
NETWORK Working Group Erik Guttman
INTERNET-DRAFT Sun Microsystems
Category: Informational
6 June 2001
Expires in six months

 An API for the Zeroconf Multicast Address Allocation Protocol (ZMAAP)
 <draft-ietf-zeroconf-zmaap-api-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 Today, with the rapid rise of home networking, there is an increasing
 need for auto-configuration mechanisms. This document specifies an
 api to be used for applications which require multicast addresses on
 small networks without a multicast address allocation server.

1.0 Introduction

 The Zeroconf Multicast Address Allocation Protocol (ZMAAP) is defined
 elsewhere [1]. This document specifies an application programmer
 interface (API) which builds upon the foundation of the Abstract API
 for Multicast Address Allocation [2]. Specifically, there are
 additional requirements posed by ZMAAP which are not considered in

https://datatracker.ietf.org/doc/html/draft-ietf-zeroconf-zmaap-api-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Guttman, E. Expires: 6 December 2001 [Page 1]

Internet Draft ZMAAP API June 2001

RFC 2771:

 - Shared ownership of allocations (renewal and defense)
 - Notification of conflicts with specific allocations
 - Allocations all start immediately and continue until
 they are released. This is a simplified API which
 does not allow applications to manage allocations
 via absolute times.

 It should be transperant to the API whether the allocations are done
 using ZMAAP, MADCAP [3] or some other mechanism.

 In this document, the key words "MAY", "MUST, "MUST NOT",
 "optional", "recommended", "SHOULD", and "SHOULD NOT", are to be
 interpreted as described in [4].

2.0 Abstract ZMAAP API Definition

 The ZMAAP API provides the functions described in the Abstract
 Multicast Address Allocation API [2], with a few additions.

2.1 Request Enumeration of Available Scopes

 Scopes available for allocation are returned.

 This corresponds to the Abstract API get_multicast_addr_scopes().

 Parameters: the address family.

 Return value: Scope Records, each of which contains:

 * the address family
 * the start and end address of the range
 * a suggested transmission IPv4 TTL or IPv6 Hop Count for
 messages multicast into the scope range.

 Mini-MAAS behavior: None.

2.2 Allocation

 The application specifies which scope to allocate from and how many
 addresses are needed.

 This corresponds to the Abstract API alloc_multicast_addr().

 Parameters:

https://datatracker.ietf.org/doc/html/rfc2771

 * Scope Record: Which scope to use.

Guttman, E. Expires: 6 December 2001 [Page 2]

Internet Draft ZMAAP API June 2001

 * Integer: How many addresses to attempt to allocate.
 * Integer: How many milliseconds to block before giving up, if
 allocation is not successful.

 Return value: No result, or a Lease Descriptor containing:

 * An address range
 * A lease identifier (this is useful information for including
 in session announcements, see [1], Appendix B).

 Mini-MAAS behavior:

 The mini-MAAS attempts to claim the address(es). It will give
 up after the time allotted for allocation has expired. If it
 succeeds, it will enter the allocation into the allocation
 record. The mini-MAAS will select a lease duration. Before
 this lease duration expires, the mini-MAAS send an addtional AIU
 message - effectively renewing the lease.

2.3 Release

 An application indicates it is no longer interested in an allocation.

 This corresponds to the Abstract API deallocate_multicast_addr().

 Parameters: Lease Descriptor.

 Return value: Success or Failure (ie. bad parameter).

 Mini-MAAS behavior:

 The allocation is removed from the allocation record.

2.4 Defense

 An application, having discovered a session (see [1], Appendix B)
 wishes to participate in defense of a multicast address.

 This is a new interface, not present in the Abstract API.

 Parameters: Lease Descriptor.

 Return value: Success or Failure (bad parameter or bad descriptor).

 Mini-MAAS behavior:

 The mini-MAAS adds the lease descriptor to its allocation
 record.

Guttman, E. Expires: 6 December 2001 [Page 3]

Internet Draft ZMAAP API June 2001

2.5 Conflict Notification.

 An application registers its desire to be notified if a conflict is
 discovered for a given address allocation. This address allocation
 could be made by the application (using the Allocation interface) or
 it may have be a discovered session (see [1], Appendix B).

 This is a new interface, not present in the Abstract API.

 Parameters:

 * Lease Descriptor.
 * Opaque User Parameter
 * Callback function or the equivalent. The parameters to this
 function will be the Lease Descriptor which has a conflict
 and the Opaque User Parameter.

 Return value: Success or Failure (bad parameter or bad descriptor).

 Mini-MAAS behavior:

 Mini-MAASs process all incoming AIU messages. AIUs are sent
 initially upon allocation and periodically (in order to prevent
 the lifetime of the lease expiring). If an AIU received
 conflicts with an entry in the allocation record, the record
 MUST be removed (see [1] section 4.4.4).

 The mini-MAAS issues the callback function associated with the
 lease descriptor to all applications which have requested
 notification of a conflict. This notification occurs once (that
 is, only the first time there is a conflict, not every time).
 The notification callback function is likely to be made in the
 context of a different thread than the calling application.

2.6 Scope Name Query

 The application can request the name of a scope by specifying the
 scope record and the language in which to return the string. If the
 name cannot be returned in the requested language, the name in the
 default language is supplied.

 This corresponds to the Abstract API named get_scope_name().

 Parameters:

 * Scope Record: Get the name for this scope.
 * String: Language Tag [5]. This is the language of the scope
 name to return.

 Return Value:

Guttman, E. Expires: 6 December 2001 [Page 4]

Internet Draft ZMAAP API June 2001

 * a string identifier describing the address scope.
 * a Language Tag [5] which specifies the language for the scope
 identifier.

2.7 Abstract API Interfaces not supported

 The ZMAAP API is a simplified subset of the API presente din RFC
2771. It does not include support for:

 - change_multicast_addr_start_time()
 - change_multicast_addr_lifetime()

 All ZMAAP API allocations are considered to be continual, until
 released. A mini-MAAS associates a lifetime with the
 registration, but this is outside of the application's control.

 - get_scope_netsting_state()
 - get_larger_scopes()
 - get_smaller_scopes()

 ZMAAP supported scopes are simple at the present time, not
 nested.

3.0 Programming Language Specific Concrete APIs

 This includes utilities required for the language specific API, ie.,
 memory management functions for the C language API.

4.0 ZMAAP API for C

4.1 Definitions

 Data elements in the structures below use types defined in [20].

 typedef struct scoperec {
 struct sockaddr sr_start_addr; /* Scope's first address */
 struct sockaddr sr_end_addr; /* Scope's final address */
 int sr_scope; /* Scope ID, [1] Section 4.2.2
 */
 int sr_ttl; /* Suggested TTL to use */
 } scope_record;

 The scope_record includes a range of addresses and a TTL which hosts
 SHOULD use when sending messages to addresses in that scope. For
 example, datagrams sent to link-local scopes should set the IPv4 TTL

https://datatracker.ietf.org/doc/html/rfc2771
https://datatracker.ietf.org/doc/html/rfc2771

 (or IPv6 Hop Count field) to 1. This will reduce the chance that
 these datagrams will be forwarded off-link by routers, incorrectly.

Guttman, E. Expires: 6 December 2001 [Page 5]

Internet Draft ZMAAP API June 2001

 typedef struct leasedesc {
 int ld_addr_family; /* IPv4 = 1, IPv6 = 2 */
 struct sockaddr ld_start_addr; /* First address allocated */
 struct sockaddr ld_end_addr; /* Final address allocated */
 struct sockaddr ld_interface; /* The associated interface */
 unsigned long ld_id; /* The lease identifier */
 } lease_desc;

 The lease_desc contains information about an individual address
 allocation. In some cases, these are returned by the API. In others
 the application forms these on the basis of session discovery. (See

appendix B).

 typedef void zmaap_cb(lease_desc ld, void *pv);

 A function with a prototype matching zmaap_cb is registered using the
 zmaap_register() function below. The callback function is evoked by
 the API (in a distinct thread) if there is an allocation conflict
 detected in the address range of the registered lease descriptor.
 The parameters to this function are described under zmaap_register(),
 below.

 typedef enum { OK=0, LEASE_CONFLICT=-1, TIMEOUT=-2, BAD_PARAM=-3 }
 ZMErrCode;

 LEASE_CONFLICT is returned if a lease descriptor parameter conflicts
 with another, existing multicast allocation or fails to correspond to
 an entry in the allocation record.

 TIMEOUT is returned if the attempt to verify the validity of the
 lease times out before finding determining if it corresponded or was
 in conflict with a prior address allocation.

4.2 Functions

 scope_record * zmaap_enumerate_scopes(int family);

 Parameters: family IPv4 = 1, IPv6 = 2. No other values are
 allowed.

 Returns: An array of scope_records. The caller frees them using
 zmaap_free(). An improper value for family results in a NULL
 return value.

 lease_desc * zmaap_allocate(scope_record *sr, struct sockaddr ifa,
 int num, int msec);

 Parameters:
 sr A scope record returned using zmaap_enumerate_scopes();

Guttman, E. Expires: 6 December 2001 [Page 6]

Internet Draft ZMAAP API June 2001

 ifa The interface on which to make the allocation.
 num The number of addresses requested.
 msec The maximum number of milliseconds to attempt allocation.

 Returns: NULL if no addresses can be obtained before the allotted
 time expires of if the parameters are bad. The lease_desc
 returned must be freed using zmaap_free.

 int zmaap_release(lease_desc ld);

 Parameters:
 ld The lease descriptor to remove from the allocation record.

 Returns: ZMErrCode.

 int zmaap_defense(lease_desc ld, int msec);

 Parameters:
 ld The lease descriptor of the multicast allocation to defend.
 msec The number of seconds to block while verifying the lease to
 defend is valid.

 Returns: ZMErrCode

 int zmaap_register(lease_desc ld, void *pv, zmaap_cb *pf, int msec);

 Parameters:
 ld The lease descriptor of the allocation app wants to be
 notified of if a conflict occurs.
 pv The opaque user parameter present in the callback
 function.
 pf The user supplied callback function.
 msec The maximum number of milliseconds to attempt to verify ld.

 Returns: ZMErrCode

 void zmaap_scope_name(scope_record sr, const char * tagq, char
 **name, char **taga);

 Parameters:
 sr The scope to get the name of.
 tagq The language tag desired. If NULL use default.
 name Will point to an allocated buffer with the scope's name.
 taga Will point to an allocated buffer with the name's language
 tag.

 Returns: This routine always succeeds. The strings allocated must

Guttman, E. Expires: 6 December 2001 [Page 7]

Internet Draft ZMAAP API June 2001

 be freed with free().

 void zmaap_free(void *mem);

 Parameters:
 mem Either an array of scope_records or a lease_desc allocated
 by the zmaap API.

5. ZMAAP API for Java

 The Java API uses definitions from JDK 1.4 [6].

 package org.zeroconf.zmaap;

 import java.net.*;
 import java.util.*;

 public class ScopeRecord {

 public SocketAddress iaStart; // The start address of the scope
 range.
 public SocketAddress iaEnd; // The end address of the scope
 range.
 public int ttl; // The recommended TTL to use in
 scope.
 public int scopeid; // See [1], Section 4.2.2

 }

 public BadLeaseException extends Exception {

 public BadLeaseException(String msg);
 public BadLeaseException();

 }

 public ScopeName {

 public Locale locale; // The Locale of the scope name
 public String scopename;

 }

 public class LeaseDesc {

 public SocketAddress start; // The allocation's start address.
 public SocketAddress end; // The allocation's end address.
 public NetworkInterface interf; // The interface for the

 allocation.

Guttman, E. Expires: 6 December 2001 [Page 8]

Internet Draft ZMAAP API June 2001

 public int id; // The allocation's lease ID.

 }

 public class ConflictListener implements EventListener {

 /**
 * This event occurs when a conflict arises with an allocation.
 * The ConflictListener is registered with ZMAAP.register().
 *
 * @param alloc This is the allocation which has a conflict.
 * @param o This is an opaque object registered with ZMAAP.
 */
 public void conflictEvent(LeaseDesc alloc, Object o);

 }

 public class ZMAAP {

 /**
 * @return All scopes available for allocation.
 */
 static ScopeRecord[] availableScopes();

 /**
 * Return the name associated with a scope, in requested language.
 * If the requested language is not supported, the default language
 * will be used.
 *
 * @param locale The locale requested for the scope name.
 * @param scope The scope whose name is sought.
 *
 * @return The name associated with the scope.
 */
 static ScopeName queryScopeName(Locale locale, ScopeRecord scope);

 /**
 * Allocate a range of multicast addresses. This method will
 * only return after it is successful or times out.
 *
 * @param sr A ScopeRecord obtained using availableScopes().
 * @param num The number of addresses requested.
 * @param msec Maximum number of milliseconds to attempt to
 * allocate the addresses.
 * @return An allocation.
 * @exception java.io.InterruptedIOException
 * If ZMAAP.allocate() runs out of time.
 * @exception java.lang.IllegalArgumentException
 * If the parameters are unacceptable.

 */
 static LeaseDesc allocate(ScopeRecord sr, int num, int msec)

Guttman, E. Expires: 6 December 2001 [Page 9]

Internet Draft ZMAAP API June 2001

 throws InterruptedIOException, IllegalArgumentException;

 /**
 * Stop defending an address allocation. This will happen
 * anyway if this JVM exits.
 *
 * @param ld This must represent an allocation which has either
 * been created with ZMAAP.allocate() or is being
 * defended, using ZMAAP.defend().
 * @exception org.zeroconf.BadLeaseException
 * If the allocation in the parameter does not
 * correspond to a LeaseDesc this ZMAAP instance
 * is currently defending.
 */
 static void release(LeaseDesc ld)
 throws BadLeaseException;

 /**
 * Participate in defense of an allocation. This method
 * will only return when successful or it times out.
 *
 * @param ld This allocation must correspond to one which
 * has been made by calling ZMAAP.allocate() or
 * which has been discovered by some other means,
 * such as the Session Announcement Protocol,
 * RFC 2974. If the allocation is unknown to the
 * ZMAAP object, it will attempt to validate its
 * existence.
 *
 * @param ms The maximum time in milliseconds to attempt to
 * validate the lease descriptor before giving up.
 * @exception java.io.InterruptedIOException
 * If validating the allocation runs out of time.
 * @exception org.zeroconf.BadLeaseException
 * If the allocation does not correspond to an
 * existing, defended address.
 * @exception java.lang.IllegalArgumentException
 If the ms argument is <= 0.
 */
 static void defend(LeaseDesc ld, int ms)
 throws InterruptedIOException, BadLeaseException,
 IllegalArgumentException;
 /**
 * Request notification if an allocation conflict occurs.
 * Note that a nonexistent allocation may be passed to this
 * method in the LeaseDesc parameter - its validity will
 * not necessarily be checked - though conflicts with it
 * will (eventually) cause a notification to occur.

https://datatracker.ietf.org/doc/html/rfc2974

 *
 * @param cl The conflictEvent method of this object will
 * be called on a separate thread if a conflict

Guttman, E. Expires: 6 December 2001 [Page 10]

Internet Draft ZMAAP API June 2001

 * is detected.
 * @param ld The allocation for which the ZMAAP object
 * must detect conflicts.
 * @param o An opaque user parameter which will be passed
 * to the ConflictListener.conflictEvent method.
 * @param ms The maximum time in milliseconds to attempt to
 * validate the lease descriptor before giving up.
 * @exception java.lang.IllegalArguement
 * If cl is null.
 * @exception org.zeroconf.BadLeaseException
 * If the allocation does not correspond to an
 * existing, defended address.
 * @exception java.io.InterruptedIOException
 * If validating the allocation runs out of time.
 */
 static void register(ConflictListener cl, LeaseDesc ld, Object o,
 int ms)
 throws IllegalArgumentException, BadLeaseException,
 InterruptedIOException;
 }

References

 [1] Catrina, O., et. al., "Zeroconf Multicast Address Allocation
 Protocol (ZMAAP)", draft-ietf-zeroconf-zmaap-01.txt. A work in
 progress.

 [2] Finlayson, R., "An Abstract API for Multicast Address
 Allocation", RFC 2771, February 2000.

 [3] Hanna, S., Patel, B., and M. Shah, "Multicast Address Dynamic
 Client Allocation Protocol (MADCAP)", RFC 2730, December 1999.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] Alvestrand, H. "Tags for the Identification of Languages", RFC
3066, January 2001.

 [6] Java Development Kit, version 1.4.0, Beta, Documentation,
http://www.javasoft.com/j2se/1.4/#documentation

Acknowledgments

 Dave Thaler's input assisted in preparing this specification.

https://datatracker.ietf.org/doc/html/draft-ietf-zeroconf-zmaap-01.txt
https://datatracker.ietf.org/doc/html/rfc2771
https://datatracker.ietf.org/doc/html/rfc2730
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3066
https://datatracker.ietf.org/doc/html/rfc3066
http://www.javasoft.com/j2se/1.4/#documentation

Guttman, E. Expires: 6 December 2001 [Page 11]

Internet Draft ZMAAP API June 2001

Authors' Addresses

 Erik Guttman
 Sun Microsystems
 Eichhoelzelstr. 7
 74915 Waibstadt Germany

 Phone: +49 172 865 5497
 Email: erik.guttman@sun.com

Full Copyright Statement

 Copyright (C) The Internet Society (1999). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Guttman, E. Expires: 6 December 2001 [Page 12]

