
Network Working Group R.L. Barnes

Internet-Draft BBN Technologies

Intended status: Standards Track J. Lindberg

Expires: September 15, 2011 Google

March 14, 2011

Domain Name Assertions

draft-ietf-xmpp-dna-01

Abstract

The current authentication process in XMPP requires the XMPP server for

a domain to present a certificate that contains that domain's name.

This requirement causes several problems in scenarios where XMPP

services have been delegated from one domain to another, especially

when one domain provides XMPP services for many domains. This document

describes an extension to the XMPP authentication process that allows

domains to be securely delegated, simplifying authorization in

delegation scenarios.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 15, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Protocol Overview

4. Connection Model

5. Channel Establishment and Authentication

6. Authorizing XMPP Stanzas

7. Backward Compatibility

8. Operational Considerations

9. IANA Considerations

10. Security Considerations

11. Acknowledgements

12. References

Authors' Addresses

1. Introduction

When connecting two XMPP services to provide inter-domain

communication, it is important for a service to be able to determine

the identity of a peer service to prevent traffic spoofing. The Jabber

communities first approach to identity verification was the Server

Dialback protocol. When the Jabber protocols were formalized by the

XMPP working group of the IETF 2002-04, support for strong identity

verification using TLS + SASL was added.

Server Dialback [XEP-0220] provides weak identity verification and

makes it more difficult to spoof hostnames of servers XMPP network.

However, it does not provide authentication between servers and is not

a security mechanism. It is susceptible to DNS poisoning attacks

(unless DNSSEC is used) and cannot protect against attackers capable of

hijacking the IP address of a remote service.

TLS + SASL provides strong identity verification but requires a

obtaining a digital certificate by a trusted CA (or the XMPP

Intermediate Certification Authority) and using it in the XMPP service,

*

*

*

*

*

*

*

*

*

*

*

*

*

which may be hosted by a 3rd party. This solution does not allow for

multiplexing traffic for multiple domain pairs over a connection,

possibly requiring a large number of connections between two hosting

providers.

Server Dialback can be used with TLS. When STARTTLS negotiation

succeeds with a peer service but the peer's certificate cannot be used

to establish the peer's identity, the remote domain may use on Server

Dialback for (weak) identity verification. One use case can be an

originating server that wish to use TLS for encryption, but only can

present a self signed certificate.

In practice, many XMPP server deployments rely on Server Dialback and

either do not support XMPP 1.0 or do not offer negotiation of TLS +

SASL.

This goal of this document is to describe secure authentication using a

hosting provide TLS certificate from a trusted CA, combined with a

dialback mechanism providing secure delegation based on DNS record

delgation verified using DNSSEC.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

We will refer to four different types of domains in this document:

Sender domain: The domain that initially sends out an XMPP

message

Target domain: The ultimate destination of an XMPP message

Originating domain: The originating domain of a particular

server-to-server connection

Receiving domain: The receiving domain of a particular server-to-

server connection

In outsourcing scenarios, the sending and receiving domains are

outsourced to the originating and receiving domains, respectively.

3. Protocol Overview

Consider a scenario in which the domain sender.tld has outsourced XMPP

services to originating.tld, and target.tld has outsourced to

receiving.tld. The particular hosts providing services are

xmpp1.originating.tld and xmpp1.receiving.tld. Users romeo@sender.tld

and juliet@target.tld maintain client-to-server connections to these

servers.

*

*

*

*

romeo@sender.tld -- xmpp1.originating.tld

 .

 .

 xmpp1.receiving.tld -- juliet@target.tld

When Romeo wants to send a message to Juliet, Provider A's server will

have to establish a server-to-server connection to Provider B's server.

Since they are both acting on behalf of other domains, however, each

side will have to verify that the other is authorized to act in that

role.

The first step is to provision records that can be used to verify these

delegations. In order for XMPP to work, when the hosting relationships

are set up, sender.tld and target.tld have to provision SRV records

pointing to their providers' servers. To make this delegation secure,

they sign these records using DNSSEC [RFC4033]. On the XMPP servers

themselves, the originating and receiving domains provision

certificates that can be used to authenticate the names

xmpp1.originating.tld and xmpp1.receiving.tld.

When Romeo wants to send a stanza to Juliet, he will first send it to

his server, xmpp1.originating.tld. Seeing that the 'to' domain of the

stanza is target.tld, the server will retrieve the SRV records for

_xmpp-server._tcp.target.tld, plus any associated DNSSEC records

[RFC4034].

_xmpp-server._tcp.target.tld. 400 IN SRV

 20 0 5269 xmpp1.receiving.tld

_xmpp-server._tcp.target.tld. 400 IN RRSIG

 SRV 5 3 400 20030322173103 (

 20030220173103 2642 _tcp.target.tld.

 oJB1W6WNGv+ldvQ3WDG0MQkg5IEhjRip8WTr

 PYGv07h108dUKGMeDPKijVCHX3DDKdfb+v6o

 B9wfuh3DTJXUAfI/M0zmO/zz8bW0Rznl8O3t

 GNazPwQKkRN20XPXV6nwwfoXmJQbsLNrLfkG

 J5D6fwFm8nN+6pBzeDQfsS3Ap3o=)

If there are no DNSSEC records, or if the DNSSEC records do not

validate, then there is nothing new to do; the server simply connects

to the remote domain using normal XMPP procedures. If there is a valid

DNSSEC signature on the SRV record, then the server knows that he can

allow the remote server to authenticate as either target.tld or

xmpp1.receiving.tld.

Once the TLS connection is established, the two sides negotiate a

single bidirectional stream to run over it, using their own names:

I: <?xml version='1.0'?>

 <stream:stream

 from='xmpp1.originating.tld'

 to='xmpp1.receiving.tld'

 version='1.0'

 xml:lang='en'

 xmlns='jabber:server'

 xmlns:stream='http://etherx.jabber.org/streams'>

R: <?xml version='1.0'?>

 <stream:stream

 from='xmpp1.receiving.tld'

 id='++TR84Sm6A3hnt3Q065SnAbbk3Y='

 to='xmpp1.originating.tld'

 version='1.0'

 xml:lang='en'

 xmlns='jabber:server'

 xmlns:stream='http://etherx.jabber.org/streams'>

R: <stream:features>

 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

 <bidi xmlns='urn:xmpp:bidi'/>

 </stream:features>

When this stream is created, it can immediately carry stanzas directly

between the two servers. In order to send messages to and from other

domains, the servers have to authenticate and request permission. So to

send Romeo's stanza to Juliet, xmpp1.originating.tld requests

permission to send from sender.tld to target.tld.

The originating server uses STARTTLS to set up a TLS connection. In the

ClientHello message initiating the connection, the

xmpp1.originating.tld includes a Server Name Indication extension set

to xmpp1.receiving.tld [RFC4366]. The remote server xmpp1.receiving.tld

responds to this request with a certificate for its own name,

xmpp1.receiving.tld and requests a client certificate from the

originating server. The originating server presents a certificate for

its own name, xmpp1.originating.tld.

At this point, the server xmpp1.originating.tld knows that

xmpp1.receiving.tld is authorized to represent either

xmpp1.receiving.tld (via the certificate) or target.tld (via DNSSEC).

The other server, xmpp1.receiving.tld knows only that the other server

repressents xmpp1.originating.tld.

Once the two servers have authenticated their own names over TLS, they

can request permission to send stanzas:

I: <db:result from='sender.tld' to='target.tld' />

Since xmpp1.receiving.tld doesn't yet know whether

xmpp1.originating.tld is authorized to represent sender.tld, it has to

check, using an abbreviated form of dialback. Just as the Provider A

server did earlier for target.tld, the Provider B server looks up the

SRV records for _xmpp-server._tcp.sender.tld and any associated DNSSEC

records. If there are no DNSSEC records or the signature is not valid,

then the server rejects the request to send stanzas from that domain.

If the record is DNSSEC-signed, then the server checks that the server

name in the SRV record is one of the names authenticated for the remote

side.

R: <db:result type='invalid' from='sender.tld' to='target.tld' />

On the other hand, if the DNSSEC signature is valid, then the server

can accept the request to send stanzas, and the two servers can

exchange stanzas for those domains.

R: <db:result type='valid' from'sender.tld' to='target.tld' />

I: <!-- stanza -->

Now that the two servers have established this connection, they can re-

used it for other stanzas and other domains. If either server finds

another domain that is delegated to the other server, it can send a

<db:result> requesting permission to send stanzas for that domain, and

the other server will grant or deny permission after checking the

delegation.

The following figure summarizes the overal process:

Originating DNS Receiving

 Server Server Server

----------- --------- --------

 | | |

 | Lookup _xmpp-server | |

 | DNS SRV record for | |

 | target.tld to find | |

 | delegation of service | |

 | to Receiving Server. | |

 | Verify zone signature | |

 | -----------------------> | |

 | | |

 | 'Receiving Server' | |

 | <----------------------- | |

 | | |

 | |

 | |

 | <stream from='originating.tld' to='receiving.tld'> |

 | --> |

 | |

 | <stream from='receiving.tld' to='originating.tld'> |

 | <-- |

 | |

 | <features><starttls></features> |

 | <-- |

 | |

 | <starttls/> |

 | --> |

 | |

 | <proceed/> |

 | <-- |

 | |

 | |

 | <====================== TLS ======================> |

 | |

 | |

 | <stream from='originating.tld' to='receiving.tld'> |

 | --> |

 | |

 | <stream from='receiving.tld' to='originating.tld'> |

 | <-- |

 | |

 | <features><bidi></features> |

 | <-- |

 | |

 | <db:result from='sender.tld' to='target.tld'/> |

 | --> |

 | |

 | ... |

4. Connection Model

The core challenge for managing inter-server connections is the

multiplexing of stanzas for multiple domains onto a single transport-

layer connection. There are two key pieces of state associated with

this multiplexing: A list of domain names that have been authenticated

for use on a connection, and a table binding pairs of domains that are

authorized for a connection.

First table that a server maintains is a connection table. Each entry

in this table contains a connection and a set of domain names. The

domain names represent the set of names for which the remote server has

been authenticated, according to the procedures described in Section

Section 5. This set of domain names constrains the set of domain pairs

that can be bound to this channel; the remote server cannot ask to

transmit stanzas for an unauthenticated domain name.

+------------+---------------------+------------------------+

| Connection | Server Domain Names | Delegated Domain Names |

+------------+---------------------+------------------------+

| XXX | xmpp1.provider.com | capulet.example |

| YYY | xmpp2.provider.com | capulet.example |

| AAA | paris.example | paris.example |

+------------+---------------------+------------------------+

To determine how to handle incoming and outgoing stanzas, each server

maintains a channel binding table. Each row in the binding table

contains a "local" domain name, a "remote" domain name, and an ordered

list of connections. The identifier for a connection is the stream ID

for the single XMPP stream that it carries.

+------------------+-----------------+---------------+

| Local | Remote | Connections |

+------------------+-----------------+---------------+

| montague.example | capulet.example | XXX, YYY |

| laurence.example | capulet.example | AAA |

| laurence.example | paris.example | YYY, AAA |

+------------------+-----------------+---------------+

The binding table acts as a routing table for outgoing stanzas and a

filter for incoming stanzas. When the server wishes to send a stanza,

it looks in the binding table for a row that has the 'from' domain as

the local domain and the 'to' domain as the remote domain. If there is

such a in the binding table, then the server MUST transmit the on the

first connection in the connection list. Thus, in the above example, a

stanza from montague.example to capulet.example would be routed on

channel XXX.

In the same way, when a server receives a stanza over a connection from

a remote server, it looks up the relevant entry in the binding table,

this time using the 'to' domain as the local domain and the 'from'

domain as the remote domain. If the server finds a binding table entry

and the connection over which the stanza arrived is listed in the

entry, then it accepts the stanza. Otherwise, it MUST discard the

stanza and return a stanza error <invalid-connection/>. In the above

example, a stanza from capulet.example to escalus.example would be

accepted on connections AAA and BBB, but no others.

When a connection is opened (and at some points thereafter), entries in

the name table are established using the processes in Section Section

5. Once a connection is open, binding table entries are added or

removed using the processes in Section Section 6. When a connection is

closed, both servers MUST delete its entry in the name table and remove

it from all entries in the binding table.

5. Channel Establishment and Authentication

When a server wants to send a stanza and doesn't have an entry in the

connection table for the destination domain, it sets one up. The first

step is to establish a connection to a server for the destination

domain, and validate that the server is authorized to represent the

destination domain.

The originating server MUST take the following steps to establish a

secure connection to the server for example.com:

Retrieve SRV records for XMPP services for example.com [I-

D.ietf-xmpp-3920bis].

Verify that the SRV records have been signed using DNSSEC

[RFC4033]. The originating server may either retrieve DNSSEC

records directly or rely on a validating resolver. If the SRV

records are not secured with DNSSEC, then the connection fails.

If there is already a connection in the connection table that

has the target of any SRV record in its "server names" list,

then this process terminates and the server attempts to use

that connection (See Section Section 6)

If there is no existing connection that matches, establish a

TCP connection to any of the servers listed in an SRV record

and negotiate an XMPP stream with the following parameters:

'from' domain: The originating server's name

'to' domain: The receiving server's name from the SRV record

[[TODO: Add a stream feature to indicate support for this

extension]]

1.

2.

3.

4.

*

*

*

Upgrade the connection to TLS using STARTTLS, using a cipher

suite that requires the server to present an X.509 certificate.

Verify that the certificate is valid and chains to a local

trust anchor. If the certificate is invalid, the connection

fails.

Construct a list of all names that the certificate presents [I-

D.saintandre-tls-server-id-check].

Verify that the target name in the SRV record is one of the

names in the certificate. If the target name is not found in

the list of names from the certificate, then the connection

fails.

A server receiving such a connection MUST perform the following steps:

Accept the TCP connection from the remote side and accept the

stream negotiation using server names.

In the TLS negotiation, require a client certificate from the

remote side.

Verify that the remote server name in the stream matches the

client certificate [I-D.saintandre-tls-server-id-check]. If the

certificate does not match, the TLS negotiation fails, and the

server MAY terminate the TCP connection.

If this process establishes a new connection, then the originating

server knows that it has established a connection to a server that

legitimately represents example.com. It should thus initialize a row in

the connection table for this connection:

Server names: The list of names in the server's certificate

Delegated names: example.com

If the process terminated at Step 3, then the server simply updates the

connection table entry to add example.com to the list of delegated

names. In either case, the row for a connection is removed from the

connection table when the connection is closed.

In order for this process to work, the domain owner and the hosting

provider need to publish information that other XMPP entities can use

to verify the delegation. XMPP services are delegated via SRV records

(see Section 3.2.1 of [I-D.ietf-xmpp-3920bis]), so in order for the

delegation to be secure, the domain owner MUST sign these records with

DNSSEC. In other words, if the delegated domain is example.com, then

the zone _xmpp-server._tcp.example.com MUST be signed. Each server that

acts for a domain MUST be provisioned with a certificate that contains

the target name used by SRV records.

5.

6.

7.

8.

1.

2.

3.

*

*

The server on the receiving end of the TLS connection MUST request a

client certificate from the originating server during the TLS

handshake, and the originating server MUST provide a client

certificate. The receiving server can then also initialize an entry in

its connection table to which delegated names can be added later:

Server names: The list of names from the client certificate (from

the originating server), if present. Otherwise, empty.

Delgated names: Empty.

Once the two servers have established a TLS connection, they MUST set

up an XMPP stream that will be used for domains that they represent.

This process follows the normal stream initiation procedure [I-D.ietf-

xmpp-3920bis], except that the 'to' and 'from' domains MUST be set to

the names of the servers themselves: The originating server sends a

<stream> stanza with the 'from' domain set to a name for itself that is

contained in its client certificate, and the 'to' domain set to the

server name used in the SRV record for this connection. If stream

negotiation fails, then the connection fails. If it succeeds, then both

sides MUST set the connection identifier in the connection table to be

the stream ID for the negotiated stream.

Since server-to-server connections are by default directional, it is

RECOMMENDED that servers also request the <bidi> stream feature to

enable bidirectional flows on this connection [XEP-0288].

*

*

Originating DNS Receiving

 Server Server Server

----------- --------- --------

 | | |

 | Lookup _xmpp-server | |

 | DNS SRV record for | |

 | target.tld to find | |

 | delegation of service | |

 | to Receiving Server. | |

 | Verify zone signature | |

 | -----------------------> | |

 | | |

 | 'Receiving Server' | |

 | <----------------------- | |

 | | |

 | |

 | |

 | <stream from='originating.tld' to='receiving.tld'> |

 | --> |

 | |

 | <stream from='receiving.tld' to='originating.tld'> |

 | <-- |

 | |

 | <features><starttls></features> |

 | <-- |

 | |

 | <starttls/> |

 | --> |

 | |

 | <proceed/> |

 | <-- |

 | |

 | |

 | <====================== TLS ======================> |

 | |

 | |

 | <stream from='originating.tld' to='receiving.tld'> |

 | --> |

 | |

 | <stream from='receiving.tld' to='originating.tld'> |

 | <-- |

 | |

 | <features><bidi></features> |

 | <-- |

6. Authorizing XMPP Stanzas

Before sending traffic from a Sender Domain to a Target Domain using an

established connection, the originating server MUST request permission

to do so, and wait until it has received authorization from the remote

service. A service receiving traffic MUST verify that the Sender and

Target domain pair has been authorized on the connection being used.

An originating server MUST go through the following steps to reqeust

authorization to send traffic from a Sender Domain to a Target Domain:

Send a <db:result/> [XEP-0220] element with Sender Domain as

'from' and Target Domain as 'to'. The server may also include a

Dialback Key as part of the element's character data, to

support legacy deployments.

Wait for remote service to respond with a <db:result> with

Target Domain as 'from', Sender Domain as 'to' and 'type'

attribute that is either 'valid' or 'invalid'. In case of

'invalid', the originating server SHOULD examine the error

cause and take appropriate action and MAY retry requesting

authorization on the same connection in the future.

If response 'type' was 'valid', the originating server updates

its binding table to indicate that Sender Domain (Local) and

Target Domain (Remote) is authorized in the sending direction

for the connection used.

Originating server proceeds with sending traffic from Sender

Domain to Target Domain.

Upon receiving a <db:result/> stanza, the receiving server MUST take

following steps:

Verify that the receiving direction is supported for this

connection. If not, fail by disconnecting the stream. (By

default, connections are one-way)

Verify that domain in to-attribute is hosted by the service. If

not, fail and respond with an <item-not-found/> error.

Verify that domain in from-attribute delegates hosting of their

XMPP to the remote Server Domain Name by looking up SRV and

verifying that the zone is signed. If not, fail with a <not-

authorized/> error. Note: a service MAY accept a less secure

delegation mechanism such a SRV records in a non signed zone,

subject to local policy.

Once secure delegation from Sending Domain to remote Server

Domain name has been verified, service adds Sending Domain to

list of Delegated Domain Names in the Connection Table, and

updates the Binding Table indicating that the Sending Domain

(remote) is allowed to send traffic to Target Domain (local) on

the connection.

1.

2.

3.

4.

1.

2.

3.

4.

Respond to remote service with a <db:result/> stanza with

'type' set to 'valid'.

A service may revoke authorization for a domain pair at any time by

sending a <db:result> with 'type' set to invalid. Once authorization

has been revoked, the remote side MUST re-aquire authorization before

sending any futher traffic for the domain pair.

If a server receives a stanza for a to/from pair that it does not

consider authorized, then it MUST return a <not-authorized/> error and

MAY terminate the TCP connection.

Originating Receiving DNS

 Server Server Server

----------- --------- --------

 | | |

 | <db:result | |

 | from='sender.tld' | |

 | to='target.tld'/> | |

 | -----------------------> | |

 | | Lookup _xmpp-server |

 | | DNS SRV record for |

 | | sender.tld to verify |

 | | signed delegation of |

 | | delegation of service |

 | | to Originating Server |

 | | -----------------------> |

 | | |

 | | Result |

 | | <----------------------- |

 | |

 | <db:result |

 | from='target.tld' |

 | to='sender.tld' |

 | type='valid'/> |

 | <----------------------- |

 | |

 | (Traffic authorized |

 | from sender.tld to |

 | target.tld, in one |

 | direction.) |

 | |

 | <message |

 | from='r@sender.tld' |

 | to='j@target.tld'> |

 | <body>hi</body> |

 | </message> |

 | -----------------------> |

5.

7. Backward Compatibility

Using Server Domain Names as to/from attributes in <stream> stanzas is

incompatible with XMPP services that do not support this protocol,

because it was previously assumed that when receiving a connection the

stream to attibute will contains an XMPP domain hosted by the receiving

service. It is RECOMMENDED that if the connection fails, the service

tries again using the Remote Domain as stream to-attribute.

Presenting a certificate for the Server Domain Name is incompatible

with XMPP services that do not support this protocol, because those

will expect the Remote Domain in the certificate. It is RECOMMENDED

that if the authorization fails, the service tries again presenting the

certificate for the Remote Domain. A service may also choose to fall

back on a weaker identification mechanism such as Server Dialback,

subject to local policy.

8. Operational Considerations

[[What names to put in certs for servers in a cluster, i.e., all of

them.]]

[[Do TLS clients support multiple names in certs?]]

[[How DNSSEC validation is done can vary depending on deployment

scenario.]]

[[Since SNI is used to signal support for this extension, recommended

not to serve end users on the same domain as hosting services.]]

[[Load balancing thoughts, since each connection will handle a lot

more traffic?]]

9. IANA Considerations

[[Register XML schema for assertions, if necessary]]

[[Define invalid-connection error element]]

10. Security Considerations

[[This document simplifies authentication and authorization of XMPP

servers in certain scenarios. When used together with DNSSEC-protected

delegations, it does not introduce any new security risks.]]

[[If a provider chooses to omit DNSSEC checks or]]

11. Acknowledgements

Thanks to Joe Hildebrand and Sean Turner for prompting the original

work on this problem, and to Stephen Farrell for his work on initial

versions of this draft.

12. References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[RFC4033]

Arends, R., Austein, R., Larson, M., Massey, D.

and S. Rose, "DNS Security Introduction and

Requirements", RFC 4033, March 2005.

[RFC4034]

Arends, R., Austein, R., Larson, M., Massey, D.

and S. Rose, "Resource Records for the DNS

Security Extensions", RFC 4034, March 2005.

[RFC4366]

Blake-Wilson, S., Nystrom, M., Hopwood, D.,

Mikkelsen, J. and T. Wright, "Transport Layer

Security (TLS) Extensions", RFC 4366, April

2006.

[I-D.ietf-

xmpp-3920bis]

Saint-Andre, P, "Extensible Messaging and

Presence Protocol (XMPP): Core", Internet-Draft

draft-ietf-xmpp-3920bis-22, December 2010.

[I-

D.saintandre-

tls-server-id-

check]

Saint-Andre, P and J Hodges, "Representation and

Verification of Domain-Based Application Service

Identity within Internet Public Key

Infrastructure Using X.509 (PKIX) Certificates

in the Context of Transport Layer Security

(TLS)", Internet-Draft draft-saintandre-tls-

server-id-check-14, January 2011.

[XEP-0288]

Hancke, P. and D. Cridland, "Bidirectional

Server-to-Server Connections", XSF XEP 0288,

October 2010.

[XEP-0220]
Miller, J., Saint-Andre, P. and P. Hancke,

"Server Dialback", XSF XEP 0220, March 2010.

Authors' Addresses

Richard L. Barnes Barnes BBN Technologies EMail: rbarnes@bbn.com

Jonas Lindberg Lindberg Google EMail: jonasl@google.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4034
http://tools.ietf.org/html/rfc4034
http://tools.ietf.org/html/rfc4366
http://tools.ietf.org/html/rfc4366
http://tools.ietf.org/html/draft-ietf-xmpp-3920bis-22
http://tools.ietf.org/html/draft-ietf-xmpp-3920bis-22
http://tools.ietf.org/html/draft-saintandre-tls-server-id-check-14
http://tools.ietf.org/html/draft-saintandre-tls-server-id-check-14
http://tools.ietf.org/html/draft-saintandre-tls-server-id-check-14
http://tools.ietf.org/html/draft-saintandre-tls-server-id-check-14
http://tools.ietf.org/html/draft-saintandre-tls-server-id-check-14
http://tools.ietf.org/html/draft-saintandre-tls-server-id-check-14
mailto:rbarnes@bbn.com
mailto:jonasl@google.com

	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Protocol Overview
	4. Connection Model
	5. Channel Establishment and Authentication
	6. Authorizing XMPP Stanzas
	7. Backward Compatibility
	8. Operational Considerations
	9. IANA Considerations
	10. Security Considerations
	11. Acknowledgements
	12. References
	Authors' Addresses

