
Network Working Group X. Chen
Internet-Draft L. Andersson
Intended status: Standards Track Huawei Technologies
Expires: October 9, 2016 N. Leymann
 Deutsche Telekom
 I. Minei
 Google
 K. Raza
 Cisco Systems, Inc.
 April 7, 2016

LDP Specification
draft-ijln-mpls-rfc5036bis-02.txt

Abstract

 The architecture for Multiprotocol Label Switching (MPLS) is
 described in RFC 3031. A fundamental concept in MPLS is that two
 Label Switching Routers (LSRs) must agree on the meaning of the
 labels used to forward traffic between and through them. This common
 understanding is achieved by using a set of procedures, called a
 label distribution protocol, by which one LSR informs another of
 label bindings it has made. This document defines a set of such
 procedures called LDP (for Label Distribution Protocol) by which LSRs
 distribute labels to support MPLS forwarding along normally routed
 paths.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 9, 2016.

Chen, et al. Expires October 9, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft LDP Specification April 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Editors notes - this section will be removed before
 publication . 5

1.1. Scope of RFC5036bis work 5
1.2. ToDo . 6

2. LDP Overview . 7
2.1. LDP Peers . 8
2.2. LDP Message Exchange 8
2.3. LDP Message Structure 9
2.4. LDP Error Handling 9
2.5. LDP Extensibility and Future Compatibility 9
2.6. Specification Language 9

3. LDP Operation . 9
3.1. FECs . 9
3.2. Label Spaces, Identifiers, Sessions, and Transport . . . 11
3.2.1. Label Spaces . 11
3.2.2. LDP Identifiers 11
3.2.3. LDP Sessions . 12
3.2.4. LDP Transport . 12

3.3. LDP Sessions between Non-Directly Connected LSRs 12

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Chen, et al. Expires October 9, 2016 [Page 2]

Internet-Draft LDP Specification April 2016

3.4. LDP Discovery . 13
3.4.1. Basic Discovery Mechanism 13
3.4.2. Extended Discovery Mechanism 13

3.5. Establishing and Maintaining LDP Sessions 14
3.5.1. LDP Session Establishment 14
3.5.2. Transport Connection Establishment 14
3.5.3. Session Initialization 16
3.5.4. Initialization State Machine 18
3.5.5. Maintaining Hello Adjacencies 20
3.5.6. Maintaining LDP Sessions 21

3.6. Label Distribution and Management 21
3.6.1. Label Distribution Control Mode 22
3.6.1.1. Independent Label Distribution Control 22
3.6.1.2. Ordered Label Distribution Control 22

3.6.2. Label Retention Mode 23
3.6.2.1. Conservative Label Retention Mode 23
3.6.2.2. Liberal Label Retention Mode 23

3.6.3. Label Advertisement Mode 24
3.7. LDP Identifiers and Next Hop Addresses 24
3.8. Loop Detection . 24
3.8.1. Label Request Message 25
3.8.2. Label Mapping Message 26
3.8.3. Discussion . 28

3.9. Authenticity and Integrity of LDP Messages 29
3.9.1. TCP MD5 Signature Option 29
3.9.2. LDP Use of TCP MD5 Signature Option 31

4. Protocol Specification 31
4.1. LDP PDUs . 31
4.2. LDP Procedures . 32
4.3. Type-Length-Value Encoding 33
4.4. TLV Encodings for Commonly Used Parameters 35
4.4.1. FEC TLV . 35
4.4.1.1. FEC Procedures 37

4.4.2. Label TLVs . 37
4.4.2.1. Generic Label TLV 37
4.4.2.2. ATM Label TLV 38
4.4.2.3. Frame Relay Label TLV 39

4.4.3. Address List TLV 40
4.4.4. Hop Count TLV . 41
4.4.4.1. Hop Count Procedures 42

4.4.5. Path Vector TLV 43
4.4.5.1. Path Vector Procedures 44

4.4.6. Status TLV . 45
4.5. LDP Messages . 47
4.5.1. Notification Message 49
4.5.1.1. Notification Message Procedures 50
4.5.1.2. Events Signaled by Notification Messages 51

4.5.2. Hello Message . 53

Chen, et al. Expires October 9, 2016 [Page 3]

Internet-Draft LDP Specification April 2016

4.5.2.1. Hello Message Procedures 56
4.5.3. Initialization Message 57
4.5.3.1. Initialization Message Procedures 66

4.5.4. KeepAlive Message 67
4.5.4.1. KeepAlive Message Procedures 67

4.5.5. Address Message 67
4.5.5.1. Address Message Procedures 68

4.5.6. Address Withdraw Message 69
4.5.6.1. Address Withdraw Message Procedures 70

4.5.7. Label Mapping Message 70
4.5.7.1. Label Mapping Message Procedures 71

4.5.8. Label Request Message 74
4.5.8.1. Label Request Message Procedures 75

4.5.9. Label Abort Request Message 77
4.5.9.1. Label Abort Request Message Procedures 77

4.5.10. Label Withdraw Message 79
4.5.10.1. Label Withdraw Message Procedures 80

4.5.11. Label Release Message 81
4.5.11.1. Label Release Message Procedures 82

4.6. Messages and TLVs for Extensibility 82
4.6.1. LDP Vendor-Private Extensions 83
4.6.1.1. LDP Vendor-Private TLVs 83
4.6.1.2. LDP Vendor-Private Messages 84

4.6.2. LDP Experimental Extensions 86
4.7. Message Summary . 86
4.8. TLV Summary . 87
4.9. Status Code Summary 89
4.10. Well-Known Numbers 90
4.10.1. UDP and TCP Ports 90
4.10.2. Implicit NULL Label 90

5. RFC 5036 IANA Considerations 90
5.1. Message Type Name Space 91
5.2. TLV Type Name Space 92
5.3. FEC Type Name Space 92
5.4. Status Code Name Space 92
5.5. Experiment ID Name Space 93

6. Security Considerations 93
6.1. Spoofing . 93
6.2. Privacy . 94
6.3. Denial of Service . 95

7. Areas for Future Study 96
8. Changes from RFC 5036 . 97
9. IANA Considerations . 97
10. References . 98
10.1. Normative References 98
10.2. Informative References 100

Appendix A. LDP Label Distribution Procedures 101
A.1. Handling Label Distribution Events 104

https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc5036

Chen, et al. Expires October 9, 2016 [Page 4]

Internet-Draft LDP Specification April 2016

A.1.1. Receive Label Request 104
A.1.2. Receive Label Mapping 108
A.1.3. Receive Label Abort Request 114
A.1.4. Receive Label Release 115
A.1.5. Receive Label Withdraw 117
A.1.6. Recognize New FEC 119
A.1.7. Detect Change in FEC Next Hop 122
A.1.8. Receive Notification / Label Request Aborted 124
A.1.9. Receive Notification / No Label Resources 125
A.1.10. Receive Notification / No Route 126
A.1.11. Receive Notification / Loop Detected 127
A.1.12. Receive Notification / Label Resources Available . . 127

 A.1.13. Detect Local Label Resources Have Become Available . 128
A.1.14. LSR Decides to No Longer Label Switch a FEC 129
A.1.15. Timeout of Deferred Label Request 130

A.2. Common Label Distribution Procedures 130
A.2.1. Send_Label . 130
A.2.2. Send_Label_Request 132
A.2.3. Send_Label_Withdraw 133
A.2.4. Send_Notification 133
A.2.5. Send_Message . 134
A.2.6. Check_Received_Attributes 134
A.2.7. Prepare_Label_Request_Attributes 136
A.2.8. Prepare_Label_Mapping_Attributes 137

 Acknowledgments . 140
 Authors' Addresses . 141

1. Editors notes - this section will be removed before publication

 This entire section will be removed before publication.

1.1. Scope of RFC5036bis work

 The goal of this document is to take the LDP specification to
 Internet Standard.

 Currently RFC 5036 - the LDP Specification - is a Draft Standard;
 this step on the Standards Track has been removed. It is therefore
 the plan to move the document to Internet Standard.

 Thhis document includes updates to the LDP Specification defined
 since the document was published, including:

 1. Updates all references and citations.

RFC 5036 obsoleted RFC 3036, and will in turn be obsoleted by the
RFC5036-bis-to-be.

https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc3036
https://datatracker.ietf.org/doc/html/rfc5036

Chen, et al. Expires October 9, 2016 [Page 5]

Internet-Draft LDP Specification April 2016

 2. RFC 5036 is updated by RFC 6720, RFC 6790, RFC 7358, RFC 7552.

 3. Incorporate all outstanding Errata.

 These include the following approved Erratum with IDs: 3156,
 2133, 3155, 3415, 3425.

 [Ed Note: Done in rev -01]

 4. Close loops with Stephen on the security section.

 5. Have IANA review the IANA section.

1.2. ToDo

 1. Evaluation of which of the RFCs that updated RFC 5036 need to be
 incorporated into the rfc5036bis document. Specifically, these
 RFCs updated RFC 5036: RFC 6720, RFC 6790, RFC 7358, RFC 7552.
 RFCs that updated RFC 5036 and will be incorporated into this
 rfc5036bis, will be Obsoleted by rfc5036bis.

 2. Review IANA Allocations. Review the IANA sections (there are
 currently two) and merge them into one.

 3. Evaluate if there are things, based on e.g. non-deployment, that
 should be removed from the rfc5036bis-to-be.

 4. Evaluate what to do about RFC 7349, it is not listed as an update
 of LDP, but it is an extension of the LDP security mechanisms
 (Hello crypto).

 5. RFC 2385 (The TCP Authentication Option) has been obsoleted by
RFC 5925, the changes are such that the text we refer to is no

 longer there. We probably need a minor re-write of section
2.9.1.

 6. This document now carries a pre RFC 5378 copyright statement,
 since there clearly are material included in the document prior
 to RFC 5378 (10 Nov 2008), Verify that this is the right
 approach.

 7. Revisit section 4.5.3 "Initialization Message" if we decide to
 remove ATM and FR.

 8. Check if how to forward messages relating path-vector and hop-
 count from multiple downstreams needs to be specified/clarified.

https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc6720
https://datatracker.ietf.org/doc/html/rfc6790
https://datatracker.ietf.org/doc/html/rfc7358
https://datatracker.ietf.org/doc/html/rfc7552
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc6720
https://datatracker.ietf.org/doc/html/rfc6790
https://datatracker.ietf.org/doc/html/rfc7358
https://datatracker.ietf.org/doc/html/rfc7552
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc7349
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5378
https://datatracker.ietf.org/doc/html/rfc5378

Chen, et al. Expires October 9, 2016 [Page 6]

Internet-Draft LDP Specification April 2016

2. LDP Overview

 The MPLS architecture RFC 3031 [RFC3031] defines a label distribution
 protocol as a set of procedures by which one Label Switched Router
 (LSR) informs another of the meaning of labels used to forward
 traffic between and through them.

 The MPLS architecture does not assume a single label distribution
 protocol. In fact, a number of different label distribution
 protocols are being standardized. Existing protocols have been
 extended so that label distribution can be piggybacked on them. New
 protocols have also been defined for the explicit purpose of
 distributing labels. The MPLS architecture discusses some of the
 considerations when choosing a label distribution protocol for use in
 particular MPLS applications such as Traffic Engineering RFC 2702
 [RFC2702].

 The Label Distribution Protocol (LDP) is a protocol defined for
 distributing labels. It was originally published as RFC 3036 in
 January 2001. It was produced by the MPLS Working Group of the IETF
 and was jointly authored by Loa Andersson, Paul Doolan, Nancy
 Feldman, Andre Fredette, and Bob Thomas.

 LDP is a protocol defined for distributing labels. It is the set of
 procedures and messages by which Label Switched Routers (LSRs)
 establish Label Switched Paths (LSPs) through a network by mapping
 network-layer routing information directly to data-link layer
 switched paths. These LSPs may have an endpoint at a directly
 attached neighbor (comparable to IP hop-by-hop forwarding), or may
 have an endpoint at a network egress node, enabling switching via all
 intermediary nodes.

 LDP associates a Forwarding Equivalence Class (FEC) RFC 3031
 [RFC3031] with each LSP it creates. The FEC associated with an LSP
 specifies which packets are "mapped" to that LSP. LSPs are extended
 through a network as each LSR "splices" incoming labels for a FEC to
 the outgoing label assigned to the next hop for the given FEC.

 More information about the applicability of LDP can be found in RFC
3037 [RFC3037].

 This document assumes (but does not require) familiarity with the
 MPLS architecture RFC 3031 [RFC3031]. Note that RFC 3031 [RFC3031]
 includes a glossary of MPLS terminology, such as ingress, label
 switched path, etc.

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc2702
https://datatracker.ietf.org/doc/html/rfc2702
https://datatracker.ietf.org/doc/html/rfc3036
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3037
https://datatracker.ietf.org/doc/html/rfc3037
https://datatracker.ietf.org/doc/html/rfc3037
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031

Chen, et al. Expires October 9, 2016 [Page 7]

Internet-Draft LDP Specification April 2016

2.1. LDP Peers

 Two LSRs that use LDP to exchange label/FEC mapping information are
 known as "LDP Peers" with respect to that information, and we speak
 of there being an "LDP Session" between them. A single LDP session
 allows each peer to learn the other's label mappings; i.e., the
 protocol is bidirectional.

2.2. LDP Message Exchange

 There are four categories of LDP messages:

 1. Discovery messages, used to announce and maintain the presence of
 an LSR in a network.

 2. Session messages, used to establish, maintain, and terminate
 sessions between LDP peers.

 3. Advertisement messages, used to create, change, and delete label
 mappings for FECs.

 4. Notification messages, used to provide advisory information and
 to signal error information.

 Discovery messages provide a mechanism whereby LSRs indicate their
 presence in a network by sending a Hello message periodically. This
 is transmitted as a UDP packet to the LDP port at the 'all routers on
 this subnet' group multicast address. When an LSR chooses to
 establish a session with another LSR learned via the Hello message,
 it uses the LDP initialization procedure over TCP transport. Upon
 successful completion of the initialization procedure, the two LSRs
 are LDP peers, and may exchange advertisement messages.

 When to request a label or advertise a label mapping to a peer is
 largely a local decision made by an LSR. In general, the LSR
 requests a label mapping from a neighboring LSR when it needs one,
 and advertises a label mapping to a neighboring LSR when it wishes
 the neighbor to use a label.

 Correct operation of LDP requires reliable and in-order delivery of
 messages. To satisfy these requirements, LDP uses the TCP transport
 for Session, Advertisement, and Notification messages, i.e., for
 everything but the UDP-based discovery mechanism.

Chen, et al. Expires October 9, 2016 [Page 8]

Internet-Draft LDP Specification April 2016

2.3. LDP Message Structure

 All LDP messages have a common structure that uses a Type-Length-
 Value (TLV) encoding scheme; see Section "Type-Length-Value
 Encoding". The Value part of a TLV-encoded object, or TLV for short,
 may itself contain one or more TLVs.

2.4. LDP Error Handling

 LDP errors and other events of interest are signaled to an LDP peer
 by Notification messages.

 There are two kinds of LDP Notification messages:

 1. Error Notifications, used to signal fatal errors. If an LSR
 receives an Error Notification from a peer for an LDP session, it
 terminates the LDP session by closing the TCP transport
 connection for the session and discarding all label mappings
 learned via the session.

 2. Advisory Notifications, used to pass on LSR information about the
 LDP session or the status of some previous message received from
 the peer.

2.5. LDP Extensibility and Future Compatibility

 Functionality may be added to LDP in the future. It is likely that
 future functionality will utilize new messages and object types
 (TLVs). It may be desirable to employ such new messages and TLVs
 within a network using older implementations that do not recognize
 them. While it is not possible to make every future enhancement
 backwards compatible, some prior planning can ease the introduction
 of new capabilities. This specification defines rules for handling
 unknown message types and unknown TLVs for this purpose.

2.6. Specification Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. LDP Operation

3.1. FECs

 It is necessary to precisely specify which packets may be mapped to
 each LSP. This is done by providing a FEC specification for each

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Chen, et al. Expires October 9, 2016 [Page 9]

Internet-Draft LDP Specification April 2016

 LSP. The FEC identifies the set of IP packets that may be mapped to
 that LSP.

 Each FEC is specified as a set of one or more FEC elements. Each FEC
 element identifies a set of packets that may be mapped to the
 corresponding LSP. When an LSP is shared by multiple FEC elements,
 that LSP is terminated at (or before) the node where the FEC elements
 can no longer share the same path.

 This specification defines a single type of FEC element, the "Address
 Prefix FEC element". This element is an address prefix of any length
 from 0 to a full address, inclusive.

 Additional FEC elements may be defined, as needed, by other
 specifications.

 In the remainder of this section, we give the rules to be used for
 mapping packets to LSPs that have been set up using an Address Prefix
 FEC element.

 We say that a particular address "matches" a particular address
 prefix if and only if that address begins with that prefix. We also
 say that a particular packet matches a particular LSP if and only if
 that LSP has an Address Prefix FEC element that matches the packet's
 destination address. With respect to a particular packet and a
 particular LSP, we refer to any Address Prefix FEC element that
 matches the packet as the "matching prefix".

 The procedure for mapping a particular packet to a particular LSP
 uses the following rules. Each rule is applied in turn until the
 packet can be mapped to an LSP.

 - If a packet matches exactly one LSP, the packet is mapped to that
 LSP.

 - If a packet matches multiple LSPs, it is mapped to the LSP whose
 matching prefix is the longest. If there is no one LSP whose
 matching prefix is longest, the packet is mapped to one from the
 set of LSPs whose matching prefix is longer than the others. The
 procedure for selecting one of those LSPs is beyond the scope of
 this document.

 - If it is known that a packet must traverse a particular egress
 router, and there is an LSP that has an Address Prefix FEC element
 that is a /32 address of that router, then the packet is mapped to
 that LSP. The procedure for obtaining this knowledge is beyond
 the scope of this document.

Chen, et al. Expires October 9, 2016 [Page 10]

Internet-Draft LDP Specification April 2016

 The procedure for determining that a packet must traverse a
 particular egress router is beyond the scope of this document. (As
 an example, if one is running a link state routing algorithm, it may
 be possible to obtain this information from the link state data base.
 As another example, if one is running BGP, it may be possible to
 obtain this information from the BGP next hop attribute of the
 packet's route.)

3.2. Label Spaces, Identifiers, Sessions, and Transport

3.2.1. Label Spaces

 The notion of "label space" is useful for discussing the assignment
 and distribution of labels. There are two types of label spaces:

 - Per interface label space. Interface-specific incoming labels are
 used for interfaces that use interface resources for labels. An
 example of such an interface is a label-controlled ATM interface
 that uses VCIs (Virtual Channel Identifiers) as labels, or a Frame
 Relay interface that uses DLCIs (Data Link Connection Identifiers)
 as labels.

 Note that the use of a per interface label space only makes sense
 when the LDP peers are "directly connected" over an interface, and
 the label is only going to be used for traffic sent over that
 interface.

 - Per platform label space. Platform-wide incoming labels are used
 for interfaces that can share the same labels.

3.2.2. LDP Identifiers

 An LDP Identifier is a six octet quantity used to identify an LSR
 label space. The first four octets identify the LSR and must be a
 globally unique value, such as a 32-bit router Id assigned to the
 LSR. The last two octets identify a specific label space within the
 LSR. The last two octets of LDP Identifiers for platform-wide label
 spaces are always both zero. This document uses the following print
 representation for LDP Identifiers:

 <LSR Id> : <label space id>

 e.g., lsr171:0, lsr19:2.

 Note that an LSR that manages and advertises multiple label spaces
 uses a different LDP Identifier for each such label space.

Chen, et al. Expires October 9, 2016 [Page 11]

Internet-Draft LDP Specification April 2016

 A situation where an LSR would need to advertise more than one label
 space to a peer and hence use more than one LDP Identifier occurs
 when the LSR has two links to the peer and both are ATM (and use per
 interface labels). Another situation would be where the LSR had two
 links to the peer, one of which is ethernet (and uses per platform
 labels) and the other of which is ATM.

3.2.3. LDP Sessions

 LDP sessions exist between LSRs to support label exchange between
 them.

 When an LSR uses LDP to advertise more than one label space to
 another LSR, it uses a separate LDP session for each label space.

3.2.4. LDP Transport

 LDP uses TCP as a reliable transport for sessions.

 When multiple LDP sessions are required between two LSRs, there is
 one TCP session for each LDP session.

3.3. LDP Sessions between Non-Directly Connected LSRs

 LDP sessions between LSRs that are not directly connected at the link
 level may be desirable in some situations.

 For example, consider a "traffic engineering" application where LSRa
 sends traffic matching some criteria via an LSP to non-directly
 connected LSRb rather than forwarding the traffic along its normally
 routed path.

 The path between LSRa and LSRb would include one or more intermediate
 LSRs (LSR1,...LSRn). An LDP session between LSRa and LSRb would
 enable LSRb to label switch traffic arriving on the LSP from LSRa by
 providing LSRb means to advertise labels for this purpose to LSRa.

 In this situation, LSRa would apply two labels to traffic it forwards
 on the LSP to LSRb: a label learned from LSR1 to forward traffic
 along the LSP path from LSRa to LSRb; and a label learned from LSRb
 to enable LSRb to label switch traffic arriving on the LSP.

 LSRa first adds the label learned via its LDP session with LSRb to
 the packet label stack (either by replacing the label on top of the
 packet label stack with it if the packet arrives labeled or by
 pushing it if the packet arrives unlabeled). Next, it pushes the
 label for the LSP learned from LSR1 onto the label stack.

Chen, et al. Expires October 9, 2016 [Page 12]

Internet-Draft LDP Specification April 2016

3.4. LDP Discovery

 LDP discovery is a mechanism that enables an LSR to discover
 potential LDP peers. Discovery makes it unnecessary to explicitly
 configure an LSR's label switching peers.

 There are two variants of the discovery mechanism:

 - A Basic Discovery mechanism used to discover LSR neighbors that
 are directly connected at the link level.

 - An Extended Discovery mechanism used to locate LSRs that are not
 directly connected at the link level.

3.4.1. Basic Discovery Mechanism

 To engage in LDP Basic Discovery on an interface, an LSR periodically
 sends LDP Link Hellos out the interface. LDP Link Hellos are sent as
 UDP packets addressed to the well-known LDP discovery port for the
 "all routers on this subnet" group multicast address.

 An LDP Link Hello sent by an LSR carries the LDP Identifier for the
 label space the LSR intends to use for the interface and possibly
 additional information.

 Receipt of an LDP Link Hello on an interface identifies a "Hello
 adjacency" with a potential LDP peer reachable at the link level on
 the interface as well as the label space the peer intends to use for
 the interface.

3.4.2. Extended Discovery Mechanism

 LDP sessions between non-directly connected LSRs are supported by LDP
 Extended Discovery.

 To engage in LDP Extended Discovery, an LSR periodically sends LDP
 Targeted Hellos to a specific address. LDP Targeted Hellos are sent
 as UDP packets addressed to the well-known LDP discovery port at the
 specific address.

 An LDP Targeted Hello sent by an LSR carries the LDP Identifier for
 the label space the LSR intends to use and possibly additional
 optional information.

 Extended Discovery differs from Basic Discovery in the following
 ways:

Chen, et al. Expires October 9, 2016 [Page 13]

Internet-Draft LDP Specification April 2016

 - A Targeted Hello is sent to a specific address rather than to the
 "all routers" group multicast address for the outgoing interface.

 - Unlike Basic Discovery, which is symmetric, Extended Discovery is
 asymmetric.

 One LSR initiates Extended Discovery with another targeted LSR,
 and the targeted LSR decides whether to respond to or ignore the
 Targeted Hello. A targeted LSR that chooses to respond does so by
 periodically sending Targeted Hellos to the initiating LSR.

 Receipt of an LDP Targeted Hello identifies a "Hello adjacency" with
 a potential LDP peer reachable at the network level and the label
 space the peer intends to use.

3.5. Establishing and Maintaining LDP Sessions

3.5.1. LDP Session Establishment

 The exchange of LDP Discovery Hellos between two LSRs triggers LDP
 session establishment. Session establishment is a two step process:

 - Transport connection establishment

 - Session initialization

 The following describes establishment of an LDP session between LSRs
 LSR1 and LSR2 from LSR1's point of view. It assumes the exchange of
 Hellos specifying label space LSR1:a for LSR1 and label space LSR2:b
 for LSR2.

3.5.2. Transport Connection Establishment

 The exchange of Hellos results in the creation of a Hello adjacency
 at LSR1 that serves to bind the link (L) and the label spaces LSR1:a
 and LSR2:b.

 1. If LSR1 does not already have an LDP session for the exchange of
 label spaces LSR1:a and LSR2:b, it attempts to open a TCP
 connection for a new LDP session with LSR2.

 LSR1 determines the transport addresses to be used at its end
 (A1) and LSR2's end (A2) of the LDP TCP connection. Address A1
 is determined as follows:

 a. If LSR1 uses the Transport Address optional object (TLV) in
 Hellos it sends to LSR2 to advertise an address, A1 is the
 address LSR1 advertises via the optional object;

Chen, et al. Expires October 9, 2016 [Page 14]

Internet-Draft LDP Specification April 2016

 b. If LSR1 does not use the Transport Address optional object,
 A1 is the source address used in Hellos it sends to LSR2.

 Similarly, address A2 is determined as follows:

 a. If LSR2 uses the Transport Address optional object, A2 is the
 address LSR2 advertises via the optional object;

 b. If LSR2 does not use the Transport Address optional object,
 A2 is the source address in Hellos received from LSR2.

 2. LSR1 determines whether it will play the active or passive role
 in session establishment by comparing addresses A1 and A2 as
 unsigned integers. If A1 > A2, LSR1 plays the active role;
 otherwise, it is passive.

 The procedure for comparing A1 and A2 as unsigned integers is:

 - If A1 and A2 are not in the same address family, they are
 incomparable, and no session can be established.

 - Let U1 be the abstract unsigned integer obtained by treating
 A1 as a sequence of bytes, where the byte that appears
 earliest in the message is the most significant byte of the
 integer and the byte that appears latest in the message is the
 least significant byte of the integer.

 - Let U2 be the abstract unsigned integer obtained from A2 in a
 similar manner.

 - Compare U1 with U2. If U1 > U2, then A1 > A2; if U1 < U2,
 then A1 < A2.

 3. If LSR1 is active, it attempts to establish the LDP TCP
 connection by connecting to the well-known LDP port at address
 A2. If LSR1 is passive, it waits for LSR2 to establish the LDP
 TCP connection to its well-known LDP port.

 Note that when an LSR sends a Hello, it selects the transport address
 for its end of the session connection and uses the Hello to advertise
 the address, either explicitly by including it in an optional
 Transport Address TLV or implicitly by omitting the TLV and using it
 as the Hello source address.

 An LSR MUST advertise the same transport address in all Hellos that
 advertise the same label space. This requirement ensures that two

Chen, et al. Expires October 9, 2016 [Page 15]

Internet-Draft LDP Specification April 2016

 LSRs linked by multiple Hello adjacencies using the same label spaces
 play the same connection establishment role for each adjacency.

3.5.3. Session Initialization

 After LSR1 and LSR2 establish a transport connection, they negotiate
 session parameters by exchanging LDP Initialization messages. The
 parameters negotiated include LDP protocol version, label
 distribution method, timer values, VPI/VCI (Virtual Path Identifier /
 Virtual Channel Identifier) ranges for label controlled ATM, DLCI
 (Data Link Connection Identifier) ranges for label controlled Frame
 Relay, etc.

 Successful negotiation completes establishment of an LDP session
 between LSR1 and LSR2 for the advertisement of label spaces LSR1:a
 and LSR2:b.

 The following describes the session initialization from LSR1's point
 of view.

 After the connection is established, if LSR1 is playing the active
 role, it initiates negotiation of session parameters by sending an
 Initialization message to LSR2. If LSR1 is passive, it waits for
 LSR2 to initiate the parameter negotiation.

 In general when there are multiple links between LSR1 and LSR2 and
 multiple label spaces to be advertised by each, the passive LSR
 cannot know which label space to advertise over a newly established
 TCP connection until it receives the LDP Initialization message on
 the connection. The Initialization message carries both the LDP
 Identifier for the sender's (active LSR's) label space and the LDP
 Identifier for the receiver's (passive LSR's) label space.

 By waiting for the Initialization message from its peer, the passive
 LSR can match the label space to be advertised by the peer (as
 determined from the LDP Identifier in the PDU header for the
 Initialization message) with a Hello adjacency previously created
 when Hellos were exchanged.

 1. When LSR1 plays the passive role:

 a. If LSR1 receives an Initialization message, it attempts to
 match the LDP Identifier carried by the message PDU with a
 Hello adjacency.

 b. If there is a matching Hello adjacency, the adjacency
 specifies the local label space for the session.

Chen, et al. Expires October 9, 2016 [Page 16]

Internet-Draft LDP Specification April 2016

 Next LSR1 checks whether the session parameters proposed in
 the message are acceptable. If they are, LSR1 replies with
 an Initialization message of its own to propose the
 parameters it wishes to use and a KeepAlive message to signal
 acceptance of LSR2's parameters. If the parameters are not
 acceptable, LSR1 responds by sending a Session Rejected/
 Parameters Error Notification message and closing the TCP
 connection.

 c. If LSR1 cannot find a matching Hello adjacency, it sends a
 Session Rejected/No Hello Error Notification message and
 closes the TCP connection.

 d. If LSR1 receives a KeepAlive in response to its
 Initialization message, the session is operational from
 LSR1's point of view.

 e. If LSR1 receives an Error Notification message, LSR2 has
 rejected its proposed session and LSR1 closes the TCP
 connection.

 2. When LSR1 plays the active role:

 a. If LSR1 receives an Error Notification message, LSR2 has
 rejected its proposed session and LSR1 closes the TCP
 connection.

 b. If LSR1 receives an Initialization message, it checks whether
 the session parameters are acceptable. If so, it replies
 with a KeepAlive message. If the session parameters are
 unacceptable, LSR1 sends a Session Rejected/Parameters Error
 Notification message and closes the connection.

 c. If LSR1 receives a KeepAlive message, LSR2 has accepted its
 proposed session parameters.

 d. When LSR1 has received both an acceptable Initialization
 message and a KeepAlive message, the session is operational
 from LSR1's point of view.

 Until the LDP session is established, no other messages
 except those listed in the procedures above may be exchanged,
 and the rules for processing the U-bit in LDP messages are
 overridden. If a message other than those listed in the
 procedures above is received, a Shutdown msg MUST be
 transmitted and the transport connection MUST be closed.

Chen, et al. Expires October 9, 2016 [Page 17]

Internet-Draft LDP Specification April 2016

 It is possible for a pair of incompatibly configured LSRs that
 disagree on session parameters to engage in an endless sequence of
 messages as each NAKs the other's Initialization messages with Error
 Notification messages.

 An LSR MUST throttle its session setup retry attempts with an
 exponential backoff in situations where Initialization messages are
 being NAK'd. It is also recommended that an LSR detecting such a
 situation take action to notify an operator.

 The session establishment setup attempt following a NAK'd
 Initialization message MUST be delayed no less than 15 seconds, and
 subsequent delays MUST grow to a maximum delay of no less than 2
 minutes. The specific session establishment action that must be
 delayed is the attempt to open the session transport connection by
 the LSR playing the active role.

 The throttled sequence of Initialization NAKs is unlikely to cease
 until operator intervention reconfigures one of the LSRs. After such
 a configuration action, there is no further need to throttle
 subsequent session establishment attempts (until their Initialization
 messages are NAK'd).

 Due to the asymmetric nature of session establishment,
 reconfiguration of the passive LSR will go unnoticed by the active
 LSR without some further action. Section "Hello Message" describes
 an optional mechanism an LSR can use to signal potential LDP peers
 that it has been reconfigured.

3.5.4. Initialization State Machine

 It is convenient to describe LDP session negotiation behavior in
 terms of a state machine. We define the LDP state machine to have
 five possible states and present the behavior as a state transition
 table and as a state transition diagram. Note that a Shutdown
 message is implemented as a Notification message with a Status TLV
 indicating a fatal error.

 Session Initialization State Transition Table

 STATE EVENT NEW STATE

 NON EXISTENT Session TCP connection established INITIALIZED

 INITIALIZED Transmit Initialization msg OPENSENT
 (Active Role)

Chen, et al. Expires October 9, 2016 [Page 18]

Internet-Draft LDP Specification April 2016

 Receive acceptable OPENREC
 Initialization msg
 (Passive Role)
 Action: Transmit Initialization
 msg and KeepAlive msg

 Receive Any other LDP msg NON EXISTENT
 Action: Transmit Error Notification msg
 (NAK) and close transport connection

 OPENREC Receive KeepAlive msg OPERATIONAL

 Receive Any other LDP msg NON EXISTENT
 Action: Transmit Error Notification msg
 (NAK) and close transport connection

 OPENSENT Receive acceptable OPENREC
 Initialization msg
 Action: Transmit KeepAlive msg

 Receive Any other LDP msg NON EXISTENT
 Action: Transmit Error Notification msg
 (NAK) and close transport connection

 OPERATIONAL Receive Shutdown msg NON EXISTENT
 Action: Transmit Shutdown msg and
 close transport connection

 Receive other LDP msgs OPERATIONAL
 Timeout NON EXISTENT
 Action: Transmit Shutdown msg and
 close transport connection

 Session Initialization State Transition Diagram

 +------------+
 | |
 +------------>|NON EXISTENT|<--------------------+
 | | | |
 | +------------+ |
 | Session | ^ | |
 | connection | | |
 | established | | Rx any LDP msg except |
 | V | Init msg or Timeout |
 | +-----------+ |
 Rx Any other | | | |
 msg or | |INITIALIZED| |

Chen, et al. Expires October 9, 2016 [Page 19]

Internet-Draft LDP Specification April 2016

 Timeout / | +---| |-+ |
 Tx NAK msg | | +-----------+ | |
 | | (Passive Role) | (Active Role) |
 | | Rx Acceptable | Tx Init msg |
 | | Init msg / | |
 | | Tx Init msg | |
 | | Tx KeepAlive | |
 | V msg V |
 | +-------+ +--------+ |
 | | | | | |
 +---|OPENREC| |OPENSENT|----------------->|
 +---| | | | Rx Any other msg |
 | +-------+ +--------+ or Timeout |
 Rx KeepAlive | ^ | Tx NAK msg |
 msg | | | |
 | | | Rx Acceptable |
 | | | Init msg / |
 | +----------------+ Tx KeepAlive msg |
 | |
 | +-----------+ |
 +----->| | |
 |OPERATIONAL| |
 | |---------------------------->+
 +-----------+ Rx Shutdown msg
 All other | ^ or Timeout /
 LDP msgs | | Tx Shutdown msg
 | |
 +---+

 Figure 1: LDP State Machine

3.5.5. Maintaining Hello Adjacencies

 An LDP session with a peer has one or more Hello adjacencies.

 An LDP session has multiple Hello adjacencies when a pair of LSRs is
 connected by multiple links that share the same label space; for
 example, multiple PPP links between a pair of routers. In this
 situation, the Hellos an LSR sends on each such link carry the same
 LDP Identifier.

 LDP includes mechanisms to monitor the necessity of an LDP session
 and its Hello adjacencies.

 LDP uses the regular receipt of LDP Discovery Hellos to indicate a
 peer's intent to use the label space identified by the Hello. An LSR
 maintains a hold timer with each Hello adjacency that it restarts

Chen, et al. Expires October 9, 2016 [Page 20]

Internet-Draft LDP Specification April 2016

 when it receives a Hello that matches the adjacency. If the timer
 expires without receipt of a matching Hello from the peer, LDP
 concludes that the peer no longer wishes to label switch using that
 label space for that link (or target, in the case of Targeted Hellos)
 or that the peer has failed. The LSR then deletes the Hello
 adjacency. When the last Hello adjacency for an LDP session is
 deleted, the LSR terminates the LDP session by sending a Notification
 message and closing the transport connection.

3.5.6. Maintaining LDP Sessions

 LDP includes mechanisms to monitor the integrity of the LDP session.

 LDP uses the regular receipt of LDP PDUs on the session transport
 connection to monitor the integrity of the session. An LSR maintains
 a KeepAlive Timer for each peer session that it resets whenever it
 receives an LDP PDU from the session peer. If the KeepAlive Timer
 expires without receipt of an LDP PDU from the peer, the LSR
 concludes that the transport connection is bad or that the peer has
 failed, and it terminates the LDP session by closing the transport
 connection.

 After an LDP session has been established, an LSR must arrange that
 its peer receive an LDP PDU from it at least every KeepAlive time
 period to ensure the peer restarts the session KeepAlive Timer. The
 LSR may send any protocol message to meet this requirement. In
 circumstances where an LSR has no other information to communicate to
 its peer, it sends a KeepAlive message.

 An LSR may choose to terminate an LDP session with a peer at any
 time. Should it choose to do so, it informs the peer with a Shutdown
 message.

3.6. Label Distribution and Management

 The MPLS architecture RFC 3031 [RFC3031] allows an LSR to distribute
 a FEC label binding in response to an explicit request from another
 LSR. This is known as Downstream On Demand label distribution. It
 also allows an LSR to distribute label bindings to LSRs that have not
 explicitly requested them. RFC 3031 [RFC3031] calls this method of
 label distribution Unsolicited Downstream; this document uses the
 term Downstream Unsolicited.

 Both of these label distribution techniques may be used in the same
 network at the same time. However, for any given LDP session, each
 LSR must be aware of the label distribution method used by its peer
 in order to avoid situations where one peer using Downstream

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031

Chen, et al. Expires October 9, 2016 [Page 21]

Internet-Draft LDP Specification April 2016

 Unsolicited label distribution assumes its peer is also. See
 Section "Downstream on Demand Label Advertisement".

3.6.1. Label Distribution Control Mode

 The behavior of the initial setup of LSPs is determined by whether
 the LSR is operating with independent or Ordered LSP Control. An LSR
 may support both types of control as a configurable option.

3.6.1.1. Independent Label Distribution Control

 When using independent LSP control, each LSR may advertise label
 mappings to its neighbors at any time it desires. For example, when
 operating in independent Downstream on Demand mode, an LSR may answer
 requests for label mappings immediately, without waiting for a label
 mapping from the next hop. When operating in independent Downstream
 Unsolicited mode, an LSR may advertise a label mapping for a FEC to
 its neighbors whenever it is prepared to label-switch that FEC.

 A consequence of using independent mode is that an upstream label can
 be advertised before a downstream label is received.

3.6.1.2. Ordered Label Distribution Control

 When using LSP Ordered Control, an LSR may initiate the transmission
 of a label mapping only for a FEC for which it has a label mapping
 for the FEC next hop, or for which the LSR is the egress. For each
 FEC for which the LSR is not the egress and no mapping exists, the
 LSR MUST wait until a label from a downstream LSR is received before
 mapping the FEC and passing corresponding labels to upstream LSRs.
 An LSR may be an egress for some FECs and a non-egress for others.

 An LSR may act as an egress LSR, with respect to a particular FEC,
 under any of the following conditions:

 1. The FEC refers to the LSR itself (including one of its directly
 attached interfaces).

 2. The next hop router for the FEC is outside of the Label Switching
 Network.

 3. FEC elements are reachable by crossing a routing domain boundary,
 such as another area for OSPF summary networks, or another
 autonomous system for OSPF AS externals and BGP routes RFC 2328
 [RFC2328] and RFC 4271 [RFC4271].

https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc4271

Chen, et al. Expires October 9, 2016 [Page 22]

Internet-Draft LDP Specification April 2016

 Note that whether an LSR is an egress for a given FEC may change over
 time, depending on the state of the network and LSR configuration
 settings.

3.6.2. Label Retention Mode

 The MPLS architecture RFC 3031 [RFC3031] introduces the notion of
 label retention mode which specifies whether an LSR maintains a label
 binding for a FEC learned from a neighbor that is not its next hop
 for the FEC.

3.6.2.1. Conservative Label Retention Mode

 In Downstream Unsolicited advertisement mode, label mapping
 advertisements for all routes may be received from all peer LSRs.
 When using Conservative Label retention, advertised label mappings
 are retained only if they will be used to forward packets (i.e., if
 they are received from a valid next hop according to routing). If
 operating in Downstream on Demand mode, an LSR will request label
 mappings only from the next hop LSR according to routing. Since
 Downstream on Demand mode is primarily used when label conservation
 is desired (e.g., an ATM switch with limited cross connect space), it
 is typically used with the Conservative Label retention mode.

 The main advantage of the conservative mode is that only the labels
 that are required for the forwarding of data are allocated and
 maintained. This is particularly important in LSRs where the label
 space is inherently limited, such as in an ATM switch. A
 disadvantage of the conservative mode is that if routing changes the
 next hop for a given destination, a new label must be obtained from
 the new next hop before labeled packets can be forwarded.

3.6.2.2. Liberal Label Retention Mode

 In Downstream Unsolicited advertisement mode, label mapping
 advertisements for all routes may be received from all LDP peers.
 When using Liberal Label retention, every label mappings received
 from a peer LSR is retained regardless of whether the LSR is the next
 hop for the advertised mapping. When operating in Downstream on
 Demand mode with Liberal Label retention, an LSR might choose to
 request label mappings for all known prefixes from all peer LSRs.
 Note, however, that Downstream on Demand mode is typically used by
 devices such as ATM switch-based LSRs for which the conservative
 approach is recommended.

 The main advantage of the Liberal Label retention mode is that
 reaction to routing changes can be quick because labels already

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031

Chen, et al. Expires October 9, 2016 [Page 23]

Internet-Draft LDP Specification April 2016

 exist. The main disadvantage of the liberal mode is that unneeded
 label mappings are distributed and maintained.

3.6.3. Label Advertisement Mode

 Each interface on an LSR is configured to operate in either
 Downstream Unsolicited or Downstream on Demand advertisement mode.
 LSRs exchange advertisement modes during initialization. The major
 difference between Downstream Unsolicited and Downstream on Demand
 modes is in which LSR takes responsibility for initiating mapping
 requests and mapping advertisements.

3.7. LDP Identifiers and Next Hop Addresses

 An LSR maintains learned labels in a Label Information Base (LIB).
 When operating in Downstream Unsolicited mode, the LIB entry for an
 address prefix associates a collection of (LDP Identifier, label)
 pairs with the prefix, one such pair for each peer advertising a
 label for the prefix.

 When the next hop for a prefix changes, the LSR must retrieve the
 label advertised by the new next hop from the LIB for use in
 forwarding. To retrieve the label, the LSR must be able to map the
 next hop address for the prefix to an LDP Identifier.

 Similarly, when the LSR learns a label for a prefix from an LDP peer,
 it must be able to determine whether that peer is currently a next
 hop for the prefix to determine whether it needs to start using the
 newly learned label when forwarding packets that match the prefix.
 To make that decision, the LSR must be able to map an LDP Identifier
 to the peer's addresses to check whether any are a next hop for the
 prefix.

 To enable LSRs to map between a peer LDP Identifier and the peer's
 addresses, LSRs advertise their addresses using LDP Address and
 Withdraw Address messages.

 An LSR sends an Address message to advertise its addresses to a peer.
 An LSR sends a Withdraw Address message to withdraw previously
 advertised addresses from a peer.

3.8. Loop Detection

 Loop Detection is a configurable option that provides a mechanism for
 finding looping LSPs and for preventing Label Request messages from
 looping in the presence of non-merge capable LSRs.

Chen, et al. Expires October 9, 2016 [Page 24]

Internet-Draft LDP Specification April 2016

 The mechanism makes use of Path Vector and Hop Count TLVs carried by
 Label Request and Label Mapping messages. It builds on the following
 basic properties of these TLVs:

 - A Path Vector TLV contains a list of the LSRs that its containing
 message has traversed. An LSR is identified in a Path Vector list
 by its unique LSR Identifier (Id), which is the first four octets
 of its LDP Identifier. When an LSR propagates a message
 containing a Path Vector TLV, it adds its LSR Id to the Path
 Vector list. An LSR that receives a message with a Path Vector
 that contains its LSR Id detects that the message has traversed a
 loop. LDP supports the notion of a maximum allowable Path Vector
 length; an LSR that detects a Path Vector has reached the maximum
 length behaves as if the containing message has traversed a loop.

 - A Hop Count TLV contains a count of the LSRS that the containing
 message has traversed. When an LSR propagates a message
 containing a Hop Count TLV, it increments the count. An LSR that
 detects a Hop Count has reached a configured maximum value behaves
 as if the containing message has traversed a loop. By convention,
 a count of 0 is interpreted to mean the hop count is unknown.
 Incrementing an unknown hop count value results in an unknown hop
 count value (0).

 The following paragraphs describe LDP Loop Detection procedures. For
 these paragraphs, and only these paragraphs, "MUST" is redefined to
 mean "MUST if configured for Loop Detection". The paragraphs specify
 messages that MUST carry Path Vector and Hop Count TLVs. Note that
 the Hop Count TLV and its procedures are used without the Path Vector
 TLV in situations when Loop Detection is not configured (see RFC 3035
 [RFC3035] and RFC 3034 [RFC3034]).

3.8.1. Label Request Message

 The use of the Path Vector TLV and Hop Count TLV prevent Label
 Request messages from looping in environments that include non-merge
 capable LSRs.

 The rules that govern use of the Hop Count TLV in Label Request
 messages by LSR R when Loop Detection is enabled are the following:

 - The Label Request message MUST include a Hop Count TLV.

 - If R is sending the Label Request because it is a FEC ingress, it
 MUST include a Hop Count TLV with hop count value 1.

 - If R is sending the Label Request as a result of having received a
 Label Request from an upstream LSR, and if the received Label

https://datatracker.ietf.org/doc/html/rfc3035
https://datatracker.ietf.org/doc/html/rfc3035
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034

Chen, et al. Expires October 9, 2016 [Page 25]

Internet-Draft LDP Specification April 2016

 Request contains a Hop Count TLV, R MUST increment the received
 hop count value by 1 and MUST pass the resulting value in a Hop
 Count TLV to its next hop along with the Label Request message.

 The rules that govern use of the Path Vector TLV in Label Request
 messages by LSR R when Loop Detection is enabled are the following:

 - If R is sending the Label Request because it is a FEC ingress,
 then if R is non-merge capable, it MUST include a Path Vector TLV
 of length 1 containing its own LSR Id.

 - If R is sending the Label Request as a result of having received a
 Label Request from an upstream LSR, then if the received Label
 Request contains a Path Vector TLV or if R is non-merge capable:

 R MUST add its own LSR Id to the Path Vector, and MUST pass the
 resulting Path Vector to its next hop along with the Label
 Request message. If the Label Request contains no Path Vector
 TLV, R MUST include a Path Vector TLV of length 1 containing
 its own LSR Id.

 Note that if R receives a Label Request message for a particular FEC,
 and R has previously sent a Label Request message for that FEC to its
 next hop and has not yet received a reply, and if R intends to merge
 the newly received Label Request with the existing outstanding Label
 Request, then R does not propagate the Label Request to the next hop.

 If R receives a Label Request message from its next hop with a Hop
 Count TLV that exceeds the configured maximum value, or with a Path
 Vector TLV containing its own LSR Id or which exceeds the maximum
 allowable length, then R detects that the Label Request message has
 traveled in a loop.

 When R detects a loop, it MUST send a Loop Detected Notification
 message to the source of the Label Request message and drop the Label
 Request message.

3.8.2. Label Mapping Message

 The use of the Path Vector TLV and Hop Count TLV in the Label Mapping
 message provide a mechanism to find and terminate looping LSPs. When
 an LSR receives a Label Mapping message from a next hop, the message
 is propagated upstream as specified below until an ingress LSR is
 reached or a loop is found.

 The rules that govern the use of the Hop Count TLV in Label Mapping
 messages sent by an LSR R when Loop Detection is enabled are the
 following:

Chen, et al. Expires October 9, 2016 [Page 26]

Internet-Draft LDP Specification April 2016

 - R MUST include a Hop Count TLV.

 - If R is the egress, the hop count value MUST be 1.

 - If the Label Mapping message is being sent to propagate a Label
 Mapping message received from the next hop to an upstream peer,
 the hop count value MUST be determined as follows:

 o If R is a member of the edge set of an LSR domain whose LSRs do
 not perform 'TTL-decrement' (e.g., an ATM LSR domain or a Frame
 Relay LSR domain) and the upstream peer is within that domain,
 R MUST reset the hop count to 1 before propagating the message.

 o Otherwise, R MUST increment the hop count received from the
 next hop before propagating the message.

 - If the Label Mapping message is not being sent to propagate a
 Label Mapping message, the hop count value MUST be the result of
 incrementing R's current knowledge of the hop count learned from
 previous Label Mapping messages. Note that this hop count value
 will be unknown if R has not received a Label Mapping message from
 the next hop.

 Any Label Mapping message MAY contain a Path Vector TLV. The rules
 that govern the mandatory use of the Path Vector TLV in Label Mapping
 messages sent by LSR R when Loop Detection is enabled are the
 following:

 - If R is the egress, the Label Mapping message need not include a
 Path Vector TLV.

 - If R is sending the Label Mapping message to propagate a Label
 Mapping message received from the next hop to an upstream peer,
 then:

 o If R is merge capable and if R has not previously sent a Label
 Mapping message to the upstream peer, then it MUST include a
 Path Vector TLV.

 o If the received message contains an unknown hop count, then R
 MUST include a Path Vector TLV.

 o If R has previously sent a Label Mapping message to the
 upstream peer, then it MUST include a Path Vector TLV if the
 received message reports an LSP hop count increase, a change in
 hop count from unknown to known, or a change from known to
 unknown.

Chen, et al. Expires October 9, 2016 [Page 27]

Internet-Draft LDP Specification April 2016

 If the above rules require R include a Path Vector TLV in the Label
 Mapping message, R computes it as follows:

 o If the received Label Mapping message included a Path Vector,
 the Path Vector sent upstream MUST be the result of adding R's
 LSR Id to the received Path Vector.

 o If the received message had no Path Vector, the Path Vector
 sent upstream MUST be a Path Vector of length 1 containing R's
 LSR Id.

 - If the Label Mapping message is not being sent to propagate a
 received message upstream, the Label Mapping message MUST include
 a Path Vector of length 1 containing R's LSR Id.

 If R receives a Label Mapping message from its next hop with a Hop
 Count TLV that exceeds the configured maximum value, or with a
 Path Vector TLV containing its own LSR Id or that exceeds the
 maximum allowable length, then R detects that the corresponding
 LSP contains a loop.

 When R detects a loop, it MUST stop using the label for
 forwarding, drop the Label Mapping message, and signal Loop
 Detected status to the source of the Label Mapping message.

3.8.3. Discussion

 If Loop Detection is desired in an MPLS domain, then it should be
 turned on in ALL LSRs within that MPLS domain, else Loop Detection
 will not operate properly and may result in undetected loops or in
 falsely detected loops.

 LSRs that are configured for Loop Detection are NOT expected to store
 the Path Vectors as part of the LSP state.

 Note that in a network where only non-merge capable LSRs are present,
 Path Vectors are passed downstream from ingress to egress, and are
 not passed upstream. Even when merge is supported, Path Vectors need
 not be passed upstream along an LSP that is known to reach the
 egress. When an LSR experiences a change of next hop, it need pass
 Path Vectors upstream only when it cannot tell from the hop count
 that the change of next hop does not result in a loop.

 In the case of ordered label distribution, Label Mapping messages are
 propagated from egress toward ingress, naturally creating the Path
 Vector along the way. In the case of independent label distribution,

Chen, et al. Expires October 9, 2016 [Page 28]

Internet-Draft LDP Specification April 2016

 an LSR may originate a Label Mapping message for a FEC before
 receiving a Label Mapping message from its downstream peer for that
 FEC. In this case, the subsequent Label Mapping message for the FEC
 received from the downstream peer is treated as an update to LSP
 attributes, and the Label Mapping message must be propagated
 upstream. Thus, it is recommended that Loop Detection be configured
 in conjunction with ordered label distribution, to minimize the
 number of Label Mapping update messages.

3.9. Authenticity and Integrity of LDP Messages

 This section specifies a mechanism to protect against the
 introduction of spoofed TCP segments into LDP session connection
 streams. The use of this mechanism MUST be supported as a
 configurable option.

 The mechanism is based on use of the TCP MD5 Signature Option
 specified in RFC 2385 [RFC2385] for use by BGP [RFC4271]. See RFC

1321 [RFC1321] for a specification of the MD5 hash function. From a
 standards maturity point of view, the current document relates to RFC

2385 the same way as RFC 4271 relates to RFC 2385. This is explained
 in RFC 4278 [RFC4278].

3.9.1. TCP MD5 Signature Option

 The following quotes from RFC 2385 [RFC2385] outline the security
 properties achieved by using the TCP MD5 Signature Option and
 summarize its operation:

 "IESG Note

 This document describes current existing practice for securing BGP
 against certain simple attacks. It is understood to have security
 weaknesses against concerted attacks."

 "Abstract

 This memo describes a TCP extension to enhance security for BGP.
 It defines a new TCP option for carrying an MD5 RFC 1321 [RFC1321]
 digest in a TCP segment. This digest acts like a signature for
 that segment, incorporating information known only to the
 connection end points. Since BGP uses TCP as its transport, using
 this option in the way described in this paper significantly
 reduces the danger from certain security attacks on BGP."

 "Introduction

https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc4271
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc4278
https://datatracker.ietf.org/doc/html/rfc4278
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321

Chen, et al. Expires October 9, 2016 [Page 29]

Internet-Draft LDP Specification April 2016

 The primary motivation for this option is to allow BGP to protect
 itself against the introduction of spoofed TCP segments into the
 connection stream. Of particular concern are TCP resets.

 To spoof a connection using the scheme described in this paper, an
 attacker would not only have to guess TCP sequence numbers, but
 would also have had to obtain the password included in the MD5
 digest. This password never appears in the connection stream, and
 the actual form of the password is up to the application. It
 could even change during the lifetime of a particular connection
 so long as this change was synchronized on both ends (although
 retransmission can become problematical in some TCP
 implementations with changing passwords).

 Finally, there is no negotiation for the use of this option in a
 connection, rather it is purely a matter of site policy whether or
 not its connections use the option."

 "MD5 as a Hashing Algorithm

 Since this memo was first issued (under a different title), the
 MD5 algorithm has been found to be vulnerable to collision search
 attacks [Dobb], and is considered by some to be insufficiently
 strong for this type of application.

 This memo still specifies the MD5 algorithm, however, since the
 option has already been deployed operationally, and there was no
 "algorithm type" field defined to allow an upgrade using the same
 option number. The original document did not specify a type field
 since this would require at least one more byte, and it was felt
 at the time that taking 19 bytes for the complete option (which
 would probably be padded to 20 bytes in TCP implementations) would
 be too much of a waste of the already limited option space.

 This does not prevent the deployment of another similar option
 which uses another hashing algorithm (like SHA-1). Also, if most
 implementations pad the 18 byte option as defined to 20 bytes
 anyway, it would be just as well to define a new option which
 contains an algorithm type field.

 This would need to be addressed in another document, however."

 End of quotes from RFC 2385 [RFC2385].

https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2385

Chen, et al. Expires October 9, 2016 [Page 30]

Internet-Draft LDP Specification April 2016

3.9.2. LDP Use of TCP MD5 Signature Option

 LDP uses the TCP MD5 Signature Option as follows:

 - Use of the MD5 Signature Option for LDP TCP connections is a
 configurable LSR option.

 - An LSR that uses the MD5 Signature Option is configured with a
 password (shared secret) for each potential LDP peer.

 - The LSR applies the MD5 algorithm as specified in RFC 2385
 [RFC2385] to compute the MD5 digest for a TCP segment to be sent
 to a peer. This computation makes use of the peer password as
 well as the TCP segment.

 - When the LSR receives a TCP segment with an MD5 digest, it
 validates the segment by calculating the MD5 digest (using its own
 record of the password) and compares the computed digest with the
 received digest. If the comparison fails, the segment is dropped
 without any response to the sender.

 - The LSR ignores LDP Hellos from any LSR for which a password has
 not been configured. This ensures that the LSR establishes LDP
 TCP connections only with LSRs for which a password has been
 configured.

4. Protocol Specification

 Previous sections that describe LDP operation have discussed
 scenarios that involve the exchange of messages among LDP peers.
 This section specifies the message encodings and procedures for
 processing the messages.

 LDP message exchanges are accomplished by sending LDP protocol data
 units (PDUs) over LDP session TCP connections.

 Each LDP PDU can carry one or more LDP messages. Note that the
 messages in an LDP PDU need not be related to one another. For
 example, a single PDU could carry a message advertising FEC-label
 bindings for several FECs, another message requesting label bindings
 for several other FECs, and a third Notification message signaling
 some event.

4.1. LDP PDUs

 Each LDP PDU is an LDP header followed by one or more LDP messages.
 The LDP header is:

https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2385

Chen, et al. Expires October 9, 2016 [Page 31]

Internet-Draft LDP Specification April 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | PDU Length |
 +-+
 | LDP Identifier |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 2: LDP PDU

 Version
 Two octet unsigned integer containing the version number of the
 protocol. This version of the specification specifies LDP
 protocol version 1.

 PDU Length
 Two octet integer specifying the total length of this PDU in
 octets, excluding the Version and PDU Length fields.

 The maximum allowable PDU Length is negotiable when an LDP session
 is initialized. Prior to completion of the negotiation, the
 maximum allowable length is 4096 octets.

 LDP Identifier
 Six octet field that uniquely identifies the label space of the
 sending LSR for which this PDU applies. The first four octets
 identify the LSR and MUST be a globally unique value. It SHOULD
 be a 32-bit router Id assigned to the LSR and also used to
 identify it in Loop Detection Path Vectors. The last two octets
 identify a label space within the LSR. For a platform-wide label
 space, these SHOULD both be zero.

 Note that there is no alignment requirement for the first octet of an
 LDP PDU.

4.2. LDP Procedures

 LDP defines messages, TLVs, and procedures in the following areas:

 - Peer discovery

 - Session management

 - Label distribution

 - Notification of errors and advisory information

Chen, et al. Expires October 9, 2016 [Page 32]

Internet-Draft LDP Specification April 2016

 The sections that follow describe the message and TLV encodings for
 these areas and the procedures that apply to them.

 The label distribution procedures are complex and are difficult to
 describe fully, coherently, and unambiguously as a collection of
 separate message and TLV specifications.

Appendix A, "LDP Label Distribution Procedures", describes the label
 distribution procedures in terms of label distribution events that
 may occur at an LSR and how the LSR must respond. Appendix A is the
 specification of LDP label distribution procedures. If a procedure
 described elsewhere in this document conflicts with Appendix A,

Appendix A specifies LDP behavior.

4.3. Type-Length-Value Encoding

 LDP uses a Type-Length-Value (TLV) encoding scheme to encode much of
 the information carried in LDP messages.

 An LDP TLV is encoded as a 2 octet field that uses 14 bits to specify
 a Type and 2 bits to specify behavior when an LSR doesn't recognize
 the Type, followed by a 2 octet Length field, followed by a variable
 length Value field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U|F| Type | Length |
 +-+
 | |
 | Value |
 ~ ~
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3: TLV Encoding

 U-bit
 Unknown TLV bit. Upon receipt of an unknown TLV, if U is clear
 (=0), a notification MUST be returned to the message originator
 and the entire message MUST be ignored; if U is set (=1), the
 unknown TLV MUST be silently ignored and the rest of the message
 processed as if the unknown TLV did not exist. The sections
 following that define TLVs specify a value for the U-bit.

 F-bit

Chen, et al. Expires October 9, 2016 [Page 33]

Internet-Draft LDP Specification April 2016

 Forward unknown TLV bit. This bit applies only when the U-bit is
 set and the LDP message containing the unknown TLV is to be
 forwarded. If F is clear (=0), the unknown TLV is not forwarded
 with the containing message; if F is set (=1), the unknown TLV is
 forwarded with the containing message. The sections following
 that define TLVs specify a value for the F-bit. By setting both
 the U- and F-bits, a TLV can be propagated as opaque data through
 nodes that do not recognize the TLV.

 Type
 Encodes how the Value field is to be interpreted.

 Length
 Specifies the length of the Value field in octets.

 Value
 Octet string of Length octets that encodes information to be
 interpreted as specified by the Type field.

 Note that there is no alignment requirement for the first octet of a
 TLV.

 Note that the Value field itself may contain TLV encodings. That is,
 TLVs may be nested.

 The TLV encoding scheme is very general. In principle, everything
 appearing in an LDP PDU could be encoded as a TLV. This
 specification does not use the TLV scheme to its full generality. It
 is not used where its generality is unnecessary and its use would
 waste space unnecessarily. These are usually places where the type
 of a value to be encoded is known, for example by its position in a
 message or an enclosing TLV, and the length of the value is fixed or
 readily derivable from the value encoding itself.

 Some of the TLVs defined for LDP are similar to one another. For
 example, there is a Generic Label TLV, an ATM Label TLV, and a Frame
 Relay TLV; see Sections "Generic Label TLV", "ATM Label TLV", and
 "Frame Relay TLV".

 While it is possible to think about TLVs related in this way in terms
 of a TLV type that specifies a TLV class and a TLV subtype that
 specifies a particular kind of TLV within that class, this
 specification does not formalize the notion of a TLV subtype.

 The specification assigns type values for related TLVs, such as the
 label TLVs, from a contiguous block in the 16-bit TLV type number
 space.

Chen, et al. Expires October 9, 2016 [Page 34]

Internet-Draft LDP Specification April 2016

Section 4.8 "TLV Summary" lists the TLVs defined in this version of
 the protocol and the section in this document that describes each.

4.4. TLV Encodings for Commonly Used Parameters

 There are several parameters used by more than one LDP message. The
 TLV encodings for these commonly used parameters are specified in
 this section.

4.4.1. FEC TLV

 Labels are bound to Forwarding Equivalence Classes (FECs). A FEC is
 a list of one or more FEC elements. The FEC TLV encodes FEC items.

 Its encoding is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| FEC (0x0100) | Length |
 +-+
 | FEC Element 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | FEC Element n |
 +-+

 Figure 4: FEC TLV Encoding

 FEC Element 1 to FEC Element n
 There are several types of FEC elements; see Section "FECs". The
 FEC element encoding depends on the type of FEC element.

 A FEC Element value is encoded as a 1 octet field that specifies
 the element type, and a variable length field that is the type-
 dependent element value. Note that while the representation of
 the FEC element value is type-dependent, the FEC element encoding
 itself is one where standard LDP TLV encoding is not used.

 The FEC Element value encoding is:

Chen, et al. Expires October 9, 2016 [Page 35]

Internet-Draft LDP Specification April 2016

 +---------------------+------+--------------------------------------+
 | FEC Element type | Type | Value |
 | name | | |
 +---------------------+------+--------------------------------------+
Wildcard	0x01	No value; i.e., 0 value octets; see
		below.
Prefix	0x02	See below.
 +---------------------+------+--------------------------------------+

 Table 1: FEC Element Types

 Note that this version of LDP supports the use of multiple FEC
 Elements per FEC for the Label Mapping message only. The use of
 multiple FEC Elements in other messages is not permitted in this
 version, and is a subject for future study.

 Wildcard FEC Element

 To be used only in the Label Withdraw and Label Release messages.
 Indicates the withdraw/release is to be applied to all FECs
 associated with the label within the following label TLV. Must be
 the only FEC Element in the FEC TLV.

 Prefix FEC Element value encoding:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Prefix (0x02) | Address Family | PreLen |
 +-+
 | Prefix |
 +-+

 Figure 5: Prefix FEC Element Value Encoding

 Address Family
 Two octet quantity containing a value from ADDRESS FAMILY NUMBERS
 in [ASSIGNED_AF] that encodes the address family for the address
 prefix in the Prefix field.

 Prelen
 One octet unsigned integer containing the length in bits of the
 address prefix that follows. A length of zero indicates a prefix
 that matches all addresses (the default destination); in this
 case, the Prefix itself is zero octets).

 Prefix

Chen, et al. Expires October 9, 2016 [Page 36]

Internet-Draft LDP Specification April 2016

 An address prefix encoded according to the Address Family field,
 whose length, in bits, was specified in the PreLen field, padded
 to a byte boundary.

4.4.1.1. FEC Procedures

 If in decoding a FEC TLV an LSR encounters a FEC Element with an
 Address Family it does not support, it SHOULD stop decoding the FEC
 TLV, abort processing the message containing the TLV, and send an
 "Unsupported Address Family" Notification message to its LDP peer
 signaling an error.

 If it encounters a FEC Element type it cannot decode, it SHOULD stop
 decoding the FEC TLV, abort processing the message containing the
 TLV, and send an "Unknown FEC" Notification message to its LDP peer
 signaling an error.

4.4.2. Label TLVs

 Label TLVs encode labels. Label TLVs are carried by the messages
 used to advertise, request, release, and withdraw label mappings.

 There are several different kinds of Label TLVs that can appear in
 situations that require a Label TLV.

4.4.2.1. Generic Label TLV

 An LSR uses Generic Label TLVs to encode labels for use on links for
 which label values are independent of the underlying link technology.
 Examples of such links are PPP and Ethernet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Generic Label (0x0200) | Length |
 +-+
 | Label |
 +-+

 Figure 6: Generic Label

 For further information, see RFC 3032 [RFC3032].

 Label

 This is a 20-bit label value represented as a 20-bit number in a 4
 octet field as follows:

https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc3032

Chen, et al. Expires October 9, 2016 [Page 37]

Internet-Draft LDP Specification April 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Label | |
 +-+

 Figure 7: Label

 For further information, see RFC 3032 [RFC3032].

4.4.2.2. ATM Label TLV

 An LSR uses ATM Label TLVs to encode labels for use on ATM links.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| ATM Label (0x0201) | Length |
 +-+
 |Res| V | VPI | VCI |
 +-+

 Figure 8: ATM Label TLV

 Res

 This field is reserved. It MUST be set to zero on transmission
 and MUST be ignored on receipt.

 V-bits

 Two-bit switching indicator. If V-bits is 00, both the VPI and
 VCI are significant. If V-bits is 01, only the VPI field is
 significant. If V-bit is 10, only the VCI is significant.

 VPI

 Virtual Path Identifier. If VPI is less than 12-bits it SHOULD be
 right justified in this field and preceding bits SHOULD be set to
 0.

 VCI

 Virtual Channel Identifier. If the VCI is less than 16-bits, it
 SHOULD be right justified in the field and the preceding bits MUST
 be set to 0. If Virtual Path switching is indicated in the V-bits
 field, then this field MUST be ignored by the receiver and set to
 0 by the sender.

https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc3032

Chen, et al. Expires October 9, 2016 [Page 38]

Internet-Draft LDP Specification April 2016

 Editors Note: We have a discussion on whether we need ATM in the
 Internet Standard version of the LDP specification.

4.4.2.3. Frame Relay Label TLV

 An LSR uses Frame Relay Label TLVs to encode labels for use on Frame
 Relay links.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Frame Relay Label (0x0202)| Length |
 +-+
 | Reserved |Len| DLCI |
 +-+

 Figure 9: Frame Relay Label TLV

 Reserved

 This field is reserved. It MUST be set to zero on transmission
 and MUST be ignored on receipt.

 Len

 This field specifies the number of bits of the DLCI. The
 following values are supported:

 +------+--------------+
 | Code | bits of DLCI |
 +------+--------------+
 | 0 | 10 |
 | 1 | reserved |
 | 2 | 32 |
 | 3 | reserved |
 +------+--------------+

 Table 2: Frame Relay Label Length codes

 DLCI

 The Data Link Connection Identifier

 For a 10-bit DLCI, the encoding is:

Chen, et al. Expires October 9, 2016 [Page 39]

Internet-Draft LDP Specification April 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Frame Relay Label (0x0202)| Length |
 +-+
 | Reserved |Len| 0 | 10-bit DLCI |
 +-+

 Figure 10: Frame Relay Label TLV for a 10 bit DLCI

 For a 23-bit DLCI, the encoding is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Frame Relay Label (0x0202)| Length |
 +-+
 | Reserved |Len| 23-bit DLCI |
 +-+

 Figure 11: Frame Relay Label TLV for a 10 bit DLCI

 For further information, see RFC 3034 [RFC3034].

4.4.3. Address List TLV

 The Address List TLV appears in Address and Address Withdraw
 messages.

 Its encoding is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Address List (0x0101) | Length |
 +-+
 | Address Family | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 | Addresses |
 ~ ~
 | |
 +-+

 Figure 12: Address List TLV

 Address Family

https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034

Chen, et al. Expires October 9, 2016 [Page 40]

Internet-Draft LDP Specification April 2016

 Two octet quantity containing a value from ADDRESS FAMILY NUMBERS
 in [ASSIGNED_AF] that encodes the addresses contained in the
 Addresses field.

 Addresses

 A list of addresses from the specified Address Family. The
 encoding of the individual addresses depends on the Address
 Family.
 The following address encodings are defined by this version of the
 protocol:

 +----------------+----------------------------+
 | Address Family | Address Encoding |
 +----------------+----------------------------+
 | IPv4 | 4 octet full IPv4vaddress |
 | IPv6 | 16 octet full IPv6 address |
 +----------------+----------------------------+

 Table 3: Address Families

4.4.4. Hop Count TLV

 The Hop Count TLV appears as an optional field in messages that set
 up LSPs. It calculates the number of LSR hops along an LSP as the
 LSP is being set up.

 Note that setup procedures for LSPs that traverse ATM and Frame Relay
 links require use of the Hop Count TLV (see RFC 3035 [RFC3035]and RFC

3034 [RFC3034]).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Hop Count (0x0103) | Length |
 +-+
 | HC Value |
 +-+-+-+-+-+-+-+-+

 Figure 13: Hop Count TLV

 HC Value

 1 octet unsigned integer hop count value.

https://datatracker.ietf.org/doc/html/rfc3035
https://datatracker.ietf.org/doc/html/rfc3035
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034

Chen, et al. Expires October 9, 2016 [Page 41]

Internet-Draft LDP Specification April 2016

4.4.4.1. Hop Count Procedures

 During setup of an LSP, an LSR R may receive a Label Mapping or Label
 Request message for the LSP that contains the Hop Count TLV. If it
 does, it SHOULD record the hop count value.

 If LSR R then propagates the Label Mapping message for the LSP to an
 upstream peer or the Label Request message to a downstream peer to
 continue the LSP setup, it must determine a hop count to include in
 the propagated message as follows:

 - If the message is a Label Request message, R MUST increment the
 received hop count;

 - If the message is a Label Mapping message, R determines the hop
 count as follows:

 o If R is a member of the edge set of an LSR domain whose LSRs do
 not perform 'TTL-decrement' and the upstream peer is within
 that domain, R MUST reset the hop count to 1 before propagating
 the message.

 o Otherwise, R MUST increment the received hop count.

 The first LSR in the LSP (ingress for a Label Request message, egress
 for a Label Mapping message) SHOULD set the hop count value to 1.

 By convention, a value of 0 indicates an unknown hop count. The
 result of incrementing an unknown hop count is itself an unknown hop
 count (0).

 Use of the unknown hop count value greatly reduces the signaling
 overhead when independent control is used. When a new LSP is
 established, each LSR starts with an unknown hop count. Addition of
 a new LSR whose hop count is also unknown does not cause a hop count
 update to be propagated upstream since the hop count remains unknown.
 When the egress is finally added to the LSP, then the LSRs propagate
 hop count updates upstream via Label Mapping messages.

 Without use of the unknown hop count, each time a new LSR is added to
 the LSP a hop count update would need to be propagated upstream if
 the new LSR is closer to the egress than any of the other LSRs.
 These updates are useless overhead since they don't reflect the hop
 count to the egress.

 From the perspective of the ingress node, the fact that the hop count
 is unknown implies nothing about whether a packet sent on the LSP

Chen, et al. Expires October 9, 2016 [Page 42]

Internet-Draft LDP Specification April 2016

 will actually make it to the egress. All it implies is that the hop
 count update from the egress has not yet reached the ingress.

 If an LSR receives a message containing a Hop Count TLV, it MUST
 check the hop count value to determine whether the hop count has
 exceeded its configured maximum allowable value. If so, it MUST
 behave as if the containing message has traversed a loop by sending a
 Notification message signaling Loop Detected in reply to the sender
 of the message.

 If Loop Detection is configured, the LSR MUST follow the procedures
 specified in Section 3.8 "Loop Detection".

4.4.5. Path Vector TLV

 The Path Vector TLV is used with the Hop Count TLV in Label Request
 and Label Mapping messages to implement the optional LDP Loop
 Detection mechanism. See Section "Loop Detection". Its use in the
 Label Request message records the path of LSRs the request has
 traversed. Its use in the Label Mapping message records the path of
 LSRs a label advertisement has traversed to set up an LSP. Its
 encoding is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Path Vector (0x0104) | Length |
 +-+
 | LSR Id 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | LSR Id n |
 +-+

 Figure 14: Path Vector TLV

 One or more LSR Ids

 A list of router-ids indicating the path of LSRs the message has
 traversed. Each LSR Id is the first four octets (router-id) of
 the LDP Identifier for the corresponding LSR. This ensures it is
 unique within the LSR network.

Chen, et al. Expires October 9, 2016 [Page 43]

Internet-Draft LDP Specification April 2016

4.4.5.1. Path Vector Procedures

 The Path Vector TLV is carried in Label Mapping and Label Request
 messages when Loop Detection is configured.

4.4.5.1.1. Label Request Path Vector

Section 3.8 "Loop Detection" specifies situations when an LSR must
 include a Path Vector TLV in a Label Request message.

 An LSR that receives a Path Vector in a Label Request message MUST
 perform the procedures described in Section "Loop Detection".

 If the LSR detects a loop, it MUST reject the Label Request message.

 The LSR MUST:

 1. Transmit a Notification message to the sending LSR signaling
 "Loop Detected".

 2. Not propagate the Label Request message further.

 Note that a Label Request message with a Path Vector TLV is forwarded
 until:

 1. A loop is found,

 2. The LSP egress is reached, or

 3. The maximum Path Vector limit or maximum Hop Count limit is
 reached. This is treated as if a loop had been detected.

4.4.5.1.2. Label Mapping Path Vector

Section 3.8 "Loop Detection" specifies the situations when an LSR
 must include a Path Vector TLV in a Label Mapping message.

 An LSR that receives a Path Vector in a Label Mapping message MUST
 perform the procedures described in Section "Loop Detection".

 If the LSR detects a loop, it MUST reject the Label Mapping message
 in order to prevent a forwarding loop. The LSR MUST:

 1. Transmit a Label Release message carrying a Status TLV to the
 sending LSR to signal "Loop Detected".

 2. Not propagate the message further.

Chen, et al. Expires October 9, 2016 [Page 44]

Internet-Draft LDP Specification April 2016

 3. Check whether the Label Mapping message is for an existing LSP.
 If so, the LSR must unsplice any upstream labels that are spliced
 to the downstream label for the FEC.

 Note that a Label Mapping message with a Path Vector TLV is forwarded
 until:

 1. A loop is found,

 2. An LSP ingress is reached, or

 3. The maximum Path Vector or maximum Hop Count limit is reached.
 This is treated as if a loop had been detected.

4.4.6. Status TLV

 Notification messages carry Status TLVs to specify events being
 signaled.

 The encoding for the Status TLV is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U|F| Status (0x0300) | Length |
 +-+
 | Status Code |
 +-+
 | Message ID |
 +-+
 | Message Type |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 15: Status TLV

 U-bit

 SHOULD be 0 when the Status TLV is sent in a Notification message.
 SHOULD be 1 when the Status TLV is sent in some other message.

 F-bit

 SHOULD be the same as the setting of the F-bit in the Status Code
 field.

 Status Code

Chen, et al. Expires October 9, 2016 [Page 45]

Internet-Draft LDP Specification April 2016

 32-bit unsigned integer encoding the event being signaled. The
 structure of a Status Code is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |E|F| Status Data |
 +-+

 Figure 16: Path Vector TLV

 E-bit

 Fatal error bit. If set (=1), this is a fatal Error Notification.
 If clear (=0), this is an Advisory Notification.

 F-bit

 Forward bit. If set (=1), the notification SHOULD be forwarded to
 the LSR for the next-hop or previous-hop for the LSP, if any,
 associated with the event being signaled. If clear (=0), the
 notification SHOULD NOT be forwarded.

 Status Data

 30-bit unsigned integer that specifies the status information.

 This specification defines Status Codes (32-bit unsigned integers
 with the above encoding).

 A Status Code of 0 signals success.

 Message ID

 If non-zero, 32-bit value that identifies the peer message to
 which the Status TLV refers. If zero, no specific peer message is
 being identified.

 Message Type

 If non-zero, the type of the peer message to which the Status TLV
 refers. If zero, the Status TLV does not refer to any specific
 message type.

 Note that use of the Status TLV is not limited to Notification
 messages. A message other than a Notification message may carry a
 Status TLV as an Optional Parameter. When a message other than a
 Notification carries a Status TLV, the U-bit of the Status TLV SHOULD

Chen, et al. Expires October 9, 2016 [Page 46]

Internet-Draft LDP Specification April 2016

 be set to 1 to indicate that the receiver SHOULD silently discard the
 TLV if unprepared to handle it.

4.5. LDP Messages

 All LDP messages have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U| Message Type | Message Length |
 +-+
 | Message ID |
 +-+
 | |
 + +
 | Mandatory Parameters |
 + +
 | |
 +-+
 | |
 + +
 | Optional Parameters |
 + +
 | |
 +-+

 Figure 17: LDP message format

 U-bit

 Unknown message bit. Upon receipt of an unknown message, if U is
 clear (=0), a notification is returned to the message originator;
 if U is set (=1), the unknown message is silently ignored. The
 sections following that define messages specify a value for the
 U-bit.

 Message Type

 Identifies the type of message.

 Message Length

 Specifies the cumulative length in octets of the Message ID,
 Mandatory Parameters, and Optional Parameters.

 Message ID

Chen, et al. Expires October 9, 2016 [Page 47]

Internet-Draft LDP Specification April 2016

 32-bit value used to identify this message. Used by the sending
 LSR to facilitate identifying Notification messages that may apply
 to this message. An LSR sending a Notification message in
 response to this message SHOULD include this Message ID in the
 Status TLV carried by the Notification message; see Section 4.5.1
 "Notification Message".

 Mandatory Parameters

 Variable length set of required message parameters. Some messages
 have no required parameters.

 For messages that have required parameters, the required
 parameters MUST appear in the order specified by the individual
 message specifications in the sections that follow.

 Optional Parameters

 Variable length set of optional message parameters. Many messages
 have no optional parameters.

 For messages that have optional parameters, the optional
 parameters may appear in any order.

 Note that there is no alignment requirement for the first octet of an
 LDP message and that there is no padding at the end of a message;
 that is, parameters can end at odd-byte boundaries.

 The following message types are defined in this version of LDP:

 +---------------------+---+
 | Message Name | Section Number and Title |
 +---------------------+---+
Notification	Section 4.5.1 "Notification Message"
Hello	Section 4.5.2 "Hello Message"
Initialization	Section 4.5.3 "Initialization Message"
KeepAlive	Section 4.5.4 "KeepAlive Message"
Address	Section 4.5.5 "Address Message"
Address Withdraw	Section 4.5.6 "Address Withdraw Message"
Label Mapping	Section 4.5.7 "Label Mapping Message"
Label Request	Section 4.5.8 "Label Request Message"
Label Abort Request	Section 4.5.5 "Label Abort Request Message"
Label Withdraw	Section 4.5.10 "Label Withdraw Message"
Label Release	Section 4.5.11 "Label Release Message"
 +---------------------+---+

 Table 4: LDP Messages

Chen, et al. Expires October 9, 2016 [Page 48]

Internet-Draft LDP Specification April 2016

 The sections that follow specify the encodings and procedures for
 these messages.

 Some of the above messages are related to one another, for example
 the Label Mapping, Label Request, Label Withdraw, and Label Release
 messages.

 While it is possible to think about messages related in this way in
 terms of a message type that specifies a message class and a message
 subtype that specifies a particular kind of message within that
 class, this specification does not formalize the notion of a message
 subtype.

 The specification assigns type values for related messages, such as
 the Label messages, from a contiguous block in the 16-bit message
 type number space.

4.5.1. Notification Message

 An LSR sends a Notification message to inform an LDP peer of a
 significant event. A Notification message signals a fatal error or
 provides advisory information such as the outcome of processing an
 LDP message or the state of the LDP session.

 The encoding for the Notification message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Notification (0x0001) | Message Length |
 +-+
 | Message ID |
 +-+
 | Status (TLV) |
 +-+
 | Optional Parameters |
 +-+

 Figure 18: Notification Message

 Message ID

 32-bit value used to identify this message.

 Status TLV

 Indicates the event being signaled. The encoding for the Status
 TLV is specified in Section 4.4.6 "Status TLV".

Chen, et al. Expires October 9, 2016 [Page 49]

Internet-Draft LDP Specification April 2016

 Optional Parameters

 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The following Optional Parameters are generic
 and may appear in any Notification message:

 +--------------------+--------+--------+-----------+
 | Optional Parameter | Type | Length | Value |
 +--------------------+--------+--------+-----------+
 | Extended Status | 0x0301 | 4 | See below |
 | Returned PDU | 0x0302 | var | See below |
 | Returned Message | 0x0303 | var | See below |
 +--------------------+--------+--------+-----------+

 Table 5: LDP Messages

 Other Optional Parameters, specific to the particular event being
 signaled by the Notification messages, may appear. These are
 described elsewhere.

 Extended Status

 The 4 octet value is an Extended Status Code that encodes
 additional information that supplements the status information
 contained in the Notification Status Code.

 Returned PDU

 An LSR uses this parameter to return part of an LDP PDU to the LSR
 that sent it. The value of this TLV is the PDU header and as much
 PDU data following the header as appropriate for the condition
 being signaled by the Notification message.

 Returned Message

 An LSR uses this parameter to return part of an LDP message to the
 LSR that sent it. The value of this TLV is the message type and
 length fields and as much message data following the type and
 length fields as appropriate for the condition being signaled by
 the Notification message.

4.5.1.1. Notification Message Procedures

 If an LSR encounters a condition requiring it to notify its peer with
 advisory or error information, it sends the peer a Notification
 message containing a Status TLV that encodes the information and
 optionally additional TLVs that provide more information about the
 condition.

Chen, et al. Expires October 9, 2016 [Page 50]

Internet-Draft LDP Specification April 2016

 If the condition is one that is a fatal error, the Status Code
 carried in the Notification will indicate that. In this case, after
 sending the Notification message the LSR SHOULD terminate the LDP
 session by closing the session TCP connection and discard all state
 associated with the session, including all label-FEC bindings learned
 via the session.

 When an LSR receives a Notification message that carries a Status
 Code that indicates a fatal error, it SHOULD terminate the LDP
 session immediately by closing the session TCP connection and discard
 all state associated with the session, including all label-FEC
 bindings learned via the session.

 The above statement does not apply to the processing of the Shutdown
 message in the session initialization procedure. When an LSR
 receives a Shutdown message during session initialization, it SHOULD
 transmit a Shutdown message and then close the transport connection.

4.5.1.2. Events Signaled by Notification Messages

 It is useful for descriptive purpose to classify events signaled by
 Notification messages into the following categories.

4.5.1.2.1. Malformed PDU or Message

 Malformed LDP PDUs or messages that are part of the LDP Discovery
 mechanism are handled by silently discarding them.

 An LDP PDU received on a TCP connection for an LDP session is
 malformed if:

 - The LDP Identifier in the PDU header is unknown to the receiver,
 or it is known but is not the LDP Identifier associated by the
 receiver with the LDP peer for this LDP session. This is a fatal
 error signaled by the Bad LDP Identifier Status Code.

 - The LDP protocol version is not supported by the receiver, or it
 is supported but is not the version negotiated for the session
 during session establishment. This is a fatal error signaled by
 the Bad Protocol Version Status Code.

 - The PDU Length field is too small (< 14) or too large (> maximum
 PDU length). This is a fatal error signaled by the Bad PDU Length
 Status Code. Section "Initialization Message" describes how the
 maximum PDU length for a session is determined.

 An LDP message is malformed if:

Chen, et al. Expires October 9, 2016 [Page 51]

Internet-Draft LDP Specification April 2016

 - The Message Type is unknown.

 If the Message Type is < 0x8000 (high order bit = 0), it is an
 error signaled by the Unknown Message Type Status Code.

 If the Message Type is >= 0x8000 (high order bit = 1), it is
 silently discarded.

 - The Message Length is too large, that is, indicates that the
 message extends beyond the end of the containing LDP PDU. This is
 a fatal error signaled by the Bad Message Length Status Code.

 - The Message Length is too small, that is, smaller than the
 smallest possible value component. This is a fatal error signaled
 by the Bad Message Length Status Code.

 - The message is missing one or more Mandatory Parameters. This is
 a non-fatal error signaled by the Missing Message Parameters
 Status Code.

4.5.1.2.2. Unknown or Malformed TLV

 Malformed TLVs contained in LDP messages that are part of the LDP
 Discovery mechanism are handled by silently discarding the containing
 message.

 A TLV contained in an LDP message received on a TCP connection of an
 LDP is malformed if:

 - The TLV Length is too large, that is, indicates that the TLV
 extends beyond the end of the containing message. This is a fatal
 error signaled by the Bad TLV Length Status Code.

 - - The TLV type is unknown.

 If the TLV type is < 0x8000 (high order bit = 0), it is an error
 signaled by the Unknown TLV Status Code.

 If the TLV type is >= 0x8000 (high order bit = 1), the TLV is
 silently dropped.

 - The TLV Value is malformed. This occurs when the receiver handles
 the TLV but cannot decode the TLV Value. This is interpreted as
 indicative of a bug in either the sending or receiving LSR. It is
 a fatal error signaled by the Malformed TLV Value Status Code.

Chen, et al. Expires October 9, 2016 [Page 52]

Internet-Draft LDP Specification April 2016

4.5.1.2.3. Session KeepAlive Timer Expiration

 This is a fatal error signaled by the KeepAlive Timer Expired Status
 Code.

4.5.1.2.4. Unilateral Session Shutdown

 This is a fatal event signaled by the Shutdown Status Code. The
 Notification message may optionally include an Extended Status TLV to
 provide a reason for the Shutdown. The sending LSR terminates the
 session immediately after sending the Notification.

4.5.1.2.5. Initialization Message Events

 The session initialization negotiation (see Section "Session
 Initialization") may fail if the session parameters received in the
 Initialization message are unacceptable. This is a fatal error. The
 specific Status Code depends on the parameter deemed unacceptable,
 and is defined in Section 4.5.3 "Initialization Message".

4.5.1.2.6. Events Resulting from Other Messages

 Messages other than the Initialization message may result in events
 that must be signaled to LDP peers via Notification messages. These
 events and the Status Codes used in the Notification messages to
 signal them are described in the sections that describe these
 messages.

4.5.1.2.7. Internal Errors

 An LDP implementation may be capable of detecting problem conditions
 specific to its implementation. When such a condition prevents an
 implementation from interacting correctly with a peer, the
 implementation should, when capable of doing so, use the Internal
 Error Status Code to signal the peer. This is a fatal error.

4.5.1.2.8. Miscellaneous Events

 These are events that fall into none of the categories above. There
 are no miscellaneous events defined in this version of the protocol.

4.5.2. Hello Message

 LDP Hello messages are exchanged as part of the LDP Discovery
 Mechanism; see Section 3.4 "LDP Discovery".

 The encoding for the Hello message is:

Chen, et al. Expires October 9, 2016 [Page 53]

Internet-Draft LDP Specification April 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Hello (0x0100) | Message Length |
 +-+
 | Message ID |
 +-+
 | Common Hello Parameters TLV |
 +-+
 | Optional Parameters |
 +-+

 Figure 19: Hello Message

 Message ID

 32-bit value used to identify this message.

 Common Hello Parameters TLV

 Specifies parameters common to all Hello messages. The encoding
 for the Common Hello Parameters TLV is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Common Hello Parms(0x0400)| Length |
 +-+
 | Hold Time |T|R| Reserved |
 +-+

 Figure 20: Hello Message

 Hold Time

 Hello hold time in seconds. An LSR maintains a record of Hellos
 received from potential peers (see Section 4.5.2.1 "Hello Message
 Procedures"). Hello Hold Time specifies the time the sending LSR
 will maintain its record of Hellos from the receiving LSR without
 receipt of another Hello.

 A pair of LSRs negotiates the hold times they use for Hellos from
 each other. Each proposes a hold time. The hold time used is the
 minimum of the hold times proposed in their Hellos.

 A value of 0 means use the default, which is 15 seconds for Link
 Hellos and 45 seconds for Targeted Hellos. A value of 0xffff
 means infinite.

Chen, et al. Expires October 9, 2016 [Page 54]

Internet-Draft LDP Specification April 2016

 T, Targeted Hello

 A value of 1 specifies that this Hello is a Targeted Hello. A
 value of 0 specifies that this Hello is a Link Hello.

 R, Request Send Targeted Hellos

 A value of 1 requests the receiver to send periodic Targeted
 Hellos to the source of this Hello. A value of 0 makes no
 request.

 An LSR initiating Extended Discovery sets R to 1. If R is 1, the
 receiving LSR checks whether it has been configured to send
 Targeted Hellos to the Hello source in response to Hellos with
 this request. If not, it ignores the request. If so, it
 initiates periodic transmission of Targeted Hellos to the Hello
 source.

 Reserved

 This field is reserved. It MUST be set to zero on transmission
 and ignored on receipt.

 Optional Parameters

 This variable length field of the Hello message contains 0 or more
 parameters, each encoded as a TLV. The optional parameters
 defined by this version of the protocol are:

 +-------------------------------+--------+--------+-----------+
 | Optional Parameters | Type | Length | Value |
 +-------------------------------+--------+--------+-----------+
 | IPv4 Transport Address | 0x0401 | 4 | See below |
 | Configuration Sequence Number | 0x0402 | 4 | See below |
 | IPv6 Transport Address | 0x0403 | 16 | See below |
 +-------------------------------+--------+--------+-----------+

 Table 6: Optional Hello Message Parameters

 IPv4 Transport Address

 Specifies the IPv4 address to be used for the sending LSR when
 opening the LDP session TCP connection. If this optional TLV is
 not present, the IPv4 source address for the UDP packet carrying
 the Hello SHOULD be used.

 Configuration Sequence Number

Chen, et al. Expires October 9, 2016 [Page 55]

Internet-Draft LDP Specification April 2016

 Specifies a 4 octet unsigned configuration sequence number that
 identifies the configuration state of the sending LSR. Used by
 the receiving LSR to detect configuration changes on the sending
 LSR.

 IPv6 Transport Address

 Specifies the IPv6 address to be used for the sending LSR when
 opening the LDP session TCP connection. If this optional TLV is
 not present the IPv6 source address for the UDP packet carrying
 the Hello SHOULD be used.

4.5.2.1. Hello Message Procedures

 An LSR receiving Hellos from another LSR maintains a Hello adjacency
 corresponding to the Hellos. The LSR maintains a hold timer with the
 Hello adjacency, which it restarts whenever it receives a Hello that
 matches the Hello adjacency. If the hold timer for a Hello adjacency
 expires the LSR discards the Hello adjacency: see Section 3.5.5
 "Maintaining Hello Adjacencies" and Section 3.5.6 "Maintaining LDP
 Sessions".

 We recommend that the interval between Hello transmissions be at most
 one third of the Hello hold time.

 An LSR processes a received LDP Hello as follows:

 1. The LSR checks whether the Hello is acceptable. The criteria for
 determining whether a Hello is acceptable are implementation
 dependent (see below for example criteria).

 2. If the Hello is not acceptable, the LSR ignores it.

 3. If the Hello is acceptable, the LSR checks whether it has a Hello
 adjacency for the Hello source. If so, it restarts the hold
 timer for the Hello adjacency. If not, it creates a Hello
 adjacency for the Hello source and starts its hold timer.

 4. If the Hello carries any optional TLVs, the LSR processes them
 (see below).

 5. Finally, if the LSR has no LDP session for the label space
 specified by the LDP Identifier in the PDU header for the Hello,
 it follows the procedures of Section "LDP Session Establishment".

 The following are examples of acceptability criteria for Link and
 Targeted Hellos:

Chen, et al. Expires October 9, 2016 [Page 56]

Internet-Draft LDP Specification April 2016

 A Link Hello is acceptable if the interface on which it was
 received has been configured for label switching.

 A Targeted Hello from source address A is acceptable if either:

 - The LSR has been configured to accept Targeted Hellos, or

 - The LSR has been configured to send Targeted Hellos to A.

 The following describes how an LSR processes Hello optional TLVs:

 Transport Address

 The LSR associates the specified transport address with the
 Hello adjacency.

 Configuration Sequence Number

 The Configuration Sequence Number optional parameter is used by
 the sending LSR to signal configuration changes to the
 receiving LSR. When a receiving LSR playing the active role in
 LDP session establishment detects a change in the sending LSR
 configuration, it may clear the session setup backoff delay, if
 any, associated with the sending LSR (see Section 3.5.3
 "Session Initialization").

 A sending LSR using this optional parameter is responsible for
 maintaining the configuration sequence number it transmits in
 Hello messages. Whenever there is a configuration change on
 the sending LSR, it increments the configuration sequence
 number.

4.5.3. Initialization Message

 Note: We have an open discussion on whether we can remove ATM and FR
 from this document, if we decide to do that this section needs to be
 revisited.

 The LDP Initialization message is exchanged as part of the LDP
 session establishment procedure; see Section 3.5.1 "LDP Session
 Establishment".

 The encoding for the Initialization message is:

Chen, et al. Expires October 9, 2016 [Page 57]

Internet-Draft LDP Specification April 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Initialization (0x0200) | Message Length |
 +-+
 | Message ID |
 +-+
 | Common Session Parameters TLV |
 +-+
 | Optional Parameters |
 +-+

 Figure 21: Initialization Message

 Message ID

 32-bit value used to identify this message.

 Common Session Parameters TLV

 Specifies values proposed by the sending LSR for parameters that
 must be negotiated for every LDP session.

 The encoding for the Common Session Parameters TLV is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| Common Sess Parms (0x0500)| Length |
 +-+
 | Protocol Version | KeepAlive Time |
 +-+
 |A|D| Reserved | PVLim | Max PDU Length |
 +-+
 | Receiver LDP Identifier |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++

 Figure 22: Common Session Parameters TLV

 Protocol Version

 Two octet unsigned integer containing the version number of the
 protocol. This version of the specification specifies LDP
 protocol version 1.

 KeepAlive Time

Chen, et al. Expires October 9, 2016 [Page 58]

Internet-Draft LDP Specification April 2016

 Two octet unsigned non zero integer that indicates the number of
 seconds that the sending LSR proposes for the value of the
 KeepAlive Time. The receiving LSR MUST calculate the value of the
 KeepAlive Timer by using the smaller of its proposed KeepAlive
 Time and the KeepAlive Time received in the PDU. The value chosen
 for KeepAlive Time indicates the maximum number of seconds that
 may elapse between the receipt of successive PDUs from the LDP
 peer on the session TCP connection. The KeepAlive Timer is reset
 each time a PDU arrives.

 A, Label Advertisement Discipline

 Indicates the type of Label advertisement. A value of 0 means
 Downstream Unsolicited advertisement; a value of 1 means
 Downstream On Demand.

 If one LSR proposes Downstream Unsolicited and the other proposes
 Downstream on Demand, the rules for resolving this difference is:

 - If the session is for a label-controlled ATM link or a label-
 controlled Frame Relay link, then Downstream on Demand MUST be
 used.

 - Otherwise, Downstream Unsolicited MUST be used.

 If the label advertisement discipline determined in this way is
 unacceptable to an LSR, it MUST send a Session Rejected/
 Parameters Advertisement Mode Notification message in response
 to the Initialization message and not establish the session.

 D, Loop Detection

 Indicates whether Loop Detection based on Path Vectors is enabled.
 A value of 0 means that Loop Detection is disabled; a value of 1
 means that Loop Detection is enabled.

 PVLim, Path Vector Limit

 The configured maximum Path Vector length. MUST be 0 if Loop
 Detection is disabled (D = 0). If the Loop Detection procedures
 would require the LSR to send a Path Vector that exceeds this
 limit, the LSR will behave as if a loop had been detected for the
 FEC in question.

 When Loop Detection is enabled in a portion of a network, it is
 recommended that all LSRs in that portion of the network be
 configured with the same Path Vector limit. Although knowledge of

Chen, et al. Expires October 9, 2016 [Page 59]

Internet-Draft LDP Specification April 2016

 a peer's Path Vector limit will not change an LSR's behavior, it
 does enable the LSR to alert an operator to a possible
 misconfiguration.

 Reserved

 This field is reserved. It MUST be set to zero on transmission
 and ignored on receipt.

 Max PDU Length

 Two octet unsigned integer that proposes the maximum allowable
 length for LDP PDUs for the session. A value of 255 or less
 specifies the default maximum length of 4096 octets.

 The receiving LSR MUST calculate the maximum PDU length for the
 session by using the smaller of its and its peer's proposals for
 Max PDU Length. The default maximum PDU length applies before
 session initialization completes. If the maximum PDU length
 determined this way is unacceptable to an LSR, it MUST send a
 Session Rejected/Parameters Max PDU Length Notification message in
 response to the Initialization message and not establish the
 session.

 Receiver LDP Identifier

 Identifies the receiver's label space. This LDP Identifier,
 together with the sender's LDP Identifier in the PDU header,
 enables the receiver to match the Initialization message with one
 of its Hello adjacencies; see Section 4.5.2.1 "Hello Message
 Procedures".

 If there is no matching Hello adjacency, the LSR MUST send a
 Session Rejected/No Hello Notification message in response to the
 Initialization message and not establish the session.

 Optional Parameters

 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

Chen, et al. Expires October 9, 2016 [Page 60]

Internet-Draft LDP Specification April 2016

 +--------------------------------+--------+--------+-----------+
 | Optional Parameters | Type | Length | Value |
 +--------------------------------+--------+--------+-----------+
 | ATM Session Parameters | 0x0501 | var | See below |
 | Frame Relay Session Parameters | 0x0502 | var | See below |
 +--------------------------------+--------+--------+-----------+

 Table 7: Initialization Message; Optional Parameters

 ATM Session Parameters

 Used when an LDP session manages label exchange for an ATM link to
 specify ATM-specific session parameters.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| ATM Sess Parms (0x0501) | Length |
 +-+
 | M | N |D| Reserved |
 +-+
 | ATM Label Range Component 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | ATM Label Range Component N |
 +-+

 Figure 23: ATM Session Parameters (optional)

 M, ATM Merge Capabilities

 Specifies the merge capabilities of an ATM switch. The following
 values are supported in this version of the specification:

 +-------+-------------------------+
 | Value | Meaning |
 +-------+-------------------------+
 | 0 | Merge not supported |
 | 1 | VP Merge supported |
 | 2 | VC Merge supported |
 | 3 | VP & VC Merge supported |
 +-------+-------------------------+

 Table 8: ATM Merge Capabilities

Chen, et al. Expires October 9, 2016 [Page 61]

Internet-Draft LDP Specification April 2016

 If the merge capabilities of the LSRs differ, then:

 - Non-merge and VC-merge LSRs may freely interoperate.

 - The interoperability of VP-merge-capable switches with non- VP-
 merge-capable switches is a subject for future study. When the
 LSRs differ on the use of VP merge, the session is established,
 but VP merge is not used.

 Note that if VP merge is used, it is the responsibility of the
 ingress node to ensure that the chosen VCI is unique within the
 LSR domain.

 N, Number of label range components

 Specifies the number of ATM Label Range Components included in the
 TLV.

 D, VC Directionality

 A value of 0 specifies bidirectional VC capability, meaning the
 LSR can (within a given VPI) support the use of a given VCI as a
 label for both link directions independently. A value of 1
 specifies unidirectional VC capability, meaning (within a given
 VPI) a given VCI may appear in a label mapping for one direction
 on the link only. When either or both of the peers specifies
 unidirectional VC capability, both LSRs use unidirectional VC
 label assignment for the link as follows. The LSRs compare their
 LDP Identifiers as unsigned integers. The LSR with the larger LDP
 Identifier may assign only odd- numbered VCIs in the VPI/VCI range
 as labels. The system with the smaller LDP Identifier may assign
 only even-numbered VCIs in the VPI/VCI range as labels.

 Reserved

 This field is reserved. It MUST be set to zero on transmission
 and ignored on receipt.

 One or more ATM Label Range Components

 A list of ATM Label Range Components that together specify the
 Label range supported by the transmitting LSR.

 A receiving LSR MUST calculate the intersection between the
 received range and its own supported label range. The
 intersection is the range in which the LSR may allocate and accept
 labels. LSRs MUST NOT establish a session with neighbors for
 which the intersection of ranges is NULL. In this case, the LSR

Chen, et al. Expires October 9, 2016 [Page 62]

Internet-Draft LDP Specification April 2016

 MUST send a Session Rejected/Parameters Label Range Notification
 message in response to the Initialization message and not
 establish the session.

 The encoding for an ATM Label Range Component is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Res | Minimum VPI | Minimum VCI |
 +-+
 | Res | Maximum VPI | Maximum VCI |
 +-+

 Figure 24: ATM Label Range Component

 Res

 This field is reserved. It MUST be set to zero on transmission
 and ignored on receipt.

 Minimum VPI (12 bits)

 This 12-bit field specifies the lower bound of a block of Virtual
 Path Identifiers that is supported on the originating switch. If
 the VPI is less than 12 bits, it SHOULD be right justified in this
 field and preceding bits SHOULD be set to 0.

 Minimum VCI (16 bits)

 This 16-bit field specifies the lower bound of a block of Virtual
 Channel Identifiers that is supported on the originating switch.
 If the VCI is less than 16 bits, it SHOULD be right justified in
 this field and preceding bits SHOULD be set to 0.

 Maximum VPI (12 bits)

 This 12-bit field specifies the upper bound of a block of Virtual
 Path Identifiers that is supported on the originating switch. If
 the VPI is less than 12 bits, it SHOULD be right justified in this
 field and preceding bits SHOULD be set to 0.

 Maximum VCI (16 bits)

 This 16-bit field specifies the upper bound of a block of Virtual
 Connection Identifiers that is supported on the originating
 switch. If the VCI is less than 16 bits, it SHOULD be right
 justified in this field and preceding bits SHOULD be set to 0.

Chen, et al. Expires October 9, 2016 [Page 63]

Internet-Draft LDP Specification April 2016

 When peer LSRs are connected indirectly by means of an ATM VP, the
 sending LSR SHOULD set the Minimum and Maximum VPI fields to 0, and
 the receiving LSR MUST ignore the Minimum and Maximum VPI fields.

 Frame Relay Session Parameters

 Used when an LDP session manages label exchange for a Frame Relay
 link to specify Frame Relay-specific session parameters.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0| FR Sess Parms (0x0502) | Length |
 +-+
 | M | N |D| Reserved |
 +-+
 | Frame Relay Label Range Component 1 |
 +-+
 | |
 ~ ~
 | |
 +-+
 | Frame Relay Label Range Component N |
 +-+

 Figure 25: Frame Relay Session Parameters

 M, Frame Relay Merge Capabilities

 Specifies the merge capabilities of a Frame Relay switch. The
 following values are supported in this version of the
 specification:

 +-------+---------------------+
 | Value | Meaning |
 +-------+---------------------+
 | 0 | Merge not supported |
 | 1 | VP Merge supported |
 | 2 | Merge supported |
 +-------+---------------------+

 Table 9: Frame Relay Merge Capabilities

 Non-merge and merge Frame Relay LSRs may freely interoperate.

 N, Number of label range components

Chen, et al. Expires October 9, 2016 [Page 64]

Internet-Draft LDP Specification April 2016

 Specifies the number of Frame Relay Label Range Components
 included in the TLV.

 D, VC Directionality

 A value of 0 specifies bidirectional VC capability, meaning the
 LSR can support the use of a given DLCI as a label for both link
 directions independently. A value of 1 specifies unidirectional
 VC capability, meaning a given DLCI may appear in a label mapping
 for one direction on the link only. When either or both of the
 peers specifies unidirectional VC capability, both LSRs use
 unidirectional VC label assignment for the link as follows. The
 LSRs compare their LDP Identifiers as unsigned integers. The LSR
 with the larger LDP Identifier may assign only odd-numbered DLCIs
 in the range as labels. The system with the smaller LDP
 Identifier may assign only even-numbered DLCIs in the range as
 labels.

 Reserved

 This field is reserved. It MUST be set to zero on transmission
 and ignored on receipt.

 One or more Frame Relay Label Range Components

 A list of Frame Relay Label Range Components that together specify
 the Label range supported by the transmitting LSR.

 A receiving LSR MUST calculate the intersection between the
 received range and its own supported label range. The
 intersection is the range in which the LSR may allocate and accept
 labels. LSRs MUST NOT establish a session with neighbors for
 which the intersection of ranges is NULL. In this case, the LSR
 MUST send a Session Rejected/Parameters Label Range Notification
 message in response to the Initialization message and not
 establish the session.

 The encoding for a Frame Relay Label Range Component is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved |Len| Minimum DLCI |
 +-+
 | Reserved | Maximum DLCI |
 +-+

 Figure 26: Frame Relay Label Range Component

Chen, et al. Expires October 9, 2016 [Page 65]

Internet-Draft LDP Specification April 2016

 Reserved

 This field is reserved. It MUST be set to zero on transmission
 and ignored on receipt.

 Len

 This field specifies the number of bits of the DLCI. The
 following values are supported:

 +-----+-----------+
 | Len | DLCI bits |
 +-----+-----------+
 | 0 | 10 |
 | 1 | reserved |
 | 2 | 23 |
 | 3 | reserved |
 +-----+-----------+

 Table 10: Number of DLCI bits

 Minimum DLCI

 This 23-bit field specifies the lower bound of a block of Data
 Link Connection Identifiers (DLCIs) that is supported on the
 originating switch. The DLCI SHOULD be right justified in this
 field and unused bits SHOULD be set to 0.

 Maximum DLCI

 This 23-bit field specifies the upper bound of a block of Data
 Link Connection Identifiers (DLCIs) that is supported on the
 originating switch. The DLCI SHOULD be right justified in this
 field and unused bits SHOULD be set to 0.

 Note that there is no Generic Session Parameters TLV for sessions
 that advertise Generic Labels.

4.5.3.1. Initialization Message Procedures

 See Section 3.5.1 "LDP Session Establishment" and particularly
Section 3.5.3 "Session Initialization" for general procedures for

 handling the Initialization message.

Chen, et al. Expires October 9, 2016 [Page 66]

Internet-Draft LDP Specification April 2016

4.5.4. KeepAlive Message

 An LSR sends KeepAlive messages as part of a mechanism that monitors
 the integrity of the LDP session transport connection.

 The encoding for the KeepAlive message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| KeepAlive (0x0201) | Message Length |
 +-+
 | Message ID |
 +-+
 | Optional Parameters |
 +-+

 Figure 27: KeepAlive Message

 Message ID

 32-bit value used to identify this message.

 Optional Parameters

 No optional parameters are defined for the KeepAlive message.

4.5.4.1. KeepAlive Message Procedures

 The KeepAlive Timer mechanism described in Section 3.5.6 "Maintaining
 LDP Sessions" resets a session KeepAlive Timer every time an LDP PDU
 is received on the session TCP connection. The KeepAlive message is
 provided to allow reset of the KeepAlive Timer in circumstances where
 an LSR has no other information to communicate to an LDP peer.

 An LSR MUST arrange that its peer receive an LDP message from it at
 least every KeepAlive Time period. Any LDP protocol message will do
 but, in circumstances where no other LDP protocol messages have been
 sent within the period, a KeepAlive message MUST be sent.

4.5.5. Address Message

 An LSR sends the Address message to an LDP peer to advertise its
 interface addresses.

 The encoding for the Address message is:

Chen, et al. Expires October 9, 2016 [Page 67]

Internet-Draft LDP Specification April 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Address (0x0300) | Message Length |
 +-+
 | Message ID |
 +-+
 | |
 | Address List TLV |
 | |
 +-+
 | Optional Parameters |
 +-+

 Figure 28: Address Message

 Message ID

 32-bit value used to identify this message.

 Address List TLV

 The list of interface addresses being advertised by the sending
 LSR. The encoding for the Address List TLV is specified in

Section 4.4.3 "Address List TLV".

 Optional Parameters

 No optional parameters are defined for the Address message.

4.5.5.1. Address Message Procedures

 An LSR that receives an Address message uses the addresses it learns
 to maintain a database for mapping between peer LDP Identifiers and
 next hop addresses; see Section 3.7 LDP Identifiers and Next Hop
 Addresses".

 When a new LDP session is initialized and before sending Label
 Mapping or Label Request messages, an LSR SHOULD advertise its
 interface addresses with one or more Address messages.

 Whenever an LSR "activates" a new interface address, it SHOULD
 advertise the new address with an Address message.

 Whenever an LSR "de-activates" a previously advertised address, it
 SHOULD withdraw the address with an Address Withdraw message; see
 Section "Address Withdraw Message".

Chen, et al. Expires October 9, 2016 [Page 68]

Internet-Draft LDP Specification April 2016

 If an LSR does not support the Address Family specified in the
 Address List TLV, it SHOULD send an Unsupported Address Family
 Notification to its LDP signaling an error and abort processing the
 message.

 An LSR may re-advertise an address (A) that it has previously
 advertised without explicitly withdrawing the address. If the
 receiver already has address binding (LSR, A), it SHOULD take no
 further action.

 An LSR may withdraw an address (A) without having previously
 advertised it. If the receiver has no address binding (LSR, A), it
 SHOULD take no further action.

4.5.6. Address Withdraw Message

 An LSR sends the Address Withdraw message to an LDP peer to withdraw
 previously advertised interface addresses.

 The encoding for the Address Withdraw message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Address Withdraw (0x0301) | Message Length |
 +-+
 | Message ID |
 +-+
 | |
 | Address List TLV |
 | |
 +-+
 | Optional Parameters |
 +-+

 Figure 29: Address Withdraw Message

 Message ID

 32-bit value used to identify this message.

 Address List TLV

 The list of interface addresses being withdrawn by the sending
 LSR. The encoding for the Address List TLV is specified in
 Section "Address List TLV".

 Optional Parameters

Chen, et al. Expires October 9, 2016 [Page 69]

Internet-Draft LDP Specification April 2016

 No optional parameters are defined for the Address Withdraw
 message.

4.5.6.1. Address Withdraw Message Procedures

 See Section 4.5.5.1 "Address Message Procedures".

4.5.7. Label Mapping Message

 An LSR sends a Label Mapping message to an LDP peer to advertise FEC-
 label bindings to the peer.

 The encoding for the Label Mapping message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Mapping (0x0400) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label TLV |
 +-+
 | Optional Parameters |
 +-+

 Figure 30: Label Mapping Message

 Message ID

 32-bit value used to identify this message.

 FEC TLV

 Specifies the FEC component of the FEC-Label mapping being
 advertised. See Section 4.4.1 "FEC TLVs" for encoding.

 Label TLV

 Specifies the Label component of the FEC-Label mapping. See
Section 4.4.2 "Label TLVs" for encoding.

 Optional Parameters

 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

Chen, et al. Expires October 9, 2016 [Page 70]

Internet-Draft LDP Specification April 2016

 +------------------------------+----------+-----------+
 | Optional Parameter | Length | Value |
 +------------------------------+----------+-----------+
 | Label Request Message ID TLV | 4 | See below |
 | Hop Count TLV | 1 | See below |
 | Path Vector TLV | variable | See below |
 +------------------------------+----------+-----------+

 Table 11: Label Mapping Message: Optional Parameters

 The encodings for the Hop Count and Path Vector TLVs can be found in
Section 4.4 "TLV Encodings for Commonly Used Parameters".

 Label Request Message ID

 If this Label Mapping message is a response to a Label Request
 message, it MUST include the Label Request Message ID optional
 parameter. The value of this optional parameter is the Message ID
 of the corresponding Label Request message.

 Hop Count

 Specifies the running total of the number of LSR hops along the
 LSP being set up by the Label message. Section "Hop Count
 Procedures" describes how to handle this TLV.

 Path Vector

 Specifies the LSRs along the LSP being set up by the Label
 message. Section 4.4.5.1 "Path Vector Procedures" describes how
 to handle this TLV.

4.5.7.1. Label Mapping Message Procedures

 The Mapping message is used by an LSR to distribute a label mapping
 for a FEC to an LDP peer. If an LSR distributes a mapping for a FEC
 to multiple LDP peers, it is a local matter whether it maps a single
 label to the FEC, and distributes that mapping to all its peers, or
 whether it uses a different mapping for each of its peers.

 An LSR is responsible for the consistency of the label mappings it
 has distributed and that its peers have these mappings.

 An LSR receiving a Label Mapping message from a downstream LSR for a
 Prefix SHOULD NOT use the label for forwarding unless its routing
 table contains an entry that exactly matches the FEC Element.

Chen, et al. Expires October 9, 2016 [Page 71]

Internet-Draft LDP Specification April 2016

 See Appendix A, "LDP Label Distribution Procedures", for more
 details.

4.5.7.1.1. Independent Control Mapping

 If an LSR is configured for independent control, a mapping message is
 transmitted by the LSR upon any of the following conditions:

 1. The LSR recognizes a new FEC via the forwarding table, and the
 label advertisement mode is Downstream Unsolicited advertisement.

 2. The LSR receives a Request message from an upstream peer for a
 FEC present in the LSR's forwarding table.

 3. The next hop for a FEC changes to another LDP peer, and Loop
 detection is configured.

 4. The attributes of a mapping change.

 5. The receipt of a mapping from the downstream next hop AND

 a.) no upstream mapping has been created OR

 b.) loop detection is configured OR

 c.) the attributes of the mapping have changed.

4.5.7.1.2. Ordered Control Mapping

 If an LSR is doing Ordered Control, a Mapping message is transmitted
 by downstream LSRs upon any of the following conditions:

 1. The LSR recognizes a new FEC via the forwarding table and is the
 egress for that FEC.

 2. The LSR receives a Request message from an upstream peer for a
 FEC present in the LSR's forwarding table, and the LSR is the
 egress for that FEC OR has a downstream mapping for that FEC.

 3. The next hop for a FEC changes to another LDP peer, and Loop
 Detection is configured.

 4. The attributes of a mapping change.

 5. The receipt of a mapping from the downstream next hop AND

 a.) no upstream mapping has been created OR

Chen, et al. Expires October 9, 2016 [Page 72]

Internet-Draft LDP Specification April 2016

 b.) loop detection is configured OR

 c.) the attributes of the mapping have changed.

4.5.7.1.3. Downstream on Demand Label Advertisement

 In general, the upstream LSR is responsible for requesting label
 mappings when operating in Downstream on Demand mode. However,
 unless some rules are followed, it is possible for neighboring LSRs
 with different advertisement modes to get into a livelock situation
 where everything is functioning properly, but no labels are
 distributed. For example, consider two LSRs Ru and Rd where Ru is
 the upstream LSR and Rd is the downstream LSR for a particular FEC.
 In this example, Ru is using Downstream Unsolicited advertisement
 mode and Rd is using Downstream on Demand mode. In this case, Rd may
 assume that Ru will request a label mapping when it wants one and Ru
 may assume that Rd will advertise a label if it wants Ru to use one.
 If Rd and Ru operate as suggested, no labels will be distributed from
 Rd to Ru.

 This livelock situation can be avoided if the following rule is
 observed: an LSR operating in Downstream on Demand mode SHOULD NOT be
 expected to send unsolicited mapping advertisements. Therefore, if
 the downstream LSR is operating in Downstream on Demand mode, the
 upstream LSR is responsible for requesting label mappings as needed.

4.5.7.1.4. Downstream Unsolicited Label Advertisement

 In general, the downstream LSR is responsible for advertising a label
 mapping when it wants an upstream LSR to use the label. An upstream
 LSR may issue a mapping request if it so desires.

 The combination of Downstream Unsolicited mode and Conservative Label
 retention can lead to a situation where an LSR releases the label for
 a FEC that it later needs. For example, if LSR Rd advertises to LSR
 Ru the label for a FEC for which it is not Ru's next hop, Ru will
 release the label. If Ru's next hop for the FEC later changes to Rd,
 it needs the previously released label.

 To deal with this situation, either Ru can explicitly request the
 label when it needs it, or Rd can periodically re-advertise it to Ru.
 In many situations Ru will know when it needs the label from Rd. For
 example, when its next hop for the FEC changes to Rd. However, there
 could be situations when Ru does not. For example, Rd may be
 attempting to establish an LSP with non-standard properties. Forcing
 Ru to explicitly request the label in this situation would require it
 to maintain state about a potential LSP with non-standard properties.

Chen, et al. Expires October 9, 2016 [Page 73]

Internet-Draft LDP Specification April 2016

 In situations where Ru knows it needs the label, it is responsible
 for explicitly requesting the label by means of a Label Request
 message. In situations where Ru may not know that it needs the
 label, Rd is responsible for periodically re-advertising the label to
 Ru.

 For this version of LDP, the only situation where Ru knows it needs a
 label for a FEC from Rd is when Rd is its next hop for the FEC, Ru
 does not have a label from Rd, and the LSP for the FEC is one that
 can be established with TLVs defined in this document.

4.5.8. Label Request Message

 An LSR sends the Label Request message to an LDP peer to request a
 binding (mapping) for a FEC.

 The encoding for the Label Request message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Request (0x0401) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Optional Parameters |
 +-+

 Figure 31: Label Request Message

 Message ID

 32-bit value used to identify this message.

 FEC TLV

 The FEC for which a label is being requested. See Section 4.4.1
 "FEC TLV" for encoding.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

Chen, et al. Expires October 9, 2016 [Page 74]

Internet-Draft LDP Specification April 2016

 +--------------------+----------+-----------+
 | Optional Parameter | Length | Value |
 +--------------------+----------+-----------+
 | Hop Count TLV | 1 | See below |
 | Path Vector TLV | variable | See below |
 +--------------------+----------+-----------+

 Table 12: Label Request Message: Optional Parameters

 The encodings for the Hop Count and Path Vector TLVs can be found in
 Section "TLV Encodings for Commonly Used Parameters".

 Hop Count
 Specifies the running total of the number of LSR hops along the
 LSP being set up by the Label Request message. Section "Hop Count
 Procedures" describes how to handle this TLV.

 Path Vector
 Specifies the LSRs along the LSP being set up by the Label Request
 message. Section "Path Vector Procedures" describes how to handle
 this TLV.

4.5.8.1. Label Request Message Procedures

 The Request message is used by an upstream LSR to explicitly request
 that the downstream LSR assign and advertise a label for a FEC.

 An LSR may transmit a Request message under any of the following
 conditions:

 1. The LSR recognizes a new FEC via the forwarding table, and the
 next hop is an LDP peer, and the LSR doesn't already have a
 mapping from the next hop for the given FEC.

 2. The next hop to the FEC changes, and the LSR doesn't already have
 a mapping from that next hop for the given FEC.

 Note that if the LSR already has a pending Label Request message
 for the new next hop, it SHOULD NOT issue an additional Label
 Request in response to the next hop change.

 3. The LSR receives a Label Request for a FEC from an upstream LDP
 peer, the FEC next hop is an LDP peer, and the LSR doesn't
 already have a mapping from the next hop.
 Note that since a non-merge LSR must set up a separate LSP for
 each upstream peer requesting a label, it must send a separate
 Label Request for each such peer. A consequence of this is that

Chen, et al. Expires October 9, 2016 [Page 75]

Internet-Draft LDP Specification April 2016

 a non-merge LSR may have multiple Label Request messages for a
 given FEC outstanding at the same time.

 The receiving LSR SHOULD respond to a Label Request message with a
 Label Mapping for the requested label or with a Notification message
 indicating why it cannot satisfy the request.

 When the FEC for which a label is requested is a Prefix FEC Element,
 the receiving LSR uses its routing table to determine its response.
 Unless its routing table includes an entry that exactly matches the
 requested Prefix, the LSR MUST respond with a No Route Notification
 message.

 The message ID of the Label Request message serves as an identifier
 for the Label Request transaction. When the receiving LSR responds
 with a Label Mapping message, the mapping message MUST include a
 Label Request/Returned Message ID TLV optional parameter that
 includes the message ID of the Label Request message. Note that
 since LSRs use Label Request message IDs as transaction identifiers,
 an LSR SHOULD NOT reuse the message ID of a Label Request message
 until the corresponding transaction completes.

 This version of the protocol defines the following Status Codes for
 the Notification message that signals a request cannot be satisfied:

 No Route
 The FEC for which a label was requested includes a FEC Element for
 which the LSR does not have a route.

 No Label Resources
 The LSR cannot provide a label because of resource limitations.
 When resources become available, the LSR MUST notify the
 requesting LSR by sending a Notification message with the Label
 Resources Available Status Code.

 An LSR that receives a No Label Resources response to a Label
 Request message MUST NOT issue further Label Request messages
 until it receives a Notification message with the Label Resources
 Available Status Code.

 Loop Detected
 The LSR has detected a looping Label Request message.

 See Appendix A, "LDP Label Distribution Procedures", for more
 details.

Chen, et al. Expires October 9, 2016 [Page 76]

Internet-Draft LDP Specification April 2016

4.5.9. Label Abort Request Message

 The Label Abort Request message may be used to abort an outstanding
 Label Request message.

 The encoding for the Label Abort Request message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Abort Req (0x0404) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label Request Message ID TLV |
 +-+
 | Optional Parameters |
 +-+

 Figure 32: Label Abort Request Message

 Message ID
 32-bit value used to identify this message.

 FEC TLV
 Identifies the FEC for which the Label Request is being aborted.

 Label Request Message ID TLV
 Specifies the message ID of the Label Request message to be
 aborted.

 Optional Parameters
 No optional parameters are defined for the Label Abort Req
 message.

4.5.9.1. Label Abort Request Message Procedures

 An LSR Ru may send a Label Abort Request message to abort an
 outstanding Label Request message for a FEC sent to an LSR Rd in the
 following circumstances:

 1. Ru's next hop for the FEC has changed from LSR Rd to LSR X; or

 2. Ru is a non-merge, non-ingress LSR and has received a Label Abort
 Request for the FEC from an upstream peer Y.

Chen, et al. Expires October 9, 2016 [Page 77]

Internet-Draft LDP Specification April 2016

 3. Ru is a merge, non-ingress LSR and has received a Label Abort
 Request for the FEC from an upstream peer Y and Y is the only
 (last) upstream LSR requesting a label for the FEC.

 There may be other situations where an LSR may choose to abort an
 outstanding Label Request message in order to reclaim resource
 associated with the pending LSP. However, specification of general
 strategies for using the abort mechanism is beyond the scope of LDP.

 When an LSR receives a Label Abort Request message, if it has not
 previously responded to the Label Request being aborted with a Label
 Mapping message or some other Notification message, it MUST
 acknowledge the abort by responding with a Label Request Aborted
 Notification message. The Notification MUST include a Label Request
 Message ID TLV that carries the message ID of the aborted Label
 Request message.

 If an LSR receives a Label Abort Request Message after it has
 responded to the Label Request in question with a Label Mapping
 message or a Notification message, it ignores the abort request.

 If an LSR receives a Label Mapping message in response to a Label
 Request message after it has sent a Label Abort Request message to
 abort the Label Request, the label in the Label Mapping message is
 valid. The LSR may choose to use the label or to release it with a
 Label Release message.

 An LSR aborting a Label Request message may not reuse the Message ID
 for the Label Request message until it receives one of the following
 from its peer:

 - A Label Request Aborted Notification message acknowledging the
 abort;

 - A Label Mapping message in response to the Label Request message
 being aborted;

 - A Notification message in response to the Label Request message
 being aborted (e.g., Loop Detected, No Label Resources, etc.).

 To protect itself against tardy peers or faulty peer implementations
 an LSR may choose to time out receipt of the above. The timeout
 period should be relatively long (several minutes). If the timeout
 period elapses with no reply from the peer, the LSR may reuse the
 Message ID of the Label Request message; if it does so, it should
 also discard any record of the outstanding Label Request and Label
 Abort messages.

Chen, et al. Expires October 9, 2016 [Page 78]

Internet-Draft LDP Specification April 2016

 Note that the response to a Label Abort Request message is never
 "ordered". That is, the response does not depend on the downstream
 state of the LSP setup being aborted. An LSR receiving a Label Abort
 Request message MUST process it immediately, regardless of the
 downstream state of the LSP, responding with a Label Request Aborted
 Notification or ignoring it, as appropriate.

4.5.10. Label Withdraw Message

 An LSR sends a Label Withdraw Message to an LDP peer to signal the
 peer that the peer may not continue to use specific FEC-label
 mappings the LSR had previously advertised. This breaks the mapping
 between the FECs and the labels.

 The encoding for the Label Withdraw Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Withdraw (0x0402) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label TLV (optional) |
 +-+
 | Optional Parameters |
 +-+

 Figure 33: Label Withdraw Message

 Message ID
 32-bit value used to identify this message.

 FEC TLV
 Identifies the FEC for which the FEC-label mapping is being
 withdrawn.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

Chen, et al. Expires October 9, 2016 [Page 79]

Internet-Draft LDP Specification April 2016

 +--------------------+----------+-----------+
 | Optional Parameter | Length | Value |
 +--------------------+----------+-----------+
 | Label TLV | variable | See below |
 +--------------------+----------+-----------+

 Table 13: Label Withdraw Message: Optional Parameters

 The encoding for Label TLVs are found in Section 4.4.2 "Label TLVs"

 Label
 If present, specifies the label being withdrawn (see procedures
 below).

4.5.10.1. Label Withdraw Message Procedures

 An LSR transmits a Label Withdraw message under the following
 conditions:

 1. The LSR no longer recognizes a previously known FEC for which it
 has advertised a label.

 2. The LSR has decided unilaterally (e.g., via configuration) to no
 longer label switch a FEC (or FECs) with the label mapping being
 withdrawn.

 The FEC TLV specifies the FEC for which labels are to be withdrawn.
 If no Label TLV follows the FEC, all labels associated with the FEC
 are to be withdrawn; otherwise, only the label specified in the
 optional Label TLV is to be withdrawn.

 The FEC TLV may contain the Wildcard FEC Element; if so, it may
 contain no other FEC Elements. In this case, if the Label Withdraw
 message contains an optional Label TLV, then the label is to be
 withdrawn from all FECs to which it is bound. If there is not an
 optional Label TLV in the Label Withdraw message, then the sending
 LSR is withdrawing all label mappings previously advertised to the
 receiving LSR.

 An LSR that receives a Label Withdraw message MUST respond with a
 Label Release message.

 See Appendix A, "LDP Label Distribution Procedures", for more
 details.

Chen, et al. Expires October 9, 2016 [Page 80]

Internet-Draft LDP Specification April 2016

4.5.11. Label Release Message

 An LSR sends a Label Release message to an LDP peer to signal the
 peer that the LSR no longer needs specific FEC-label mappings
 previously requested of and/or advertised by the peer.

 The encoding for the Label Release Message is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| Label Release (0x0403) | Message Length |
 +-+
 | Message ID |
 +-+
 | FEC TLV |
 +-+
 | Label TLV (optional) |
 +-+
 | Optional Parameters |
 +-+

 Figure 34: Label Release Message

 Message ID
 32-bit value used to identify this message.

 FEC TLV
 Identifies the FEC for which the FEC-label mapping is being
 released.

 Optional Parameters
 This variable length field contains 0 or more parameters, each
 encoded as a TLV. The optional parameters are:

 +--------------------+----------+-----------+
 | Optional Parameter | Length | Value |
 +--------------------+----------+-----------+
 | Label TLV | variable | See below |
 +--------------------+----------+-----------+

 Table 14: Label Release Message: Optional Parameters

 The encodings for Label TLVs are found in Section 4.4.2.

 Label
 If present, the label being released (see procedures below).

Chen, et al. Expires October 9, 2016 [Page 81]

Internet-Draft LDP Specification April 2016

4.5.11.1. Label Release Message Procedures

 An LSR transmits a Label Release message to a peer when it no longer
 needs a label previously received from or requested of that peer.

 An LSR MUST transmit a Label Release message under any of the
 following conditions:

 1. The LSR that sent the label mapping is no longer the next hop for
 the mapped FEC, and the LSR is configured for conservative
 operation.

 2. The LSR receives a label mapping from an LSR that is not the next
 hop for the FEC, and the LSR is configured for conservative
 operation.

 3. The LSR receives a Label Withdraw message.

 Note that if an LSR is configured for "liberal mode", a release
 message will never be transmitted in the case of conditions (1) and
 (2) as specified above. In this case, the upstream LSR keeps each
 unused label, so that it can immediately be used later if the
 downstream peer becomes the next hop for the FEC.

 The FEC TLV specifies the FEC for which labels are to be released.
 If no Label TLV follows the FEC, all labels associated with the FEC
 are to be released; otherwise, only the label specified in the
 optional Label TLV is to be released.

 The FEC TLV may contain the Wildcard FEC Element; if so, it may
 contain no other FEC Elements. In this case, if the Label Release
 message contains an optional Label TLV, then the label is to be
 released for all FECs to which it is bound. If there is not an
 optional Label TLV in the Label Release message, then the sending LSR
 is releasing all label mappings previously learned from the receiving
 LSR.

 See Appendix A, "LDP Label Distribution Procedures", for more
 details.

4.6. Messages and TLVs for Extensibility

 Support for LDP extensibility includes the rules for the U- and F-
 bits that specify how an LSR handles unknown TLVs and messages.

 This section specifies TLVs and messages for vendor-private and
 experimental use.

Chen, et al. Expires October 9, 2016 [Page 82]

Internet-Draft LDP Specification April 2016

4.6.1. LDP Vendor-Private Extensions

 Vendor-private TLVs and messages are used to convey vendor-private
 information between LSRs.

4.6.1.1. LDP Vendor-Private TLVs

 The Type range 0x3E00 through 0x3EFF is reserved for vendor-private
 TLVs.

 The encoding for a vendor-private TLV is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U|F| Type (0x3E00-0x3EFF) | Length |
 +-+
 | Vendor ID |
 +-+
 | |
 | Data.... |
 ~ ~
 | |
 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 35: LDP Vendor-Private TLVs

 U-bit
 Unknown TLV bit. Upon receipt of an unknown TLV, if U is clear
 (=0), a notification MUST be returned to the message originator
 and the entire message MUST be ignored; if U is set (=1), the
 unknown TLV is silently ignored and the rest of the message is
 processed as if the unknown TLV did not exist.

 The determination as to whether a vendor-private message is
 understood is based on the Type and the mandatory Vendor ID field.

 Implementations that support vendor-private TLVs MUST support a
 user-accessible configuration interface that causes the U-bit to
 be set on all transmitted vendor-private TLVs; this requirement
 MAY be satisfied by a user-accessible configuration interface that
 prevents transmission of all vendor-private TLVs for which the U-
 bit is clear.

 F-bit

Chen, et al. Expires October 9, 2016 [Page 83]

Internet-Draft LDP Specification April 2016

 Forward unknown TLV bit. This bit only applies when the U-bit is
 set and the LDP message containing the unknown TLV is to be
 forwarded. If F is clear (=0), the unknown TLV is not forwarded
 with the containing message; if F is set (=1), the unknown TLV is
 forwarded with the containing message.

 Type
 Type value in the range 0x3E00 through 0x3EFF. Together, the Type
 and Vendor ID field specify how the Data field is to be
 interpreted.

 Length
 Specifies the cumulative length in octets of the Vendor ID and
 Data fields.

 Vendor ID
 802 Vendor ID as assigned by the IEEE.

 Data
 The remaining octets after the Vendor ID in the Value field are
 optional vendor-dependent data.

4.6.1.2. LDP Vendor-Private Messages

 The Message Type range 0x3E00 through 0x3EFF is reserved for Vendor-
 Private messages.

Chen, et al. Expires October 9, 2016 [Page 84]

Internet-Draft LDP Specification April 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |U| Msg Type (0x3E00-0x3EFF) | Message Length |
 +-+
 | Message ID |
 +-+
 | Vendor ID |
 +-+
 + +
 | Remaining Mandatory Parameters |
 + +
 | |
 +-+
 | |
 + +
 | Optional Parameters |
 + +
 | |
 +-+

 Figure 36: LDP Vendor-Private Messages

 U-bit
 Unknown message bit. Upon receipt of an unknown message, if U is
 clear (=0), a notification is returned to the message originator;
 if U is set (=1), the unknown message is silently ignored.

 The determination as to whether a Vendor-Private message is
 understood is based on the Msg Type and the Vendor ID parameter.

 Implementations that support Vendor-Private messages MUST support
 a user-accessible configuration interface that causes the U-bit to
 be set on all transmitted Vendor-Private messages; this
 requirement MAY be satisfied by a user-accessible configuration
 interface that prevents transmission of all Vendor-Private
 messages for which the U-bit is clear.

 Msg Type
 Message Type value in the range 0x3E00 through 0x3EFF. Together,
 the Msg Type and the Vendor ID specify how the message is to be
 interpreted.

 Message Length
 Specifies the cumulative length in octets of the Message ID,
 Vendor ID, Remaining Mandatory Parameters, and Optional
 Parameters.

Chen, et al. Expires October 9, 2016 [Page 85]

Internet-Draft LDP Specification April 2016

 Message ID
 32-bit integer used to identify this message. Used by the sending
 LSR to facilitate identifying Notification messages that may apply
 to this message. An LSR sending a Notification message in
 response to this message will include this Message ID in the
 notification message; see Section "Notification Message".

 Vendor ID
 802 Vendor ID as assigned by the IEEE.

 Remaining Mandatory Parameters
 Variable length set of remaining required message parameters.

 Optional Parameters
 Variable length set of optional message parameters.

4.6.2. LDP Experimental Extensions

 LDP support for experimentation is similar to support for vendor-
 private extensions with the following differences:

 - The Type range 0x3F00 through 0x3FFF is reserved for experimental
 TLVs.

 - The Message Type range 0x3F00 through 0x3FFF is reserved for
 experimental messages.

 - The encodings for experimental TLVs and messages are similar to
 the vendor-private encodings with the following difference.

 Experimental TLVs and messages use an Experiment ID field in place
 of a Vendor ID field. The Experiment ID field is used with the
 Type or Message Type field to specify the interpretation of the
 experimental TLV or Message.

 Administration of Experiment IDs is the responsibility of the
 experimenters.

4.7. Message Summary

 The following are the LDP messages defined in this version of the
 protocol.

Chen, et al. Expires October 9, 2016 [Page 86]

Internet-Draft LDP Specification April 2016

 +---------------+---------+---------+-------------------------------+
 | Message Name | Type | Section | Section Title |
 | | | Number | |
 +---------------+---------+---------+-------------------------------+
Notification	0x0001	4.5.1	Notification Message
Hello	0x0100	4.5.2	Hello Message
Initializatio	0x0200	4.5.3	Initialization Message
n			
KeepAlive	0x0201	4.5.4	KeepAlive Message
Address	0x0300	4.5.5	Address Message
Address	0x0301	4.5.6	Address Withdraw Message
Withdraw			
Label Mapping	0x0400	4.5.7	Label Mapping Message
Label Request	0x0401	4.5.8	Label Request Message
Label	0x0402	4.5.10	Label Withdraw Message
Withdraw			
Label Release	0x0403	4.5.11	Label Release Message
Label Abort	0x0404	4.5.9	Label Abort Request Message
Request			
Vendor-	0x3E00-	4.6.1	LDP Vendor-Private Extensions
Private	0x3EFF		
Experimental	0x3F00-	4.6.2	LDP Experimental Extensions
	0x3FFF		
 +---------------+---------+---------+-------------------------------+

 Table 15: Message Summary

4.8. TLV Summary

 The following are the TLVs defined in this version of the protocol.

Chen, et al. Expires October 9, 2016 [Page 87]

Internet-Draft LDP Specification April 2016

 +---------------+---------+---------+-------------------------------+
 | Message Name | Type | Section | Section Title |
 | | | Number | |
 +---------------+---------+---------+-------------------------------+
FEC	0x0100	4.4.1	FEC TLV
Address List	0x0101	4.4.3	Address List TLV
Hop Count	0x0103	4.4.4	Hop Count TLV
Path Vector	0x0104	4.4.5	Path Vector TLV
Generic Label	0x0200	4.4.2.1	Generic Label TLV
ATM Label	0x0201	4.4.2.2	ATM Label TLV
Frame Relay	0x0202	4.4.2.3	Frame Relay Label TLV
Status	0x0300	4.4.6	Status TLV
Extended	0x0301	4.5.1	Notification Message
Status			
Returned PDU	0x0302	4.5.1	Notification Message
Returned	0x0303	4.5.1	Notification Message
Message			
Common Hello	0x0400	4.5.2	Hello Message
Parameters			
IPv4	0x0401	4.5.2	Hello Message
Transport			
Address			
Configuration	0x0402	4.5.2	Hello Message
Sequence			
Number			
IPv6	0x0403	4.5.2	Hello Message
Transport			
Address			
Common	0x0500	4.5.3	Initialization Message
Session			
Parameters			
ATM Session	0x0501	4.5.3	Initialization Message
Parameters			
Frame Relay	0x0502	4.5.3	Initialization Message
Session			
Parameters			
Label Request	0x0600	4.5.7	Label Mapping Message
Message ID			
Vendor-	0x3E00-	4.6.1	LDP Vendor-Private Extensions
Private	0x3EFF		
Experimental	0x3F00-	4.6.2	LDP Experimental Extensions
	0x3FFF		
 +---------------+---------+---------+-------------------------------+

 Table 16: TLV Summary

Chen, et al. Expires October 9, 2016 [Page 88]

Internet-Draft LDP Specification April 2016

4.9. Status Code Summary

 The following are the Status Codes defined in this version of the
 protocol.

 The "E" column is the required setting of the Status Code E-bit; the
 "Status Data" column is the value of the 30-bit Status Data field in
 the Status Code TLV. Note that the setting of the Status Code F-bit
 is at the discretion of the LSR originating the Status TLV.

 +--------------------------------+---+------------+-----------------+
 | Status Code | E | Status | Section Number |
 | | | Data | |
 +--------------------------------+---+------------+-----------------+
Success	0	0x00000000	4.4.6
Bad LDP Identifier	1	0x00000001	4.5.1.2
Bad Protocol Version	1	0x00000002	4.5.1.2
Bad PDU Length	1	0x00000003	4.5.1.2
Unknown Message Type	0	0x00000004	4.5.1.2
Bad Message Length	1	0x00000005	4.5.1.2
Unknown TLV	0	0x00000006	4.5.1.2
Bad TLV Length	1	0x00000007	Section 4.5.1.2
Malformed TLV Value	1	0x00000008	4.5.1.2
Hold Timer Expired	1	0x00000009	4.5.1.2
Shutdown	1	0x0000000A	4.5.1.2
Loop Detected	0	0x0000000B	3.8
Unknown FEC	0	0x0000000C	4.4.1.1
No Route	0	0x0000000D	4.5.8
No Label Resources	0	0x0000000E	4.5.8
Label Resources / Available	0	0x0000000F	4.5.8
Session Rejected / No Hello	1	0x00000010	3.5.3
Session Rejected / Parameters	1	0x00000011	3.5.3
Advertisement Mode			
Session Rejected / Parameters	1	0x00000012	3.5.3
Max PDU Length			
Session Rejected / Parameters	1	0x00000013	Section 3.5.3
Label Range			
KeepAlive Timer Expired	1	0x00000014	3.5.3
Label Request Aborted	0	0x00000015	4.5.9
Missing Message Parameters	0	0x00000016	4.5.1.2
Unsupported Address Family	0	0x00000017	4.4.1.1
Session Rejected / Bad Keep	0	0x00000018	3.5.3
Alive Time			
Internal Error	0	0x00000019	4.5.1.2
 +--------------------------------+---+------------+-----------------+

 Table 17: Status Code Summary

Chen, et al. Expires October 9, 2016 [Page 89]

Internet-Draft LDP Specification April 2016

4.10. Well-Known Numbers

 prov text

4.10.1. UDP and TCP Ports

 The UDP port for LDP Hello messages is 646.

 The TCP port for establishing LDP session connections is 646.

4.10.2. Implicit NULL Label

 The Implicit NULL label is defined in RFC 3031 [RFC3031] as follows:

 "The Implicit NULL label is a label with special semantics which an
 LSR can bind to an address prefix. If LSR Ru, by consulting its ILM
 (Incoming Label Map) sees that labeled packet P must be forwarded
 next to Rd, but that Rd has distributed a binding of Implicit NULL to
 the corresponding address prefix, then instead of replacing the value
 of the label on top of the label stack, Ru pops the label stack, and
 then forwards the resulting packet to Rd."

 The implicit NULL label is represented in LDP as a Generic Label TLV
 with a Label field value of 3, as defined in RFC 3032 [RFC3032].

5. RFC 5036 IANA Considerations

 Note: In version -00 of this document does only minimal changes to
 the RFC 5036 IANA considerationns. The author believe that some
 further minor changes will be made eventually. The "IANA
 consideration" section (see Section 9) is included to capture
 anything new that relates to IANA, Before publication the two section
 will be merged.

 The LDP specification defines the following name spaces that are
 managed by IANA and found at [LDP_NAME_SPACE]:

 - Message Type Name Space, found at [MSG_TYPE_NAME_SPACE]
 - TLV Type Name Space, found at [TLV_TYPE_NAME_SPACE]
 - FEC Type Name Space, found at [FEC_TYPE_NAME_SPACE]
 - Status Code Name Space, found at [STATUS_CODE_NAME_SPACE]
 - Experiment ID Name Space, found at [EXP_ID_NAME_SPACE]

Section 5.1 "Message Type Name Space" to Section 5.5
 "Experiment ID Name Space" provide guidelines for managing these name
 spaces.

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc3032
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc5036

Chen, et al. Expires October 9, 2016 [Page 90]

Internet-Draft LDP Specification April 2016

 LDP Name Spaces have also been defined by other RFCs since the LDP
 Specification was first published and are managed by IANA as addition
 to the original LDP Name Space at [LDP_NAME_SPACE].

RFC 6388 [RFC6388] defined:

 LDP MP Opaque Value Element basic type, found at
 [MP_BASIC_OPAQUE]

 LDP MP Opaque Value Element extended type, found at
 [EXT_BASIC_OPAQUE]

 LDP MP Status Value Element type, found at [MP_STATUS_VALUE]

RFC 7361 [RFC7361]defined

 MAC Flush Flags, found at [MAC_FLUSH]

 The guidelines for how to manage the name spaces defined in other
 RFCs than RFC 5036 (or this document when it gets approved) is found
 in the RFCs that defined the name spaces.

5.1. Message Type Name Space

 LDP divides the name space for message types into three ranges. The
 following are the guidelines for managing these ranges:

 - Message Types 0x0000 - 0x3DFF. Message types in this range are
 part of the LDP base protocol. Following the policies outlined in

RFC 5226 [RFC5226] and RFC 2434 [RFC2434], Message types in this
 range are allocated through an IETF Consensus action.

 - Message Types 0x3E00 - 0x3EFF. Message types in this range are
 reserved for Vendor-Private extensions and are the responsibility
 of the individual vendors (see Section "LDP Vendor-Private
 Messages"). IANA management of this range of the Message Type
 Name Space is unnecessary.

 - Message Types 0x3F00 - 0x3FFF. Message types in this range are
 reserved for Experimental extensions and are the responsibility of
 the individual experimenters (see Sections "LDP Experimental
 Extensions" and "Experiment ID Name Space"). IANA management of
 this range of the Message Type Name Space is unnecessary; however,

https://datatracker.ietf.org/doc/html/rfc6388
https://datatracker.ietf.org/doc/html/rfc6388
https://datatracker.ietf.org/doc/html/rfc7361
https://datatracker.ietf.org/doc/html/rfc7361
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Chen, et al. Expires October 9, 2016 [Page 91]

Internet-Draft LDP Specification April 2016

 IANA is responsible for managing part of the Experiment ID Name
 Space (see below).

5.2. TLV Type Name Space

 LDP divides the name space for TLV types into three ranges. The
 following are the guidelines for managing these ranges:

 - TLV Types 0x0000 - 0x3DFF. TLV types in this range are part of
 the LDP base protocol. Following the policies outlined in RFC

5226 [RFC5226] and RFC 2434 [RFC2434], TLV types in this range are
 allocated through an IETF Consensus action.

 - TLV Types 0x3E00 - 0x3EFF. TLV types in this range are reserved
 for Vendor-Private extensions and are the responsibility of the
 individual vendors (see Section "LDP Vendor-Private TLVs"). IANA
 management of this range of the TLV Type Name Space is
 unnecessary.

 - TLV Types 0x3F00 - 0x3FFF. TLV types in this range are reserved
 for Experimental extensions and are the responsibility of the
 individual experimenters (see Sections "LDP Experimental
 Extensions" and "Experiment ID Name Space"). IANA management of
 this range of the TLV Name Space is unnecessary; however, IANA is
 responsible for managing part of the Experiment ID Name Space (see
 below).

5.3. FEC Type Name Space

 The range for FEC types is 0 - 255.

 Following the policies outlined in RFC 5226 [RFC5226] and RFC 2434
 [RFC2434], FEC types in the range 0 - 127 are allocated through an
 IETF Consensus action, types in the range 128 - 191 are allocated as
 First Come First Served, and types in the range 192 - 255 are
 reserved for Private Use.

5.4. Status Code Name Space

 The range for Status Codes is 0x00000000 - 0x3FFFFFFF.

 Following the policies outlined in RFC 5226 [RFC5226] and RFC 2434
 [RFC2434], Status Codes in the range 0x00000000 - 0x1FFFFFFF are
 allocated through an IETF Consensus action, codes in the range
 0x20000000 - 0x3EFFFFFF are allocated as First Come First Served, and
 codes in the range 0x3F000000 - 0x3FFFFFFF are reserved for Private
 Use.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Chen, et al. Expires October 9, 2016 [Page 92]

Internet-Draft LDP Specification April 2016

5.5. Experiment ID Name Space

 The range for Experiment IDs is 0x00000000 - 0xffffffff.

 Following the policies outlined in RFC 5226 [RFC5226] and RFC 2434
 [RFC2434], Experiment IDs in the range 0x00000000 - 0xefffffff are
 allocated as First Come First Served and Experiment IDs in the range
 0xf0000000 - 0xffffffff are reserved for Private Use.

6. Security Considerations

 Editors Note: This is still working in progress.

 This section identifies threats to which LDP may be vulnerable and
 discusses means by which those threats might be mitigated.

6.1. Spoofing

 There are two types of LDP communication that could be the target of
 a spoofing attack.

 1. Discovery exchanges carried by UDP

 LSRs indicate their willingness to establish and maintain LDP
 sessions by periodically sending Hello messages. Receipt of a
 Hello serves to create a new "Hello adjacency", if one does not
 already exist, or to refresh an existing one. Spoofing a Hello
 packet for an existing adjacency can cause the adjacency to time
 out and that can result in termination of the associated session.
 This can occur when the spoofed Hello specifies a small Hold
 Time, causing the receiver to expect Hellos within this interval,
 while the true neighbor continues sending Hellos at the lower,
 previously agreed to, frequency.

 LSRs directly connected at the link level exchange Basic Hello
 messages over the link. The threat of spoofed Basic Hellos can
 be reduced by:

 o Accepting Basic Hellos only on interfaces to which LSRs that
 can be trusted are directly connected.

 o Ignoring Basic Hellos not addressed to the All Routers on this
 Subnet multicast group.

 LSRs not directly connected at the link level may use Extended
 Hello messages to indicate willingness to establish an LDP
 session. An LSR can reduce the threat of spoofed Extended Hellos

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434

Chen, et al. Expires October 9, 2016 [Page 93]

Internet-Draft LDP Specification April 2016

 by filtering them and accepting only those originating at sources
 permitted by an access list.

 2. LSRs not directly connected at the link level may use Extended
 Hello messages to indicate willingness to establish an LDP
 session. An LSR can reduce the threat of spoofed Extended Hellos
 by filtering them and accepting only those originating at sources
 permitted by an access list.

 3. Session communication carried by TCP

 LDP specifies use of the TCP MD5 Signature Option to provide for
 the authenticity and integrity of session messages.

RFC 2385 [RFC2385] asserts that MD5 authentication is now
 considered by some to be too weak for this application. It also
 points out that a similar TCP option with a stronger hashing
 algorithm (it cites SHA-1 as an example) could be deployed. To
 our knowledge, no such TCP option has been defined and deployed.
 However, we note that LDP can use whatever TCP message digest
 techniques are available, and when one stronger than MD5 is
 specified and implemented, upgrading LDP to use it would be
 relatively straightforward.

6.2. Privacy

 LDP provides no mechanism for protecting the privacy of label
 distribution.

 The security requirements of label distribution protocols are
 essentially identical to those of the protocols that distribute
 routing information. By providing a mechanism to ensure the
 authenticity and integrity of its messages, LDP provides a level of
 security that is at least as good as, though no better than, that
 which can be provided by the routing protocols themselves. The more
 general issue of whether privacy should be required for routing
 protocols is beyond the scope of this document.

 One might argue that label distribution requires privacy to address
 the threat of label spoofing. However, that privacy would not
 protect against label spoofing attacks since data packets carry
 labels in the clear. Furthermore, label spoofing attacks can be made
 without knowledge of the FEC bound to a label.

 To avoid label spoofing attacks, it is necessary to ensure that
 labeled data packets are labeled by trusted LSRs and that the labels
 placed on the packets are properly learned by the labeling LSRs.

https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2385

Chen, et al. Expires October 9, 2016 [Page 94]

Internet-Draft LDP Specification April 2016

6.3. Denial of Service

 LDP provides two potential targets for Denial of Service (DoS)
 attacks:

 1. Well-known UDP Port for LDP Discovery

 An LSR administrator can address the threat of DoS attacks via
 Basic Hellos by ensuring that the LSR is directly connected only
 to peers that can be trusted to not initiate such an attack.
 Interfaces to peers interior to the administrator's domain should
 not represent a threat since interior peers are under the
 administrator's control. Interfaces to peers exterior to the
 domain represent a potential threat since exterior peers are not.
 An administrator can reduce that threat by connecting the LSR
 only to exterior peers that can be trusted to not initiate a
 Basic Hello attack.

 DoS attacks via Extended Hellos are potentially a more serious
 threat. This threat can be addressed by filtering Extended
 Hellos using access lists that define addresses with which
 Extended Discovery is permitted. However, performing the
 filtering requires LSR resource.

 In an environment where a trusted MPLS cloud can be identified,
 LSRs at the edge of the cloud can be used to protect interior
 LSRs against DoS attacks via Extended Hellos by filtering out
 Extended Hellos originating outside of the trusted MPLS cloud,
 accepting only those originating at addresses permitted by access
 lists. This filtering protects LSRs in the interior of the cloud
 but consumes resources at the edges.

 2. Well-known TCP port for LDP Session Establishment

 Like other control plane protocols that use TCP, LDP may be the
 target of DoS attacks, such as SYN attacks. LDP is no more or
 less vulnerable to such attacks than other control plane
 protocols that use TCP.

 The threat of such attacks can be mitigated somewhat by the
 following:

 o An LSR SHOULD avoid promiscuous TCP listens for LDP session
 establishment. It SHOULD use only listens that are specific
 to discovered peers. This enables it to drop attack packets
 early in their processing since they are less likely to match
 existing or in-progress connections.

Chen, et al. Expires October 9, 2016 [Page 95]

Internet-Draft LDP Specification April 2016

 o The use of the MD5 option helps somewhat since it prevents a
 SYN from being accepted unless the MD5 segment checksum is
 valid. However, the receiver must compute the checksum before
 it can decide to discard an otherwise acceptable SYN segment.

 o The use of access list mechanisms applied at the boundary of
 the MPLS cloud in a manner similar to that suggested above for
 Extended Hellos can protect the interior against attacks
 originating from outside the cloud.

7. Areas for Future Study

 The following topics not addressed in this version of LDP are
 possible areas for future study:

 Note: in the -00 version of this document this section has not been
 changed from RFC 5036. It will need to be reviewed and uodated.

 - Section 2.16 of the MPLS architecture RFC 3031 [RFC3031] requires
 that the initial label distribution protocol negotiation between
 peer LSRs enable each LSR to determine whether its peer is capable
 of popping the label stack. This version of LDP assumes that LSRs
 support label popping for all link types except ATM and Frame
 Relay. A future version may specify means to make this
 determination part of the session initiation negotiation.

 - LDP support for CoS (Class of Service) is not specified in this
 version. CoS support may be addressed in a future version.

 - LDP support for multicast is not specified in this version.
 Multicast support may be addressed in a future version.

 - LDP support for multipath label switching is not specified in this
 version. Multipath support may be addressed in a future version.

 - LDP support for signaling the maximum transmission unit is not
 specified in this version. It is discussed in the experimental
 document RFC 3988 [RFC3988].

 - The current specification does not address basic peer discovery on
 Non-Broadcast Multi-Access (NBMA) media. The solution available
 in the current specification is to use extended peer discovery in
 such setups. The issue of defining a mechanism semantically
 similar to Basic Discovery (1 hop limit, bind the hello adjacency
 to an interface) that uses preconfigured neighbor addresses is
 left for further study.

https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3988
https://datatracker.ietf.org/doc/html/rfc3988

Chen, et al. Expires October 9, 2016 [Page 96]

Internet-Draft LDP Specification April 2016

 - The current specification does not support shutting down an
 adjacency. The motivation for doing it and the mechanisms for
 achieving it are left for further study.

 - The current specification does not include a method for securing
 Hello messages, to detect spoofing of Hellos. The scenarios where
 this is necessary, as well as the mechanism for achieving it are
 left for future study.

 - The current specification does not have the ability to detect a
 stateless fast control plane restart. The method for achieving
 this, possibly through an "incarnation/instance" number carried in
 the Hello message, is left for future study.

 - The current specification does not support an "end of LIB"
 message, analogous to BGP's "end of RIB" message that an LDP LSR
 (operating in DU mode) would use following session establishment.
 The discussion on the need for such a mechanism and its
 implementation is left for future study.

 - The current specification does not deal with situations where
 different LSRs advertise the same address. Such situations
 typically occur as the result of configuration errors, and the
 goal in this case is to provide the LSRs advertising the same
 address with enough information to enable operators to take
 corrective action. The specification of this mechanism is left
 for a separate document.

8. Changes from RFC 5036

 Here is a list of changes from RFC 5036

 1. Some editorial changes has been made, e.g. internal references is
 more frequently used, some implicit lists has been replaced by
 tables, e.g. for Optional Parameters carried in LDP messages.

 2. The refrence to CR-LDP has been removed.

 3. References to the LDP registries create outside the LDP
 Specification has been added.

9. IANA Considerations

 There are no requests for IANA actions in this document.

 Note to the RFC Editor - this section can be removed before
 publication.

https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc5036

Chen, et al. Expires October 9, 2016 [Page 97]

Internet-Draft LDP Specification April 2016

10. References

10.1. Normative References

 [ASSIGNED_AF]
 "IANA Assigned Address Families",
 <http://www.iana.org/assignments/address-family-numbers>.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 DOI 10.17487/RFC1321, April 1992,
 <http://www.rfc-editor.org/info/rfc1321>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
 DOI 10.17487/RFC2328, April 1998,
 <http://www.rfc-editor.org/info/rfc2328>.

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, DOI 10.17487/RFC2385, August
 1998, <http://www.rfc-editor.org/info/rfc2385>.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434,
 DOI 10.17487/RFC2434, October 1998,
 <http://www.rfc-editor.org/info/rfc2434>.

 [RFC2702] Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
 McManus, "Requirements for Traffic Engineering Over MPLS",

RFC 2702, DOI 10.17487/RFC2702, September 1999,
 <http://www.rfc-editor.org/info/rfc2702>.

 [RFC3031] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
 Label Switching Architecture", RFC 3031,
 DOI 10.17487/RFC3031, January 2001,
 <http://www.rfc-editor.org/info/rfc3031>.

 [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
 Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
 <http://www.rfc-editor.org/info/rfc3032>.

http://www.iana.org/assignments/address-family-numbers
https://datatracker.ietf.org/doc/html/rfc1321
http://www.rfc-editor.org/info/rfc1321
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2328
http://www.rfc-editor.org/info/rfc2328
https://datatracker.ietf.org/doc/html/rfc2385
http://www.rfc-editor.org/info/rfc2385
https://datatracker.ietf.org/doc/html/rfc2434
http://www.rfc-editor.org/info/rfc2434
https://datatracker.ietf.org/doc/html/rfc2702
http://www.rfc-editor.org/info/rfc2702
https://datatracker.ietf.org/doc/html/rfc3031
http://www.rfc-editor.org/info/rfc3031
https://datatracker.ietf.org/doc/html/rfc3032
http://www.rfc-editor.org/info/rfc3032

Chen, et al. Expires October 9, 2016 [Page 98]

Internet-Draft LDP Specification April 2016

 [RFC3034] Conta, A., Doolan, P., and A. Malis, "Use of Label
 Switching on Frame Relay Networks Specification",

RFC 3034, DOI 10.17487/RFC3034, January 2001,
 <http://www.rfc-editor.org/info/rfc3034>.

 [RFC3035] Davie, B., Lawrence, J., McCloghrie, K., Rosen, E.,
 Swallow, G., Rekhter, Y., and P. Doolan, "MPLS using LDP
 and ATM VC Switching", RFC 3035, DOI 10.17487/RFC3035,
 January 2001, <http://www.rfc-editor.org/info/rfc3035>.

 [RFC3037] Thomas, B. and E. Gray, "LDP Applicability", RFC 3037,
 DOI 10.17487/RFC3037, January 2001,
 <http://www.rfc-editor.org/info/rfc3037>.

 [RFC3988] Black, B. and K. Kompella, "Maximum Transmission Unit
 Signalling Extensions for the Label Distribution
 Protocol", RFC 3988, DOI 10.17487/RFC3988, January 2005,
 <http://www.rfc-editor.org/info/rfc3988>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <http://www.rfc-editor.org/info/rfc5226>.

 [RFC5860] Vigoureux, M., Ed., Ward, D., Ed., and M. Betts, Ed.,
 "Requirements for Operations, Administration, and
 Maintenance (OAM) in MPLS Transport Networks", RFC 5860,
 DOI 10.17487/RFC5860, May 2010,
 <http://www.rfc-editor.org/info/rfc5860>.

 [RFC5921] Bocci, M., Ed., Bryant, S., Ed., Frost, D., Ed., Levrau,
 L., and L. Berger, "A Framework for MPLS in Transport
 Networks", RFC 5921, DOI 10.17487/RFC5921, July 2010,
 <http://www.rfc-editor.org/info/rfc5921>.

 [RFC6371] Busi, I., Ed. and D. Allan, Ed., "Operations,
 Administration, and Maintenance Framework for MPLS-Based
 Transport Networks", RFC 6371, DOI 10.17487/RFC6371,
 September 2011, <http://www.rfc-editor.org/info/rfc6371>.

 [RFC6372] Sprecher, N., Ed. and A. Farrel, Ed., "MPLS Transport
 Profile (MPLS-TP) Survivability Framework", RFC 6372,
 DOI 10.17487/RFC6372, September 2011,
 <http://www.rfc-editor.org/info/rfc6372>.

https://datatracker.ietf.org/doc/html/rfc3034
http://www.rfc-editor.org/info/rfc3034
https://datatracker.ietf.org/doc/html/rfc3035
http://www.rfc-editor.org/info/rfc3035
https://datatracker.ietf.org/doc/html/rfc3037
http://www.rfc-editor.org/info/rfc3037
https://datatracker.ietf.org/doc/html/rfc3988
http://www.rfc-editor.org/info/rfc3988
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
http://www.rfc-editor.org/info/rfc5226
https://datatracker.ietf.org/doc/html/rfc5860
http://www.rfc-editor.org/info/rfc5860
https://datatracker.ietf.org/doc/html/rfc5921
http://www.rfc-editor.org/info/rfc5921
https://datatracker.ietf.org/doc/html/rfc6371
http://www.rfc-editor.org/info/rfc6371
https://datatracker.ietf.org/doc/html/rfc6372
http://www.rfc-editor.org/info/rfc6372

Chen, et al. Expires October 9, 2016 [Page 99]

Internet-Draft LDP Specification April 2016

10.2. Informative References

 [EXP_ID_NAME_SPACE]
 "Experiment ID Name Space",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml#ldp-namespaces-10>.

 [EXT_BASIC_OPAQUE]
 "LDP MP Opaque Value Element extended type",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml#ldp-namespaces-13>.

 [FEC_TYPE_NAME_SPACE]
 "Forwarding Equivalence Class (FEC) Type Name Space",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml#fec-type>.

 [LDP_NAME_SPACE]
 "Label Distribution Protocol (LDP) Parameters",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml>.

 [MAC_FLUSH]
 "MAC Flush Flags", <http://www.iana.org/assignments/ldp-

namespaces/ldp-namespaces.xhtml#mac-flush-flags>.

 [MP_BASIC_OPAQUE]
 "LDP MP Opaque Value Element basic type",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml#ldp-namespaces-11>.

 [MP_STATUS_VALUE]
 "LDP MP Opaque Value Element extended type",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml#ldp-namespaces-14>.

 [MSG_TYPE_NAME_SPACE]
 "Message Type Name Space",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml#ldp-namespaces-2>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
 Border Gateway Protocol 4 (BGP-4)", RFC 4271,
 DOI 10.17487/RFC4271, January 2006,
 <http://www.rfc-editor.org/info/rfc4271>.

http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-10
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-10
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-13
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-13
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#fec-type
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#fec-type
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#mac-flush-flags
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#mac-flush-flags
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-11
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-11
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-14
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-14
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-2
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-2
https://datatracker.ietf.org/doc/html/rfc4271
http://www.rfc-editor.org/info/rfc4271

Chen, et al. Expires October 9, 2016 [Page 100]

Internet-Draft LDP Specification April 2016

 [RFC4278] Bellovin, S. and A. Zinin, "Standards Maturity Variance
 Regarding the TCP MD5 Signature Option (RFC 2385) and the
 BGP-4 Specification", RFC 4278, DOI 10.17487/RFC4278,
 January 2006, <http://www.rfc-editor.org/info/rfc4278>.

 [RFC6388] Wijnands, IJ., Ed., Minei, I., Ed., Kompella, K., and B.
 Thomas, "Label Distribution Protocol Extensions for Point-
 to-Multipoint and Multipoint-to-Multipoint Label Switched
 Paths", RFC 6388, DOI 10.17487/RFC6388, November 2011,
 <http://www.rfc-editor.org/info/rfc6388>.

 [RFC7361] Dutta, P., Balus, F., Stokes, O., Calvignac, G., and D.
 Fedyk, "LDP Extensions for Optimized MAC Address
 Withdrawal in a Hierarchical Virtual Private LAN Service
 (H-VPLS)", RFC 7361, DOI 10.17487/RFC7361, September 2014,
 <http://www.rfc-editor.org/info/rfc7361>.

 [STATUS_CODE_NAME_SPACE]
 "Status Code Name Space",
 <http://www.iana.org/assignments/ldp-namespaces/

ldp-namespaces.xhtml#status-codes>.

 [TLV_TYPE_NAME_SPACE]
 "TLV Type Name Space", <http://www.iana.org/assignments/

ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-4>.

Appendix A. LDP Label Distribution Procedures

 This section specifies label distribution behavior in terms of LSR
 response to the following events:

 - Receive Label Request Message;
 - Receive Label Mapping Message;
 - Receive Label Abort Request Message;
 - Receive Label Release Message;
 - Receive Label Withdraw Message;
 - Recognize new FEC;
 - Detect change in FEC next hop;
 - Receive Notification Message / Label Request Aborted;
 - Receive Notification Message / No Label Resources;
 - Receive Notification Message / No Route;
 - Receive Notification Message / Loop Detected;
 - Receive Notification Message / Label Resources Available;
 - Detect local label resources have become available;
 - LSR decides to no longer label switch a FEC;
 - Timeout of deferred label request.

https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc4278
http://www.rfc-editor.org/info/rfc4278
https://datatracker.ietf.org/doc/html/rfc6388
http://www.rfc-editor.org/info/rfc6388
https://datatracker.ietf.org/doc/html/rfc7361
http://www.rfc-editor.org/info/rfc7361
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#status-codes
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#status-codes
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-4
http://www.iana.org/assignments/ldp-namespaces/ldp-namespaces.xhtml#ldp-namespaces-4

Chen, et al. Expires October 9, 2016 [Page 101]

Internet-Draft LDP Specification April 2016

 The specification of LSR behavior in response to an event has three
 parts:

 1. Summary. Prose that describes LSR response to the event in
 overview.

 2. Context. A list of elements referred to by the Algorithm part of
 the specification. (See 3.)

 3. Algorithm. An algorithm for LSR response to the event.

 The summary may omit details of the LSR response, such as bookkeeping
 action or behavior dependent on the LSR label advertisement mode,
 control mode, or label retention mode in use. The intent is that the
 Algorithm fully and unambiguously specify the LSR response.

 The algorithms in this section use procedures defined in the MPLS
 architecture specification RFC 3031 [RFC3031] for hop-by-hop routed
 traffic. These procedures are:

 - Label Distribution procedure, which is performed by a downstream
 LSR to determine when to distribute a label for a FEC to LDP
 peers. The architecture defines four Label Distribution
 procedures:

 o Downstream Unsolicited Independent Control, called
 PushUnconditional in RFC 3031 [RFC3031].

 o Downstream Unsolicited Ordered Control, called PushConditional
 in RFC 3031 [RFC3031].

 o Downstream On Demand Independent Control, called
 PulledUnconditional in RFC 3031 [RFC3031].

 o Downstream On Demand Ordered Control, called PulledConditional
 in RFC 3031 [RFC3031].

 - Label Withdrawal procedure, which is performed by a downstream LSR
 to determine when to withdraw a FEC label mapping previously
 distributed to LDP peers. The architecture defines a single Label
 Withdrawal procedure. Whenever an LSR breaks the binding between
 a label and a FEC, it MUST withdraw the FEC label mapping from all
 LDP peers to which it has previously sent the mapping.

 - Label Request procedure, which is performed by an upstream LSR to
 determine when to explicitly request that a downstream LSR bind a
 label to a FEC and send it the corresponding label mapping. The
 architecture defines three Label Request procedures:

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031

Chen, et al. Expires October 9, 2016 [Page 102]

Internet-Draft LDP Specification April 2016

 o Request Never. The LSR never requests a label.

 o Request When Needed. The LSR requests a label whenever it
 needs one.

 o Request On Request. This procedure is used by non-label
 merging LSRs. The LSR requests a label when it receives a
 request for one, in addition to whenever it needs one.

 - Label Release procedure, which is performed by an upstream LSR to
 determine when to release a previously received label mapping for
 a FEC. The architecture defines two Label Release procedures:

 o Conservative Label retention, called ReleaseOnChange in RFC
3031 [RFC3031].

 o Liberal Label retention, called NoReleaseOnChange in RFC 3031
 [RFC3031].

 - Label Use procedure, which is performed by an LSR to determine
 when to start using a FEC label for forwarding/switching. The
 architecture defines three Label Use procedures:

 o Use Immediate. The LSR immediately uses a label received from
 a FEC next hop for forwarding/switching.

 o Use If Loop Free. The LSR uses a FEC label received from a FEC
 next hop for forwarding/switching only if it has determined
 that by doing so it will not cause a forwarding loop.

 o Use If Loop Not Detected. This procedure is the same as Use
 Immediate unless the LSR has detected a loop in the FEC LSP.
 Use of the FEC label for forwarding/switching will continue
 until the next hop for the FEC changes or the loop is no longer
 detected.

 This version of LDP does not include a loop prevention mechanism;
 therefore, the procedures below do not make use of the Use If Loop
 Free procedure.

 - Label No Route procedure (called the NotAvailable procedure in RFC
3031 [RFC3031]), which is performed by an upstream LSR to

 determine how to respond to a No Route notification from a
 downstream LSR in response to a request for a FEC label mapping.
 The architecture specification defines two Label No Route
 procedures:

https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031
https://datatracker.ietf.org/doc/html/rfc3031

Chen, et al. Expires October 9, 2016 [Page 103]

Internet-Draft LDP Specification April 2016

 o Request Retry. The LSR should issue the label request at a
 later time.

 o No Request Retry. The LSR should assume that the downstream
 LSR will provide a label mapping when the downstream LSR has a
 next hop, and it should not reissue the request.

A.1. Handling Label Distribution Events

 This section defines LDP label distribution procedures by specifying
 an algorithm for each label distribution event. The requirement on
 an LDP implementation is that its event handling must have the effect
 specified by the algorithms. That is, an implementation need not
 follow exactly the steps specified by the algorithms as long as the
 effect is identical.

 The algorithms for handling label distribution events share common
 actions. The specifications below package these common actions into
 procedure units. Specifications for these common procedures are in
 their own Section, "Common Label Distribution Procedures", which
 follows this.

 An implementation would use data structures to store information
 about protocol activity. This appendix specifies the information to
 be stored in sufficient detail to describe the algorithms, and
 assumes the ability to retrieve the information as needed. It does
 not specify the details of the data structures.

A.1.1. Receive Label Request

 Summary:

 The response by an LSR to receipt of a FEC label request from an
 LDP peer may involve one or more of the following actions:

 - Transmission of a notification message to the requesting LSR
 indicating why a label mapping for the FEC cannot be provided;

 - Transmission of a FEC label mapping to the requesting LSR;

 - Transmission of a FEC label request to the FEC next hop;

 - Installation of labels for forwarding/switching use by the LSR.

 Context:

Chen, et al. Expires October 9, 2016 [Page 104]

Internet-Draft LDP Specification April 2016

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

 - FEC. The FEC specified in the message.

 - RAttributes. Attributes received with the message, e.g., Hop
 Count, Path Vector.

 - SAttributes. Attributes to be included in the Label Request
 message, if any, propagated to FEC Next Hop.

 - StoredHopCount. The hop count, if any, previously recorded for
 the FEC.

 Algorithm:

 LRq.1: Execute procedure Check_Received_Attributes (MsgSource,
 LabelRequest, RAttributes).
 If Loop Detected, goto LRq.4.

 LRq.2: Is there a Next Hop for FEC?
 If not, goto LRq.5.

 LRq.3: Is MsgSource the Next Hop?
 If not, goto LRq.6.

 LRq.4: Execute procedure Send_Notification (MsgSource, Loop
 Detected).
 Goto LRq.13

 LRq.5: Execute procedure Send_Notification (MsgSource, No Route).
 Goto LRq.13.

 LRq.6: Has LSR previously received a label request for FEC from
 MsgSource?
 If not, goto LRq.8. (See Note 1.)

 LRq.7: Is the label request a duplicate request?
 If so, goto LRq.13. (See Note 2.)

 LRq.8: Record label request for FEC received from MsgSource and
 mark it pending.

 LRq.9: Perform LSR Label Distribution procedure:

Chen, et al. Expires October 9, 2016 [Page 105]

Internet-Draft LDP Specification April 2016

 For Downstream Unsolicited Independent Control OR For
 Downstream On Demand Independent Control

 1. Has LSR previously received and retained a label
 mapping for FEC from Next Hop?
 Is so, set Propagating to IsPropagating.
 If not, set Propagating to NotPropagating.

 2. Execute procedure
 Is so, set Propagating to IsPropagating.
 If not, set Propagating to NotPropagating.

 3. Execute procedure Send_Label (MsgSource, FEC,
 SAttributes).

 4. Is LSR egress for FEC? OR Has LSR previously
 received and retained a label mapping for FEC from
 Next Hop?
 Is so, goto LRq.11.
 If not, goto LRq.10.

 For Downstream Unsolicited Ordered Control OR For
 Downstream On Demand Ordered Control

 1. Is LSR egress for FEC? OR Has LSR previously
 received and retained a label mapping for FEC from
 Next Hop?
 (See Note 3.)
 If not, goto LRq.10.

 2. Execute procedure
 Prepare_Label_Mapping_Attributes(MsgSource, FEC,
 RAttributes, SAttributes, IsPropagating,
 StoredHopCount)

 3. Execute procedure Send_Label (MsgSource, FEC,
 SAttributes).
 Goto LRq.11.

 LRq.10: Perform LSR Label Request procedure:

 For Request Never

 1. Goto LRq.13.

 For Request When Needed OR
 For Request On Request

Chen, et al. Expires October 9, 2016 [Page 106]

Internet-Draft LDP Specification April 2016

 1. Execute procedure Prepare_Label_Request_Attributes
 (Next Hop, FEC, RAttributes, SAttributes);

 2. Execute procedure Send_Label_Request (Next Hop, FEC,
 SAttributes).
 Goto LRq.13.

 LRq.11: Has LSR successfully sent a label for FEC to MsgSource?
 If not, goto LRq.13. (See Note 4.)

 LRq.12: Perform LSR Label Use procedure.

 For Use Immediate OR For Use If Loop Not Detected

 1. Install label sent to MsgSource and label from Next
 Hop (if LSR is not egress) for forwarding/switching use.

 LRq.13: DONE.

 Notes:

 1. In the case where MsgSource is a non-label merging LSR, it will
 send a label request for each upstream LDP peer that has
 requested a label for FEC from it. The LSR must be able to
 distinguish such requests from a non-label merging MsgSource from
 duplicate label requests.

 The LSR uses the message ID of received Label Request messages to
 detect duplicate requests. This means that an LSR (the upstream
 peer) may not reuse the message ID used for a Label Request until
 the Label Request transaction has completed.

 2. When an LSR sends a label request to a peer, it records that the
 request has been sent and marks it as outstanding. As long as
 the request is marked outstanding, the LSR SHOULD NOT send
 another request for the same label to the peer. Such a second
 request would be a duplicate. The Send_Label_Request procedure
 described below obeys this rule.

 A duplicate label request is considered a protocol error and
 SHOULD be dropped by the receiving LSR (perhaps with a suitable
 notification returned to MsgSource).

 3. If the LSR is not merge-capable, this test will fail.

 4. The Send_Label procedure may fail due to lack of label resources,
 in which case the LSR SHOULD NOT perform the Label Use procedure.

Chen, et al. Expires October 9, 2016 [Page 107]

Internet-Draft LDP Specification April 2016

A.1.2. Receive Label Mapping

 Summary:

 The response by an LSR to receipt of a FEC label mapping from an LDP
 peer may involve one or more of the following actions:

 - Transmission of a Label Release message for the FEC label to the
 LDP peer;

 - Transmission of Label Mapping messages for the FEC to one or more
 LDP peers;

 - Installation of the newly learned label for forwarding/switching
 use by the LSR.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

 - FEC. The FEC specified in the message.

 - Label. The label specified in the message.

 - PrevAdvLabel. The label for the FEC, if any, previously
 advertised to an upstream peer. Assuming no label was previously
 advertised, this is the same label as the one in the Label Mapping
 message being processed.

 - StoredHopCount. The hop count previously recorded for the FEC.

 - RAttributes. Attributes received with the message, e.g., Hop
 Count, Path Vector.

 - SAttributes to be included in the Label Mapping message, if any,
 propagated to upstream peers.

 Algorithm:

 LMp.1: Does the received label mapping match an outstanding label
 request for FEC previously sent to MsgSource?

 If not,goto LMp.3.

 LMp.2: Delete record of outstanding FEC label request.

Chen, et al. Expires October 9, 2016 [Page 108]

Internet-Draft LDP Specification April 2016

 LMp.3: Execute procedure Check_Received_Attributes (MsgSource,
 LabelMapping, RAttributes).

 If No Loop Detected, goto LMp.9.

 LMp.4: Does the LSR have a previously received label mapping for
 FEC from MsgSource? (See Note 1.)

 If not, goto LMp.8. (See Note 2.)

 LMp.5: Does the label previously received from MsgSource match
 Label (i.e., the label received in the message)? (See Note
 3.)

 If not, goto LMp.8. (See Note 4.)

 LMp.6: Delete matching label mapping for FEC previously received
 from MsgSource.

 LMp.7: Remove Label from forwarding/switching use. (See Note 5.)

 LMp.8: Execute procedure Send_Message (MsgSource, Label Release,
 FEC, Label, Loop Detected Status code).

 Goto LMp.33.

 LMp.9: Does LSR have a previously received label mapping for FEC
 from MsgSource for the LSP in question? (See Note 6.)

 If not, goto LMp.11.

 LMp.10: Does the label previously received from MsgSource match
 Label (i.e., the label received in the message)? (See Note
 3.)
 OR
 Is the received label mapping in response to a previously
 outstanding label request sent to MsgSource? (See Note12.)

 If so, goto LMp.11.

 LMp.10a: Is LSR operating in Downstream Unsolicited mode? If so,
 delete the label mapping for the label previously received
 from MsgSource and remove it from forwarding/switching use.
 Execute procedure Send_Message (MsgSource, Label Release,
 FEC, label previously received from MsgSource).

 LMp.11: Determine the Next Hop for FEC.

Chen, et al. Expires October 9, 2016 [Page 109]

Internet-Draft LDP Specification April 2016

 LMp.12: Is MsgSource the Next Hop for FEC?

 If so, goto LMp.14.

 LMp.13: Perform LSR Label Release procedure:

 For Conservative Label retention:

 1. Goto LMp.32.

 For Liberal Label retention:

 1. Record label mapping for FEC with Label and
 RAttributes has been received from MsgSource.
 Goto LMp.33.

 LMp.14: Is LSR an ingress for FEC?
 If not, goto LMp.16.

 LMp.15: Install Label for forwarding/switching use.

 LMp.16: Record label mapping for FEC with Label and RAttributes has
 been received from MsgSource.

 LMp.17: Iterate through LMp.31 for each Peer. (See Note 7).

 LMp.18: Has LSR previously sent a label mapping for FEC to Peer for
 the LSP in question? (See Note 8.)

 If so, goto LMp.22.

 LMp.19: Is the Downstream Unsolicited Ordered Control Label
 Distribution procedure being used by LSR?

 If not, goto LMp.28.

 LMp.20: Execute procedure Prepare_Label_Mapping_Attributes (Peer,
 FEC, RAttributes, SAttributes, IsPropagating,
 StoredHopCount).

 LMp.21: Execute procedure Send_Message (Peer, Label Mapping, FEC,
 PrevAdvLabel, SAttributes). (See Note 13.)

 Goto LMp.28.

 LMp.22: Iterate through LMp.27 for each label mapping for FEC
 previously sent to Peer.

Chen, et al. Expires October 9, 2016 [Page 110]

Internet-Draft LDP Specification April 2016

 LMp.23: Are RAttributes in the received label mapping consistent
 with those previously sent to Peer? If so, continue
 iteration from LMp.22 for next label mapping. (See Note 9.)

 LMp.24: Execute procedure Prepare_Label_Mapping_Attributes (Peer,
 FEC, RAttributes, SAttributes, IsPropagating,
 StoredHopCount).

 LMp.25: Execute procedure Send_Message (Peer, Label Mapping, FEC,
 PrevAdvLabel, SAttributes). (See Note 10.)

 LMp.26: Update record of label mapping for FEC previously sent to
 Peer to include the new attributes sent.

 LMp.27: End iteration from LMp.22.

 LMp.28: Does LSR have any label requests for FEC from Peer marked as
 pending?

 If not, goto LMp.30.

 LMp.29: Perform LSR Label Distribution procedure:

 For Downstream Unsolicited Independent Control OR For
 Downstream Unsolicited Ordered Control

 1. Execute procedure Prepare_Label_Mapping_Attributes
 (Peer, FEC, RAttributes, SAttributes, IsPropagating,
 UnknownHopCount).

 2. Execute procedure Send_Label (Peer, FEC,
 SAttributes).

 If the procedure fails, continue iteration for next
 Peer at LMp.17.

 3. If no pending requests exist for Peer, goto LMp.30.
 (See Note 11.)

 For Downstream On Demand Independent Control
 OR
 For Downstream On Demand Ordered Control

 1. Iterate through Step 5 for each pending label request
 for FEC from Peer marked as pending.

Chen, et al. Expires October 9, 2016 [Page 111]

Internet-Draft LDP Specification April 2016

 2. Execute procedure Prepare_Label_Mapping_Attributes
 (Peer, FEC, RAttributes, SAttributes, IsPropagating,
 UnknownHopCount)

 3. Execute procedure Send_Label (Peer, FEC,
 SAttributes). If the procedure fails, continue
 iteration for next Peer at LMp.17.

 4. Delete record of pending request.

 5. End iteration from Step 1.

 6. Goto LMp.30.

 LMp.30: Perform LSR Label Use procedure:

 For Use Immediate OR For Use If Loop Not Detected

 1. Iterate through Step 3 for each label mapping for FEC
 previously sent to Peer.

 2. Install label received and label sent to Peer for
 forwarding/switching use.

 3. End iteration from Step 1.

 4. Goto LMp.31.

 LMp.31: End iteration from LMp.17.
 Go to LMp.33.

 LMp.32: Execute procedure Send_Message (MsgSource, Label Release,
 FEC, Label).

 LMp.33: DONE.

 Notes:

 1. If the LSR is merging, there should be at most 1 received
 mapping for the FEC for the LSP in question. In the non-
 merging case, there could be multiple received mappings for the
 FEC for the LSP in question.

 2. If the LSR has detected a loop and it has not previously
 received a label mapping from MsgSource for the FEC, it simply
 releases the label.

Chen, et al. Expires October 9, 2016 [Page 112]

Internet-Draft LDP Specification April 2016

 3. Does the Label received in the message match any of the 1 or
 more label mappings identified in the previous step (LMp.4 or
 LMp.9)?

 4. An unsolicited mapping with a different label from the same peer
 would be an attempt to establish multipath label switching,
 which is not supported in this version of LDP.

 5. If the Label is not in forwarding/switching use, LMp.7 has no
 effect.

 6. If the received label mapping message matched an outstanding
 label request in LMp.1, then (by definition) the LSR has not
 previously received a label mapping for FEC for the LSP in
 question. If the LSR is merging upstream labels for the LSP in
 question, there should be at most 1 received mapping. In the
 non-merging case, there could be multiple received label
 mappings for the same FEC, one for each resulting LSP.

 7. The LMp.17 iteration includes MsgSource in order to handle the
 case where the LSR is operating in Downstream Unsolicited
 Ordered Control mode. Ordered Control prevents the LSR from
 advertising a label for the FEC until it has received a label
 mapping from its next hop (MsgSource) for the FEC.

 8. If the LSR is merging the LSP, it may have previously sent label
 mappings for the FEC LSP to one or more peers. If the LSR is
 not merging, it may have sent a label mapping for the LSP in
 question to at most one LSR.

 9. he Loop Detection Path Vector attribute is considered in this
 check. If the received RAttributes include a Path Vector and no
 Path Vector had been previously sent to the Peer, or if the
 received Path Vector is inconsistent with the Path Vector
 previously sent to the Peer, then the attributes are considered
 to be inconsistent. Note that an LSR is not required to store a
 received Path Vector after it propagates the Path Vector in a
 mapping message. If an LSR does not store the Path Vector, it
 has no way to check the consistency of a newly received Path
 Vector. This means that whenever such an LSR receives a mapping
 message carrying a Path Vector it must always propagate the Path
 Vector.

 10. LMp.22 through LMp.27 deal with a situation that can arise when
 the LSR is using independent control and it receives a mapping
 from the downstream peer after it has sent a mapping to an
 upstream peer. In this situation, the LSR needs to propagate
 any changed attributes, such as Hop Count, upstream. If Loop

Chen, et al. Expires October 9, 2016 [Page 113]

Internet-Draft LDP Specification April 2016

 Detection is configured on, the propagated attributes must
 include the Path Vector.

 11. An LSR operating in Downstream Unsolicited mode MUST process any
 Label Request messages it receives. If there are pending label
 requests, fall through into the Downstream on Demand procedures
 in order to satisfy the pending requests.

 12. As determined by step LMp.1.

 13. An LSR operating in Ordered Control mode may choose to skip at
 this stage the peer from which it received the advertisement
 that caused it to generate the label-map message. Doing so will
 in effect provide a form of split-horizon.

A.1.3. Receive Label Abort Request

 Summary:

 When an LSR receives a Label Abort Request message from a peer, it
 checks whether it has already responded to the label request in
 question. If it has, it silently ignores the message. If it has
 not, it sends the peer a Label Request Aborted Notification. In
 addition, if it has a label request outstanding for the LSP in
 question to a downstream peer, it sends a Label Abort Request to
 the downstream peer to abort the LSP.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

 - FEC. The FEC specified in the message.

 - RequestMessageID. The message ID of the label request message to
 be aborted.

 - Next Hop. The next hop for the FEC.

 Algorithm:

 LAbR.1 Does the message match a previously received Label Request
 message from MsgSource? (See Note 1.)
 If not, goto LAbR.12.

 LAbR.2 Has LSR responded to the previously received label request?
 If so, goto LAbR.12.

Chen, et al. Expires October 9, 2016 [Page 114]

Internet-Draft LDP Specification April 2016

 LAbR.3 Execute procedure Send_Message (MsgSource, Notification,
 Label Request Aborted, TLV), where TLV is the Label Request
 Message ID TLV received in the Label Abort Request message.

 LAbR.4 Does LSR have a Label Request message outstanding for FEC?
 If so, goto LAbR.7.

 LAbR.5 Does LSR have a label mapping for FEC?
 If not, goto LAbR.11.

 LAbR.6 Generate Event: Received Label Release message for FEC from
 MsgSource. (See Note 2.)
 Goto LAbR.11.

 LAbR.7 Is LSR merging the LSP for FEC?
 If not, goto LAbR.9.

 LAbR.8 Are there outstanding label requests for this FEC?
 If so, goto LAbR.11.

 LAbR.9 Execute procedure Send_Message (Next Hop, Label Abort
 Request, FEC, TLV), where TLV is a Label Request message ID
 TLV containing the Message ID used by the LSR in the
 outstanding Label Request message.

 LAbR.10 Record that a label abort request for FEC is pending.

 LAbR.11 Delete record of label request for FEC from MsgSource.

 LAbR.12 DONE.

 Notes:

 1. LSR uses FEC and the Label Request message ID TLV carried by the
 label abort request to locate its record (if any) for the
 previously received label request from MsgSource.

 2. If LSR has received a label mapping from NextHop, it should
 behave as if it had advertised a label mapping to MsgSource and
 MsgSource has released it.

A.1.4. Receive Label Release

 Summary:

 When an LSR receives a Label Release message for a FEC from a
 peer, it checks whether other peers hold the released label. If
 none do, the LSR removes the label from forwarding/switching use,

Chen, et al. Expires October 9, 2016 [Page 115]

Internet-Draft LDP Specification April 2016

 if it has not already done so, and if the LSR holds a label
 mapping from the FEC next hop, it releases the label mapping.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the message.

 - Label. The label specified in the message.

 - FEC. The FEC specified in the message.

 Algorithm:

 LRl.1 Does FEC match a known FEC? If not, goto LRl.14.

 LRl.2 Remove MsgSource from record of peers that hold Label for
 FEC. (See Note 1.)

 LRl.3 Does message match an outstanding label withdraw for FEC
 previously sent to MsgSource?
 If not, goto LRl.5

 LRl.4 Delete record of outstanding label withdraw for FEC
 previously sent to MsgSource.

 LRl.5 Is LSR merging labels for this FEC? If not, goto LRl.7.
 (See Note 2.)

 LRl.6 Does LSR have outstanding label advertisements for this FEC?
 If so, goto LRl.11.

 LRl.7 Is LSR egress for the FEC?
 If so, goto LRl.11.

 LRl.8 Is there a Next Hop for FEC? AND Does LSR have a previously
 received label mapping for FEC from Next Hop?
 If not, goto LRl.11.

 LRl.9 Is LSR configured to propagate releases?
 If not, goto LRl.11. (See Note 3.)

 LRl.10 Execute procedure Send_Message (Next Hop, Label Release, FEC,
 Label from Next Hop).

 LRl.11 Remove Label from forwarding/switching use for traffic from
 MsgSource.

Chen, et al. Expires October 9, 2016 [Page 116]

Internet-Draft LDP Specification April 2016

 LRl.12 Do any peers still hold Label for FEC?
 If so, goto LRl.14.

 LRl.13 Free the Label.

 LRl.14 DONE.

 Notes:

 1. If LSR is using Downstream Unsolicited label distribution, it
 SHOULD NOT re-advertise a label mapping for FEC to MsgSource
 until MsgSource requests it.

 2. LRl.5 through LRl.9 deal with determining whether where the LSR
 should propagate the Label Release to a downstream peer (LRl.9).

 3. If LRl.9 is reached, no upstream LSR holds a label for the FEC,
 and the LSR holds a label for the FEC from the FEC Next Hop. The
 LSR could propagate the Label Release to the Next Hop. By
 propagating the Label Release, the LSR releases a potentially
 scarce label resource. In doing so, it also increases the
 latency for re-establishing the LSP should MsgSource or some
 other upstream LSR send it a new Label Request for FEC.
 Whether or not to propagate the release is not a protocol issue.
 Label distribution will operate properly whether or not the
 release is propagated. The decision to propagate or not should
 take into consideration factors such as, whether labels are a
 scarce resource in the operating environment, the importance of
 keeping LSP setup latency low by keeping the amount of signaling
 required small, and whether LSP setup is ingress-controlled or
 egress-controlled in the operating environment.

A.1.5. Receive Label Withdraw

 Summary:

 When an LSR receives a Label Withdraw message for a FEC from an
 LDP peer, it responds with a Label Release message and it removes
 the label from any forwarding/switching use. If Ordered Control
 is in use, the LSR sends a Label Withdraw message to each LDP peer
 to which it had previously sent a label mapping for the FEC. If
 the LSR is using Downstream on Demand label advertisement with
 independent control, it then acts as if it had just recognized the
 FEC.

 Context:

 - LSR. The LSR handling the event.

Chen, et al. Expires October 9, 2016 [Page 117]

Internet-Draft LDP Specification April 2016

 - MsgSource. The LDP peer that sent the message.

 - Label. The label specified in the message.

 - FEC. The FEC specified in the message.

 Algorithm:

 LWd.a Remove Label from forwarding/switching use. (See Note 1.)

 LWd.b Execute procedure Send_Message (MsgSource, Label Release,
 FEC, Label).

 LWd.c Has LSR previously received and retained a matching label
 mapping for FEC from MsgSource?
 If not, goto LWd.13.

 LWd.d Delete matching label mapping for FEC previously received
 from MsgSource.

 LWd.e Is LSR using Ordered Control?
 If so, goto LWd.8.

 LWd.f Is MsgSource using Downstream On Demand label advertisement?
 If not, goto LWd.13.

 LWd.g Generate Event: Recognize New FEC for FEC.
 Goto LWd.13. (See Note 2.)

 LWd.h Iterate through LWd.12 for each Peer, other than MsgSource.

 LWd.i Has LSR previously sent a label mapping for FEC to Peer?
 If not, continue iteration for next Peer at LWd.8.

 LWd.j Does the label previously sent to Peer "map" to the withdrawn
 Label?
 If not, continue iteration for next Peer at LWd.8. (See Note
 3.)

 LWd.k Execute procedure Send_Label_Withdraw (Peer, FEC, Label
 previously sent to Peer).

 LWd.l End iteration from LWd.8.

 LWd.m DONE.

 Notes:

Chen, et al. Expires October 9, 2016 [Page 118]

Internet-Draft LDP Specification April 2016

 1. If the Label is not in forwarding/switching use, LWd.1 has no
 effect.

 2. LWd.7 handles the case where the LSR is using Downstream On
 Demand label distribution with independent control. In this
 situation, the LSR should send a label request to the FEC next
 hop as if it had just recognized the FEC.

 3. LWd.10 handles both label merging (one or more incoming labels
 map to the same outgoing label) and no label merging (one label
 maps to the outgoing label) cases.

A.1.6. Recognize New FEC

 Summary:

 The response by an LSR to learning a new FEC via the routing table
 may involve one or more of the following actions:

 - Transmission of label mappings for the FEC to one or more LDP
 peers;

 - Transmission of a label request for the FEC to the FEC next
 hop;

 - Any of the actions that can occur when the LSR receives a label
 mapping for the FEC from the FEC next hop.

 Context:

 LSR. The LSR handling the event.

 FEC. The newly recognized FEC.

 Next Hop. The next hop for the FEC.

 InitAttributes. Attributes to be associated with the new FEC.
 (See Note 1.)

 SAttributes. Attributes to be included in Label Mapping or Label
 Request messages, if any, sent to peers.

 StoredHopCount. Hop count associated with FEC label mapping, if
 any, previously received from Next Hop.

 Algorithm:

Chen, et al. Expires October 9, 2016 [Page 119]

Internet-Draft LDP Specification April 2016

 FEC.1 Perform LSR Label Distribution procedure:

 For Downstream Unsolicited Independent Control

 1. Iterate through 5 for each Peer.

 2. Has LSR previously received and retained a label
 mapping for FEC from Next Hop?
 If so, set Propagating to IsPropagating.
 If not, set Propagating to NotPropagating.

 3. Execute procedure Prepare_Label_Mapping_Attributes
 (Peer, FEC, InitAttributes, SAttributes, Propagating,
 Unknown hop count(0)).

 4. Execute procedure Send_Label (Peer, FEC, SAttributes).

 5. End iteration from 1.
 Goto FEC.2.

 For Downstream Unsolicited Ordered Control

 1. Iterate through 5 for each Peer.

 2. Is LSR egress for the FEC? OR Has LSR previously
 received and retained a label mapping for FEC from Next
 Hop?
 If not, continue iteration for next Peer.

 3. Execute procedure Prepare_Label_Mapping_Attributes
 (Peer, FEC, InitAttributes, SAttributes, Propagating,
 StoredHopCount).

 4. Execute procedure Send_Label (Peer, FEC, SAttributes).

 5. End iteration from 1.
 Goto FEC.2.

 For Downstream On Demand Independent Control
 OR
 For Downstream On Demand Ordered Control

 1. Goto FEC.2. (See Note 2.)

Chen, et al. Expires October 9, 2016 [Page 120]

Internet-Draft LDP Specification April 2016

 FEC.2 Has LSR previously received and retained a label mapping for
 FEC from Next Hop?
 If so, goto FEC.5

 FEC.3 Is Next Hop an LDP peer?
 If not, Goto FEC.6

 FEC.4 Perform LSR Label Request procedure:

 For Request Never

 1. Goto FEC.6

 For Request When Needed
 OR
 For Request On Request

 1. Execute procedure Prepare_Label_Request_Attributes
 (Next Hop, FEC, InitAttributes, SAttributes);

 2. Execute procedure Send_Label_Request (Next Hop, FEC,
 Goto FEC.6.

 FEC.5 Generate Event: Received Label Mapping from Next Hop. (See
 Note 3.)

 FEC.6 DONE.

 Notes:

 1. An example of an attribute that might be part of InitAttributes
 is one that specifies desired LSP characteristics, such as Class
 of Service (CoS). (Note that while the current version of LDP
 does not specify a CoS attribute, LDP extensions may.)

 The means by which FEC InitAttributes, if any, are specified is
 beyond the scope of LDP. Note that the InitAttributes will not
 include a known Hop Count or a Path Vector.

 2. An LSR using Downstream On Demand label distribution would send a
 label only if it had a previously received label request marked
 as pending. The LSR would have no such pending requests because
 it responds to any label request for an unknown FEC by sending
 the requesting LSR a No Route notification and discarding the
 label request; see LRq.3

Chen, et al. Expires October 9, 2016 [Page 121]

Internet-Draft LDP Specification April 2016

 3. If the LSR has a label for the FEC from the Next Hop, it should
 behave as if it had just received the label from the Next Hop.
 This occurs in the case of Liberal Label retention mode.

A.1.7. Detect Change in FEC Next Hop

 Summary:

 The response by an LSR to a change in the next hop for a FEC may
 involve one or more of the following actions:

 - Removal of the label from the FEC's old next hop from
 forwarding/switching use;

 - Transmission of label mapping messages for the FEC to one or
 more LDP peers;

 - Transmission of a label request to the FEC's new next hop;

 - Any of the actions that can occur when the LSR receives a label
 mapping from the FEC's new next hop.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC whose next hop changed.

 - New Next Hop. The current next hop for the FEC.

 - Old Next Hop. The previous next hop for the FEC.

 - OldLabel. Label, if any, previously received from Old Next
 Hop.

 - CurAttributes. The attributes, if any, currently associated
 with the FEC.

 - SAttributes. Attributes to be included in the Label Request
 message, if any, sent to New Next Hop.

 Algorithm:

 NH.1 Has LSR previously received and retained a label mapping for
 FEC from Old Next Hop?
 If not, goto NH.6.

Chen, et al. Expires October 9, 2016 [Page 122]

Internet-Draft LDP Specification April 2016

 NH.2 Remove label from forwarding/switching use. (See Note 1.)

 NH.3 Is LSR using Liberal Label retention?

 If so, goto NH.6.

 NH.4 Execute procedure Send_Message (Old Next Hop, Label Release,
 OldLabel).

 NH.5 Delete label mapping for FEC previously received from Old Next
 Hop.

 NH.6 Does LSR have a label request pending with Old Next Hop?

 If not, goto NH.10.

 NH.7 Is LSR using Conservative Label retention?

 If not, goto NH.10.

 NH.8 Execute procedure Send_Message (Old Next Hop, Label Abort
 Request, FEC, TLV), where TLV is a Label Request Message ID
 TLV that carries the message ID of the pending label request.

 NH.9 Record that a label abort request is pending for FEC with Old
 Next Hop.

 NH.10 Is there a New Next Hop for FEC?

 If not, goto NH.16.

 NH.11 Has LSR previously received and retained a label mapping for
 FEC from New Next Hop?

 If not, goto NH.13.

 NH.12 Generate Event: Received Label Mapping from New Next Hop. Goto
 NH.20. (See Note 2.)

 NH.13 Is LSR using Downstream on Demand advertisement? OR Is Next
 Hop using Downstream on Demand advertisement? OR Is LSR using
 Conservative Label retention? (See Note 3.)

 If so, goto NH.14.

 If not, goto NH.20.

Chen, et al. Expires October 9, 2016 [Page 123]

Internet-Draft LDP Specification April 2016

 NH.14 Execute procedure Prepare_Label_Request_Attributes (Next Hop,
 FEC, CurAttributes, SAttributes).

 NH.15 Execute procedure Send_Label_Request (New Next Hop, FEC,
 SAttributes). (See Note 4.)

 Goto NH.20.

 NH.16 Iterate through NH.19 for each Peer.

 NH.17 Has LSR previously sent a label mapping for FEC to Peer? If
 not, continue iteration for next Peer at NH.16

 NH.18 Execute procedure Send_Label_Withdraw (Peer, FEC, Label
 previously sent to Peer).

 NH.19 End iteration from NH.16.

 NH.20 DONE.

 Notes:

 - If the Label is not in forwarding/switching use, NH.2 has no
 effect.

 - If the LSR has a label for the FEC from the New Next Hop, it
 should behave as if it had just received the label from the New
 Next Hop.

 - The purpose of the check on label retention mode is to avoid a
 race with steps LMp.12-LMp.13 of the procedure for handling a
 Label Mapping message where the LSR operating in Conservative
 Label retention mode may have released a label mapping received
 from the New Next Hop before it detected that the FEC next hop had
 changed.

 - Regardless of the Label Request procedure in use by the LSR, it
 MUST send a label request if the conditions in NH.13 hold.
 Therefore, it executes the Send_Label_Request procedure directly
 rather than perform the LSR Label Request procedure.

A.1.8. Receive Notification / Label Request Aborted

 Summary:

 When an LSR receives a Label Request Aborted notification from an LDP
 peer, it records that the corresponding label request transaction, if
 any, has completed.

Chen, et al. Expires October 9, 2016 [Page 124]

Internet-Draft LDP Specification April 2016

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC for which a label was requested.

 - RequestMessageID. The message ID of the label request message to
 be aborted.

 - MsgSource. The LDP peer that sent the Notification message.

 Algorithm:

 LRqA.a Does the notification correspond to an outstanding label
 request abort for FEC? (See Note 1.)

 If not, goto LRqA.3.

 LRqA.b Record that the label request for FEC has been aborted.

 LRqA.c DONE.

 Note:

 1. The LSR uses the FEC and RequestMessageID to locate its record,
 if any, of the outstanding label request abort.

A.1.9. Receive Notification / No Label Resources

 Summary:

 When an LSR receives a No Label Resources notification from an LDP
 peer, it stops sending label request messages to the peer until it
 receives a Label Resources Available Notification from the peer.

 Context:

 LSR. The LSR handling the event.

 FEC. The FEC for which a label was requested.

 MsgSource. The LDP peer that sent the Notification message.

 Algorithm:

 NoRes.1 Delete record of outstanding label request for FEC sent to
 MsgSource.

Chen, et al. Expires October 9, 2016 [Page 125]

Internet-Draft LDP Specification April 2016

 NoRes.2 Record that label mapping for FEC from MsgSource is needed
 but that no label resources are available.

 NoRes.3 Set status record indicating it is not OK to send label
 requests to MsgSource.

 NoRes.4 DONE.

A.1.10. Receive Notification / No Route

 Summary:

 When an LSR receives a No Route notification from an LDP peer in
 response to a Label Request message, the Label No Route procedure
 in use dictates its response. The LSR either will take no further
 action, or it will defer the label request by starting a timer and
 send another Label Request message to the peer when the timer
 later expires.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC for which a label was requested.

 - Attributes. The attributes associated with the label request.

 - MsgSource. The LDP peer that sent the Notification message.

 Algorithm:

 NoNH.1 Delete record of outstanding label request for FEC sent to
 MsgSource.

 NoNH.2 Perform LSR Label No Route procedure.

 For Request No Retry

 1. Goto NoNH.3.

 For Request Retry

 1. Record deferred label request for FEC and Attributes
 to be sent to MsgSource.

 2. Start timeout. Goto NoNH.3.

 NoNH.3 DONE.

Chen, et al. Expires October 9, 2016 [Page 126]

Internet-Draft LDP Specification April 2016

A.1.11. Receive Notification / Loop Detected

 Summary:

 When an LSR receives a Loop Detected Status Code from an LDP peer
 in response to a Label Request message or a Label Mapping message,
 it behaves as if it had received a No Route notification.

 Context:

 See "Receive Notification / No Route".

 Algorithm:

 See "Receive Notification / No Route".

 Note:

 1. When the Loop Detected notification is in response to a Label
 Request message, it arrives in a Status Code TLV in a
 Notification message. When it is in response to a Label Mapping
 message, it arrives in a Status Code TLV in a Label Release
 message.

A.1.12. Receive Notification / Label Resources Available

 Summary:

 When an LSR receives a Label Resources Available notification from
 an LDP peer, it resumes sending label requests to the peer.

 Context:

 - LSR. The LSR handling the event.

 - MsgSource. The LDP peer that sent the Notification message.

 - SAttributes. Attributes stored with the postponed Label Request
 message.

 Algorithm:

 Res.1 Set status record indicating it is OK to send label requests
 to MsgSource.

 Res.2 Iterate through Res.6 for each record of a FEC label mapping
 needed from MsgSource for which no label resources are
 available.

Chen, et al. Expires October 9, 2016 [Page 127]

Internet-Draft LDP Specification April 2016

 Res.3 Is MsgSource the next hop for FEC?

 If not, goto Res.5.

 Res.4 Execute procedure Send_Label_Request (MsgSource, FEC,
 SAttributes). If the procedure fails, terminate iteration.

 Res.5 Delete record that no resources are available for a label
 mapping for FEC needed from MsgSource.

 Res.6 Res.6 End iteration from Res.2.

 Res.7 DONE.

A.1.13. Detect Local Label Resources Have Become Available

 Summary:

 After an LSR has sent a No Label Resources notification to an LDP
 peer, when label resources later become available it sends a Label
 Resources Available notification to each such peer.

 Context:

 - LSR. The LSR handling the event.

 - Attributes. Attributes stored with the postponed Label Mapping
 message.

 Algorithm:

 ResA.1 Iterate through ResA.4 for each Peer to which LSR has
 previously sent a No Label Resources notification.

 ResA.2 Execute procedure Send_Notification (Peer, Label Resources
 Available).

 ResA.3 Delete record that No Label Resources notification was
 previously sent to Peer.

 ResA.4 End iteration from ResA.1.

 ResA.5 Iterate through ResA.8 for each record of a label mapping
 needed for FEC for Peer but no-label-resources. (See Note
 1.)

 ResA.6 Execute procedure Send_Label (Peer, FEC, Attributes). If the
 procedure fails, terminate iteration.

Chen, et al. Expires October 9, 2016 [Page 128]

Internet-Draft LDP Specification April 2016

 ResA.7 Clear record of FEC label mapping needed for peer but no-
 label-resources.

 ResA.8 End iteration from ResA.5

 ResA.9 DONE.

 Note:

 1. Iteration ResA.5 through ResA.8 handles the situation where the
 LSR is using Downstream Unsolicited label distribution and was
 previously unable to allocate a label for a FEC.

A.1.14. LSR Decides to No Longer Label Switch a FEC

 Summary:

 An LSR may unilaterally decide to no longer label switch a FEC for
 an LDP peer. An LSR that does so MUST send a Label Withdraw
 message for the FEC to the peer.

 Context:

 - Peer. The peer.

 - FEC. The FEC.

 - PrevAdvLabel. The label for the FEC previously advertised to the
 Peer.

 Algorithm:

 NoLS.1 Execute procedure Send_Label_Withdraw (Peer, FEC,
 PrevAdvLabel). (See Note 1.)

 DONE.

 Note:

 1. The LSR may remove the label from forwarding/switching use as
 part of this event or as part of processing the Label Release
 from the peer in response to the label withdraw. If the LSR
 doesn't wait for the Label Release message from the peer, it
 SHOULD NOT reuse the label until it receives the Label Release.

Chen, et al. Expires October 9, 2016 [Page 129]

Internet-Draft LDP Specification April 2016

A.1.15. Timeout of Deferred Label Request

 Summary:

 Label requests are deferred in response to No Route and Loop
 Detected notifications. When a deferred FEC label request for a
 peer times out, the LSR sends the label request.

 Context:

 - LSR. The LSR handling the event.

 - FEC. The FEC associated with the timeout event.

 - Peer. The LDP peer associated with the timeout event.

 - Attributes. Attributes stored with the deferred Label Request
 message.

 Algorithm:

 TO.1 Retrieve the record of the deferred label request.

 TO.2 Is Peer the next hop for FEC?

 If not, goto TO.4.

 TO.3 Execute procedure Send_Label_Request (Peer, FEC).

 TO.4 DONE.

A.2. Common Label Distribution Procedures

 This section specifies utility procedures used by the algorithms that
 handle label distribution events.

A.2.1. Send_Label

 Summary:

 The Send_Label procedure allocates a label for a FEC for an LDP
 peer, if possible, and sends a label mapping for the FEC to the
 peer. If the LSR is unable to allocate the label and if it has a
 pending label request from the peer, it sends the LDP peer a No
 Label Resources notification.

 Parameters:

Chen, et al. Expires October 9, 2016 [Page 130]

Internet-Draft LDP Specification April 2016

 - Peer. The LDP peer to which the label mapping is to be sent.

 - FEC. The FEC for which a label mapping is to be sent.

 - Attributes. Attributes to be included with the label mapping.

 Additional Context:

 - LSR. The LSR executing the procedure.

 - Label. The label allocated and sent to Peer.

 Algorithm:

 SL.1 Does LSR have a label to allocate?
 If not, goto SL.9.

 SL.2 Allocate Label and bind it to the FEC.

 SL.3 Install Label for forwarding/switching use.

 SL.4 Execute procedure Send_Message (Peer, Label Mapping, FEC,
 Label, Attributes).

 SL.5 Record label mapping for FEC with Label and Attributes has
 been sent to Peer.

 SL.6 Does LSR have a record of a FEC label request from Peer marked
 as pending?
 If not, goto SL.8.

 SL.7 Delete record of pending label request for FEC from Peer.

 SL.8 Return success.

 SL.9 Does LSR have a label request for FEC from Peer marked as
 pending?
 If not, goto SL.13.

 SL.10 Execute procedure Send_Notification (Peer, No Label
 Resources).

 SL.11 Delete record of pending label request for FEC from Peer.

 SL.12 Record No Label Resources notification has been sent to Peer.
 Goto SL.14.

Chen, et al. Expires October 9, 2016 [Page 131]

Internet-Draft LDP Specification April 2016

 SL.13 Record label mapping needed for FEC and Attributes for Peer,
 but no-label-resources. (See Note 1.)

 SL.14 Return failure.

 Note:

 1. SL.13 handles the case of Downstream Unsolicited label
 distribution when the LSR is unable to allocate a label for a FEC
 to send to a Peer.

A.2.2. Send_Label_Request

 Summary:

 An LSR uses the Send_Label_Request procedure to send a request for
 a label for a FEC to an LDP peer if currently permitted to do so.

 Parameters:

 - Peer. The LDP peer to which the label request is to be sent.

 - FEC. The FEC for which a label request is to be sent.

 - Attributes. Attributes to be included in the label request, e.g.,
 Hop Count, Path Vector.

 Additional Context:

 - LSR. The LSR executing the procedure.

 Algorithm:

 SLRq.1 Has a label request for FEC previously been sent to Peer and
 is it marked as outstanding?
 If so, Return success. (See Note 1.)

 SLRq.2 Is status record indicating it is OK to send label requests
 to Peer set?
 If not, goto SLRq.6

 SLRq.3 Execute procedure Send_Message (Peer, Label Request, FEC,
 Attributes).

 SLRq.4 Record that label request for FEC has been sent to Peer and
 mark it as outstanding.

 SLRq.5 Return success.

Chen, et al. Expires October 9, 2016 [Page 132]

Internet-Draft LDP Specification April 2016

 SLRq.6 Postpone the label request by recording that label mapping
 for FEC and Attributes from Peer is needed but that no label
 resources are available.

 SLRq.7 Return failure.

 Note:

 1. If the LSR is a non-merging LSR, it must distinguish between
 attempts to send label requests for a FEC triggered by different
 upstream LDP peers from duplicate requests. This procedure will
 not send a duplicate label request.

A.2.3. Send_Label_Withdraw

 Summary:

 An LSR uses the Send_Label_Withdraw procedure to withdraw a label
 for a FEC from an LDP peer. To do this, the LSR sends a Label
 Withdraw message to the peer.

 Parameters:

 - Peer. The LDP peer to which the label withdraw is to be sent.

 - FEC. The FEC for which a label is being withdrawn.

 - Label. The label being withdrawn.

 Additional Context:

 - LSR. The LSR executing the procedure.

 Algorithm:

 SWd.1 Execute procedure Send_Message (Peer, Label Withdraw, FEC,
 Label).

 SWd.2 Record that label withdraw for FEC has been sent to Peer and
 mark it as outstanding.

A.2.4. Send_Notification

 Summary:

 An LSR uses the Send_Notification procedure to send an LDP peer a
 Notification message.

Chen, et al. Expires October 9, 2016 [Page 133]

Internet-Draft LDP Specification April 2016

 Parameters

 - Peer. The LDP peer to which the Notification message is to be
 sent.

 - Status. Status code to be included in the Notification message.

 Additional Context:

 None.

 Algorithm:

 SNt.1 Execute procedure Send_Message (Peer, Notification, Status)

A.2.5. Send_Message

 Summary:

 An LSR uses the Send_Message procedure to send an LDP peer an LDP
 message.

 Parameters:

 Peer. The LDP peer to which the message is to be sent.

 Message Type. The type of message to be sent.

 Additional message contents

 Additional Context:

 None.

 Algorithm:

 This procedure is the means by which an LSR sends an LDP message
 of the specified type to the specified LDP peer.

A.2.6. Check_Received_Attributes

 Summary:

 Check the attributes received in a Label Mapping or Label Request
 message. If the attributes include a Hop Count or Path Vector,
 perform a Loop Detection check. If a loop is detected, cause a
 Loop Detected Notification message to be sent to MsgSource.

Chen, et al. Expires October 9, 2016 [Page 134]

Internet-Draft LDP Specification April 2016

 Parameters:

 - MsgSource. The LDP peer that sent the message.

 - MsgType. The type of message received.

 - RAttributes. The attributes in the message.

 Additional Context:

 LSR Id. The unique LSR Id of this LSR.

 Hop Count. The Hop Count, if any, in the received attributes.

 Path Vector. The Path Vector, if any, in the received attributes.

 Algorithm:

 CRa.1 Do RAttributes include Hop Count?
 If not, goto CRa.5.

 CRa.2 Does Hop Count exceed Max allowable hop count?
 If so, goto CRa.6.

 CRa.3 Do RAttributes include Path Vector?
 If not, goto CRa.5.

 CRa.4 Does Path Vector include LSR Id? OR Does length of Path
 Vector exceed Max allowable length?
 If so, goto CRa.6

 CRa.5 Return No Loop Detected.

 CRa.6 Is MsgType LabelMapping?
 If so, goto CRa.8. (See Note 1.)

 CRa.7 Execute procedure Send_Notification (MsgSource, Loop
 Detected).

 CRa.8 Return Loop Detected.

 CRa.9 DONE.

 Note:

 1. When the attributes being checked were received in a Label
 Mapping message, the LSR sends the Loop Detected notification in

Chen, et al. Expires October 9, 2016 [Page 135]

Internet-Draft LDP Specification April 2016

 a Status Code TLV in a Label Release message. (See
 Section "Receive Label Mapping".)

A.2.7. Prepare_Label_Request_Attributes

 Summary:

 This procedure is used whenever a Label Request is to be sent to a
 Peer to compute the Hop Count and Path Vector, if any, to include
 in the message.

 Parameters:

 Peer. The LDP peer to which the message is to be sent.

 FEC. The FEC for which a label request is to be sent.

 RAttributes. The attributes this LSR associates with the LSP for
 FEC.

 SAttributes. The attributes to be included in the Label Request
 message.

 Additional Context:

 LSR Id. The unique LSR Id of this LSR.

 Algorithm:

 PRqA.1 Is Hop Count required for this Peer? (See Note 1.) OR Do
 RAttributes include a Hop Count? OR Is Loop Detection
 configured on LSR?
 If not, goto PRqA.14.

 PRqA.2 Is LSR ingress for FEC?
 If not, goto PRqA.6.

 PRqA.3 Include Hop Count of 1 in SAttributes.

 PRqA.4 Is Loop Detection configured on LSR?
 If not, goto PRqA.14.

 PRqA.5 Is LSR merge-capable?
 If so, goto PRqA.14.
 If not, goto PRqA.13.

 PRqA.6 Do RAttributes include a Hop Count?
 If not, goto PRqA.8.

Chen, et al. Expires October 9, 2016 [Page 136]

Internet-Draft LDP Specification April 2016

 PRqA.7 Increment RAttributes Hop Count and copy the resulting Hop
 Count to SAttributes. (See Note 2.)
 Goto PRqA.9.

 PRqA.8 Include Hop Count of unknown (0) in SAttributes.

 PRqA.9 Is Loop Detection configured on LSR?
 If not, goto PRqA.14.

 PRqA.10 Do RAttributes have a Path Vector?
 If so, goto PRqA.12.

 PRqA.11 Is LSR merge-capable?
 If so, goto PRqA.14.
 If not, goto PRqA.13.

 PRqA.12 Add LSR Id to beginning of Path Vector from RAttributes and
 copy the resulting Path Vector into SAttributes.
 Goto PRqA.14.

 PRqA.13 Include Path Vector of length 1 containing LSR Id in
 SAttributes.

 PRqA.14 DONE.

 Notes:

 1. The link with Peer may require that Hop Count be included in
 Label Request messages; for example, see RFC 3035 [RFC3034] and

RFC 3034 [RFC3034].

 2. For hop count arithmetic, unknown + 1 = unknown.

A.2.8. Prepare_Label_Mapping_Attributes

 Summary:

 This procedure is used whenever a Label Mapping is to be sent to a
 Peer to compute the Hop Count and Path Vector, if any, to include
 in the message.

 Parameters:

 - Peer. The LDP peer to which the message is to be sent.

 - FEC. The FEC for which a label request is to be sent.

https://datatracker.ietf.org/doc/html/rfc3035
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034

Chen, et al. Expires October 9, 2016 [Page 137]

Internet-Draft LDP Specification April 2016

 - RAttributes. The attributes this LSR associates with the LSP for
 FEC.

 - SAttributes. The attributes to be included in the Label Mapping
 message.

 - IsPropagating. The LSR is sending the Label Mapping message to
 propagate one received from the FEC next hop.

 - PrevHopCount. The Hop Count, if any, this LSR associates with the
 LSP for the FEC.

 Additional Context:

 LSR Id. The unique LSR Id of this LSR.

 Algorithm:

 PMpA.1 Do the RAttributes include any unknown TLVs?
 If not, goto PMpA.4.

 PMpA.2 Do the settings of the U- and F-bits require forwarding of
 these TLVs?
 If not, goto PMpA.4.

 PMpA.3 Copy the unknown TLVs in SAttributes.

 PMpA.4 Is Hop Count required for this Peer? (see Note 1.) OR Do
 RAttributes include a Hop Count? OR Is Loop Detection
 configured on LSR?
 If not, goto PMpA.24.

 PMpA.5 Is LSR egress for FEC?
 If not, goto PMpA.7.

 PMpA.6 Include Hop Count of 1 in SAttributes.
 Goto PMpA.24.

 PMpA.7 Do RAttributes have a Hop Count?
 If not, goto PMpA.11.

 PMpA.8 Is LSR a member of the edge set for an LSR domain whose LSRs
 do not perform TTL decrement AND Is Peer in that domain?
 (See Note 2.)
 If not, goto PMpA.10.

 PMpA.9 Include Hop Count of 1 in SAttributes.
 Goto PMpA.12.

Chen, et al. Expires October 9, 2016 [Page 138]

Internet-Draft LDP Specification April 2016

 PMpA.10 Increment RAttributes Hop Count and copy the resulting Hop
 Count to SAttributes. (See Note 2.)
 Goto PMpA.12.

 PMpA.11 Include Hop Count of unknown (0) in SAttributes.

 PMpA.12 Is Loop Detection configured on LSR?
 If not, goto PMpA.24.

 PMpA.13 Do RAttributes have a Path Vector?
 If so, goto PMpA.22.

 PMpA.14 Is LSR propagating a received Label Mapping?
 If not, goto PMpA.23.

 PMpA.15 Does LSR support merging?
 If not, goto PMpA.17.

 PMpA.16 Has LSR previously sent a Label Mapping for FEC to Peer?
 If not, goto PMpA.23.

 PMpA.17 Do RAttributes include a Hop Count?
 If not, goto PMpA.24.

 PMpA.18 Is Hop Count in RAttributes unknown(0)?
 If so, goto PMpA.23.

 PMpA.19 Has LSR previously sent a Label Mapping for FEC to Peer?
 If not, goto PMpA.24.

 PMpA.20 Is Hop Count in RAttributes different from PrevHopCount?
 If not, goto PMpA.24.

 PMpA.21 Is the Hop Count in RAttributes > PrevHopCount? OR Is
 PrevHopCount unknown(0)?
 If not, goto PMpA.24.

 PMpA.22 Add LSR Id to beginning of Path Vector from RAttributes and
 copy the resulting Path Vector into SAttributes.
 Goto PMpA.24.

 PMpA.23 Include Path Vector of length 1 containing LSR Id in
 SAttributes.

 PMpA.24 DONE.

 Notes:

Chen, et al. Expires October 9, 2016 [Page 139]

Internet-Draft LDP Specification April 2016

 1. The link with Peer may require that Hop Count be included in
 Label Mapping messages; for example, see RFC 3035 [RFC3034] and

RFC 3034 [RFC3034].

 2. If the LSR is at the edge of a cloud of LSRs that do not perform
 TTL-decrement and it is propagating the Label Mapping message
 upstream into the cloud, it sets the Hop Count to 1 so that Hop
 Count across the cloud is calculated properly. This ensures
 proper TTL management for packets forwarded across the part of
 the LSP that passes through the cloud.

 3. For hop count arithmetic, unknown + 1 = unknown.

Acknowledgments

 The editors of this document relies heavily on, and would like to
 thank, everyone that contributed to the develoment and improvement of
 the LDP Specification.

 This document is produced as part of advancing the LDP specification
 to Internet Standard status. The predessor (RFC 5036) was published
 as Draft Standard October 2007. It was produced by the MPLS Working
 Group of the IETF and was jointly authored by Loa Andersson, Bob
 Thomas and Ina Minei.

 Since the Draft Standard version was published IETF has abandoned the
 3 steps standards ladder. Now there is only proposed standard (PS)
 and Internet Standard (IS). This is part of the motivation to make
 the effort to bring the LDP specification to Internet Standard.

 The LDP specification was originally published as RFC 3036 in January
 2001. It was produced by the MPLS Working Group of the IETF and was
 jointly authored by Loa Andersson, Paul Doolan, Nancy Feldman, Andre
 Fredette, and Bob Thomas.

 The ideas and text in RFC 3036 were collected from a number of
 sources. We would like to thank Rick Boivie, Ross Callon, Alex
 Conta, Eric Gray, Yoshihiro Ohba, Eric Rosen, Bernard Suter, Yakov
 Rekhter, and Arun Viswanathan for their input for RFC 3036.

 The authors would like to thank Eric Gray, David Black, and Sam
 Hartman for their input to and review of RFC 5036. That input has
 been of great help also for the current document.

 In addition, the authors would like to thank the members of the MPLS
 Working Group for their ideas and the support they have given to this
 document, and in particular, to Eric Rosen, Luca Martini, Markus

https://datatracker.ietf.org/doc/html/rfc3035
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc3034
https://datatracker.ietf.org/doc/html/rfc5036
https://datatracker.ietf.org/doc/html/rfc3036
https://datatracker.ietf.org/doc/html/rfc3036
https://datatracker.ietf.org/doc/html/rfc3036
https://datatracker.ietf.org/doc/html/rfc5036

Chen, et al. Expires October 9, 2016 [Page 140]

Internet-Draft LDP Specification April 2016

 Jork, Mark Duffy, Vach Kompella, Kishore Tiruveedhula, Rama
 Ramakrishnan, Nick Weeds, Adrian Farrel, and Andy Malis.

 Editor note - this section is still work in progress.

Authors' Addresses

 Xia Chen
 Huawei Technologies

 Email: jescia.chenxia@huawei.com

 Loa Andersson
 Huawei Technologies

 Email: loa@mail01.huawei.com

 Nic Leymann
 Deutsche Telekom

 Email: N.Leymann@telekom.de

 Ina Minei
 Google

 Email: inaminei@google.com

 Kamran Raza
 Cisco Systems, Inc.

 Email: skraza@cisco.com

Chen, et al. Expires October 9, 2016 [Page 141]

