clients connect directly to a server over a TCP socket and use
 XMPP to take full advantage of the functionality provided by a server
 and any associated services. Although there is no necessary coupling
 of an XML stream to a TCP socket (e.g., a client COULD connect via
 HTTP [22] polling or some other mechanism), this specification
 defines a binding of XMPP to TCP only. Multiple resources (e.g.,
 devices or locations) MAY connect simultaneously to a server on
 behalf of each authorized client, with each resource differentiated

Saint-Andre & Miller Expires April 25, 2004 [Page 7]

Internet-Draft XMPP Core October 2003

 by the resource identifier of a JID (e.g., <node@domain/home> vs.
 <node@domain/work>) as defined under Addressing Scheme (Section 3).
 The RECOMMENDED port for connections between a client and a server is
 5222, as registered with the Internet Assigned Numbers Authority
 (IANA) [5] (see Port Numbers (Section 11.9)).

2.4 Gateway

 A gateway is a special-purpose server-side service whose primary
 function is to translate XMPP into the protocol used by a foreign
 (non-XMPP) messaging system, as well as to translate the return data
 back into XMPP. Examples are gateways to Internet Relay Chat (IRC),
 Short Message Service (SMS), SIMPLE, SMTP, and legacy instant
 messaging networks such as AIM, ICQ, MSN Messenger, and Yahoo!
 Instant Messenger. Communications between gateways and servers, and
 between gateways and the foreign messaging system, are not defined in
 this document.

2.5 Network

 Because each server is identified by a network address and because
 server-to-server communications are a straightforward extension of
 the client-to-server protocol, in practice the system consists of a
 network of servers that inter-communicate. Thus user-a@domain1 is
 able to exchange messages, presence, and other information with
 user-b@domain2. This pattern is familiar from messaging protocols
 (such as SMTP) that make use of network addressing standards.
 Communications between any two servers are OPTIONAL. If enabled, such
 communications SHOULD occur over XML streams that are bound to TCP
 sockets. The RECOMMENDED port for connections between servers is
 5222, as registered with the Internet Assigned Numbers Authority
 (IANA) [5] (see Port Numbers (Section 11.9)).

3. Addressing Scheme

3.1 Overview

 An entity is anything that can be considered a network endpoint
 (i.e., an ID on the network) and that can communicate using XMPP. All
 such entities are uniquely addressable in a form that is consistent
 with RFC 2396 [23]. For historical reasons, the address of such an
 entity is called a Jabber Identifier or JID. A valid JID contains a
 set of ordered elements formed of a domain identifier, node
 identifier, and resource identifier in the following format:
 [node@]domain[/resource]. Each allowable portion of a JID (node
 identifier, domain identifier, and resource identifier) may be up to
 1023 bytes in length, resulting in a maximum total size (including
 the '@' and '/' separators) of 3071 bytes.

https://datatracker.ietf.org/doc/html/rfc2396

Saint-Andre & Miller Expires April 25, 2004 [Page 8]

Internet-Draft XMPP Core October 2003

 All JIDs are based on the foregoing structure. The most common use of
 this structure is to identify an instant messaging user, the server
 to which the user connects, and the user's active session or
 connection (e.g., a specific client) in the form of <user@host/
 resource>. However, node types other than clients are possible; for
 example, a specific chat room offered by a multi-user chat service
 could be addressed as <room@service> (where "room" is the name of the
 chat room and "service" is the hostname of the multi-user chat
 service) and a specific occupant of such a room could be addressed as
 <room@service/nick> (where "nick" is the occupant's room nickname).
 Many other JID types are possible (e.g., <domain/resource> could be a
 server-side script or service).

3.2 Domain Identifier

 The domain identifier is the primary identifier and is the only
 REQUIRED element of a JID (a mere domain identifier is a valid JID).
 It usually represents the network gateway or "primary" server to
 which other entities connect for XML routing and data management
 capabilities. However, the entity referenced by a domain identifier
 is not always a server, and may be a service that is addressed as a
 subdomain of a server and that provides functionality above and
 beyond the capabilities of a server (e.g., a multi-user chat service,
 a user directory, or a gateway to a foreign messaging system).

 The domain identifier for every server or service that will
 communicate over a network SHOULD resolve to a Fully Qualified Domain
 Name. A domain identifier MUST be not more than 1023 bytes in length
 and MUST conform to the Nameprep [6] profile of stringprep [7].

3.3 Node Identifier

 The node identifier is an optional secondary identifier placed before
 the domain identifier and separated from the latter by the '@'
 character. It usually represents the entity requesting and using
 network access provided by the server or gateway (i.e., a client),
 although it can also represent other kinds of entities (e.g., a chat
 room associated with a multi-user chat service). The entity
 represented by a node identifier is addressed within the context of a
 specific domain; within instant messaging and presence applications
 of XMPP this address is called a "bare JID" and is of the form
 <node@domain>.

 A node identifier MUST be no more than 1023 bytes in length and MUST
 conform to the Nodeprep (Appendix A) profile of stringprep [7].

3.4 Resource Identifier

Saint-Andre & Miller Expires April 25, 2004 [Page 9]

Internet-Draft XMPP Core October 2003

 The resource identifier is an optional tertiary identifier placed
 after the domain identifier and separated from the latter by the '/'
 character. A resource identifier may modify either a <node@domain> or
 mere <domain> address. It usually represents a specific session,
 connection (e.g., a device or location), or object (e.g., a
 participant in a multi-user chat room) belonging to the entity
 associated with a node identifier. A resource identifier is opaque to
 both servers and other clients, and is typically defined by a client
 implementation when it provides the information necessary to complete
 Resource Binding (Section 7) (although it may be generated by a
 server on behalf of a client). An entity may maintain multiple
 resources simultaneously.

 A resource identifier MUST be no more than 1023 bytes in length and
 MUST conform to the Resourceprep (Appendix B) profile of stringprep
 [7].

3.5 Formal Syntax

 The syntax for a JID is defined below using Augmented Backus-Naur
 Form as defined in RFC 2234 [8]. The IPv4address and IPv6address
 rules are defined in Appendix B of RFC 2373 [9]; the hostname rule is
 defined in Section 3.2.2 of RFC 2396 [23]; the allowable character
 sequences that conform to the node rule are defined by the Nodeprep
 (Appendix A) profile of stringprep [7] as documented in this memo;
 the allowable character sequences that conform to the resource rule
 are defined by the Resourceprep (Appendix B) profile of stringprep
 [7] as documented in this memo.

 jid = [node "@"] domain ["/" resource]
 domain = hostname / IPv4address / IPv6address

3.6 Determination of Addresses

 After Stream Authentication (Section 6) and, if appropriate, Resource
 Binding (Section 7), the receiving entity for a stream MUST determine
 the initiating entity's JID.

 For server-to-server communications, the initiating entity's JID
 SHOULD be the authorization identity, derived from the authentication
 identity as defined in RFC 2222 [13] if no authorization identity was
 specified during stream authentication.

 For client-to-server communications, the "bare JID" (<node@domain>)
 SHOULD be the authorization identity, derived from the authentication
 identity as defined in RFC 2222 [13] if no authorization identity was
 specified during stream authentication; the resource identifier

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2373#appendix-B
https://datatracker.ietf.org/doc/html/rfc2396#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires April 25, 2004 [Page 10]

Internet-Draft XMPP Core October 2003

 portion of the "full JID" (<node@domain/resource>) SHOULD be the
 resource identifier negotiated by the client and server during
 Resource Binding (Section 7).

 The receiving entity MUST ensure that the resulting JID (including
 node identifier, domain identifier, resource identifier, and
 separator characters) conforms to the rules and formats defined
 earlier in this section.

4. XML Streams

4.1 Overview

 Two fundamental concepts make possible the rapid, asynchronous
 exchange of relatively small payloads of structured information
 between presence-aware entities: XML streams and XML stanzas. These
 terms are defined as follows:

 Definition of XML Stream: An XML stream is a container for the
 exchange of XML elements between any two entities over a network.
 An XML stream is negotiated from an initiating entity (usually a
 client or server) to a receiving entity (usually a server),
 normally over a TCP socket, and corresponds to the initiating
 entity's "session" with the receiving entity. The start of the XML
 stream is denoted unambiguously by an opening XML <stream> tag
 (with appropriate attributes and namespace declarations), while
 the end of the XML stream is denoted unambiguously by a closing
 XML </stream> tag. An XML stream is unidirectional; in order to
 enable bidirectional information exchange, the initiating entity
 and receiving entity MUST negotiate one stream in each direction
 (the "initial stream" and the "response stream"), normally over
 the same TCP connection.

 Definition of XML Stanza: An XML stanza is a discrete semantic unit
 of structured information that is sent from one entity to another
 over an XML stream. An XML stanza exists at the direct child level
 of the root <stream/> element and is said to be well-balanced if
 it matches production [43] content of the XML specification [1]).
 The start of any XML stanza is denoted unambiguously by the
 element start tag at depth=1 of the XML stream (e.g., <presence>),
 and the end of any XML stanza is denoted unambiguously by the
 corresponding close tag at depth=1 (e.g., </presence>). An XML
 stanza MAY contain child elements (with accompanying attributes,
 elements, and CDATA) as necessary in order to convey the desired
 information. The only defined XML stanzas are <message/>,
 <presence/>, and <iq/> as defined under XML Stanzas (Section 9);
 an XML element sent for the purpose of stream encryption (Section

5), stream authentication (Section 6), or server dialback (Section

Saint-Andre & Miller Expires April 25, 2004 [Page 11]

Internet-Draft XMPP Core October 2003

 8) is not considered to be an XML stanza.

 Consider the example of a client's session with a server. In order to
 connect to a server, a client MUST initiate an XML stream by sending
 an opening <stream> tag to the server, optionally preceded by a text
 declaration specifying the XML version and the character encoding
 supported (see Inclusion of Text Declaration (Section 10.4); see also
 Character Encoding (Section 10.5)). Subject to local policies and
 service provisioning, the server SHOULD then reply with a second XML
 stream back to the client, again optionally preceded by a text
 declaration. Once the client has completed Stream Authentication
 (Section 6), the client MAY send an unbounded number of XML stanzas
 over the stream to any recipient on the network. When the client
 desires to close the stream, it simply sends a closing </stream> tag
 to the server (alternatively, the stream may be closed by the
 server), after which both the client and server SHOULD close the
 underlying TCP connection as well.

 Those who are accustomed to thinking of XML in a document-centric
 manner may wish to view a client's session with a server as
 consisting of two open-ended XML documents: one from the client to
 the server and one from the server to the client. From this
 perspective, the root <stream/> element can be considered the
 document entity for each "document", and the two "documents" are
 built up through the accumulation of XML stanzas sent over the two
 XML streams. However, this perspective is a convenience only, and
 XMPP does not deal in documents but in XML streams and XML stanzas.

 In essence, then, an XML stream acts as an envelope for all the XML
 stanzas sent during a session. We can represent this in a simplistic
 fashion as follows:

 |--------------------|
<stream>
<presence>
<show/>
</presence>

<message to='foo'>
<body/>
</message>

<iq to='bar'>
<query/>
</iq>

...

Saint-Andre & Miller Expires April 25, 2004 [Page 12]

Internet-Draft XMPP Core October 2003

 |--------------------|
</stream>

4.2 Stream Attributes

 The attributes of the stream element are as follows:

 o to -- The 'to' attribute SHOULD be used only in the XML stream
 header from the initiating entity to the receiving entity, and
 MUST be set to the JID of the receiving entity. There SHOULD be no
 'to' attribute set in the XML stream header by which the receiving
 entity replies to the initiating entity; however, if a 'to'
 attribute is included, it SHOULD be silently ignored by the
 initiating entity.

 o from -- The 'from' attribute SHOULD be used only in the XML stream
 header from the receiving entity to the initiating entity, and
 MUST be set to the JID of the receiving entity granting access to
 the initiating entity. There SHOULD be no 'from' attribute on the
 XML stream header sent from the initiating entity to the receiving
 entity; however, if a 'from' attribute is included, it SHOULD be
 silently ignored by the receiving entity.

 o id -- The 'id' attribute SHOULD be used only in the XML stream
 header from the receiving entity to the initiating entity. This
 attribute is a unique identifier created by the receiving entity
 to function as a session key for the initiating entity's streams
 with the receiving entity, and MUST be unique within the receiving
 application (normally a server). There SHOULD be no 'id' attribute
 on the XML stream header sent from the initiating entity to the
 receiving entity; however, if an 'id' attribute is included, it
 SHOULD be silently ignored by the receiving entity.

 o xml:lang -- An 'xml:lang' attribute (as defined in Section 2.12 of
 the XML specification [1]) SHOULD be included by the initiating
 entity on the header for the initial stream to specify the default
 language of any human-readable XML character data it sends over
 that stream. If included, the receiving entity SHOULD remember
 that value as the default for both the initial stream and the
 response stream; if not included, the receiving entity SHOULD use
 a configurable default value for both streams, which it MUST
 communicate in the header for the response stream. For all stanzas
 sent over the initial stream, if the initiating entity does not
 include an 'xml:lang' attribute, the receiving entity SHOULD apply
 the default value; if the initiating entity does include an
 'xml:lang' attribute, the receiving entity MUST NOT modify or

Saint-Andre & Miller Expires April 25, 2004 [Page 13]

Internet-Draft XMPP Core October 2003

 delete it (see also xml:lang (Section 9.1.5)). The value of the
 'xml:lang' attribute MUST be an NMTOKEN and MUST conform to the
 format defined in RFC 3066 [16].

 o version -- The presence of the version attribute set to a value of
 "1.0" signals support for the stream-related protocols (including
 stream features) defined in this specification. Detailed rules
 regarding generation and handling of this attribute are defined
 below.

 We can summarize as follows:

 | initiating to receiving | receiving to initiating
 ---------+---------------------------+-----------------------
 to | hostname of receiver | silently ignored
 from | silently ignored | hostname of receiver
 id | silently ignored | session key
 xml:lang | default language | default language
 version | signals XMPP 1.0 support | signals XMPP 1.0 support

4.2.1 Version Support

 The following rules apply to the generation and handling of the
 'version' attribute:

 1. If the initiating entity complies with the XML streams protocol
 defined herein (including Stream Encryption (Section 5), Stream
 Authentication (Section 6), and Stream Errors (Section 4.6)), it
 MUST include the 'version' attribute in the XML stream header it
 sends to the receiving entity, and it MUST set the value of the
 'version' attribute to "1.0".

 2. If the initiating entity includes the 'version' attribute set to
 a value of "1.0" in its stream header and the receiving entity
 supports XMPP 1.0, the receiving entity MUST reciprocate by
 including the 'version' attribute set to a value of "1.0" in its
 stream header response.

 3. If the initiating entity does not include the 'version' attribute
 in its stream header, the receiving entity still SHOULD include
 the 'version' attribute set to a value of "1.0" in its stream
 header response.

 4. If the initiating entity includes the 'version' attribute set to
 a value other than "1.0", the receiving entity SHOULD include the
 'version' attribute set to a value of "1.0" in its stream header
 response, but MAY at its discretion generate an

https://datatracker.ietf.org/doc/html/rfc3066

Saint-Andre & Miller Expires April 25, 2004 [Page 14]

Internet-Draft XMPP Core October 2003

 <unsupported-version/> stream error and terminate the XML stream
 and underlying TCP connection.

 5. If the receiving entity includes the 'version' attribute set to a
 value other than "1.0" in its stream header response, the
 initiating entity SHOULD generate an <unsupported-version/>
 stream error and terminate the XML stream and underlying TCP
 connection.

4.3 Namespace Declarations

 The stream element MUST possess both a streams namespace declaration
 and a default namespace declaration (as "namespace declaration" is
 defined in the XML namespaces specification [10]). For detailed
 information regarding the streams namespace and default namespace,
 see Namespace Names and Prefixes (Section 10.2).

4.4 Stream Features

 If the initiating entity includes the 'version' attribute set to a
 value of "1.0" in the initial stream header, the receiving entity
 MUST send a <features/> child element (prefixed by the streams
 namespace prefix) to the initiating entity in order to announce any
 stream-level features that can be negotiated (or capabilities that
 otherwise need to be advertised). Currently this is used only for
 Stream Encryption (Section 5), Stream Authentication (Section 6), and
 Resource Binding (Section 7) as defined herein, and for Session
 Establishment as defined in XMPP IM [21]; however, the stream
 features functionality could be used to advertise other negotiable
 features in the future. If an entity does not understand or support
 some features, it SHOULD silently ignore them.

4.5 Stream Encryption and Authentication

 XML streams in XMPP 1.0 SHOULD be encrypted as defined under Stream
 Encryption (Section 5) and MUST be authenticated as defined under
 Stream Authentication (Section 6). If the initiating entity attempts
 to send an XML Stanza (Section 9) before the stream has been
 authenticated, the receiving entity SHOULD return a <not-authorized/>
 stream error to the initiating entity and then terminate both the XML
 stream and the underlying TCP connection.

4.6 Stream Errors

 The root stream element MAY contain an <error/> child element that is
 prefixed by the streams namespace prefix. The error child MUST be
 sent by a compliant entity (usually a server rather than a client) if

Saint-Andre & Miller Expires April 25, 2004 [Page 15]

Internet-Draft XMPP Core October 2003

 it perceives that a stream-level error has occurred.

4.6.1 Rules

 The following rules apply to stream-level errors:

 o It is assumed that all stream-level errors are unrecoverable;
 therefore, if an error occurs at the level of the stream, the
 entity that detects the error MUST send a stream error to the
 other entity, send a closing </stream> tag, and terminate the
 underlying TCP connection.

 o If the error occurs while the stream is being set up, the
 receiving entity MUST still send the opening <stream> tag, include
 the <error/> element as a child of the stream element, send the
 closing </stream> tag, and terminate the underlying TCP
 connection. In this case, if the initiating entity provides an
 unknown host in the 'to' attribute (or provides no 'to' attribute
 at all), the server SHOULD provide the server's authoritative
 hostname in the 'from' attribute of the stream header sent before
 termination.

4.6.2 Syntax

 The syntax for stream errors is as follows:

 <stream:error>
 <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
 <text xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
 OPTIONAL descriptive text
 </text>
 [OPTIONAL application-specific condition element]
 </stream:error>

 The <error/> element:

 o MUST contain a child element corresponding to one of the defined
 stanza error conditions defined below; this element MUST be
 qualified by the 'urn:ietf:params:xml:ns:xmpp-streamstreams'
 namespace (this namespace name adheres to the format defined in
 The IETF XML Registry [24])

 o MAY contain a <text/> child containing CDATA that describes the
 error in more detail; this element MUST be qualified by the
 'urn:ietf:params:xml:ns:xmpp-streams' namespace and SHOULD possess
 an 'xml:lang' attribute

Saint-Andre & Miller Expires April 25, 2004 [Page 16]

Internet-Draft XMPP Core October 2003

 o MAY contain a child element for an application-specific error
 condition; this element MUST be qualified by an
 application-defined namespace, and its structure is defined by
 that namespace

 The <text/> element is OPTIONAL. If included, it SHOULD be used only
 to provide descriptive or diagnostic information that supplements the
 meaning of a defined condition or application-specific condition. It
 SHOULD NOT be interpreted programmatically by an application. It
 SHOULD NOT be used as the error message presented to a user, but MAY
 be shown in addition to the error message associated with the
 included condition element (or elements).

4.6.3 Defined Conditions

 The following stream-level error conditions are defined:

 o <bad-format/> -- the entity has sent XML that cannot be processed;
 this error MAY be used rather than more specific XML-related
 errors such as <bad-namespace-prefix/>, <invalid-xml/>,
 <restricted-xml/>, <unsupported-encoding/>, and
 <xml-not-well-formed/>, although the more specific errors are
 preferred.

 o <bad-namespace-prefix/> -- the entity has sent a namespace prefix
 that is unsupported, or has sent no namespace prefix on an element
 that requires such a prefix (see XML Namespace Names and Prefixes
 (Section 10.2)).

 o <conflict/> -- the server is closing the active stream for this
 entity because a new stream has been initiated that conflicts with
 the existing stream.

 o <connection-timeout/> -- the entity has not generated any traffic
 over the stream for some period of time (configurable according to
 a local service policy).

 o <host-gone/> -- the value of the 'to' attribute provided by the
 initiating entity in the stream header corresponds to a hostname
 that is no longer hosted by the server.

 o <host-unknown/> -- the value of the 'to' attribute provided by the
 initiating entity in the stream header does not correspond to a
 hostname that is hosted by the server.

 o <improper-addressing/> -- a stanza sent between two servers lacks
 a 'to' or 'from' attribute (or the attribute has no value).

Saint-Andre & Miller Expires April 25, 2004 [Page 17]

Internet-Draft XMPP Core October 2003

 o <internal-server-error/> -- the server has experienced a
 misconfiguration or an otherwise-undefined internal error that
 prevents it from servicing the stream.

 o <invalid-from/> -- the JID or hostname provided in a 'from'
 address does not match an authorized JID or validated domain
 negotiated between servers via SASL or dialback, or between a
 client and a server via authentication and resource authorization.

 o <invalid-id/> -- the stream ID or dialback ID is invalid or does
 not match an ID previously provided.

 o <invalid-namespace/> -- the streams namespace name is something
 other than "http://etherx.jabber.org/streams" or the dialback
 namespace name is something other than "jabber:server:dialback"
 (see XML Namespace Names and Prefixes (Section 10.2)).

 o <invalid-xml/> -- the entity has sent invalid XML over the stream
 to a server that performs validation (see Validation (Section

10.3)).

 o <not-authorized/> -- the entity has attempted to send data before
 the stream has been authenticated, or otherwise is not authorized
 to perform an action related to stream negotiation; the receiving
 entity MUST NOT process the offending stanza before sending the
 stream error.

 o <policy-violation/> -- the entity has violated some local service
 policy; the server MAY choose to specify the policy in the <text/>
 element.

 o <remote-connection-failed/> -- the server is unable to properly
 connect to a remote resource that is required for authentication
 or authorization.

 o <resource-constraint/> -- the server lacks the system resources
 necessary to service the stream.

 o <restricted-xml/> -- the entity has attempted to send restricted
 XML features such as a comment, processing instruction, DTD,
 entity reference, or unescaped character (see Restrictions
 (Section 10.1)).

 o <see-other-host/> -- the server will not provide service to the
 initiating entity but is redirecting traffic to another host; the
 server SHOULD specify the alternate hostname or IP address in the
 CDATA of the <see-other-host/> element.

Saint-Andre & Miller Expires April 25, 2004 [Page 18]

Internet-Draft XMPP Core October 2003

 o <system-shutdown/> -- the server is being shut down and all active
 streams are being closed.

 o <undefined-condition/> -- the error condition is not one of those
 defined by the other conditions in this list; this error condition
 SHOULD be used only in conjunction with an application-specific
 condition.

 o <unsupported-encoding/> -- the initiating entity has encoded the
 stream in an encoding that is not supported by the server (see
 Character Encoding (Section 10.5)).

 o <unsupported-stanza-type/> -- the initiating entity has sent a
 first-level child of the stream that is not supported by the
 server.

 o <unsupported-version/> -- the value of the 'version' attribute
 provided by the initiating entity in the stream header specifies a
 version of XMPP that is not supported by the server; the server
 MAY specify the version(s) it supports in the <text/> element.

 o <xml-not-well-formed/> -- the initiating entity has sent XML that
 is not well-formed as defined by the XML specification [1].

4.6.4 Application-Specific Conditions

 As noted, an application MAY provide application-specific stream
 error information by including a properly-namespaced child in the
 error element. The application-specific element SHOULD supplement or
 further qualify a defined element. Thus the <error/> element will
 contain two or three child elements:

 <stream:error>
 <xml-not-well-formed
 xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
 <text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-streams'>
 Some special application diagnostic information!
 </text>
 <escape-your-data xmlns='application-ns'/>
 </stream:error>
 </stream:stream>

4.7 Simplified Stream Examples

 This section contains two simplified examples of a stream-based
 "session" of a client on a server (where the "C" lines are sent from

Saint-Andre & Miller Expires April 25, 2004 [Page 19]

Internet-Draft XMPP Core October 2003

 the client to the server, and the "S" lines are sent from the server
 to the client); these examples are included for the purpose of
 illustrating the concepts introduced thus far.

 A basic "session":

 C: <?xml version='1.0'?>
 <stream:stream
 to='example.com'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 S: <?xml version='1.0'?>
 <stream:stream
 from='example.com'
 id='someid'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 ... encryption, authentication, and resource binding ...
 C: <message from='juliet@example.com'
 to='romeo@example.net'
 xml:lang='en'>
 C: <body>Art thou not Romeo, and a Montague?</body>
 C: </message>
 S: <message from='romeo@example.net'
 to='juliet@example.com'
 xml:lang='en'>
 S: <body>Neither, fair saint, if either thee dislike.</body>
 S: </message>
 C: </stream:stream>
 S: </stream:stream>

 A "session" gone bad:

 C: <?xml version='1.0'?>
 <stream:stream
 to='example.com'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>
 S: <?xml version='1.0'?>
 <stream:stream
 from='example.com'
 id='someid'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 version='1.0'>

Saint-Andre & Miller Expires April 25, 2004 [Page 20]

Internet-Draft XMPP Core October 2003

 ... encryption, authentication, and resource binding ...
 C: <message xml:lang='en'>
 <body>Bad XML, no closing body tag!
 </message>
 S: <stream:error>
 <xml-not-well-formed
 xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
 </stream:error>
 S: </stream:stream>

5. Stream Encryption

5.1 Overview

 XMPP includes a method for securing the stream from tampering and
 eavesdropping. This channel encryption method makes use of the
 Transport Layer Security (TLS) [11] protocol, along with a "STARTTLS"
 extension that is modelled after similar extensions for the IMAP
 [25], POP3 [26], and ACAP [27] protocols as described in RFC 2595
 [28]. The namespace name for the STARTTLS extension is
 'urn:ietf:params:xml:ns:xmpp-tls', which adheres to the format
 defined in The IETF XML Registry [24].

 An administrator of a given domain MAY require the use of TLS for
 client-to-server communications, server-to-server communications, or
 both. Clients SHOULD use TLS to secure the streams prior to
 attempting to complete Stream Authentication (Section 6), and servers
 SHOULD use TLS between two domains for the purpose of securing
 server-to-server communications.

 The following rules apply:

 1. An initiating entity that complies with this specification MUST
 include the 'version' attribute set to a value of "1.0" in the
 initial stream header.

 2. If the TLS negotiation occurs between two servers,
 communications MUST NOT proceed until the Domain Name System
 (DNS) hostnames asserted by the servers have been resolved (see
 Server-to-Server Communications (Section 13.3)).

 3. When a receiving entity that complies with this specification
 receives an initial stream header that includes the 'version'
 attribute set to a value of "1.0", after sending a stream header
 in reply (including the version flag) it MUST include a
 <starttls/> element (qualified by the
 'urn:ietf:params:xml:ns:xmpp-tls' namespace) along with the list

https://datatracker.ietf.org/doc/html/rfc2595

Saint-Andre & Miller Expires April 25, 2004 [Page 21]

Internet-Draft XMPP Core October 2003

 of other stream features it supports.

 4. If the initiating entity chooses to use TLS for stream
 encryption, TLS negotiation MUST be completed before proceeding
 to SASL negotiation; this order of negotiation is required in
 order to help safeguard authentication information sent during
 SASL negotiation, as well as to make it possible to base the use
 of the SASL EXTERNAL mechanism on a certificate provided during
 prior TLS negotiation.

 5. During TLS negotiation, an entity MUST NOT send any white space
 characters (matching production [3] content of the XML
 specification [1]) within the root stream element as separators
 between elements (any white space characters shown in the TLS
 examples below are included for the sake of readability only);
 this prohibition helps to ensure proper security layer byte
 precision.

 6. The receiving entity MUST consider the TLS negotiation to have
 begun immediately after sending the closing ">" character of the
 <proceed/> element. The initiating entity MUST consider the TLS
 negotiation to have begun immediately after receiving the
 closing ">" character of the <proceed/> element from the
 receiving entity.

 7. The initiating entity MUST validate the certificate presented by
 the receiving entity; there are two cases:

 Case 1 -- The initiating entity has been configured with a set
 of trusted root certificates: Normal certificate validation
 processing is appropriate, and SHOULD follow the rules
 defined for HTTP over TLS [12]. The trusted roots may be
 either a well-known public set or a manually configured Root
 CA (e.g., an organization's own Certificate Authority or a
 self-signed Root CA for the service as defined under High
 Security (Section 13.1)). This case is RECOMMENDED.

 Case 2 -- The initiating entity has been configured with the
 receiving entity's self-signed service certificate: Simple
 comparison of public keys is appropriate. This case is NOT
 RECOMMENDED (see High Security (Section 13.1) for details).

 If the above methods fail, the certificate SHOULD be presented
 to a human (e.g., an end user or server administrator) for
 approval; if presented, the receiver MUST deliver the entire
 certificate chain to the human, who SHOULD be given the option
 to store the Root CA certificate (not the service or End Entity
 certificate) and to not be queried again regarding acceptance of

Saint-Andre & Miller Expires April 25, 2004 [Page 22]

Internet-Draft XMPP Core October 2003

 the certificate for some reasonable period of time.

 8. If the TLS negotiation is successful, the receiving entity MUST
 discard any knowledge obtained from the initiating entity before
 TLS takes effect.

 9. If the TLS negotiation is successful, the initiating entity MUST
 discard any knowledge obtained from the receiving entity before
 TLS takes effect.

 10. If the TLS negotiation is successful, the receiving entity MUST
 NOT offer the STARTTLS extension to the initiating entity along
 with the other stream features that are offered when the stream
 is restarted.

 11. If the TLS negotiation is successful, the initiating entity MUST
 continue with SASL negotiation.

 12. If the TLS negotiation results in failure, the receiving entity
 MUST terminate both the XML stream and the underlying TCP
 connection.

 13. See Mandatory-to-Implement Technologies (Section 13.5) regarding
 mechanisms that MUST be supported.

5.2 Narrative

 When an initiating entity secures a stream with a receiving entity,
 the steps involved are as follows:

 1. The initiating entity opens a TCP connection and initiates the
 stream by sending the opening XML stream header to the receiving
 entity, including the 'version' attribute set to a value of
 "1.0".

 2. The receiving entity responds by opening a TCP connection and
 sending an XML stream header to the initiating entity, including
 the 'version' attribute set to a value of "1.0".

 3. The receiving entity offers the STARTTLS extension to the
 initiating entity by including it with the list of other
 supported stream features (if TLS is required for interaction
 with the receiving entity, it SHOULD signal that fact by
 including a <required/> element as a child of the <starttls/>
 element).

 4. The initiating entity issues the STARTTLS command (i.e., a

Saint-Andre & Miller Expires April 25, 2004 [Page 23]

Internet-Draft XMPP Core October 2003

 <starttls/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-tls' namespace) to instruct the
 receiving entity that it wishes to begin a TLS negotiation to
 secure the stream.

 5. The receiving entity MUST reply with either a <proceed/> element
 or a <failure/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-tls' namespace. If the failure case
 occurs, the receiving entity MUST terminate both the XML stream
 and the underlying TCP connection. If the proceed case occurs,
 the entities MUST attempt to complete the TLS negotiation over
 the TCP connection and MUST NOT send any further XML data until
 the TLS negotiation is complete.

 6. The initiating entity and receiving entity attempt to complete a
 TLS negotiation in accordance with RFC 2246 [11].

 7. If the TLS negotiation is unsuccessful, the receiving entity MUST
 terminate the TCP connection (it is not necessary to send a
 closing </stream> tag first, since the receiving entity and
 initiating entity MUST consider the original stream to be closed
 upon sending or receiving the <success/> element). If the TLS
 negotiation is successful, the initiating entity MUST initiate a
 new stream by sending an opening XML stream header to the
 receiving entity.

 8. Upon receiving the new stream header from the initiating entity,
 the receiving entity MUST respond by sending a new XML stream
 header to the initiating entity along with the available features
 (but NOT including the STARTTLS feature).

5.3 Client-to-Server Example

 The following example shows the data flow for a client securing a
 stream using STARTTLS (note: the alternate steps shown below are
 provided to illustrate the protocol for failure cases; they are not
 exhaustive and would not necessarily be triggered by the data sent in
 the example).

 Step 1: Client initiates stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

https://datatracker.ietf.org/doc/html/rfc2246

Saint-Andre & Miller Expires April 25, 2004 [Page 24]

Internet-Draft XMPP Core October 2003

 Step 2: Server responds by sending a stream tag to client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='c2s_123'
 from='example.com'
 version='1.0'>

 Step 3: Server sends the STARTTLS extension to client along with
 authentication mechanisms and any other stream features:

 <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
 <required/>
 </starttls>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Client sends the STARTTLS command to server:

 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 Step 5: Server informs client to proceed:

 <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 Step 5 (alt): Server informs client that TLS negotiation has failed
 and closes both stream and TCP connection:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 </stream:stream>

 Step 6: Client and server attempt to complete TLS negotiation over
 the existing TCP connection.

 Step 7: If TLS negotiation is successful, client initiates a new
 stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

Saint-Andre & Miller Expires April 25, 2004 [Page 25]

Internet-Draft XMPP Core October 2003

 Step 7 (alt): If TLS negotiation is unsuccessful, Server2 closes TCP
 connection.

 Step 8: Server responds by sending a stream header to client along
 with any available stream features:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='example.com'
 id='c2s_234'
 version='1.0'>
 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <mechanism>EXTERNAL</mechanism>
 </mechanisms>
 </stream:features>

 Step 9: Client continues with Stream Authentication (Section 6).

5.4 Server-to-Server Example

 The following example shows the data flow for two servers securing a
 stream using STARTTLS (note: the alternate steps shown below are
 provided to illustrate the protocol for failure cases; they are not
 exhaustive and would not necessarily be triggered by the data sent in
 the example).

 Step 1: Server1 initiates stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

 Step 2: Server2 responds by sending a stream tag to Server1:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='example.com'
 id='s2s_123'
 version='1.0'>

Saint-Andre & Miller Expires April 25, 2004 [Page 26]

Internet-Draft XMPP Core October 2003

 Step 3: Server2 sends the STARTTLS extension to Server1 along with
 authentication mechanisms and any other stream features:

 <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 <required/>
 </starttls>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>KERBEROS_V4</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Server1 sends the STARTTLS command to Server2:

 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 Step 5: Server2 informs Server1 to proceed:

 <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 Step 5 (alt): Server2 informs Server1 that TLS negotiation has failed
 and closes stream:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
 </stream:stream>

 Step 6: Server1 and Server2 attempt to complete TLS negotiation via
 TCP.

 Step 7: If TLS negotiation is successful, Server1 initiates a new
 stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

 Step 7 (alt): If TLS negotiation is unsuccessful, server closes TCP
 connection.

 Step 8: Server2 responds by sending a stream header to Server1 along
 with any available stream features:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'

Saint-Andre & Miller Expires April 25, 2004 [Page 27]

Internet-Draft XMPP Core October 2003

 from='example.com'
 id='s2s_234'
 version='1.0'>
 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>KERBEROS_V4</mechanism>
 <mechanism>EXTERNAL</mechanism>
 </mechanisms>
 </stream:features>

 Step 9: Server1 continues with Stream Authentication (Section 6).

6. Stream Authentication

6.1 Overview

 XMPP includes a method for authenticating a stream by means of an
 XMPP-specific profile of the Simple Authentication and Security Layer
 (SASL) [13]. SASL provides a generalized method for adding
 authentication support to connection-based protocols, and XMPP uses a
 generic XML namespace profile for SASL that conforms to Section 4
 ("Profiling Requirements") of RFC 2222 [13] (the namespace name that
 qualifies XML elements used in stream authentication is
 'urn:ietf:params:xml:ns:xmpp-sasl', which adheres to the format
 defined in The IETF XML Registry [24]).

 The following rules apply:

 1. If the SASL negotiation occurs between two servers,
 communications MUST NOT proceed until the Domain Name System
 (DNS) hostnames asserted by the servers have been resolved (see
 Server-to-Server Communications (Section 13.3)).

 2. If the initiating entity is capable of stream authentication via
 SASL, it MUST include the 'version' attribute set to a value of
 "1.0" in the initial stream header.

 3. If the receiving entity is capable of stream authentication via
 SASL, it MUST send one or more authentication mechanisms within
 a <mechanisms/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace in reply to the
 opening stream tag received from the initiating entity (if the
 opening stream tag included the 'version' attribute set to a
 value of "1.0").

 4. During SASL negotiation, an entity MUST NOT send any white space
 characters (matching production [3] content of the XML

https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires April 25, 2004 [Page 28]

Internet-Draft XMPP Core October 2003

 specification [1]) within the root stream element as separators
 between elements (any white space characters shown in the SASL
 examples below are included for the sake of readability only);
 this prohibition helps to ensure proper security layer byte
 precision.

 5. Any character data contained within the XML elements used during
 SASL negotiation MUST be encoded using base64 [14].

 6. If supported by the selected SASL mechanism, the initiating
 entity SHOULD provide a username during SASL negotiation. The
 username-value SHOULD be the initiating entity's sending domain
 in the case of server-to-server communications, and SHOULD be
 the initiating entity's registered username in the case of
 client-to-server communications.

 7. If supported by the selected SASL mechanism, the initiating
 entity MAY provide an authorization identity during SASL
 negotiation, which SHOULD be a non-default identity for which
 the entity is seeking authorization to impersonate (i.e., not
 the default authorization identity, which is derived from the
 authentication identity as described in RFC 2222 [13]). If
 provided, the authzid-value MUST be of the form <domain> (i.e.,
 a domain identifier only) for servers and of the form
 <node@domain> (i.e., node identifier and domain identifier) for
 clients.

 8. Upon successful SASL negotiation that involves negotiation of a
 security layer, the receiving entity MUST discard any knowledge
 obtained from the initiating entity which was not obtained from
 the SASL negotiation itself.

 9. Upon successful SASL negotiation that involves negotiation of a
 security layer, the initiating entity MUST discard any knowledge
 obtained from the receiving entity which was not obtained from
 the SASL negotiation itself.

 10. See Mandatory-to-Implement Technologies (Section 13.5) regarding
 mechanisms that MUST be supported.

6.2 Narrative

 When an initiating entity authenticates with a receiving entity, the
 steps involved are as follows:

 1. The initiating entity requests SASL authentication by including
 the 'version' attribute in the opening XML stream header sent to

https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires April 25, 2004 [Page 29]

Internet-Draft XMPP Core October 2003

 the receiving entity, with the value set to "1.0".

 2. After sending an XML stream header in reply, the receiving entity
 sends a list of available SASL authentication mechanisms; each of
 these is a <mechanism/> element included as a child within a
 <mechanisms/> container element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace, which in turn is a
 child of a <features/> element in the streams namespace. If
 Stream Encryption (Section 5) needs to be established before a
 particular authentication mechanism may be used, the receiving
 entity MUST NOT provide that mechanism in the list of available
 SASL authentication mechanisms prior to stream encryption. If the
 initiating entity presents a valid certificate during prior TLS
 negotiation, the receiving entity SHOULD offer the SASL EXTERNAL
 mechanism to the initiating entity during stream authentication
 (refer to RFC 2222 [13]), although the EXTERNAL mechanism MAY be
 offered under other circumstances as well.

 3. The initiating entity selects a mechanism by sending an <auth/>
 element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
 namespace to the receiving entity and including an appropriate
 value for the 'mechanism' attribute; this element MAY optionally
 contain character data (in SASL terminology, the "initial
 response") if the mechanism supports or requires it. If the
 initiating entity selects the EXTERNAL mechanism for
 authentication and presented a certificate during prior TLS
 negotiation, the authentication credentials SHOULD be taken from
 that certificate.

 4. If necessary, the receiving entity challenges the initiating
 entity by sending a <challenge/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
 entity; this element MAY optionally contain character data (which
 MUST be computed in accordance with the definition of the SASL
 mechanism chosen by the initiating entity).

 5. The initiating entity responds to the challenge by sending a
 <response/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the receiving
 entity; this element MAY optionally contain character data (which
 MUST be computed in accordance with the definition of the SASL
 mechanism chosen by the initiating entity).

 6. If necessary, the receiving entity sends more challenges and the
 initiating entity sends more responses.

 This series of challenge/response pairs continues until one of three
 things happens:

https://datatracker.ietf.org/doc/html/rfc2222

Saint-Andre & Miller Expires April 25, 2004 [Page 30]

Internet-Draft XMPP Core October 2003

 1. The initiating entity aborts the handshake by sending an <abort/>
 element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
 namespace to the receiving entity. Upon receiving an <abort/>
 element, the receiving entity SHOULD allow a configurable but
 reasonable number of retries (at least 2), after which it MUST
 terminate the TCP connection; this allows the initiating entity
 (e.g., an end-user client) to tolerate incorrectly-provided
 credentials (e.g., a mistyped password) without being forced to
 reconnect.

 2. The receiving entity reports failure of the handshake by sending
 a <failure/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
 entity (the particular cause of failure SHOULD be communicated in
 an appropriate child element of the <failure/> element as defined
 under SASL Errors (Section 6.4)). If the failure case occurs, the
 receiving entity SHOULD allow a configurable but reasonable
 number of retries (at least 2), after which it MUST terminate the
 TCP connection; this allows the initiating entity (e.g., an
 end-user client) to tolerate incorrectly-provided credentials
 (e.g., a mistyped password) without being forced to reconnect.

 3. The receiving entity reports success of the handshake by sending
 a <success/> element qualified by the
 'urn:ietf:params:xml:ns:xmpp-sasl' namespace to the initiating
 entity; this element MAY optionally contain character data (in
 SASL terminology, "additional data with success") if required by
 the chosen SASL mechanism. Upon receiving the <success/> element,
 the initiating entity MUST initiate a new stream by sending an
 opening XML stream header to the receiving entity (it is not
 necessary to send a closing </stream> tag first, since the
 receiving entity and initiating entity MUST consider the original
 stream to be closed upon sending or receiving the <success/>
 element). Upon receiving the new stream header from the
 initiating entity, the receiving entity MUST respond by sending a
 new XML stream header to the initiating entity, along with any
 available features (but NOT including the STARTTLS feature) or an
 empty <features/> element (to signify that no additional features
 are available); any such additional features not defined herein
 MUST be defined by the relevant extension to XMPP.

6.3 SASL Definition

Section 4 of the SASL specification [13] requires that the following
 information be supplied by a protocol definition:

Saint-Andre & Miller Expires April 25, 2004 [Page 31]

Internet-Draft XMPP Core October 2003

 service name: "xmpp"

 initiation sequence: After the initiating entity provides an opening
 XML stream header and the receiving entity replies in kind, the
 receiving entity provides a list of acceptable authentication
 methods. The initiating entity chooses one method from the list
 and sends it to the receiving entity as the value of the
 'mechanism' attribute possessed by an <auth/> element, optionally
 including an initial response to avoid a round trip.

 exchange sequence: Challenges and responses are carried through the
 exchange of <challenge/> elements from receiving entity to
 initiating entity and <response/> elements from initiating entity
 to receiving entity. The receiving entity reports failure by
 sending a <failure/> element and success by sending a <success/>
 element; the initiating entity aborts the exchange by sending an
 <abort/> element. Upon successful negotiation, both sides consider
 the original XML stream to be closed and new stream headers are
 sent by both entities.

 security layer negotiation: The security layer takes effect
 immediately after sending the closing ">" character of the
 <success/> element for the receiving entity, and immediately after
 receiving the closing ">" character of the <success/> element for
 the initiating entity. The order of layers is first TCP, then TLS,
 then SASL, then XMPP.

 use of the authorization identity: The authorization identity may be
 used by xmpp to denote the <node@domain> of a client or the
 sending <domain> of a server.

6.4 SASL Errors

 The following SASL-related error conditions are defined:

 o <aborted/> -- The receiving entity acknowledges an <abort/>
 element sent by the initiating entity; sent in reply to the
 <abort/> element.

 o <incorrect-encoding/> -- The data provided by the initiating
 entity could not be processed because the base64 [14] encoding is
 incorrect; sent in reply to a <response/> element or an <auth/>
 element with initial challenge data.

 o <invalid-authzid/> -- The authzid provided by the initiating
 entity is invalid, either because it is incorrectly formatted or
 because the initiating entity does not have permissions to

Saint-Andre & Miller Expires April 25, 2004 [Page 32]

Internet-Draft XMPP Core October 2003

 authorize that ID; sent in reply to a <response/> element or an
 <auth/> element with initial challenge data.

 o <invalid-mechanism/> -- The initiating entity did not provide a
 mechanism or requested a mechanism that is not supported by the
 receiving entity; sent in reply to an <auth/> element.

 o <mechanism-too-weak/> -- The mechanism requested by the initiating
 entity is weaker than server policy permits for that initiating
 entity; sent in reply to a <response/> element or an <auth/>
 element with initial challenge data.

 o <not-authorized/> -- The authentication failed because the
 initiating entity did not provide valid credentials (this includes
 but is not limited to the case of an unknown username); sent in
 reply to a <response/> element or an <auth/> element with initial
 challenge data.

 o <temporary-auth-failure/> -- The authentication failed because of
 a temporary error condition within the receiving entity; sent in
 reply to an <auth/> element or <response/> element.

6.5 Client-to-Server Example

 The following example shows the data flow for a client authenticating
 with a server using SASL, normally after successful TLS negotiation
 (note: the alternate steps shown below are provided to illustrate the
 protocol for failure cases; they are not exhaustive and would not
 necessarily be triggered by the data sent in the example).

 Step 1: Client initiates stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

 Step 2: Server responds with a stream tag sent to client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='c2s_234'
 from='example.com'
 version='1.0'>

Saint-Andre & Miller Expires April 25, 2004 [Page 33]

Internet-Draft XMPP Core October 2003

 Step 3: Server informs client of available authentication mechanisms:

 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Client selects an authentication mechanism:

 <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='DIGEST-MD5'/>

 Step 5: Server sends a base64 [14]-encoded challenge to client:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09InNvbWVyZWFsbSIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIixxb3A9ImF1dGgi
 LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNzCg==
 </challenge>

 The decoded challenge is:

 realm="somerealm",nonce="OA6MG9tEQGm2hh",\
 qop="auth",charset=utf-8,algorithm=md5-sess

 Step 5 (alt): Server returns error to client:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <incorrect-encoding/>
 </failure>
 </stream:stream>

 Step 6: Client sends a base64 [14]-encoded response to the challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InNvbWVub2RlIixyZWFsbT0ic29tZXJlYWxtIixub25jZT0i
 T0E2TUc5dEVRR20yaGgiLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLG5jPTAw
 MDAwMDAxLHFvcD1hdXRoLGRpZ2VzdC11cmk9InhtcHAvZXhhbXBsZS5jb20i
 LHJlc3BvbnNlPWQzODhkYWQ5MGQ0YmJkNzYwYTE1MjMyMWYyMTQzYWY3LGNo
 YXJzZXQ9dXRmLTgK
 </response>

 The decoded response is:

 username="somenode",realm="somerealm",\
 nonce="OA6MG9tEQGm2hh",cnonce="OA6MHXh6VqTrRk",\
 nc=00000001,qop=auth,digest-uri="xmpp/example.com",\

Saint-Andre & Miller Expires April 25, 2004 [Page 34]

Internet-Draft XMPP Core October 2003

 response=d388dad90d4bbd760a152321f2143af7,charset=utf-8

 Step 7: Server sends another base64 [14]-encoded challenge to client:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
 </challenge>

 The decoded challenge is:

 rspauth=ea40f60335c427b5527b84dbabcdfffd

 Step 7 (alt): Server returns error to client:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism-too-weak/>
 </failure>
 </stream:stream>

 Step 8: Client responds to the challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 9: Server informs client of successful authentication:

 <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 9 (alt): Server informs client of failed authentication:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <temporary-auth-failure/>
 </failure>
 </stream:stream>

 Step 10: Client initiates a new stream to server:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

 Step 11: Server responds by sending a stream header to client along
 with any additional features (or an empty features element):

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'

Saint-Andre & Miller Expires April 25, 2004 [Page 35]

Internet-Draft XMPP Core October 2003

 id='c2s_345'
 from='example.com'
 version='1.0'>
 <stream:features>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 <session xmlns='urn:ietf:params:xml:ns:xmpp-session'>
 </stream:features>

6.6 Server-to-Server Example

 The following example shows the data flow for a server authenticating
 with another server using SASL, normally after successful TLS
 negotiation (note: the alternate steps shown below are provided to
 illustrate the protocol for failure cases; they are not exhaustive
 and would not necessarily be triggered by the data sent in the
 example).

 Step 1: Server1 initiates stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

 Step 2: Server2 responds with a stream tag sent to Server1:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='example.com'
 id='s2s_234'
 version='1.0'>

 Step 3: Server2 informs Server1 of available authentication
 mechanisms:

 <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>KERBEROS_V4</mechanism>
 </mechanisms>
 </stream:features>

 Step 4: Server1 selects an authentication mechanism:

 <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'

Saint-Andre & Miller Expires April 25, 2004 [Page 36]

Internet-Draft XMPP Core October 2003

 mechanism='DIGEST-MD5'/>

 Step 5: Server2 sends a base64 [14]-encoded challenge to Server1:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InNvbWVkb21haW4iLHJlYWxtPSJzb21lcmVhbG0iLG5vbmNl
 PSJPQTZNRzl0RVFHbTJoaCIscW9wPSJhdXRoIixjaGFyc2V0PXV0Zi04LGFs
 Z29yaXRobT1tZDUtc2Vzcwo=
 </challenge>

 The decoded challenge is:

 username="somedomain",realm="somerealm",\
 nonce="OA6MG9tEQGm2hh",qop="auth",\
 charset=utf-8,algorithm=md5-sess

 Step 5 (alt): Server2 returns error to Server1:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <incorrect-encoding/>
 </failure>
 </stream:stream>

 Step 6: Server1 sends a base64 [14]-encoded response to the
 challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InNvbWVkb21haW4iLHJlYWxtPSJzb21lcmVhbG0iLG5vbmNl
 PSJPQTZNRzl0RVFHbTJoaCIsY25vbmNlPSJPQTZNSFhoNlZxVHJSayIsbmM9
 MDAwMDAwMDEscW9wPWF1dGgsZGlnZXN0LXVyaT0ieG1wcC9leGFtcGxlLmNv
 bSIscmVzcG9uc2U9ZDM4OGRhZDkwZDRiYmQ3NjBhMTUyMzIxZjIxNDNhZjcs
 Y2hhcnNldD11dGYtOAo=
 </response>

 The decoded response is:

 username="somedomain",realm="somerealm",\
 nonce="OA6MG9tEQGm2hh",cnonce="OA6MHXh6VqTrRk",\
 nc=00000001,qop=auth,digest-uri="xmpp/example.com",\
 response=d388dad90d4bbd760a152321f2143af7,charset=utf-8

 Step 7: Server2 sends another base64 [14]-encoded challenge to
 Server1:

 <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
 </challenge>

Saint-Andre & Miller Expires April 25, 2004 [Page 37]

Internet-Draft XMPP Core October 2003

 The decoded challenge is:

 rspauth=ea40f60335c427b5527b84dbabcdfffd

 Step 7 (alt): Server2 returns error to Server1:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <invalid-authzid/>
 </failure>
 </stream:stream>

 Step 8: Server1 responds to the challenge:

 <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 8 (alt): Server1 aborts negotiation:

 <abort xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 9: Server2 informs Server1 of successful authentication:

 <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

 Step 9 (alt): Server2 informs Server1 of failed authentication:

 <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <aborted/>
 </failure>
 </stream:stream>

 Step 10: Server1 initiates a new stream to Server2:

 <stream:stream
 xmlns='jabber:server'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>

 Step 11: Server2 responds by sending a stream header to Server1 along
 with any additional features (or an empty features element):

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 from='example.com'
 id='s2s_345'
 version='1.0'>
 <stream:features/>

Saint-Andre & Miller Expires April 25, 2004 [Page 38]

Internet-Draft XMPP Core October 2003

7. Resource Binding

 After Stream Authentication (Section 6) with the receiving entity,
 the initiating entity MAY want or need to bind a specific resource to
 that stream. In general this applies only to clients: in order to
 conform to the addressing format (Section 3) and stanza delivery
 rules (Section 14) specified herein, there MUST be a resource
 identifier associated with the <node@domain> of the client (which is
 either generated by the server or provided by the client
 application); this ensures that the address for use over that stream
 is a "full JID" of the form <node@domain/resource>.

 Upon receiving a success indication within the SASL negotiation, the
 client MUST send a new stream header to the server, to which the
 server MUST respond with a stream header as well as a list of
 available stream features. Specifically, if the server requires the
 client to bind a resource to the stream after successful stream
 authentication, it MUST include an empty <bind/> element qualified by
 the 'urn:ietf:params:xml:ns:xmpp-bind' namespace in the stream
 features list it presents to the client upon sending the header for
 the response stream sent after successful stream authentication (but
 not before):

 Server advertises resource binding feature to client:

 <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='c2s_345'
 from='example.com'
 version='1.0'>
 <stream:features>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 </stream:features>

 Upon being so informed that resource binding is required, the client
 MUST bind a resource to the stream by sending to the server an IQ
 stanza of type "set" (see IQ Semantics (Section 9.2.3)) containing
 data qualified by the 'urn:ietf:params:xml:ns:xmpp-bind' namespace.

 If the client wishes to allow the server to generate the resource
 identifier on its behalf, it sends an IQ stanza of type "set" that
 contains an empty <bind/> element:

 Client asks server to bind a resource:

 <iq type='set' id='bind_1'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>

Saint-Andre & Miller Expires April 25, 2004 [Page 39]

Internet-Draft XMPP Core October 2003

 </iq>

 A server that supports resource binding MUST be able to generate a
 resource identifier on behalf of a client. A resource identifier
 generated by the server MUST be unique for that <node@domain>.

 If the client wishes to specify the resource identifier, it sends an
 IQ stanza of type "set" that contains the desired resource identifier
 as the CDATA of a <resource/> element that is a child of the <bind/>
 element:

 Client binds a resource:

 <iq type='set' id='bind_2'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 <resource>someresource</resource>
 </bind>
 </iq>

 Once the server has generated a resource identifier for the client or
 accepted the resource identifier provided by the client, it MUST
 return an IQ stanza of type "result" to the client, which MUST
 include a <jid/> child element that specifies the full JID for the
 client as determined by the server:

 Server informs client of successful resource binding:

 <iq type='result' id='bind_2'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 <jid>somenode@somedomain/someresource</jid>
 </bind>
 </iq>

 A server is NOT REQUIRED to accept the resource identifier provided
 by the client, and MAY override it with a resource identifier that
 the server generates; in this case, the server SHOULD NOT return a
 stanza error (e.g., <forbidden/>) to the client but instead SHOULD
 communicate the generated resource identifier to the client in the IQ
 result as shown above.

 When a client supplies a resource identifier, the following stanza
 error conditions may occur (see Stanza Errors (Section 9.3)):

 o The provided resource identifier cannot be processed by the server
 in accordance with Resourceprep (Appendix B).

 o The client is not allowed to bind a resource to the stream (e.g.,
 because the client has reached a limit on the number of bound

Saint-Andre & Miller Expires April 25, 2004 [Page 40]

Internet-Draft XMPP Core October 2003

 resources allowed).

 o The provided resource identifier is already in use.

 The protocol for these error conditions is shown below.

 Resource identifier cannot be processed:

 <iq type='error' id='bind_2'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 <resource>someresource</resource>
 </bind>
 <error type='modify'>
 <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 </error>
 </iq>

 Client is not allowed to bind a resource:

 <iq type='error' id='bind_2'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 <resource>someresource</resource>
 </bind>
 <error type='cancel'>
 <not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 </error>
 </iq>

 Resource identifier is in use:

 <iq type='error' id='bind_2'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 <resource>someresource</resource>
 </bind>
 <error type='cancel'>
 <conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 </error>
 </iq>

8. Server Dialback

8.1 Overview

 The Jabber protocol from which XMPP was adapted includes a "server
 dialback" method for protecting against domain spoofing, thus making
 it more difficult to spoof XML stanzas (see Server-to-Server
 Communications (Section 13.3) regarding this method's security

Saint-Andre & Miller Expires April 25, 2004 [Page 41]

Internet-Draft XMPP Core October 2003

 characteristics). Server dialback also makes it easier to deploy
 systems in which outbound messages and inbound messages are handled
 by different machines for the same domain. The server dialback method
 is made possible by the existence of the Domain Name System (DNS),
 since one server can (normally) discover the authoritative server for
 a given domain.

 Because dialback depends on DNS, inter-domain communications MUST NOT
 proceed until the DNS hostnames asserted by the servers have been
 resolved (see Server-to-Server Communications (Section 13.3)).

 The method for generating and verifying the keys used in server
 dialback MUST take into account the hostnames being used, the random
 ID generated for the stream, and a secret known by the authoritative
 server's network.

 Any error that occurs during dialback negotiation MUST be considered
 a stream error, resulting in termination of the stream and of the
 underlying TCP connection. The possible error conditions are
 specified in the protocol description below.

 The following terminology applies:

 o Originating Server -- the server that is attempting to establish a
 connection between two domains.

 o Receiving Server -- the server that is trying to authenticate that
 Originating Server represents the domain which it claims to be.

 o Authoritative Server -- the server that answers to the DNS
 hostname asserted by Originating Server; for basic environments
 this will be Originating Server, but it could be a separate
 machine in Originating Server's network.

8.2 Order of Events

 The following is a brief summary of the order of events in dialback:

 1. Originating Server establishes a connection to Receiving Server.

 2. Originating Server sends a 'key' value over the connection to
 Receiving Server.

 3. Receiving Server establishes a connection to Authoritative
 Server.

 4. Receiving Server sends the same 'key' value to Authoritative

Saint-Andre & Miller Expires April 25, 2004 [Page 42]

Internet-Draft XMPP Core October 2003

 Server.

 5. Authoritative Server replies that key is valid or invalid.

 6. Receiving Server informs Originating Server whether it is
 authenticated or not.

 We can represent this flow of events graphically as follows:

 Originating Receiving
 Server Server
 ----------- ---------
 | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | send stream header |
 | <---------------------- |
 | | Authoritative
 | send dialback key | Server
 | ----------------------> | -------------
 | | |
 | establish connection |
 | ----------------------> |
 | |
 | send stream header |
 | ----------------------> |
 | |
 | establish connection |
 | <---------------------- |
 | |
 | send stream header |
 | <---------------------- |
 | |
 | send dialback key |
 | ----------------------> |
 | |
 | validate dialback key |
 | <---------------------- |
 |
 | report dialback result |
 | <---------------------- |
 | |

Saint-Andre & Miller Expires April 25, 2004 [Page 43]

Internet-Draft XMPP Core October 2003

8.3 Protocol

 The detailed protocol interaction between the servers is as follows:

 1. Originating Server establishes TCP connection to Receiving
 Server.

 2. Originating Server sends a stream header to Receiving Server:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 Note: the 'to' and 'from' attributes are NOT REQUIRED on the
 root stream element. The inclusion of the xmlns:db namespace
 declaration with the name shown indicates to Receiving Server
 that Originating Server supports dialback. If the namespace name
 is incorrect, then Receiving Server MUST generate an
 <invalid-namespace/> stream error condition and terminate both
 the XML stream and the underlying TCP connection.

 3. Receiving Server SHOULD send a stream header back to Originating
 Server, including a unique ID for this interaction:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='457F9224A0...'>

 Note: The 'to' and 'from' attributes are NOT REQUIRED on the
 root stream element. If the namespace name is incorrect, then
 Originating Server MUST generate an <invalid-namespace/> stream
 error condition and terminate both the XML stream and the
 underlying TCP connection. Note well that Receiving Server is
 NOT REQUIRED to reply and MAY silently terminate the XML stream
 and underlying TCP connection depending on security policies in
 place.

 4. Originating Server sends a dialback key to Receiving Server:

 <db:result
 to='Receiving Server'
 from='Originating Server'>
 98AF014EDC0...
 </db:result>

Saint-Andre & Miller Expires April 25, 2004 [Page 44]

Internet-Draft XMPP Core October 2003

 Note: this key is not examined by Receiving Server, since
 Receiving Server does not keep information about Originating
 Server between sessions. The key generated by Originating Server
 MUST be based in part on the value of the ID provided by
 Receiving Server in the previous step, and in part on a secret
 shared by Originating Server and Authoritative Server. If the
 value of the 'to' address does not match a hostname recognized
 by Receiving Server, then Receiving Server MUST generate a
 <host-unknown/> stream error condition and terminate both the
 XML stream and the underlying TCP connection. If the value of
 the 'from' address matches a domain with which Receiving Server
 already has an established connection, then Receiving Server
 MUST maintain the existing connection until it validates whether
 the new connection is legitimate; additionally, Receiving Server
 MAY choose to generate a <not-authorized/> stream error
 condition for the new connection and then terminate both the XML
 stream and the underlying TCP connection related to the new
 request.

 5. Receiving Server establishes a TCP connection back to the domain
 name asserted by Originating Server, as a result of which it
 connects to Authoritative Server. (Note: as an optimization, an
 implementation MAY reuse an existing trusted connection here
 rather than opening a new TCP connection.)

 6. Receiving Server sends Authoritative Server a stream header:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'>

 Note: the 'to' and 'from' attributes are NOT REQUIRED on the
 root stream element. If the namespace name is incorrect, then
 Authoritative Server MUST generate an <invalid-namespace/>
 stream error condition and terminate both the XML stream and the
 underlying TCP connection.

 7. Authoritative Server sends Receiving Server a stream header:

 <stream:stream
 xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 xmlns:db='jabber:server:dialback'
 id='1251A342B...'>

 Note: if the namespace name is incorrect, then Receiving Server
 MUST generate an <invalid-namespace/> stream error condition and

Saint-Andre & Miller Expires April 25, 2004 [Page 45]

Internet-Draft XMPP Core October 2003

 terminate both the XML stream and the underlying TCP connection
 between it and Authoritative Server. If a stream error occurs
 between Receiving Server and Authoritative Server, then
 Receiving Server MUST generate a <remote-connection-failed/>
 stream error condition and terminate both the XML stream and the
 underlying TCP connection between it and Originating Server.

 8. Receiving Server sends Authoritative Server a stanza requesting
 that Authoritative Server verify a key:

 <db:verify
 from='Receiving Server'
 to='Originating Server'
 id='457F9224A0...'>
 98AF014EDC0...
 </db:verify>

 Note: passed here are the hostnames, the original identifier
 from Receiving Server's stream header to Originating Server in
 Step 3, and the key that Originating Server sent to Receiving
 Server in Step 4. Based on this information as well as shared
 secret information within the Authoritative Server's network,
 the key is verified. Any verifiable method MAY be used to
 generate the key. If the value of the 'to' address does not
 match a hostname recognized by Authoritative Server, then
 Authoritative Server MUST generate a <host-unknown/> stream
 error condition and terminate both the XML stream and the
 underlying TCP connection. If the value of the 'from' address
 does not match the hostname represented by Receiving Server when
 opening the TCP connection (or any validated domain), then
 Authoritative Server MUST generate an <invalid-from/> stream
 error condition and terminate both the XML stream and the
 underlying TCP connection.

 9. Authoritative Server sends a stanza back to Receiving Server
 verifying whether the key was valid or invalid:

 <db:verify
 from='Originating Server'
 to='Receiving Server'
 type='valid'
 id='457F9224A0...'/>

 or

 <db:verify
 from='Originating Server'
 to='Receiving Server'

Saint-Andre & Miller Expires April 25, 2004 [Page 46]

Internet-Draft XMPP Core October 2003

 type='invalid'
 id='457F9224A0...'/>

 Note: if the ID does not match that provided by Receiving Server
 in Step 3, then Receiving Server MUST generate an <invalid-id/>
 stream error condition and terminate both the XML stream and the
 underlying TCP connection. If the value of the 'to' address does
 not match a hostname recognized by Receiving Server, then
 Receiving Server MUST generate a <host-unknown/> stream error
 condition and terminate both the XML stream and the underlying
 TCP connection. If the value of the 'from' address does not
 match the hostname represented by Originating Server when
 opening the TCP connection (or any validated domain), then
 Receiving Server MUST generate an <invalid-from/> stream error
 condition and terminate both the XML stream and the underlying
 TCP connection.

 10. Receiving Server informs Originating Server of the result:

 <db:result
 from='Receiving Server'
 to='Originating Server'
 type='valid'/>

 Note: At this point the connection has either been validated via
 a type='valid', or reported as invalid. If the connection is
 invalid, then Receiving Server MUST terminate both the XML
 stream and the underlying TCP connection. If the connection is
 validated, data can be sent by Originating Server and read by
 Receiving Server; before that, all data stanzas sent to
 Receiving Server SHOULD be silently dropped.

 Even if dialback negotiation is successful, a server MUST verify that
 all XML stanzas received from the other server include a 'from'
 attribute and a 'to' attribute; if a stanza does not meet this
 restriction, the server that receives the stanza MUST generate an
 <improper-addressing/> stream error condition and terminate both the
 XML stream and the underlying TCP connection. Furthermore, a server
 MUST verify that the 'from' attribute of stanzas received from the
 other server includes a validated domain for the stream; if a stanza
 does not meet this restriction, the server that receives the stanza
 MUST generate an <invalid-from/> stream error condition and terminate
 both the XML stream and the underlying TCP connection. Both of these
 checks help to prevent spoofing related to particular stanzas.

9. XML Stanzas

 After Stream Encryption (Section 5) if desired, Stream Authentication

Saint-Andre & Miller Expires April 25, 2004 [Page 47]

Internet-Draft XMPP Core October 2003

 (Section 6), and Resource Binding (Section 7) if necessary, XML
 stanzas can be sent over the streams. Three kinds of XML stanza are
 defined for the 'jabber:client' and 'jabber:server' namespaces:
 <message/>, <presence/>, and <iq/>. In addition, there are five
 common attributes for these kinds of stanza. These common attributes,
 as well as the basic semantics of the three stanza kinds, are defined
 herein; more detailed information regarding the syntax of XML stanzas
 in relation to instant messaging and presence applications is
 provided in XMPP IM [21].

9.1 Common Attributes

 The following five attributes are common to message, presence, and IQ
 stanzas:

9.1.1 to

 The 'to' attribute specifies the JID of the intended recipient for
 the stanza.

 In the 'jabber:client' namespace, a stanza SHOULD possess a 'to'
 attribute, although a stanza sent from a client to a server for
 handling by that server (e.g., presence sent to the server for
 broadcasting to other entities) SHOULD NOT possess a 'to' attribute.

 In the 'jabber:server' namespace, a stanza MUST possess a 'to'
 attribute; if a server receives a stanza that does not meet this
 restriction, it MUST generate an <improper-addressing/> stream error
 condition and terminate both the XML stream and the underlying TCP
 connection with the offending server.

 If the value of the 'to' attribute is invalid or cannot be contacted,
 the entity discovering that fact (usually the sender's or recipient's
 server) MUST return an appropriate error to the sender, setting the
 'from' attribute of the error stanza to the value provided in the
 'to' attribute of the offending stanza.

9.1.2 from

 The 'from' attribute specifies the JID of the sender.

 When a server receives an XML stanza within the context of an
 authenticated stream qualified by the 'jabber:client' namespace, it
 MUST do one of the following:

 1. validate that the value of the 'from' attribute provided by the
 client is that of an authorized resource for the associated
 entity

Saint-Andre & Miller Expires April 25, 2004 [Page 48]

Internet-Draft XMPP Core October 2003

 2. add a 'from' address to the stanza whose value is the full JID
 (<node@domain/resource>) determined by the server for the
 connected resource that generated the stanza (see Determination
 of Addresses (Section 3.6))

 If a client attempts to send an XML stanza for which the value of the
 'from' attribute does not match one of the connected resources for
 that entity, the server SHOULD return an <invalid-from/> stream error
 to the client. If a client attempts to send an XML stanza over a
 stream that is not yet authenticated, the server SHOULD return a
 <not-authorized/> stream error to the client. If generated, both of
 these conditions MUST result in closing of the stream and termination
 of the underlying TCP connection; this helps to prevent a denial of
 service attack launched from a rogue client.

 In the 'jabber:server' namespace, a stanza MUST possess a 'from'
 attribute; if a server receives a stanza that does not meet this
 restriction, it MUST generate an <improper-addressing/> stream error
 condition. Furthermore, the domain identifier portion of the JID
 contained in the 'from' attribute MUST match the hostname (or any
 validated domain) of the sending server as communicated in the SASL
 negotiation or dialback negotiation; if a server receives a stanza
 that does not meet this restriction, it MUST generate an
 <invalid-from/> stream error condition. Both of these conditions MUST
 result in closing of the stream and termination of the underlying TCP
 connection; this helps to prevent a denial of service attack launched
 from a rogue server.

9.1.3 id

 The optional 'id' attribute MAY be used by a sending entity for
 internal tracking of stanzas that it sends and receives (especially
 for tracking the request-response interaction inherent in the
 semantics of IQ stanzas). The value of the 'id' attribute is NOT
 REQUIRED to be unique either globally, within a domain, or within a
 stream. The semantics of IQ stanzas impose additional restrictions;
 see IQ Semantics (Section 9.2.3).

9.1.4 type

 The 'type' attribute specifies detailed information about the purpose
 or context of the message, presence, or IQ stanza. The particular
 allowable values for the 'type' attribute vary depending on whether
 the stanza is a message, presence, or IQ; the values for message and
 presence stanzas are specific to instant messaging and presence
 applications and therefore are defined in XMPP IM [21], whereas the
 values for IQ stanzas specify the role of an IQ stanza in a
 structured request-response "conversation" and thus are defined under

Saint-Andre & Miller Expires April 25, 2004 [Page 49]

Internet-Draft XMPP Core October 2003

 IQ Semantics (Section 9.2.3) below. The only 'type' value common to
 all three stanzas is "error", for which see Stanza Errors (Section

9.3).

9.1.5 xml:lang

 A stanza SHOULD possess an 'xml:lang' attribute (as defined in
Section 2.12 of the XML specification [1]) if the stanza contains XML

 character data that is intended to be presented to a human user (as
 explained in RFC 2277 [15], "internationalization is for humans").
 The value of the 'xml:lang' attribute specifies the default language
 of any such human-readable XML character data, which MAY be
 overridden by the 'xml:lang' attribute of a specific child element.
 If a stanza does not possess an 'xml:lang' attribute, an
 implementation MUST assume that the default language is that
 specified for the stream as defined under Stream Attributes (Section

4.2) above. The value of the 'xml:lang' attribute MUST be an NMTOKEN
 and MUST conform to the format defined in RFC 3066 [16].

9.2 Basic Semantics

9.2.1 Message Semantics

 The <message/> stanza kind can be seen as a "push" mechanism whereby
 one entity pushes information to another entity, similar to the
 communications that occur in a system such as email. All message
 stanzas SHOULD possess a 'to' attribute that specifies the intended
 recipient of the message; upon receiving such a stanza, a server
 SHOULD route or deliver it to the intended recipient (see Server
 Rules for Handling XML Stanzas (Section 14) for general routing and
 delivery rules related to XML stanzas).

9.2.2 Presence Semantics

 The <presence/> element can be seen as a basic broadcast or
 "publish-subscribe" mechanism, whereby multiple entities receive
 information (in this case, presence information) about an entity to
 which they have subscribed. In general, a publishing entity SHOULD
 send a presence stanza with no 'to' attribute, in which case the
 server to which the entity is connected SHOULD broadcast or multiplex
 that stanza to all subscribing entities. However, a publishing entity
 MAY also send a presence stanza with a 'to' attribute, in which case
 the server SHOULD route or deliver that stanza to the intended
 recipient. See Server Rules for Handling XML Stanzas (Section 14) for
 general routing and delivery rules related to XML stanzas, and XMPP
 IM [21] for presence-specific rules in the context of an instant
 messaging and presence application.

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc3066

Saint-Andre & Miller Expires April 25, 2004 [Page 50]

Internet-Draft XMPP Core October 2003

9.2.3 IQ Semantics

 Info/Query, or IQ, is a request-response mechanism, similar in some
 ways to HTTP [22]. The semantics of IQ enable an entity to make a
 request of, and receive a response from, another entity. The data
 content of the request and response is defined by the namespace
 declaration of a direct child element of the IQ element, and the
 interaction is tracked by the requesting entity through use of the
 'id' attribute. Thus IQ interactions follow a common pattern of
 structured data exchange such as get/result or set/result (although
 an error may be returned in reply to a request if appropriate):

 Requesting Responding
 Entity Entity
 ---------- ----------
 | |
 | <iq type='get' id='1'> |
 | ------------------------> |
 | |
 | <iq type='result' id='1'> |
 | <------------------------ |
 | |
 | <iq type='set' id='2'> |
 | ------------------------> |
 | |
 | <iq type='error' id='2'> |
 | <------------------------ |
 | |

 In order to enforce these semantics, the following rules apply:

 1. The 'id' attribute is REQUIRED for IQ stanzas.

 2. The 'type' attribute is REQUIRED for IQ stanzas. The value SHOULD
 be one of the following (all other values SHOULD be ignored):

 * get -- The stanza is a request for information or
 requirements.

 * set -- The stanza provides required data, sets new values, or
 replaces existing values.

 * result -- The stanza is a response to a successful get or set
 request.

 * error -- An error has occurred regarding processing or
 delivery of a previously-sent get or set (see Stanza Errors
 (Section 9.3)).

Saint-Andre & Miller Expires April 25, 2004 [Page 51]

Internet-Draft XMPP Core October 2003

 3. An entity that receives an IQ request of type "get" or "set" MUST
 reply with an IQ response of type "result" or "error" (which
 response MUST preserve the 'id' attribute of the request).

 4. An entity that receives a stanza of type "result" or "error" MUST
 NOT respond to the stanza by sending a further IQ response of
 type "result" or "error"; however, as shown above, the requesting
 entity MAY send another request (e.g., an IQ of type "set" in
 order to provide required information discovered through a get/
 result pair).

 5. An IQ stanza of type "get" or "set" MUST contain one and only one
 child element (properly-namespaced as defined in XMPP IM [21])
 that specifies the semantics of the particular request or
 response.

 6. An IQ stanza of type "result" MUST include zero or one child
 elements.

 7. An IQ stanza of type "error" SHOULD include the child element
 contained in the associated "get" or "set" and MUST include an
 <error/> child; for details, see Stanza Errors (Section 9.3).

9.3 Stanza Errors

 Stanza-related errors are handled in a manner similar to stream
 errors (Section 4.6). However, stanza errors are not unrecoverable,
 as stream errors are; therefore error stanzas include hints regarding
 actions that the original sender can take in order to remedy the
 error.

9.3.1 Rules

 The following rules apply to stanza-related errors:

 o The receiving or processing entity that detects an error condition
 in relation to a stanza MUST return to the sending entity a stanza
 of the same kind (message, presence, or IQ) whose 'type' attribute
 is set to a value of "error" (such a stanza is called an "error
 stanza" herein).

 o The entity that generates an error stanza SHOULD (but is NOT
 REQUIRED to) include the original XML sent so that the sender can
 inspect and if necessary correct the XML before attempting to
 resend.

 o An error stanza MUST contain an <error/> child element.

Saint-Andre & Miller Expires April 25, 2004 [Page 52]

Internet-Draft XMPP Core October 2003

 o An <error/> child MUST NOT be included if the 'type' attribute has
 a value other than "error" (or if there is no 'type' attribute).

 o An entity that receives an error stanza MUST NOT respond to the
 stanza with a further error stanza; this helps to prevent looping.

9.3.2 Syntax

 The syntax for stanza-related errors is as follows:

 <stanza-name to='sender' type='error'>
 [RECOMMENDED to include sender XML here]
 <error type='error-type'>
 <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <text xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
 OPTIONAL descriptive text
 </text>
 [OPTIONAL application-specific condition element]
 </error>
 </stanza-name>

 The stanza-name is one of message, presence, or iq.

 The value of the <error/> element's 'type' attribute MUST be one of
 the following:

 o cancel -- do not retry (the error is unrecoverable)

 o continue -- proceed (the condition was only a warning)

 o modify -- retry after changing the data sent

 o auth -- retry after providing credentials

 o wait -- retry after waiting (the error is temporary)

 The <error/> element:

 o MUST contain a child element corresponding to one of the defined
 stanza error conditions specified below; this element MUST be
 qualified by the 'urn:ietf:params:xml:ns:xmpp-stanzas' namespace.

 o MAY contain a <text/> child containing CDATA that describes the
 error in more detail; this element MUST be qualified by the
 'urn:ietf:params:xml:ns:xmpp-stanzas' namespace and SHOULD possess
 an 'xml:lang' attribute.

Saint-Andre & Miller Expires April 25, 2004 [Page 53]

Internet-Draft XMPP Core October 2003

 o MAY contain a child element for an application-specific error
 condition; this element MUST be qualified by an
 application-defined namespace, and its structure is defined by
 that namespace.

 The <text/> element is OPTIONAL. If included, it SHOULD be used only
 to provide descriptive or diagnostic information that supplements the
 meaning of a defined condition or application-specific condition. It
 SHOULD NOT be interpreted programmatically by an application. It
 SHOULD NOT be used as the error message presented to a user, but MAY
 be shown in addition to the error message associated with the
 included condition element (or elements).

 Note: the XML namespace name 'urn:ietf:params:xml:ns:xmpp-stanzas'
 that qualifies the descriptive element adheres to the format defined
 in The IETF XML Registry [24].

9.3.3 Defined Conditions

 The following stanza-related error conditions are defined for use in
 stanza errors.

 o <bad-request/> -- the sender has sent XML that is malformed or
 that cannot be processed (e.g., an IQ stanza that includes an
 unrecognized value of the 'type' attribute); the associated error
 type SHOULD be "modify".

 o <conflict/> -- access cannot be granted because an existing
 resource or session exists with the same name or address; the
 associated error type SHOULD be "cancel".

 o <feature-not-implemented/> -- the feature requested is not
 implemented by the recipient or server and therefore cannot be
 processed; the associated error type SHOULD be "cancel".

 o <forbidden/> -- the requesting entity does not possess the
 required permissions to perform the action; the associated error
 type SHOULD be "auth".

 o <gone/> -- the recipient or server can no longer be contacted at
 this address (the error stanza MAY contain a new address in the
 CDATA of the <gongone/> element); the associated error type SHOULD
 be "modify".

 o <internal-server-error/> -- the server could not process the
 stanza because of a misconfiguration or an otherwise-undefined
 internal server error; the associated error type SHOULD be "wait".

Saint-Andre & Miller Expires April 25, 2004 [Page 54]

Internet-Draft XMPP Core October 2003

 o <item-not-found/> -- the addressed JID or item requested cannot be
 found; the associated error type SHOULD be "cancel".

 o <jid-malformed/> -- the value of the 'to' attribute in the
 sender's stanza does not adhere to the syntax defined in
 Addressing Scheme (Section 3); the associated error type SHOULD be
 "modify".

 o <not-acceptable/> -- the recipient or server understands the
 request but is refusing to process it because it does not meet
 criteria defined by the recipient or server (e.g., a local policy
 regarding acceptable words in messages); the associated error type
 SHOULD be "cancel".

 o <not-allowed/> -- the recipient or server does not allow any
 entity to perform the action; the associated error type SHOULD be
 "cancel".

 o <payment-required/> -- the requesting entity is not authorized to
 access the requested service because payment is required; the
 associated error type SHOULD be "auth".

 o <recipient-unavailable/> -- the intended recipient is temporarily
 unavailable; the associated error type SHOULD be "wait" (note: an
 application MUST NOT return this error if doing so would provide
 information about the intended recipient's network availability to
 an entity that is not authorized to know such information).

 o <redirect/> -- the recipient or server is redirecting requests for
 this information to another entity, usually temporarily (the error
 stanza MAY contain a new address in the CDATA of the <redirect/>
 element); the associated error type SHOULD be "modify".

 o <registration-required/> -- the requesting entity is not
 authorized to access the requested service because registration is
 required; the associated error type SHOULD be "auth".

 o <remote-server-not-found/> -- a remote server or service specified
 as part or all of the JID of the intended recipient does not
 exist; the associated error type SHOULD be "cancel".

 o <remote-server-timeout/> -- a remote server or service specified
 as part or all of the JID of the intended recipient could not be
 contacted within a reasonable amount of time; the associated error
 type SHOULD be "wait".

 o <resource-constraint/> -- the server or recipient lacks the system
 resources necessary to service the request; the associated error

Saint-Andre & Miller Expires April 25, 2004 [Page 55]

Internet-Draft XMPP Core October 2003

 type SHOULD be "wait".

 o <service-unavailable/> -- the server or recipient does not
 currently provide the requested service; the associated error type
 SHOULD be "cancel".

 o <subscription-required/> -- the requesting entity is not
 authorized to access the requested service because a subscription
 is required; the associated error type SHOULD be "auth".

 o <undefined-condition/> -- the error condition is not one of those
 defined by the other conditions in this list; any error type may
 be associated with this condition, and it SHOULD be used only in
 conjunction with an application-specific condition.

 o <unexpected-request/> -- the recipient or server understood the
 request but was not expecting it at this time (e.g., the request
 was out of order); the associated error type SHOULD be "wait".

9.3.4 Application-Specific Conditions

 As noted, an application MAY provide application-specific stanza
 error information by including a properly-namespaced child in the
 error element. The application-specific element SHOULD supplement or
 further qualify a defined element. Thus the <error/> element will
 contain two or three child elements:

 <iq type='error' id='some-id'>
 <error type='modify'>
 <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <too-many-parameters xmlns='application-ns'/>
 </error>
 </iq>

 <message type='error' id='another-id'>
 <error type='modify'>
 <undefined-condition
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/>
 <text xml:lang='en'
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'>
 Some special application diagnostic information...
 </text>
 <special-application-condition xmlns='application-ns'/>
 </error>
 </message>

Saint-Andre & Miller Expires April 25, 2004 [Page 56]

Internet-Draft XMPP Core October 2003

10. XML Usage within XMPP

10.1 Restrictions

 XMPP is a simplified and specialized protocol for streaming XML
 elements in order to exchange structured information in close to real
 time. Because XMPP does not require the parsing of arbitrary and
 complete XML documents, there is no requirement that XMPP needs to
 support the full XML specification [1]. In particular, the following
 restrictions apply.

 With regard to XML generation, an XMPP implementation MUST NOT inject
 into an XML stream any of the following:

 o comments (as defined in Section 2.5 of the XML specification [1])

 o processing instructions (Section 2.6 therein)

 o internal or external DTD subsets (Section 2.8 therein)

 o internal or external entity references (Section 4.2 therein) with
 the exception of predefined entities (Section 4.6 therein)

 o character data or attribute values containing unescaped characters
 that map to the predefined entities (Section 4.6 therein); such
 characters MUST be escaped

 With regard to XML processing, if an XMPP implementation receives
 such restricted XML data, it MUST ignore the data.

10.2 XML Namespace Names and Prefixes

 XML Namespaces [10] are used within all XMPP-compliant XML to create
 strict boundaries of data ownership. The basic function of namespaces
 is to separate different vocabularies of XML elements that are
 structurally mixed together. Ensuring that XMPP-compliant XML is
 namespace-aware enables any allowable XML to be structurally mixed
 with any data element within XMPP. Rules for XML namespace names and
 prefixes are defined in the following subsections.

10.2.1 Streams Namespace

 A streams namespace declaration is REQUIRED in all XML stream
 headers. The name of the streams namespace MUST be 'http://
 etherx.jabber.org/streams'. The element names of the <stream/>
 element and its <features/> and <error/> children MUST be qualified
 by the streams namespace prefix in all instances. An implementation
 SHOULD generate only the 'stream:' prefix for these elements, and for

Saint-Andre & Miller Expires April 25, 2004 [Page 57]

Internet-Draft XMPP Core October 2003

 historical reasons MAY accept only the 'stream:' prefix.

10.2.2 Default Namespace

 A default namespace declaration is REQUIRED and is used in all XML
 streams in order to define the allowable first-level children of the
 root stream element. This namespace declaration MUST be the same for
 the initial stream and the response stream so that both streams are
 qualified consistently. The default namespace declaration applies to
 the stream and all stanzas sent within a stream (unless explicitly
 qualified by another namespace, or by the prefix of the streams
 namespace or the dialback namespace).

 A server implementation MUST support the following two default
 namespaces (for historical reasons, some implementations MAY support
 only these two default namespaces):

 o jabber:client -- this default namespace is declared when the
 stream is used for communications between a client and a server

 o jabber:server -- this default namespace is declared when the
 stream is used for communications between two servers

 A client implementation MUST support the 'jabber:client' default
 namespace, and for historical reasons MAY support only that default
 namespace.

 An implementation MUST NOT generate namespace prefixes for elements
 in the default namespace if the default namespace is 'jabber:client'
 or 'jabber:server'. An implementation SHOULD NOT generate namespace
 prefixes for elements qualified by content (as opposed to stream)
 namespaces other than 'jabber:client' and 'jabber:server'.

 Note: the 'jabber:client' and 'jabber:server' namespaces are nearly
 identical but are used in different contexts (client-to-server
 communications for 'jabber:client' and server-to-server
 communications for 'jabber:server'). The only difference between the
 two is that the 'to' and 'from' attributes are OPTIONAL on stanzas
 sent within 'jabber:client', whereas they are REQUIRED on stanzas
 sent within 'jabber:server'. If a compliant implementation accepts a
 stream that is qualified by the 'jabber:client' or 'jabber:server'
 namespace, it MUST support the common attributes (Section 9.1) and
 basic semantics (Section 9.2) of all three core stanza kinds
 (message, presence, and IQ).

10.2.3 Dialback Namespace

 A dialback namespace declaration is REQUIRED for all elements used in

Saint-Andre & Miller Expires April 25, 2004 [Page 58]

Internet-Draft XMPP Core October 2003

 server dialback (Section 8). The name of the dialback namespace MUST
 be 'jabber:server:dialback'. All elements qualified by this namespace
 MUST be prefixed. An implementation SHOULD generate only the 'db:'
 prefix for such elements and MAY accept only the 'db:' prefix.

10.3 Validation

 Except as noted with regard to 'to' and 'from' addresses for stanzas
 within the 'jabber:server' namespace, a server is not responsible for
 validating the XML elements forwarded to a client or another server;
 an implementation MAY choose to provide only validated data elements
 but is NOT REQUIRED to do so (although an implementation MUST NOT
 accept XML that is not well-formed). Clients SHOULD NOT rely on the
 ability to send data which does not conform to the schemas, and
 SHOULD ignore any non-conformant elements or attributes on the
 incoming XML stream. Validation of XML streams and stanzas is NOT
 REQUIRED or recommended, and schemas are included herein for
 descriptive purposes only.

10.4 Inclusion of Text Declaration

 Implementations SHOULD send a text declaration before sending a
 stream header. Applications MUST follow the rules in the XML
 specification [1] regarding the circumstances under which a text
 declaration is included.

10.5 Character Encoding

 Implementations MUST support the UTF-8 (RFC 2279 [17]) transformation
 of Universal Character Set (ISO/IEC 10646-1 [18]) characters, as
 required by RFC 2277 [15]. Implementations MUST NOT attempt to use
 any other encoding.

11. IANA Considerations

11.1 XML Namespace Name for TLS Data

 A URN sub-namespace for TLS-related data in the Extensible Messaging
 and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-tls

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for TLS-related data in
 the Extensible Messaging and Presence Protocol (XMPP) as defined
 by [RFCXXXX].

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2277

Saint-Andre & Miller Expires April 25, 2004 [Page 59]

Internet-Draft XMPP Core October 2003

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

11.2 XML Namespace Name for SASL Data

 A URN sub-namespace for SASL-related data in the Extensible Messaging
 and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-sasl

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for SASL-related data in
 the Extensible Messaging and Presence Protocol (XMPP) as defined
 by [RFCXXXX].

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

11.3 XML Namespace Name for Stream Errors

 A URN sub-namespace for stream-related error data in the Extensible
 Messaging and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-streams

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for stream-related error
 data in the Extensible Messaging and Presence Protocol (XMPP) as
 defined by [RFCXXXX].

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

11.4 XML Namespace Name for Resource Binding

 A URN sub-namespace for resource binding in the Extensible Messaging
 and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-bind

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for resource binding in
 the Extensible Messaging and Presence Protocol (XMPP) as defined
 by [RFCXXXX].

Saint-Andre & Miller Expires April 25, 2004 [Page 60]

Internet-Draft XMPP Core October 2003

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

11.5 XML Namespace Name for Stanza Errors

 A URN sub-namespace for stanza-related error data in the Extensible
 Messaging and Presence Protocol (XMPP) is defined as follows.

 URI: urn:ietf:params:xml:ns:xmpp-stanzas

 Specification: [RFCXXXX]

 Description: This is the XML namespace name for stanza-related error
 data in the Extensible Messaging and Presence Protocol (XMPP) as
 defined by [RFCXXXX].

 Registrant Contact: IETF, XMPP Working Group, <xmppwg@jabber.org>

11.6 Nodeprep Profile of Stringprep

 The Nodeprep profile of stringprep is defined under Nodeprep
 (Appendix A). The IANA registers Nodeprep in the stringprep profile
 registry.

 Name of this profile:

 Nodeprep

 RFC in which the profile is defined:

 [RFCXXXX]

 Indicator whether or not this is the newest version of the profile:

 This is the first version of Nodeprep

11.7 Resourceprep Profile of Stringprep

 The Resourceprep profile of stringprep is defined under Resourceprep
 (Appendix B). The IANA registers Resourceprep in the stringprep
 profile registry.

 Name of this profile:

Saint-Andre & Miller Expires April 25, 2004 [Page 61]

Internet-Draft XMPP Core October 2003

 Resourceprep

 RFC in which the profile is defined:

 [RFCXXXX]

 Indicator whether or not this is the newest version of the profile:

 This is the first version of Resourceprep

11.8 GSSAPI Service Name

 The IANA registers "xmpp" as a GSSAPI [19] service name, as defined
 under SASL Definition (Section 6.3).

11.9 Port Numbers

 The IANA currently registers "jabber-client" and "jabber-server" as
 keywords for TCP ports 5222 and 5269 respectively. The IANA shall
 change these registrations to "xmpp-client" and "xmpp-server"
 respectively.

 These ports SHOULD be used for client-to-server and server-to-server
 communications respectively, but their use is NOT REQUIRED.

12. Internationalization Considerations

 XML streams MUST be encoded in UTF-8 as specified under Character
 Encoding (Section 10.5). As specified under Stream Attributes
 (Section 4.2), an XML stream SHOULD include an 'xml:lang' attribute
 that is treated as the default language for any XML character data
 sent over the stream that is intended to be presented to a human
 user. As specified under xml:lang (Section 9.1.5), an XML stanza
 SHOULD include an 'xml:lang' attribute if the stanza contains XML
 character data that is intended to be presented to a human user. A
 server SHOULD apply the default 'xml:lang' attribute to stanzas it
 routes or delivers on behalf of connected entities, and MUST NOT
 modify or delete 'xml:lang' attributes from stanzas it receives from
 other entities.

13. Security Considerations

13.1 High Security

 For the purposes of XMPP communications (client-to-server and
 server-to-server), the term "high security" refers to the use of
 security technologies that provide both mutual authentication and

Saint-Andre & Miller Expires April 25, 2004 [Page 62]

Internet-Draft XMPP Core October 2003

 integrity-checking; in particular, when using certificate-based
 authentication to provide high security, a chain-of-trust SHOULD be
 established out-of-band, although a shared certificate authority
 signing certificates could allow a previously unknown certificate to
 establish trust in-band.

 Standalone, self-signed service certificates SHOULD NOT be used;
 rather, an entity that wishes to generate a self-signed service
 certificate SHOULD first generate a self-signed Root CA certificate
 and then generate a signed service certificate. Entities that
 communicate with the service SHOULD be configured with the Root CA
 certificate rather than the service certificate; this avoids problems
 associated with simple comparison of service certificates. If a
 self-signed service certificate is used, an entity SHOULD NOT trust
 it if it is changed to another self-signed certificate or a
 certificate signed by an unrecognized authority.

 Implementations MUST support high security. Service provisioning
 SHOULD use high security, subject to local security policies.

13.2 Client-to-Server Communications

 A compliant implementation MUST support both TLS and SASL for
 connections to a server.

 The TLS protocol for encrypting XML streams (defined under Stream
 Encryption (Section 5)) provides a reliable mechanism for helping to
 ensure the confidentiality and data integrity of data exchanged
 between two entities.

 The SASL protocol for authenticating XML streams (defined under
 Stream Authentication (Section 6)) provides a reliable mechanism for
 validating that a client connecting to a server is who it claims to
 be.

 Client-to-server communications MUST NOT proceed until the DNS
 hostname asserted by the server has been resolved. Such resolutions
 SHOULD first attempt to resolve the hostname using an SRV [20]
 Service of "xmpp-client" and Proto of "tcp", resulting in resource
 records such as "_xmpp-client._tcp.example.com." (the use of the
 string "xmpp-client" for the service identifier is consistent with
 the IANA registration). If the SRV lookup fails, the fallback is a
 normal IPv4/IPv6 address record resolution to determine the IP
 address, using the "xmpp-client" port of 5222 assigned by the
 Internet Assigned Numbers Authority [5].

 The IP address and method of access of clients MUST NOT be made
 available by a server, nor are any connections other than the

Saint-Andre & Miller Expires April 25, 2004 [Page 63]

Internet-Draft XMPP Core October 2003

 original server connection required. This helps to protect the
 client's server from direct attack or identification by third
 parties.

13.3 Server-to-Server Communications

 A compliant implementation MUST support both TLS and SASL for
 inter-domain communications. For historical reasons, a compliant
 implementation SHOULD also support Server Dialback (Section 8).

 Because service provisioning is a matter of policy, it is OPTIONAL
 for any given domain to communicate with other domains, and
 server-to-server communications MAY be disabled by the administrator
 of any given deployment. If a particular domain enables inter-domain
 communications, it SHOULD enable high security.

 Administrators may want to require use of SASL for server-to-server
 communications in order to ensure both authentication and
 confidentiality (e.g., on an organization's private network).
 Compliant implementations SHOULD support SASL for this purpose.

 Inter-domain connections MUST NOT proceed until the DNS hostnames
 asserted by the servers have been resolved. Such resolutions MUST
 first attempt to resolve the hostname using an SRV [20] Service of
 "xmpp-server" and Proto of "tcp", resulting in resource records such
 as "_xmpp-server._tcp.example.com." (the use of the string
 "xmpp-server" for the service identifier is consistent with the IANA
 registration; note well that the "xmpp-server" service identifier
 supersedes the earlier use of a "jabber" service identifier, since
 the earlier usage did not conform to RFC 2782 [20]; implementations
 desiring to be backwards compatible should continue to look for or
 answer to the "jabber" service identifier as well). If the SRV lookup
 fails, the fallback is a normal IPv4/IPv6 address record resolution
 to determine the IP address, using the "xmpp-server" port of 5269
 assigned by the Internet Assigned Numbers Authority [5].

 Server dialback helps protect against domain spoofing, thus making it
 more difficult to spoof XML stanzas. It is not a mechanism for
 authenticating, securing, or encrypting streams between servers as is
 done via SASL and TLS. Furthermore, it is susceptible to DNS
 poisoning attacks unless DNSSec [29] is used, and even if the DNS
 information is accurate, dialback cannot protect from attacks where
 the attacker is capable of hijacking the IP address of the remote
 domain. Domains requiring robust security SHOULD use TLS and SASL. If
 SASL is used for server-to-server authentication, dialback SHOULD NOT
 be used since it is unnecessary.

https://datatracker.ietf.org/doc/html/rfc2782

Saint-Andre & Miller Expires April 25, 2004 [Page 64]

Internet-Draft XMPP Core October 2003

13.4 Order of Layers

 The order of layers in which protocols MUST be stacked is as follows:

 1. TCP

 2. TLS

 3. SASL

 4. XMPP

 The rationale for this order is that TCP is the base connection layer
 used by all of the protocols stacked on top of TCP, TLS is often
 provided at the operating system layer, SASL is often provided at the
 application layer, and XMPP is the application itself.

13.5 Mandatory-to-Implement Technologies

 At a minimum, all implementations MUST support the following
 mechanisms:

 for authentication: the SASL DIGEST-MD5 mechanism

 for confidentiality: TLS (using the TLS_RSA_WITH_3DES_EDE_CBC_SHA
 cipher)

 for both: TLS plus SASL EXTERNAL(using the
 TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher supporting client-side
 certificates)

13.6 Firewalls

 Communications using XMPP normally occur over TCP sockets on port
 5222 (client-to-server) or port 5269 (server-to-server), as
 registered with the IANA [5] (see IANA Considerations (Section 11)).
 Use of these well-known ports allows administrators to easily enable
 or disable XMPP activity through existing and commonly-deployed
 firewalls.

13.7 Use of base64 in SASL

 Both the client and the server SHOULD verify any base64 [14] data
 received during SASL negotiation. An implementation MUST reject (not
 ignore) any characters that are not explicitly allowed by the base64
 alphabet; this helps to guard against creation of a covert channel
 that could be used to "leak" information. An implementation MUST NOT

Saint-Andre & Miller Expires April 25, 2004 [Page 65]

Internet-Draft XMPP Core October 2003

 break on invalid input and MUST reject any sequence of base64
 characters containing the pad ('=') character if that character is
 included as something other than the last character of the data (e.g.
 "=AAA" or "BBBB=CCC"); this helps to guard against buffer overflow
 attacks and other attacks on the implementation. Base encoding
 visually hides otherwise easily recognized information, such as
 passwords, but does not provide any computational confidentiality.
 Base 64 encoding MUST follow the definition in Section 3 of RFC 3548
 [14].

13.8 Stringprep Profiles

 XMPP makes use of the Nameprep [6] profile of stringprep [7] for
 processing of domain identifiers; for security considerations related
 to Nameprep, refer to the appropriate section of RFC 3491.

 In addition, XMPP defines two profiles of stringprep [7]: Nodeprep
 (Appendix A) for node identifiers and Resourceprep (Appendix B) for
 resource identifiers.

 The Unicode and ISO/IEC 10646 repertoires have many characters that
 look similar. In many cases, users of security protocols might do
 visual matching, such as when comparing the names of trusted third
 parties. Because it is impossible to map similar-looking characters
 without a great deal of context such as knowing the fonts used,
 stringprep does nothing to map similar-looking characters together
 nor to prohibit some characters because they look like others.

 A node identifier can be employed as one part of an entity's address
 in XMPP. One common usage is as the username of an instant messaging
 user; another is as the name of a multi-user chat room; and many
 other kinds of entities could use node identifiers as part of their
 addresses. The security of such services could be compromised based
 on different interpretations of the internationalized node
 identifier; for example, a user entering a single internationalized
 node identifier could access another user's account information, or a
 user could gain access to an otherwise restricted chat room or
 service.

 A resource identifier can be employed as one part of an entity's
 address in XMPP. One common usage is as the name for an instant
 messaging user's active session; another is as the nickname of a user
 in a multi-user chat room; and many other kinds of entities could use
 resource identifiers as part of their addresses. The security of such
 services could be compromised based on different interpretations of
 the internationalized resource identifier; for example, a user could
 attempt to initiate multiple sessions with the same name, or a user
 could send a message to someone other than the intended recipient in

https://datatracker.ietf.org/doc/html/rfc3548#section-3
https://datatracker.ietf.org/doc/html/rfc3491

Saint-Andre & Miller Expires April 25, 2004 [Page 66]

Internet-Draft XMPP Core October 2003

 a multi-user chat room.

14. Server Rules for Handling XML Stanzas

 Each server implementation will contain its own "delivery tree" for
 handling stanzas it receives. Such a tree determines whether a stanza
 needs to be routed to another domain, processed internally, or
 delivered to a resource associated with a connected node. The
 following rules apply:

14.1 No 'to' Address

 If the stanza possesses no 'to' attribute, the server SHOULD process
 it on behalf of the entity that sent it. Because all stanzas received
 from other servers MUST possess a 'to' attribute, this rule applies
 only to stanzas received from a registered entity (such as a client)
 that is connected to the server. If the server receives a presence
 stanza with no 'to' attribute, the server SHOULD broadcast it to the
 entities that are subscribed to the sending entity's presence, if
 applicable (the semantics of presence broadcast for instant messaging
 and presence applications are defined in XMPP IM [21]). If the server
 receives an IQ stanza of type "get" or "set" with no 'to' attribute
 and it understands the namespace that qualifies the content of the
 stanza, it MUST either process the stanza on behalf of sending entity
 (where the meaning of "process" is determined by the semantics of the
 qualifying namespace) or return an error to the sending entity.

14.2 Foreign Domain

 If the hostname of the domain identifier portion of the JID contained
 in the 'to' attribute does not match one of the configured hostnames
 of the server itself or a subdomain thereof, the server SHOULD route
 the stanza to the foreign domain (subject to local service
 provisioning and security policies regarding inter-domain
 communication). There are two possible cases:

 A server-to-server stream already exists between the two domains: The
 sender's server routes the stanza to the authoritative server for
 the foreign domain over the existing stream

 There exists no server-to-server stream between the two domains: The
 sender's server (1) resolves the hostname of the foreign domain
 (as defined under Server-to-Server Communications (Section 13.3)),
 (2) negotiates a server-to-server stream between the two domains
 (as defined under Stream Encryption (Section 5) and Stream
 Authentication (Section 6)), and (3) routes the stanza to the
 authoritative server for the foreign domain over the
 newly-established stream

Saint-Andre & Miller Expires April 25, 2004 [Page 67]

Internet-Draft XMPP Core October 2003

 If routing to the recipient's server is unsuccessful, the sender's
 server MUST return an error to the sender; if the recipient's server
 can be contacted but delivery by the recipient's server to the
 recipient is unsuccessful, the recipient's server MUST return an
 error to the sender by way of the sender's server.

14.3 Subdomain

 If the hostname of the domain identifier portion of the JID contained
 in the 'to' attribute matches a subdomain of one of the configured
 hostnames of the server itself, the server MUST either process the
 stanza itself or route the stanza to a specialized service that is
 responsible for that subdomain (if the subdomain is configured), or
 return an error to the sender (if the subdomain is not configured).

14.4 Mere Domain or Specific Resource

 If the hostname of the domain identifier portion of the JID contained
 in the 'to' attribute matches a configured hostname of the server
 itself and the JID contained in the 'to' attribute is of the form
 <domain> or <domain/resource>, the server (or a defined resource
 thereof) MUST either process the stanza as appropriate for the stanza
 kind or return an error stanza to the sender.

14.5 Node in Same Domain

 If the hostname of the domain identifier portion of the JID contained
 in the 'to' attribute matches a configured hostname of the server
 itself and the JID contained in the 'to' attribute is of the form
 <node@domain> or <node@domain/resource>, the server SHOULD deliver
 the stanza to the intended recipient of the stanza as represented by
 the JID contained in the 'to' attribute. The following rules apply:

 1. If the JID contains a resource identifier (i.e., is of the form
 <node@domain/resource>) and there is an available resource that
 matches the full JID, the recipient's server SHOULD deliver the
 stanza to the stream or session that exactly matches the resource
 identifier.

 2. If the JID contains a resource identifier and there is no
 available resource that matches the full JID, the recipient's
 server SHOULD return to the sender a <service-unavailable/>
 stanza error.

 3. If the JID is of the form <node@domain> and there is at least one
 available resource available for the node, the recipient's server
 MUST deliver the stanza to at least one of the available
 resources, according to application-specific rules (a set of

Saint-Andre & Miller Expires April 25, 2004 [Page 68]

Internet-Draft XMPP Core October 2003

 delivery rules for instant messaging and presence applications is
 defined in XMPP IM [21]).

15. Compliance Requirements

 This section summarizes the specific aspects of the Extensible
 Messaging and Presence Protocol that MUST be supported by servers and
 clients in order to be considered compliant implementations, as well
 as additional protocol aspects that SHOULD be supported. For
 compliance purposes, we draw a distinction between core protocols
 (which MUST be supported by any server or client, regardless of the
 specific application) and instant messaging protocols (which MUST be
 supported only by instant messaging and presence applications built
 on top of the core protocols). Compliance requirements that apply to
 all servers and clients are specified in this section; compliance
 requirements for instant messaging servers and clients are specified
 in the corresponding section of XMPP IM [21].

15.1 Servers

 In addition to all defined requirements with regard to security, XML
 usage, and internationalization, a server MUST support the following
 core protocols in order to be considered compliant:

 o Enforcement of the Nameprep [6], Nodeprep (Appendix A), and
 Resourceprep (Appendix B) profiles of stringprep

 o XML streams (Section 4), including stream encryption (Section 5)
 using TLS, stream authentication (Section 6) using SASL, and
 resource binding (Section 7)

 o The basic semantics of the three defined stanza kinds (i.e.,
 <message/>, <presence/>, and <iq/>) as specified in stanza
 semantics (Section 9.2)

 o Generation (and, where appropriate, handling) of error syntax and
 semantics related to streams, TLS, SASL, and XML stanzas

 In addition, a server SHOULD support the following core protocol:

 o Server dialback (Section 8)

15.2 Clients

 A client MUST support the following core protocols in order to be
 considered compliant:

Saint-Andre & Miller Expires April 25, 2004 [Page 69]

Internet-Draft XMPP Core October 2003

 o XML streams (Section 4), including stream encryption (Section 5)
 using TLS, stream authentication (Section 6) using SASL, and
 resource binding (Section 7)

 o The basic semantics of the three defined stanza kinds (i.e.,
 <message/>, <presence/>, and <iq/>) as specified in stanza
 semantics (Section 9.2)

 o Handling (and, where appropriate, generation) of error syntax and
 semantics related to streams, TLS, SASL, and XML stanzas

 In addition, a client SHOULD support the following core protocols:

 o Generation of addresses in accordance with the Nameprep [6],
 Nodeprep (Appendix A), and Resourceprep (Appendix B) profiles of
 stringprep

Normative References

 [1] Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
 "Extensible Markup Language (XML) 1.0 (2nd ed)", W3C REC-xml,
 October 2000, <http://www.w3.org/TR/REC-xml>.

 [2] Day, M., Aggarwal, S. and J. Vincent, "Instant Messaging /
 Presence Protocol Requirements", RFC 2779, February 2000.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
 September 1981.

 [5] Internet Assigned Numbers Authority, "Internet Assigned Numbers
 Authority", January 1998, <http://www.iana.org/>.

 [6] Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep Profile
 for Internationalized Domain Names (IDN)", RFC 3491, March
 2003.

 [7] Hoffman, P. and M. Blanchet, "Preparation of Internationalized
 Strings ("stringprep")", RFC 3454, December 2002.

 [8] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [9] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

http://www.w3.org/TR/REC-xml
https://datatracker.ietf.org/doc/html/rfc2779
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
http://www.iana.org/
https://datatracker.ietf.org/doc/html/rfc3491
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2373

Saint-Andre & Miller Expires April 25, 2004 [Page 70]

Internet-Draft XMPP Core October 2003

 [10] Bray, T., Hollander, D. and A. Layman, "Namespaces in XML", W3C
 REC-xml-names, January 1999, <http://www.w3.org/TR/

REC-xml-names>.

 [11] Dierks, T., Allen, C., Treese, W., Karlton, P., Freier, A. and
 P. Kocher, "The TLS Protocol Version 1.0", RFC 2246, January
 1999.

 [12] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [13] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 [14] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings",
RFC 3548, July 2003.

 [15] Alvestrand, H., "IETF Policy on Character Sets and Languages",
BCP 18, RFC 2277, January 1998.

 [16] Alvestrand, H., "Tags for the Identification of Languages", BCP
47, RFC 3066, January 2001.

 [17] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
2279, January 1998.

 [18] International Organization for Standardization, "Information
 Technology - Universal Multiple-octet coded Character Set (UCS)
 - Amendment 2: UCS Transformation Format 8 (UTF-8)", ISO
 Standard 10646-1 Addendum 2, October 1996.

 [19] Linn, J., "Generic Security Service Application Program
 Interface, Version 2", RFC 2078, January 1997.

 [20] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

Informative References

 [21] Saint-Andre, P. and J. Miller, "XMPP Instant Messaging",
draft-ietf-xmpp-im-18 (work in progress), October 2003.

 [22] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [23] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc3548
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc3066
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2078
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-im-18
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2396

Saint-Andre & Miller Expires April 25, 2004 [Page 71]

Internet-Draft XMPP Core October 2003

 1998.

 [24] Mealling, M., "The IETF XML Registry",
draft-mealling-iana-xmlns-registry-05 (work in progress), June

 2003.

 [25] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, December 1996.

 [26] Myers, J. and M. Rose, "Post Office Protocol - Version 3", STD
 53, RFC 1939, May 1996.

 [27] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [28] Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595,
 June 1999.

 [29] Eastlake, D., "Domain Name System Security Extensions", RFC
2535, March 1999.

 [30] Jabber Software Foundation, "Jabber Software Foundation",
 <http://www.jabber.org/>.

Authors' Addresses

 Peter Saint-Andre
 Jabber Software Foundation

 EMail: stpeter@jabber.org

 Jeremie Miller
 Jabber Software Foundation

 EMail: jeremie@jabber.org

Appendix A. Nodeprep

A.1 Introduction

 This appendix defines the "Nodeprep" profile of stringprep (RFC 3454
 [7]). As such, it specifies processing rules that will enable users
 to enter internationalized node identifiers in the Extensible
 Messaging and Presence Protocol (XMPP) and have the highest chance of
 getting the content of the strings correct. (An XMPP node identifier
 is the optional portion of an XMPP address that precedes a domain

https://datatracker.ietf.org/doc/html/draft-mealling-iana-xmlns-registry-05
https://datatracker.ietf.org/doc/html/rfc2060
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2595
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535
http://www.jabber.org/
https://datatracker.ietf.org/doc/html/rfc3454

Saint-Andre & Miller Expires April 25, 2004 [Page 72]

Internet-Draft XMPP Core October 2003

 identifier and the '@' separator; it is often but not exclusively
 associated with an instant messaging username.) These processing
 rules are intended only for XMPP node identifiers and are not
 intended for arbitrary text or any other aspect of an XMPP address.

 This profile defines the following, as required by RFC 3454 [7]:

 o The intended applicability of the profile: internationalized node
 identifiers within XMPP

 o The character repertoire that is the input and output to
 stringprep: Unicode 3.2, specified in Section 2 of this Appendix

 o The mappings used: specified in Section 3

 o The Unicode normalization used: specified in Section 4

 o The characters that are prohibited as output: specified in Section
5

 o Bidirectional character handling: specified in Section 6

A.2 Character Repertoire

 This profile uses Unicode 3.2 with the list of unassigned code points
 being Table A.1, both defined in Appendix A of RFC 3454 [7].

A.3 Mapping

 This profile specifies mapping using the following tables from RFC
3454 [7]:

 Table B.1

 Table B.2

A.4 Normalization

 This profile specifies using Unicode normalization form KC, as
 described in RFC 3454 [7].

A.5 Prohibited Output

 This profile specifies prohibiting use of the following tables from
RFC 3454 [7].

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454#appendix-A
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454

Saint-Andre & Miller Expires April 25, 2004 [Page 73]

Internet-Draft XMPP Core October 2003

 Table C.1.1

 Table C.1.2

 Table C.2.1

 Table C.2.2

 Table C.3

 Table C.4

 Table C.5

 Table C.6

 Table C.7

 Table C.8

 Table C.9

 In addition, the following Unicode characters are also prohibited:

 #x22 (")

 #x26 (&)

 #x27 (')

 #x2F (/)

 #x3A (:)

 #x3C (<)

 #x3E (>)

 #x40 (@)

A.6 Bidirectional Characters

 This profile specifies checking bidirectional strings as described in
Section 6 of RFC 3454 [7].

Appendix B. Resourceprep

https://datatracker.ietf.org/doc/html/rfc3454#section-6

Saint-Andre & Miller Expires April 25, 2004 [Page 74]

Internet-Draft XMPP Core October 2003

B.1 Introduction

 This appendix defines the "Resourceprep" profile of stringprep (RFC
3454 [7]). As such, it specifies processing rules that will enable

 users to enter internationalized resource identifiers in the
 Extensible Messaging and Presence Protocol (XMPP) and have the
 highest chance of getting the content of the strings correct. (An
 XMPP resource identifier is the optional portion of an XMPP address
 that follows a domain identifier and the '/' separator; it is often
 but not exclusively associated with an instant messaging session
 name.) These processing rules are intended only for XMPP resource
 identifiers and are not intended for arbitrary text or any other
 aspect of an XMPP address.

 This profile defines the following, as required by RFC 3454 [7]:

 o The intended applicability of the profile: internationalized
 resource identifiers within XMPP

 o The character repertoire that is the input and output to
 stringprep: Unicode 3.2, specified in Section 2 of this Appendix

 o The mappings used: specified in Section 3

 o The Unicode normalization used: specified in Section 4

 o The characters that are prohibited as output: specified in Section
5

 o Bidirectional character handling: specified in Section 6

B.2 Character Repertoire

 This profile uses Unicode 3.2 with the list of unassigned code points
 being Table A.1, both defined in Appendix A of RFC 3454 [7].

B.3 Mapping

 This profile specifies mapping using the following tables from RFC
3454 [7]:

 Table B.1

B.4 Normalization

 This profile specifies using Unicode normalization form KC, as

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454#appendix-A
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454

Saint-Andre & Miller Expires April 25, 2004 [Page 75]

Internet-Draft XMPP Core October 2003

 described in RFC 3454 [7].

B.5 Prohibited Output

 This profile specifies prohibiting use of the following tables from
RFC 3454 [7].

 Table C.1.2

 Table C.2.1

 Table C.2.2

 Table C.3

 Table C.4

 Table C.5

 Table C.6

 Table C.7

 Table C.8

 Table C.9

B.6 Bidirectional Characters

 This profile specifies checking bidirectional strings as described in
Section 6 of RFC 3454 [7].

Appendix C. XML Schemas

 The following XML schemas are descriptive, not normative. For schemas
 defining the 'jabber:client' and 'jabber:server' namespaces, refer to
 XMPP IM [21].

C.1 Streams namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='http://etherx.jabber.org/streams'
 xmlns='http://etherx.jabber.org/streams'
 elementFormDefault='unqualified'>

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454#section-6

Saint-Andre & Miller Expires April 25, 2004 [Page 76]

Internet-Draft XMPP Core October 2003

 <xs:import namespace='http://www.w3.org/XML/1998/namespace'
 schemaLocation='http://www.w3.org/2001/xml.xsd'/>

 <xs:element name='stream'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='features' minOccurs='0' maxOccurs='1'/>
 <xs:choice minOccurs='0' maxOccurs='1'>
 <xs:any namespace='jabber:client'
 minOccurs='0'
 maxOccurs='unbounded'/>
 <xs:any namespace='jabber:server'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xs:choice>
 <xs:element ref='error' minOccurs='0' maxOccurs='1'/>
 </xs:sequence>
 <xs:attribute name='to' type='xs:string' use='optional'/>
 <xs:attribute name='from' type='xs:string' use='optional'/>
 <xs:attribute name='id' type='xs:NMTOKEN' use='optional'/>
 <xs:attribute ref='xml:lang' use='optional'/>
 <xs:attribute name='version' type='xs:decimal' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='features'>
 <xs:complexType>
 <xs:sequence>
 <xs:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='error'>
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace='urn:ietf:params:xml:ns:xmpp-streams'
 maxOccurs='2'/>
 <xs:any
 namespace='##other'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Saint-Andre & Miller Expires April 25, 2004 [Page 77]

Internet-Draft XMPP Core October 2003

 </xs:schema>

C.2 Stream error namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 xmlns:xml='http://www.w3.org/XML/1998/namespace'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-streams'
 xmlns='urn:ietf:params:xml:ns:xmpp-streams'
 elementFormDefault='qualified'>

 <xs:import namespace='http://www.w3.org/XML/1998/namespace'
 schemaLocation='http://www.w3.org/2001/xml.xsd'/>

 <xs:element name='bad-format' type='empty'/>
 <xs:element name='bad-namespace-prefix' type='empty'/>
 <xs:element name='conflict' type='empty'/>
 <xs:element name='connection-timeout' type='empty'/>
 <xs:element name='host-gone' type='empty'/>
 <xs:element name='host-unknown' type='empty'/>
 <xs:element name='improper-addressing' type='empty'/>
 <xs:element name='internal-server-error' type='empty'/>
 <xs:element name='invalid-from' type='empty'/>
 <xs:element name='invalid-id' type='empty'/>
 <xs:element name='invalid-namespace' type='empty'/>
 <xs:element name='invalid-xml' type='empty'/>
 <xs:element name='not-authorized' type='empty'/>
 <xs:element name='policy-violation' type='empty'/>
 <xs:element name='remote-connection-failed' type='empty'/>
 <xs:element name='resource-constraint' type='empty'/>
 <xs:element name='restricted-xml' type='empty'/>
 <xs:element name='see-other-host' type='xs:string'/>
 <xs:element name='system-shutdown' type='empty'/>
 <xs:element name='undefined-condition' type='empty'/>
 <xs:element name='unsupported-encoding' type='empty'/>
 <xs:element name='unsupported-stanza-type' type='empty'/>
 <xs:element name='unsupported-version' type='empty'/>
 <xs:element name='xml-not-well-formed' type='empty'/>

 <xs:element name='text' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

Saint-Andre & Miller Expires April 25, 2004 [Page 78]

Internet-Draft XMPP Core October 2003

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

C.3 TLS namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-tls'
 xmlns='urn:ietf:params:xml:ns:xmpp-tls'
 elementFormDefault='qualified'>

 <xs:element name='starttls'>
 <xs:complexType>
 <xs:sequence>
 <xs:element
 ref='required'
 minOccurs='0'
 maxOccurs='1'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='required' type='empty'/>
 <xs:element name='proceed' type='empty'/>
 <xs:element name='failure' type='empty'/>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

C.4 SASL namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema

Saint-Andre & Miller Expires April 25, 2004 [Page 79]

Internet-Draft XMPP Core October 2003

 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-sasl'
 xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 elementFormDefault='qualified'>

 <xs:element name='mechanisms'>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref='mechanism' maxOccurs='unbounded'/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name='mechanism' type='xs:string'/>

 <xs:element name='auth'>
 <xs:complexType>
 <xs:attribute name='mechanism'
 type='xs:NMTOKEN'
 use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:element name='challenge' type='xs:NMTOKEN'/>
 <xs:element name='response' type='xs:NMTOKEN'/>
 <xs:element name='abort' type='empty'/>
 <xs:element name='success' type='empty'/>

 <xs:element name='failure'>
 <xs:complexType>
 <xs:choice maxOccurs='1'>
 <xs:element ref='aborted'/>
 <xs:element ref='incorrect-encoding'/>
 <xs:element ref='invalid-authzid'/>
 <xs:element ref='invalid-mechanism'/>
 <xs:element ref='mechanism-too-weak'/>
 <xs:element ref='not-authorized'/>
 <xs:element ref='temporary-auth-failure'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='aborted' type='empty'/>
 <xs:element name='incorrect-encoding' type='empty'/>
 <xs:element name='invalid-authzid' type='empty'/>
 <xs:element name='invalid-mechanism' type='empty'/>
 <xs:element name='mechanism-too-weak' type='empty'/>
 <xs:element name='not-authorized' type='empty'/>

Saint-Andre & Miller Expires April 25, 2004 [Page 80]

Internet-Draft XMPP Core October 2003

 <xs:element name='temporary-auth-failure' type='empty'/>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

C.5 Resource binding namespace

 <?xml version='1.0' encoding='UTF-8'?>
 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-bind'
 xmlns='urn:ietf:params:xml:ns:xmpp-bind'
 elementFormDefault='qualified'>

 <xs:element name='bind'>
 <xs:complexType>
 <xs:choice minOccurs='0' maxOccurs='1'>
 <xs:element ref='resource'/>
 <xs:element ref='jid'/>
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:element name='resource' type='xs:string'/>
 <xs:element name='jid' type='xs:string'/>

 </xs:schema>

C.6 Dialback namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 targetNamespace='jabber:server:dialback'
 xmlns='jabber:server:dialback'
 elementFormDefault='qualified'>

 <xs:element name='result'>
 <xs:complexType>
 <xs:simpleContent>

Saint-Andre & Miller Expires April 25, 2004 [Page 81]

Internet-Draft XMPP Core October 2003

 <xs:extension base='xs:NMTOKEN'>
 <xs:attribute name='from' type='xs:string' use='required'/>
 <xs:attribute name='to' type='xs:string' use='required'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='invalid'/>
 <xs:enumeration value='valid'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <xs:element name='verify'>
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base='xs:NMTOKEN'>
 <xs:attribute name='from' type='xs:string' use='required'/>
 <xs:attribute name='to' type='xs:string' use='required'/>
 <xs:attribute name='id' type='xs:NMTOKEN' use='required'/>
 <xs:attribute name='type' use='optional'>
 <xs:simpleType>
 <xs:restriction base='xs:NCName'>
 <xs:enumeration value='invalid'/>
 <xs:enumeration value='valid'/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 </xs:schema>

C.7 Stanza error namespace

 <?xml version='1.0' encoding='UTF-8'?>

 <xs:schema
 xmlns:xs='http://www.w3.org/2001/XMLSchema'
 xmlns:xml='http://www.w3.org/XML/1998/namespace'
 targetNamespace='urn:ietf:params:xml:ns:xmpp-stanzas'
 xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'

Saint-Andre & Miller Expires April 25, 2004 [Page 82]

Internet-Draft XMPP Core October 2003

 elementFormDefault='qualified'>

 <xs:import namespace='http://www.w3.org/XML/1998/namespace'
 schemaLocation='http://www.w3.org/2001/xml.xsd'/>

 <xs:element name='bad-request' type='empty'/>
 <xs:element name='conflict' type='empty'/>
 <xs:element name='feature-not-implemented' type='empty'/>
 <xs:element name='forbidden' type='empty'/>
 <xs:element name='gone' type='xs:string'/>
 <xs:element name='internal-server-error' type='empty'/>
 <xs:element name='item-not-found' type='empty'/>
 <xs:element name='jid-malformed' type='empty'/>
 <xs:element name='not-acceptable' type='empty'/>
 <xs:element name='not-allowed' type='empty'/>
 <xs:element name='payment-required' type='empty'/>
 <xs:element name='recipient-unavailable' type='empty'/>
 <xs:element name='redirect' type='xs:string'/>
 <xs:element name='registration-required' type='empty'/>
 <xs:element name='remote-server-not-found' type='empty'/>
 <xs:element name='remote-server-timeout' type='empty'/>
 <xs:element name='resource-constraint' type='empty'/>
 <xs:element name='service-unavailable' type='empty'/>
 <xs:element name='subscription-required' type='empty'/>
 <xs:element name='undefined-condition' type='empty'/>
 <xs:element name='unexpected-request' type='empty'/>

 <xs:element name='text' type='xs:string'>
 <xs:complexType>
 <xs:attribute ref='xml:lang' use='optional'/>
 </xs:complexType>
 </xs:element>

 <xs:simpleType name='empty'>
 <xs:restriction base='xs:string'>
 <xs:enumeration value=''/>
 </xs:restriction>
 </xs:simpleType>

 </xs:schema>

Appendix D. Differences Between Core Jabber Protocol and XMPP

 This section is non-normative.

 XMPP has been adapted from the protocols originally developed in the
 Jabber open-source community, which can be thought of as "XMPP 0.9".

Saint-Andre & Miller Expires April 25, 2004 [Page 83]

Internet-Draft XMPP Core October 2003

 Because there exists a large installed base of Jabber implementations
 and deployments, it may be helpful to specify the key differences
 between Jabber and XMPP in order to expedite and encourage upgrades
 of those implementations and deployments to XMPP. This section
 summarizes the core differences, while the corresponding section of
 XMPP IM [21] summarizes the differences that relate specifically to
 instant messaging and presence applications.

D.1 Channel Encryption

 It is common practice in the Jabber community to use SSL for channel
 encryption on ports other than 5222 and 5269 (the convention is to
 use ports 5223 and 5270). XMPP uses TLS over the IANA-registered
 ports for channel encryption, as defined under Stream Encryption
 (Section 5) herein.

D.2 Authentication

 The client-server authentication protocol developed in the Jabber
 community uses a basic IQ interaction qualified by the
 'jabber:iq:auth' namespace (documentation of this protocol is
 contained in "JEP-0078: Non-SASL Authentication", published by the
 Jabber Software Foundation [30]). XMPP uses SASL for authentication,
 as defined under Stream Authentication (Section 6) herein.

 The Jabber community does not currently possess an authentication
 protocol for server-to-server communications, only the Server
 Dialback (Section 8) protocol to prevent server spoofing. XMPP
 augments Server Dialback with a true server-to-server authentication
 protocol, as defined under Stream Authentication (Section 6) herein.

D.3 Resource Binding

 Resource binding in the Jabber community is handled via the
 'jabber:iq:auth' namespace that is also used for client
 authentication with a server. XMPP defines a dedicated namespace for
 resource binding as well as the ability for a server to generate a
 resource identifier on behalf of a client, as defined under Resource
 Binding (Section 7).

D.4 JID Processing

 JID processing was somewhat loosely defined by the Jabber community
 (documentation of forbidden characters and case handling is contained
 in "JEP-0029: Definition of Jabber Identifiers", published by the
 Jabber Software Foundation [30]). XMPP specifies the use of Nameprep
 [6] for domain identifiers and supplements Nameprep with two
 additional stringprep [7] profiles for JID processing: Nodeprep

Saint-Andre & Miller Expires April 25, 2004 [Page 84]

Internet-Draft XMPP Core October 2003

 (Appendix A) for node identifiers and Resourceprep (Appendix B) for
 resource identifiers .

D.5 Error Handling

 Stream-related errors are handled in the Jabber community via simple
 CDATA text in a <stream:error/> element. In XMPP, stream-related
 errors are handled via an extensible mechanism defined under Stream
 Errors (Section 4.6) herein.

 Stanza-related errors are handled in the Jabber community via
 HTTP-style error codes. In XMPP, stanza-related errors are handled
 via an extensible mechanism defined under Stanza Errors (Section 9.3)
 herein. (Documentation of a mapping between Jabber and XMPP error
 handling mechanisms is contained in "JEP-0086: Legacy Errors",
 published by the Jabber Software Foundation [30].)

D.6 Internationalization

 Although use of UTF-8 has always been standard practice within the
 Jabber community, the community did not define mechanisms for
 specifying the language of human-readable text provided in CDATA
 sections. XMPP specifies the use of the 'xml:lang' attribute in such
 contexts, as defined under Stream Attributes (Section 4.2) and
 xml:lang (Section 9.1.5) herein.

D.7 Stream Version Attribute

 The Jabber community does not include a 'version' attribute in stream
 headers. XMPP specifies inclusion of that attribute, with a value of
 '1.0', as a way to signal support for the stream features
 (authentication, encryption, etc.) defined under Version Support
 (Section 4.2.1) herein.

Appendix E. Revision History

 Note to RFC Editor: please remove this entire appendix, and the
 corresponding entries in the table of contents, prior to publication.

E.1 Changes from draft-ietf-xmpp-core-18

 o Added the 'xml:lang' attribute to the root <stream/> element per
 previous consensus and list discussion.

 o Added the <gone/>, <not-acceptable/>, and <redirect/> stanza
 errors.

 o Changed dataype of <see-other-host/> stream error and of <gone/>

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-18

Saint-Andre & Miller Expires April 25, 2004 [Page 85]

Internet-Draft XMPP Core October 2003

 and <redirect/> stanza errors to xs:string so that these elements
 may contain programmatic information.

 o Removed <invalid-realm/> and <bad-protocol/> SASL errors.

 o Removed references to RFC 952 and RFC 1123 (domain name format is
 handled by reference to Nameprep).

 o Changed address record resolution text so that it is not specific
 to IPv4.

 o Clarified text in appendices regarding scope of Nodeprep and
 Resourceprep.

 o Removed requirement that receiving entity terminate the TCP
 connection upon receiving an <abort/> element from or sending a
 <failure/> element to the initiating entity during SASL
 negotiation.

 o Removed recommendation that TLS and SASL security layer should not
 both be used simultaneously.

 o Added subsection to Security Considerations regarding use of
 base64 in SASL.

 o Specified rules regarding inclusion of username in SASL
 negotiation.

 o Adjusted content related to SASL authorization identities, since
 the previous text did not track RFC2222bis.

 o Added section on resource binding to compensate for changes to
 SASL authorization identity text.

 o Specified ABNF for JIDs.

 o Checked all references.

 o Completed a thorough proofreading and consistency check of the
 entire text.

E.2 Changes from draft-ietf-xmpp-core-17

 o Specified that UTF-8 is the only allowable encoding.

 o Added stream errors for <bad-namespace-prefix/>, <invalid-xml/>,
 and <restricted-xml/>, as well as a <bad-format/> error for

https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-17

Saint-Andre & Miller Expires April 25, 2004 [Page 86]

Internet-Draft XMPP Core October 2003

 generic XML error conditions.

 o Folded Nodeprep and Resourceprep profiles into this document.

 o Moved most delivery handling rules from XMPP IM to XMPP Core.

 o Moved detailed stanza syntax descriptions from XMPP Core to XMPP
 IM.

 o Moved stanza schemas from XMPP Core to XMPP IM.

E.3 Changes from draft-ietf-xmpp-core-16

 o Added <conflict/> and <unsupported-encoding/> stream errors.

 o Changed the datatype for the <see-other-host/> and
 <unsupported-version/> stream errors from 'xs:string' to 'empty'.

 o Further clarified server handling of the basic stanza kinds.

 o Further clarified character encoding rules per list discussion.

 o Specified meaning of version='1.0' flag in stream headers.

 o Added stream closure to SASL failure cases in order to mirror
 handling of TLS failures.

 o Added section on compliance requirements for server and client
 implementations.

 o Added non-normative section on differences between Jabber usage
 and XMPP specifications.

E.4 Changes from draft-ietf-xmpp-core-15

 o Added <connection-timeout/> and <policy-violation/> stream errors.

 o Added <aborted/> SASL error and clarified <bad-protocol/> error.

 o Made 'id' required for IQ stanzas.

E.5 Changes from draft-ietf-xmpp-core-14

 o Added SRV lookup for client-to-server communications.

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-16
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-15
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-14

Saint-Andre & Miller Expires April 25, 2004 [Page 87]

Internet-Draft XMPP Core October 2003

 o Changed server SRV record to conform to RFC 2782; specifically,
 the service identifier was changed from 'jabber' to
 'jabber-server'.

E.6 Changes from draft-ietf-xmpp-core-13

 o Clarified stream restart after successful TLS and SASL
 negotiation.

 o Clarified requirement for resolution of DNS hostnames.

 o Clarified text regarding namespaces.

 o Clarified examples regarding empty <stream:features/> element.

 o Added several more SASL error conditions.

 o Changed <invalid-xml/> stream error to <improper-addressing/> and
 added to schema.

 o Made small editorial changes and fixed several schema errors.

E.7 Changes from draft-ietf-xmpp-core-12

 o Moved server dialback to a separate section; clarified its
 security characteristics and its role in the protocol.

 o Adjusted error handling syntax and semantics per list discussion.

 o Further clarified length of node identifiers and total length of
 JIDs.

 o Documented message type='normal'.

 o Corrected several small errors in the TLS and SASL sections.

 o Corrected several errors in the schemas.

E.8 Changes from draft-ietf-xmpp-core-11

 o Corrected several small errors in the TLS and SASL sections.

 o Made small editorial changes and fixed several schema errors.

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-13
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-12
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-11

Saint-Andre & Miller Expires April 25, 2004 [Page 88]

Internet-Draft XMPP Core October 2003

E.9 Changes from draft-ietf-xmpp-core-10

 o Adjusted TLS content regarding certificate validation process.

 o Specified that stanza error extensions for specific applications
 are to be properly namespaced children of the relevant descriptive
 element.

 o Clarified rules for inclusion of the 'id' attribute.

 o Specified that the 'xml:lang' attribute SHOULD be included (per
 list discussion).

 o Made small editorial changes and fixed several schema errors.

E.10 Changes from draft-ietf-xmpp-core-09

 o Fixed several dialback error conditions.

 o Cleaned up rules regarding TLS and certificate processing based on
 off-list feedback.

 o Changed <stream-condition/> and <stanza-condition/> elements to
 <condition/>.

 o Added or modified several stream and stanza error conditions.

 o Specified only one child allowed for IQ, or two if type="error".

 o Fixed several errors in the schemas.

E.11 Changes from draft-ietf-xmpp-core-08

 o Incorporated list discussion regarding addressing, SASL, TLS, TCP,
 dialback, namespaces, extensibility, and the meaning of 'ignore'
 for routers and recipients.

 o Specified dialback error conditions.

 o Made small editorial changes to address RFC Editor requirements.

E.12 Changes from draft-ietf-xmpp-core-07

 o Made several small editorial changes.

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-10
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-09
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-08
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-07

Saint-Andre & Miller Expires April 25, 2004 [Page 89]

Internet-Draft XMPP Core October 2003

E.13 Changes from draft-ietf-xmpp-core-06

 o Added text regarding certificate validation in TLS negotiation per
 list discussion.

 o Clarified nature of XML restrictions per discussion with W3C, and
 moved XML Restrictions subsection under "XML Usage within XMPP".

 o Further clarified that XML streams are unidirectional.

 o Changed stream error and stanza error namespace names to conform
 to the format defined in The IETF XML Registry [24].

 o Removed note to RFC Editor regarding provisional namespace names.

E.14 Changes from draft-ietf-xmpp-core-05

 o Added <invalid-namespace/> as a stream error condition.

 o Adjusted security considerations per discussion at IETF 56 and on
 list.

E.15 Changes from draft-ietf-xmpp-core-04

 o Added server-to-server examples for TLS and SASL.

 o Changed error syntax, rules, and examples based on list
 discussion.

 o Added schemas for the TLS, stream error, and stanza error
 namespaces.

 o Added note to RFC Editor regarding provisional namespace names.

 o Made numerous small editorial changes and clarified text
 throughout.

E.16 Changes from draft-ietf-xmpp-core-03

 o Clarified rules and procedures for TLS and SASL.

 o Amplified stream error code syntax per list discussion.

 o Made numerous small editorial changes.

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-06
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-05
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-04
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-03

Saint-Andre & Miller Expires April 25, 2004 [Page 90]

Internet-Draft XMPP Core October 2003

E.17 Changes from draft-ietf-xmpp-core-02

 o Added dialback schema.

 o Removed all DTDs since schemas provide more complete definitions.

 o Added stream error codes.

 o Clarified error code "philosophy".

E.18 Changes from draft-ietf-xmpp-core-01

 o Updated the addressing restrictions per list discussion and added
 references to the new Nodeprep and Resourceprep profiles.

 o Corrected error in Stream Authentication regarding 'version'
 attribute.

 o Made numerous small editorial changes.

E.19 Changes from draft-ietf-xmpp-core-00

 o Added information about TLS from list discussion.

 o Clarified meaning of "ignore" based on list discussion.

 o Clarified information about Universal Character Set data and
 character encodings.

 o Provided base64-decoded information for examples.

 o Fixed several errors in the schemas.

 o Made numerous small editorial fixes.

E.20 Changes from draft-miller-xmpp-core-02

 o Brought Stream Authentication section into line with discussion on
 list and at IETF 55 meeting.

 o Added information about the optional 'xml:lang' attribute per
 discussion on list and at IETF 55 meeting.

 o Specified that validation is neither required nor recommended, and
 that the formal definitions (DTDs and schemas) are included for

https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-02
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-01
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-00
https://datatracker.ietf.org/doc/html/draft-miller-xmpp-core-02

Saint-Andre & Miller Expires April 25, 2004 [Page 91]

Internet-Draft XMPP Core October 2003

 descriptive purposes only.

 o Specified that the response to an IQ stanza of type "get" or "set"
 must be an IQ stanza of type "result" or "error".

 o Specified that compliant server implementations must process
 stanzas in order.

 o Specified that for historical reasons some server implementations
 may accept 'stream:' as the only valid namespace prefix on the
 root stream element.

 o Clarified the difference between 'jabber:client' and
 'jabber:server' namespaces, namely, that 'to' and 'from'
 attributes are required on all stanzas in the latter but not the
 former.

 o Fixed typo in Step 9 of the dialback protocol (changed db:result
 to db:verify).

 o Removed references to TLS pending list discussion.

 o Removed the non-normative appendix on OpenPGP usage pending its
 inclusion in a separate I-D.

 o Simplified the architecture diagram, removed most references to
 services, and removed references to the 'jabber:component:*'
 namespaces.

 o Noted that XMPP activity respects firewall administration
 policies.

 o Further specified the scope and uniqueness of the 'id' attribute
 in all stanza kinds and the <thread/> element in message stanzas.

 o Nomenclature changes: (1) from "chunks" to "stanzas"; (2) from
 "host" to "server" and from "node" to "client" (except with regard
 to definition of the addressing scheme).

Saint-Andre & Miller Expires April 25, 2004 [Page 92]

Internet-Draft XMPP Core October 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Saint-Andre & Miller Expires April 25, 2004 [Page 93]

Internet-Draft XMPP Core October 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Saint-Andre & Miller Expires April 25, 2004 [Page 94]

