
Internet Draft Johan Ihren
draft-ihren-dnsext-threshold-validation-01.txt Autonomica
July 2004 Bill Manning
Expires in six months EP.NET

 Threshold Validation:

 A Mechanism for Improved Trust and Redundancy for DNSSEC Keys

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This memo documents a proposal for a different method of validation
 for DNSSEC aware resolvers. The key change is that by changing from
 a model of one Key Signing Key, KSK, at a time to multiple KSKs it
 will be possible to increase the aggregated trust in the signed
 keys by leveraging from the trust associated with the different
 signees.

 By having multiple keys to chose from validating resolvers get the
 opportunity to use local policy to reflect actual trust in
 different keys. For instance, it is possible to trust a single,
 particular key ultimately, while requiring multiple valid
 signatures by less trusted keys for validation to succeed.
 Furthermore, with multiple KSKs there are additional redundancy
 benefits available since it is possible to roll over different KSKs
 at different times which may make rollover scenarios easier to
 manage.

https://datatracker.ietf.org/doc/html/draft-ihren-dnsext-threshold-validation-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Contents

 1. Terminology
 2. Introduction and Background

 3. Trust in DNSSEC Keys
 3.1. Key Management, Split Keys and Trust Models
 3.2. Trust Expansion: Authentication versus Authorization

 4. Proposed Semantics for Signing the KEY Resource Record
 Set
 4.1. Packet Size Considerations

 5. Proposed Use of Multiple "Trusted Keys" in a Validating
 Resolver
 5.1. Not All Possible KSKs Need to Be Trusted
 5.2. Possible to do Threshold Validation
 5.3. Not All Trusted Keys Will Be Available

 6. Additional Benefits from Having Multiple KSKs
 6.1. More Robust Key Rollovers
 6.2. Evaluation of Multiple Key Distribution Mechanisms

 7. Security Considerations
 8. IANA Considerations.
 9. References
 9.1. Normative.
 9.2. Informative.
 10. Acknowledgments.
 11. Authors' Address

1. Terminology

 The key words "MUST", "SHALL", "REQUIRED", "SHOULD", "RECOMMENDED",
 and "MAY" in this document are to be interpreted as described in

RFC 2119.

 The term "zone" refers to the unit of administrative control in the
 Domain Name System. "Name server" denotes a DNS name server that is
 authoritative (i.e. knows all there is to know) for a DNS zone,
 typically the root zone. A "resolver", is a DNS "client", i.e. an
 entity that sends DNS queries to authoritative nameservers and
 interpret the results. A "validating resolver" is a resolver that
 attempts to perform DNSSEC validation on data it retrieves by doing
 DNS lookups.

2. Introduction and Background

 From a protocol perspective there is no real difference between

https://datatracker.ietf.org/doc/html/rfc2119

 different keys in DNSSEC. They are all just keys. However, in
 actual use there is lots of difference. First and foremost, most
 DNSSEC keys have in-band verification. I.e. the keys are signed by
 some other key, and this other key is in its turn also signed by
 yet another key. This way a "chain of trust" is created. Such
 chains have to end in what is referred to as a "trusted key" for
 validation of DNS lookups to be possible.

 A "trusted key" is a the public part of a key that the resolver
 acquired by some other means than by looking it up in DNS. The
 trusted key has to be explicitly configured in the resolver.

 A node in the DNS hierarchy that issues such out-of-band "trusted
 keys" is called a "security apex" and the trusted key for that apex
 is the ultimate source of trust for all DNS lookups within that
 entire subtree.

 DNSSEC is designed to be able to work with more than one security
 apex. These apexes will all share the problem of how to distribute
 their "trusted keys" in a way that provides validating resolvers
 with confidence in the distributed keys.

 Maximizing that confidence is crucial to the usefulness of DNSSEC
 and this document tries to address this issue.

3. Trust in DNSSEC Keys

 In the end the trust that a validating resolver will be able to put
 in a key that it cannot validate within DNSSEC will have to be a
 function of

 * trust in the key issuer, aka the KSK holder

 * trust in the distribution method

 * trust in extra, out-of-band verification

 A KSK holder needs to be trusted not to accidentally lose private
 keys in public places. Furthermore it needs to be trusted to
 perform correct identification of the ZSK holders in case they are
 separate from the KSK holder itself.

 The distribution mechanism can be more or less tamper-proof. If the
 key holder publishes the public key, or perhaps just a secure
 fingerprint of the key in a major newspaper it may be rather
 difficult to tamper with. A key acquired that way may be easier to
 trust than if it had just been downloaded from a web page.

 Out-of-band verification can for instance be the key being signed
 by a certificate issued by a known Certificate Authority that the
 resolver has reason to trust.

3.1. Simplicity vs Trust

 The fewer keys that are in use the simpler the key management
 becomes. Therefore increasing the number of keys should only be
 considered when the complexity is not the major concern. A perfect
 example of this is the distinction between so called Key Signing
 Keys, KSK, and Zone Signing Keys, ZSK. This distinction adds
 overall complexity but simplifies real life operations and was an
 overall gain since operational simplification was considered to be
 a more crucial issue than the added complexity.

 In the case of a security apex there are additional issues to
 consider, among them

 * maximizing trust in the KSK received out-of-band

 * authenticating the legitimacy of the ZSKs used

 In some cases this will be easy, since the same entity will manage
 both ZSKs and KSKs (i.e. it will authenticate itself, somewhat
 similar to a self-signed certificate). In some environments it will
 be possible to get the trusted key installed in the resolver end by
 decree (this would seem to be a likely method within corporate and
 government environments).

 In other cases, however, this will possibly not be sufficient. In
 the case of the root zone this is obvious, but there may well be
 other cases.

3.2. Expanding the "Trust Base"

 For a security apex where the ZSKs and KSK are not held by the same
 entity the KSK will effectively authenticate the identity of
 whoever does real operational zone signing. The amount of trust
 that the data signed by a ZSK will get is directly dependent on
 whether the end resolver trusts the KSK or not, since the resolver
 has no OOB access to the public part of the ZSKs (for practical
 reasons).

 Since the KSK holder is distinct from the ZSK holder the obvious
 question is whether it would then be possible to further improve
 the situation by using multiple KSK holders and thereby expanding
 the trust base to the union of that available to each individual
 KSK holder. "Trust base" is an invented term intended to signify
 the aggregate of Internet resolvers that will eventually choose to
 trust a key issued by a particular KSK holder.

 A crucial issue when considering trust expansion through addition
 of multiple KSK holders is that the KSK holders are only used to
 authenticate the ZSKs used for signing the zone. I.e. the function
 performed by the KSK is basically:

 "This is indeed the official ZSK holder for this zone,
 I've verified this fact to the best of my abilitites."

 Which can be thought of as similar to the service of a public
 notary. I.e. the point with adding more KSK holders is to improve
 the public trust in data signed by the ZSK holders by improving the
 strength of available authentication.

 Therefore adding more KSK holders, each with their own trust base,
 is by definition a good thing. More authentication is not
 controversial. On the contrary, when it comes to authentication,
 the more the merrier.

4. Proposed Semantics for Signing the KEY Resource Record Set

 In DNSSEC according to RFC2535 all KEY Resource Records are used to
 sign all authoritative data in the zone, including the KEY RRset
 itself, since RFC2535 makes no distinction between Key Signing
 Keys, KSK, and Zone Signing Keys, ZSK. With Delegation Signer [DS]
 it is possible to change this to the KEY RRset being signed with
 all KSKs and ZSKs but the rest of the zone only being signed by the
 ZSKs.

 This proposal changes this one step further, by recommending that
 the KEY RRset is only signed by the Key Signing Keys, KSK, and
 explicitly not by the Zone Signing Keys, ZSK. The reason for this
 is to maximize the amount of space in the DNS response packet that
 is available for additional KSKs and signatures thereof. The rest
 of the authoritative zone contents are as previously signed by only
 the ZSKs.

4.1. Packet Size Considerations

 The reason for the change is to keep down the size of the aggregate
 of KEY RRset plus SIG(KEY) that resolvers will need to acquire to
 perform validation of data below a security apex. For DNSSEC data
 to be returned the DNSSEC OK bit in the EDNS0 OPT Record has to be
 set, and therefore the allowed packet size can be assumed to be at
 least the EDNS0 minimum of 4000 bytes.

 When querying for KEY + SIG(KEY) for "." (the case that is assumed
 to be most crucial) the size of the response packet after the
 change to only sign the KEY RR with the KSKs break down into a
 rather large space of possibilities. Here are a few examples for
 the possible alternatives for different numbers of KSKs and ZSKs
 for some different key lengths (all RSA keys, with a public
 exponent that is < 254). This is all based upon the size of the
 response for the particular example of querying for

 ". KEY IN"

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535

 with a response of entire KEY + SIG(KEY) with the authority and
 additional sections empty:

 ZSK/768 and KSK/1024 (real small)
 Max 12 KSK + 3 ZSK at 3975
 10 KSK + 8 ZSK at 3934
 8 KSK + 13 ZSK at 3893

 ZSK/768 + KSK/1280
 MAX 10 KSK + 2 ZSK at 3913
 8 KSK + 9 ZSK at 3970
 6 KSK + 15 ZSK at 3914

 ZSK/768 + KSK/1536
 MAX 8 KSK + 4 ZSK at 3917
 7 KSK + 8 ZSK at 3938
 6 KSK + 12 ZSK at 3959

 ZSK/768 + KSK/2048
 MAX 6 KSK + 5 ZSK at 3936
 5 KSK + 10 ZSK at 3942

 ZSK/1024 + KSK/1024
 MAX 12 KSK + 2 ZSK at 3943
 11 KSK + 4 ZSK at 3930
 10 KSK + 6 ZSK at 3917
 8 KSK + 10 ZSK at 3891

 ZSK/1024 + KSK/1536
 MAX 8 KSK + 3 ZSK at 3900
 7 KSK + 6 ZSK at 3904
 6 KSK + 9 ZSK at 3908

 ZSK/1024 + KSK/2048
 MAX 6 KSK + 4 ZSK at 3951
 5 KSK + 8 ZSK at 3972
 4 KSK + 12 ZSK at 3993

 Note that these are just examples and this document is not making
 any recommendations on suitable choices of either key lengths nor
 number of different keys employed at a security apex.

 This document does however, based upon the above figures, make the
 recommendation that at a security apex that expects to distribute
 "trusted keys" the KEY RRset should only be signed with the KSKs
 and not with the ZSKs to keep the size of the response packets
 down.

5. Proposed Use of Multiple "Trusted Keys" in a Validating Resolver

 In DNSSEC according to RFC2535[RFC2535] validation is the process
 of tracing a chain of signatures (and keys) upwards through the DNS
 hierarchy until a "trusted key" is reached. If there is a known
 trusted key present at a security apex above the starting point
 validation becomes an exercise with a binary outcome: either the
 validation succeeds or it fails. No intermediate states are
 possible.

 With multiple "trusted keys" (i.e. the KEY RRset for the security
 apex signed by multiple KSKs) this changes into a more complicated
 space of alternatives. From the perspective of complexity that may
 be regarded as a change for the worse. However, from a perspective
 of maximizing available trust the multiple KSKs add value to the
 system.

5.1. Possible to do Threshold Validation

 With multiple KSKs a new option that opens for the security
 concious resolver is to not trust a key individually. Instead the
 resolver may decide to require the validated signatures to exceed a
 threshold. For instance, given M trusted keys it is possible for
 the resolver to require N-of-M signatures to treat the data as
 validated.

 I.e. with the following pseudo-configuration in a validating
 resolver

 security-apex "." IN {
 keys { ksk-1 ;
 ksk-2 ;
 ksk-3 ;
 ksk-4 ;
 ksk-5 ;
 };
 validation {
 # Note that ksk-4 is not present below
 keys { ksk-1; ksk-2; ksk-3; ksk-5; };
 # 3 signatures needed with 4 possible keys, aka 75%
 needed-signatures 3;
 };
 };

 we configure five trusted keys for the root zone, but require three
 valid signatures for the top-most KEY for validation to succeed.
 I.e. threshold validation does not force multiple signatures on
 the entire signature chain, only on the top-most signature, closest
 to the security apex for which the resolver has trusted keys.

5.2. Not All Trusted Keys Will Be Available

 With multiple KSKs held and managed by separate entities the end

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535

 resolvers will not always manage to get access to all possible
 trusted keys. In the case of just a single KSK this would be fatal
 to validation and necessary to avoid at whatever cost. But with
 several fully trusted keys available the resolver can decide to
 trust several of them individually. An example based upon more
 pseudo-configuration:

 security-apex "." IN {
 keys { ksk-1 ;
 ksk-2 ;
 ksk-3 ;
 ksk-4 ;
 ksk-5 ;
 };
 validation {
 # Only these two keys are trusted independently
 keys { ksk-1; ksk-4; };
 # With these keys a single signature is sufficient
 needed-signatures 1;
 };
 };

 Here we have the same five keys and instruct the validating
 resolver to fully trust data that ends up with just one signature
 from by a fully trusted key.

 The typical case where this will be useful is for the case where
 there is a risk of the resolver not catching a rollover event by
 one of the KSKs. By doing rollovers of different KSKs with
 different schedules it is possible for a resolver to "survive"
 missing a rollover without validation breaking. This improves
 overall robustness from a management point of view.

5.3. Not All Possible KSKs Need to Be Trusted

 With just one key available it simply has to be trusted, since that
 is the only option available. With multiple KSKs the validating
 resolver immediately get the option of implementing a local policy
 of only trusting some of the possible keys.

 This local policy can be implemented either by simply not
 configuring keys that are not trusted or, possibly, configure them
 but specify to the resolver that certain keys are not to be
 ultimately trusted alone.

6. Additional Benefits from Having Multiple KSKs

6.1. More Robust Key Rollovers

 With only one KSK the rollover operation will be a delicate
 operation since the new trusted key needs to reach every validating

 resolver before the old key is retired. For this reason it is
 expected that long periods of overlap will be needed.

 With multiple KSKs this changes into a system where different
 "series" of KSKs can have different rollover schedules, thereby
 changing from one "big" rollover to several "smaller" rollovers.

 If the resolver trusts several of the available keys individually
 then even a failure to track a certain rollover operation within
 the overlap period will not be fatal to validation since the other
 available trusted keys will be sufficient.

6.2. Evaluation of Multiple Key Distribution Mechanisms

 Distribution of the trusted keys for the DNS root zone is
 recognized to be a difficult problem that ...

 With only one trusted key, from one single "source" to distribute
 it will be difficult to evaluate what distribution mechanism works
 best. With multiple KSKs, held by separate entitites it will be
 possible to measure how large fraction of the resolver population
 that is trusting what subsets of KSKs.

 KSK holders SHOULD therefore try to use methods as diverse as
 possible to publish the public part of the KSK.

7. Security Considerations

 From a systems perspective the simplest design is arguably the
 best, i.e. one single holder of both KSK and ZSKs. However, if that
 is not possible in all cases a more complex scheme is needed where
 additional trust is injected by using multiple KSK holders, each
 contributing trust, then there are only two alternatives
 available. The first is so called "split keys", where a single key
 is split up among KSK holders, each contributing trust. The second
 is the multiple KSK design outlined in this proposal.

 Both these alternatives provide for threshold mechanisms. However
 split keys makes the threshold integral to the key generating
 mechanism (i.e. it will be a property of the keys how many
 signatures are needed). In the case of multiple KSKs the threshold
 validation is not a property of the keys but rather local policy in
 the validating resolver. A benefit from this is that it is possible
 for different resolvers to use different trust policies. Some may
 configure threshold validation requiring multiple signatures and
 specific keys (optimizing for security) while others may choose to
 accept a single signature from a larger set of keys (optimizing for
 redundancy). Since the security requirements are different it would
 seem to be a good idea to make this choice local policy rather than
 global policy.

 Furthermore, a clear issue for validating resolvers will be how to

 ensure that they track all rollover events for keys they trust.
 Even with operlap during the rollover (which is clearly needed)
 there is still a need to be exceedingly careful not to miss any
 rollovers (or fail to acquire a new key) since without this single
 key validation will fail. With multiple KSKs this operation becomes
 more robust, since different KSKs may roll at different times
 according to different rollover schedules. Therefore losing one
 key, for whatever reason, will not be crucial unless the resolver
 intentionally chooses to be completely dependent on that exact key.

8. IANA Considerations.

 NONE.

9. References

9.1. Normative.

 [RFC2535] Domain Name System Security Extensions. D. Eastlake.
 March 1999.

 [RFC3090] DNS Security Extension Clarification on Zone Status.
 E. Lewis. March 2001.

9.2. Informative.

 [RFC3110] RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System
 (DNS). D. Eastlake 3rd. May 2001.

 [RFC3225] Indicating Resolver Support of DNSSEC. D. Conrad.
 December 2001.

 [DS] Delegation Signer Resource Record.
 O. Gudmundsson. October 2002. Work In Progress.

10. Acknowledgments.

 We've had much appreciated help from (in no particular order) Jakob
 Schlyter, Paul Vixie, Olafur Gudmundson and Olaf Kolkman.

11. Authors' Addresses

Johan Ihren
Autonomica AB
Bellmansgatan 30
SE-118 47 Stockholm, Sweden
johani@autonomica.se

Bill Manning

EP.NET
Marina del Rey, CA, USA
bmanning@ep.net

