
Network Working Group I. Nadareishvili
Internet-Draft 18 November 2020
Intended status: Informational
Expires: 22 May 2021

Health Check Response Format for HTTP APIs
draft-inadarei-api-health-check-05

Abstract

 This document proposes a service health check response format for
 HTTP APIs.

Note to Readers

 RFC EDITOR: please remove this section before publication

 The issues list for this draft can be found at
https://github.com/inadarei/rfc-healthcheck/issues

 (https://github.com/inadarei/rfc-healthcheck/issues).

 The most recent draft is at https://inadarei.github.io/rfc-
healthcheck/ (https://inadarei.github.io/rfc-healthcheck/).

 Recent changes are listed at https://github.com/inadarei/rfc-
healthcheck/commits/master (https://github.com/inadarei/rfc-
healthcheck/commits/master).

 See also the draft's current status in the IETF datatracker, at
https://datatracker.ietf.org/doc/draft-inadarei-api-health-check/

 (https://datatracker.ietf.org/doc/draft-inadarei-api-health-check/).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Nadareishvili Expires 22 May 2021 [Page 1]

https://github.com/inadarei/rfc-healthcheck/issues
https://github.com/inadarei/rfc-healthcheck/issues
https://inadarei.github.io/rfc-healthcheck/
https://inadarei.github.io/rfc-healthcheck/
https://inadarei.github.io/rfc-healthcheck/
https://github.com/inadarei/rfc-healthcheck/commits/master
https://github.com/inadarei/rfc-healthcheck/commits/master
https://github.com/inadarei/rfc-healthcheck/commits/master
https://github.com/inadarei/rfc-healthcheck/commits/master
https://datatracker.ietf.org/doc/draft-inadarei-api-health-check/
https://datatracker.ietf.org/doc/draft-inadarei-api-health-check/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Health Check Response Format for HTTP AP November 2020

 This Internet-Draft will expire on 22 May 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Notational Conventions 3
3. API Health Response . 4
3.1. status . 4
3.2. version . 4
3.3. releaseId . 5
3.4. notes . 5
3.5. output . 5
3.6. checks . 5
3.7. links . 5
3.8. serviceId . 5
3.9. description . 5

4. The Checks Object . 6
4.1. componentId . 7
4.2. componentType . 7
4.3. observedValue . 7
4.4. observedUnit . 7
4.5. status . 8
4.6. affectedEndpoints . 8
4.7. time . 8
4.8. output . 8
4.9. links . 8
4.10. Additional Keys . 9

5. Example Output . 9
6. Security Considerations 11
7. IANA Considerations . 11
8. Acknowledgements . 12
9. Creating and Serving Health Responses 13
10. Consuming Health Check Responses 13
11. References . 13

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Nadareishvili Expires 22 May 2021 [Page 2]

Internet-Draft Health Check Response Format for HTTP AP November 2020

11.1. Normative References 13
11.2. Informative References 14

 Author's Address . 15

1. Introduction

 The vast majority of modern APIs driving data to web and mobile
 applications use HTTP [RFC7230] as their protocol. The health and
 uptime of these APIs determine availability of the applications
 themselves. In distributed systems built with a number of APIs,
 understanding the health status of the APIs and making corresponding
 decisions, for caching, failover or circuit-breaking, are essential
 to the ability of providing highly-available solutions.

 There exists a wide variety of operational software that relies on
 the ability to read health check response of APIs. However, there is
 currently no standard for the health check output response, so most
 applications either rely on the basic level of information included
 in HTTP status codes [RFC7231] or use task-specific formats.

 Usage of task-specific or application-specific formats creates
 significant challenges, disallowing any meaningful interoperability
 across different implementations and between different tooling.

 Standardizing a format for health checks can provide any of a number
 of benefits, including:

 * Flexible deployment - since operational tooling and API clients
 can rely on rich, uniform format, they can be safely combined and
 substituted as needed.

 * Evolvability - new APIs, conforming to the standard, can safely be
 introduced in any environment and ecosystem that also conforms to
 the same standard, without costly coordination and testing
 requirements.

 This document defines a "health check" format using the JSON format
 [RFC8259] for APIs to use as a standard point for the health
 information they offer. Having a well-defined format for this
 purpose promotes good practice and tooling.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc2119

Nadareishvili Expires 22 May 2021 [Page 3]

Internet-Draft Health Check Response Format for HTTP AP November 2020

3. API Health Response

 Health Check Response Format for HTTP APIs uses the JSON format
 described in [RFC8259] and has the media type "application/
 health+json".

 Its content consists of a single mandatory root field ("status") and
 several optional fields:

3.1. status

 status: (required) indicates whether the service status is acceptable
 or not. API publishers SHOULD use following values for the field:

 * "pass": healthy (acceptable aliases: "ok" to support Node's
 Terminus and "up" for Java's SpringBoot),

 * "fail": unhealthy (acceptable aliases: "error" to support Node's
 Terminus and "down" for Java's SpringBoot), and

 * "warn": healthy, with some concerns.

 The value of the status field is case-insensitive and is tightly
 related with the HTTP response code returned by the health endpoint.
 For "pass" status, HTTP response code in the 2xx-3xx range MUST be
 used. For "fail" status, HTTP response code in the 4xx-5xx range
 MUST be used. In case of the "warn" status, endpoints MUST return
 HTTP status in the 2xx-3xx range, and additional information SHOULD
 be provided, utilizing optional fields of the response.

 A health endpoint is only meaningful in the context of the component
 it indicates the health of. It has no other meaning or purpose. As
 such, its health is a conduit to the health of the component.
 Clients SHOULD assume that the HTTP response code returned by the
 health endpoint is applicable to the entire component (e.g. a larger
 API or a microservice). This is compatible with the behavior that
 current infrastructural tooling expects: load-balancers, service
 discoveries and others, utilizing health-checks.

3.2. version

 version: (optional) public version of the service.

https://datatracker.ietf.org/doc/html/rfc8259

Nadareishvili Expires 22 May 2021 [Page 4]

Internet-Draft Health Check Response Format for HTTP AP November 2020

3.3. releaseId

 releaseId: (optional) in well-designed APIs, backwards-compatible
 changes in the service should not update a version number. APIs
 usually change their version number as infrequently as possible, to
 preserve stable interface. However, implementation of an API may
 change much more frequently, which leads to the importance of having
 separate "release number" or "releaseId" that is different from the
 public version of the API.

3.4. notes

 notes: (optional) array of notes relevant to current state of health

3.5. output

 output: (optional) raw error output, in case of "fail" or "warn"
 states. This field SHOULD be omitted for "pass" state.

3.6. checks

 checks (optional) is an object that provides detailed health statuses
 of additional downstream systems and endpoints which can affect the
 overall health of the main API. Please refer to the "The Checks
 Object" section for more information.

3.7. links

 links (optional) is an object containing link relations and URIs
 [RFC3986] for external links that MAY contain more information about
 the health of the endpoint. All values of this object SHALL be URIs.
 Keys MAY also be URIs. Per web-linking standards [RFC8288] a link
 relationship SHOULD either be a common/registered one or be indicated
 as a URI, to avoid name clashes. If a "self" link is provided, it
 MAY be used by clients to check health via HTTP response code, as
 mentioned above.

3.8. serviceId

 serviceId (optional) is a unique identifier of the service, in the
 application scope.

3.9. description

 description (optional) is a human-friendly description of the
 service.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc8288

Nadareishvili Expires 22 May 2021 [Page 5]

Internet-Draft Health Check Response Format for HTTP AP November 2020

4. The Checks Object

 The "checks" object MAY have a number of unique keys, one for each
 logical downstream dependency or sub-component. Since each sub-
 component may be backed by several nodes with varying health
 statuses, these keys point to arrays of objects. In case of a
 single-node sub-component (or if presence of nodes is not relevant),
 a single-element array SHOULD be used as the value, for consistency.

 The key identifying an element in the object SHOULD be a unique
 string within the details section. It MAY have two parts:
 "{componentName}:{measurementName}", in which case the meaning of the
 parts SHOULD be as follows:

 * componentName: (optional) human-readable name for the component.
 MUST not contain a colon, in the name, since colon is used as a
 separator.

 * measurementName: (optional) name of the measurement type (a data
 point type) that the status is reported for. MUST not contain a
 colon, in the name, since colon is used as a separator. The
 observation's name can be one of:

 - A pre-defined value from this spec. Pre-defined values
 include:

 o utilization

 o responseTime

 o connections

 o uptime

 - A common and standard term from a well-known source such as
 schema.org, IANA or microformats.

 - A URI that indicates extra semantics and processing rules that
 MAY be provided by a resource at the other end of the URI.
 URIs do not have to be dereferenceable, however. They are just
 a namespace, and the meaning of a namespace CAN be provided by
 any convenient means (e.g. publishing an RFC, Open API Spec
 document or a nicely printed book).

 On the value side of the equation, each "component details" object in
 the array SHOULD have at least one key, and MAY have any or none of
 the following object keys:

Nadareishvili Expires 22 May 2021 [Page 6]

Internet-Draft Health Check Response Format for HTTP AP November 2020

4.1. componentId

 componentId: (optional) is a unique identifier of an instance of a
 specific sub-component/dependency of a service. Multiple objects
 with the same componentID MAY appear in the details, if they are from
 different nodes.

4.2. componentType

 componentType: (optional) SHOULD be present if componentName is
 present. It's a type of the component and could be one of:

 * Pre-defined value from this spec. Pre-defined values include:

 - component

 - datastore

 - system

 * A common and standard term from a well-known source such as
 schema.org, IANA or microformats.

 * A URI that indicates extra semantics and processing rules that MAY
 be provided by a resource at the other end of the URI. URIs do
 not have to be dereferenceable, however. They are just a
 namespace, and the meaning of a namespace CAN be provided by any
 convenient means (e.g. publishing an RFC, Swagger document or a
 nicely printed book).

4.3. observedValue

 observedValue: (optional) could be any valid JSON value, such as:
 string, number, object, array or literal.

4.4. observedUnit

 observedUnit (optional) SHOULD be present if observedValue is
 present. Clarifies the unit of measurement in which observedUnit is
 reported, e.g. for a time-based value it is important to know whether
 the time is reported in seconds, minutes, hours or something else.
 To make sure unit is denoted by a well-understood name or an
 abbreviation, it SHOULD be one of:

 * A common and standard term from a well-known source such as
 schema.org, IANA, microformats, or a standards document such as
 [RFC3339].

https://datatracker.ietf.org/doc/html/rfc3339

Nadareishvili Expires 22 May 2021 [Page 7]

Internet-Draft Health Check Response Format for HTTP AP November 2020

 * A URI that indicates extra semantics and processing rules that MAY
 be provided by a resource at the other end of the URI. URIs do
 not have to be dereferenceable, however. They are just a
 namespace, and the meaning of a namespace CAN be provided by any
 convenient means (e.g. publishing an RFC, Swagger document or a
 nicely printed book).

4.5. status

 status (optional) has the exact same meaning as the top-level
 "output" element, but for the sub-component/downstream dependency
 represented by the details object.

4.6. affectedEndpoints

 affectedEndpoints (optional) is a JSON array containing URI Templates
 as defined by [RFC6570]. This field SHOULD be omitted if the
 "status" field is present and has value equal to "pass". A typical
 API has many URI endpoints. Most of the time we are interested in
 the overall health of the API, without diving into details. That
 said, sometimes operational and resilience middleware needs to know
 more details about the health of the API (which is why "checks"
 property provides details). In such cases, we often need to indicate
 which particular endpoints are affected by a particular check's
 troubles vs. other endpoints that may be fine.

4.7. time

 time (optional) is the date-time, in ISO8601 format, at which the
 reading of the observedValue was recorded. This assumes that the
 value can be cached and the reading typically doesn't happen in real
 time, for performance and scalability purposes.

4.8. output

 output (optional) has the exact same meaning as the top-level
 "output" element, but for the sub-component/downstream dependency
 represented by the details object. As is the case for the top-level
 element, this field SHOULD be omitted for "pass" state of a
 downstream dependency.

4.9. links

 links (optional) has the exact same meaning as the top-level "output"
 element, but for the sub-component/downstream dependency represented
 by the details object.

https://datatracker.ietf.org/doc/html/rfc6570

Nadareishvili Expires 22 May 2021 [Page 8]

Internet-Draft Health Check Response Format for HTTP AP November 2020

4.10. Additional Keys

 In addition to the above keys, additional user-defined keys MAY be
 included in the 'component details' object. Implementations MAY
 ignore any keys that are not part of the list of standard keys above.

5. Example Output

 GET /health HTTP/1.1
 Host: example.org
 Accept: application/health+json

 HTTP/1.1 200 OK
 Content-Type: application/health+json
 Cache-Control: max-age=3600
 Connection: close

 {
 "status": "pass",
 "version": "1",
 "releaseId": "1.2.2",
 "notes": [""],
 "output": "",
 "serviceId": "f03e522f-1f44-4062-9b55-9587f91c9c41",
 "description": "health of authz service",
 "checks": {
 "cassandra:responseTime": [
 {
 "componentId": "dfd6cf2b-1b6e-4412-a0b8-f6f7797a60d2",
 "componentType": "datastore",
 "observedValue": 250,
 "observedUnit": "ms",
 "status": "pass",
 "affectedEndpoints" : [
 "/users/{userId}",
 "/customers/{customerId}/status",
 "/shopping/{anything}"
],
 "time": "2018-01-17T03:36:48Z",
 "output": ""
 }
],
 "cassandra:connections": [
 {
 "componentId": "dfd6cf2b-1b6e-4412-a0b8-f6f7797a60d2",
 "componentType": "datastore",
 "observedValue": 75,
 "status": "warn",

Nadareishvili Expires 22 May 2021 [Page 9]

Internet-Draft Health Check Response Format for HTTP AP November 2020

 "time": "2018-01-17T03:36:48Z",
 "output": "",
 "links": {
 "self": "http://api.example.com/dbnode/dfd6cf2b/health"
 }
 }
],
 "uptime": [
 {
 "componentType": "system",
 "observedValue": 1209600.245,
 "observedUnit": "s",
 "status": "pass",
 "time": "2018-01-17T03:36:48Z"
 }
],
 "cpu:utilization": [
 {
 "componentId": "6fd416e0-8920-410f-9c7b-c479000f7227",
 "node": 1,
 "componentType": "system",
 "observedValue": 85,
 "observedUnit": "percent",
 "status": "warn",
 "time": "2018-01-17T03:36:48Z",
 "output": ""
 },
 {
 "componentId": "6fd416e0-8920-410f-9c7b-c479000f7227",
 "node": 2,
 "componentType": "system",
 "observedValue": 85,
 "observedUnit": "percent",
 "status": "warn",
 "time": "2018-01-17T03:36:48Z",
 "output": ""
 }
],
 "memory:utilization": [
 {
 "componentId": "6fd416e0-8920-410f-9c7b-c479000f7227",
 "node": 1,
 "componentType": "system",
 "observedValue": 8.5,
 "observedUnit": "GiB",
 "status": "warn",
 "time": "2018-01-17T03:36:48Z",
 "output": ""

Nadareishvili Expires 22 May 2021 [Page 10]

Internet-Draft Health Check Response Format for HTTP AP November 2020

 },
 {
 "componentId": "6fd416e0-8920-410f-9c7b-c479000f7227",
 "node": 2,
 "componentType": "system",
 "observedValue": 5500,
 "observedUnit": "MiB",
 "status": "pass",
 "time": "2018-01-17T03:36:48Z",
 "output": ""
 }
]
 },
 "links": {
 "about": "http://api.example.com/about/authz",
 "http://api.x.io/rel/thresholds":
 "http://api.x.io/about/authz/thresholds"
 }
 }

6. Security Considerations

 Clients need to exercise care when reporting health information.
 Malicious actors could use this information for orchestrating
 attacks. In some cases, the health check endpoints may need to be
 authenticated and institute role-based access control.

7. IANA Considerations

 The media type for health check response is application/health+json.

 * Media type name: application

 * Media subtype name: health+json

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary

 * Security considerations: Health+JSON shares security issues common
 to all JSON content types. See RFC 8259 Section #12 for
 additional information.

 Health+JSON allows utilization of Uniform Resource Identifiers
 (URIs) and as such shares security issues common to URI usage.
 See RFC 3986 Section #7 for additional information.

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc3986

Nadareishvili Expires 22 May 2021 [Page 11]

Internet-Draft Health Check Response Format for HTTP AP November 2020

 Since health+json can carry wide variety of data, some data may
 require privacy or integrity services. This specification does
 not prescribe any specific solution and assumes that concrete
 implementations will utilize common, trusted approaches such as
 TLS/HTTPS, OAuth2 etc.

 * Interoperability considerations: None

 * Published specification: this RFC draft

 * Applications which use this media: Various

 * Fragment identifier considerations: Health+JSON follows RFC6901
 for implementing URI Fragment Identification standard to JSON
 content types.

 * Restrictions on usage: None

 * Additional information:

 1. Deprecated alias names for this type: n/a

 2. Magic number(s): n/a

 3. File extension(s): .json

 4. Macintosh file type code: TEXT

 5. Object Identifiers: n/a

 * General Comments:

 * Person to contact for further information:

 1. Name: Irakli Nadareishvili

 2. Email: irakli@gmail.com

 * Intended usage: Common

 * Author/Change controller: Irakli Nadareishvili

8. Acknowledgements

 Thanks to Mike Amundsen, Erik Wilde, Justin Bachorik and Randall
 Randall for their suggestions and feedback. And to Mark Nottingham
 for blueprint for authoring RFCs easily.

https://datatracker.ietf.org/doc/html/rfc6901

Nadareishvili Expires 22 May 2021 [Page 12]

Internet-Draft Health Check Response Format for HTTP AP November 2020

9. Creating and Serving Health Responses

 When making an health check endpoint available, there are a few
 things to keep in mind:

 * A health response endpoint is best located at a memorable and
 commonly-used URI, such as "health" because it will help self-
 discoverability by clients.

 * Health check responses can be personalized. For example, you
 could advertise different URIs, and/or different kinds of link
 relations, to afford different clients access to additional health
 check information.

 * Health check responses SHOULD be assigned a freshness lifetime
 (e.g., "Cache-Control: max-age=3600") so that clients can
 determine how long they could cache them, to avoid overly frequent
 fetching and unintended DDOS-ing of the service. Any method of
 cache lifetime negotiation provided by HTTP spec is acceptable
 (e.g. ETags are just fine).

 * Custom link relation types, as well as the URIs for variables,
 SHOULD lead to documentation for those constructs.

10. Consuming Health Check Responses

 Clients might use health check responses in a variety of ways.

 Note that the health check response is a "living" document; links
 from the health check response MUST NOT be assumed to be valid beyond
 the freshness lifetime of the health check response, as per HTTP's
 caching model [RFC7234].

 As a result, clients ought to cache the health check response (as per
 [RFC7234]), to avoid fetching it before every interaction (which
 would otherwise be required).

 Likewise, a client encountering a 404 (Not Found) on a link is
 encouraged to obtain a fresh copy of the health check response, to
 assure that it is up-to-date.

11. References

11.1. Normative References

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234

Nadareishvili Expires 22 May 2021 [Page 13]

Internet-Draft Health Check Response Format for HTTP AP November 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <https://www.rfc-editor.org/info/rfc6570>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

11.2. Informative References

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230

Nadareishvili Expires 22 May 2021 [Page 14]

Internet-Draft Health Check Response Format for HTTP AP November 2020

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

Author's Address

 Irakli Nadareishvili
 114 5th Avenue
 New York,
 United States of America

 Email: irakli@gmail.com
 URI: http://www.freshblurbs.com

https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
http://www.freshblurbs.com

Nadareishvili Expires 22 May 2021 [Page 15]

