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Abstract

An Authenticated Encryption with Associated Data (AEAD) algorithm

provides confidentiality and integrity. Excessive use of the same

key can give an attacker advantages in breaking these properties.

This document provides simple guidance for users of common AEAD

functions about how to limit the use of keys in order to bound the

advantage given to an attacker. It considers limits in both single-

and multi-user settings.
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1. Introduction

An Authenticated Encryption with Associated Data (AEAD) algorithm

provides confidentiality and integrity. [RFC5116] specifies an AEAD

as a function with four inputs - secret key, nonce, plaintext, and

optional associated data - that produces ciphertext output and error

code indicating success or failure. The ciphertext is typically

composed of the encrypted plaintext bytes and an authentication tag.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info


The generic AEAD interface does not describe usage limits. Each AEAD

algorithm does describe limits on its inputs, but these are

formulated as strict functional limits, such as the maximum length

of inputs, which are determined by the properties of the underlying

AEAD composition. Degradation of the security of the AEAD as a

single key is used multiple times is not given a thorough treatment.

These limits might also be influenced by the number of "users" of a

given key. In the traditional setting, there is one key shared

between a two parties. Any limits on the maximum length of inputs or

encryption operations apply to that single key. The attacker's goal

is to break security (confidentiality or integrity) of that specific

key. However, in practice, there are often many users with

independent keys. In this "multi-user" setting, the attacker is

assumed to have done some offline work to help break security of

single key (or user), where the attacker cannot choose which key is

attacked. As a result, AEAD algorithm limits may depend on offline

work and the number of users. However, given that a multi-user

attacker does not target any specific user, acceptable advantages

may differ from that of the single-user setting.

The number of times a single pair of key and nonce can be used might

also be relevant to security. For some algorithms, such as

AEAD_AES_128_GCM or AEAD_AES_256_GCM, this limit is 1 and using the

same pair of key and nonce has serious consequences for both

confidentiality and integrity; see [NonceDisrespecting]. Nonce-reuse

resistant algorithms like AEAD_AES_128_GCM_SIV can tolerate a

limited amount of nonce reuse.

It is good practice to have limits on how many times the same key

(or pair of key and nonce) are used. Setting a limit based on some

measurable property of the usage, such as number of protected

messages or amount of data transferred, ensures that it is easy to

apply limits. This might require the application of simplifying

assumptions. For example, TLS 1.3 specifies limits on the number of

records that can be protected, using the simplifying assumption that

records are the same size; see Section 5.5 of [TLS].

Currently, AEAD limits and usage requirements are scattered among

peer-reviewed papers, standards documents, and other RFCs.

Determining the correct limits for a given setting is challenging as

papers do not use consistent labels or conventions, and rarely apply

any simplifications that might aid in reaching a simple limit.

The intent of this document is to collate all relevant information

about the proper usage and limits of AEAD algorithms in one place.

This may serve as a standard reference when considering which AEAD

algorithm to use, and how to use it.
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2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Notation

This document defines limitations in part using the quantities

below.

Symbol Description

n Number of bits per block

k Size of the AEAD key (in bits)

t Size of the authentication tag (in bits)

l Length of each message (in blocks)

s Total plaintext length in all messages (in blocks)

q Number of user encryption attempts

v Number of attacker forgery attempts

p Adversary attack probability

o
Offline adversary work (in number of encryption and

decryption queries; multi-user setting only)

u Number of users or keys (multi-user setting only)

Table 1

For each AEAD algorithm, we define the confidentiality and integrity

advantage roughly as the advantage an attacker has in breaking the

corresponding security property for the algorithm. Specifically:

Confidentiality advantage (CA): The advantage of an attacker

succeeding in breaking the confidentiality properties of the

AEAD. In this document, the definition of confidentiality

advantage is the increase in the probability that an attacker is

able to successfully distinguish an AEAD ciphertext from the

output of a random function.

Integrity advantage (IA): The probability of an attacker

succeeding in breaking the integrity properties of the AEAD. In

this document, the definition of integrity advantage is the

probability that an attacker is able to forge a ciphertext that

will be accepted as valid.

Each application requires a different application of limits in order

to keep CA and IA sufficiently small. For instance, TLS aims to keep

CA below 2^-60 and IA below 2^-57. See [TLS], Section 5.5.
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4. Calculating Limits

Once an upper bound on CA and IA are determined, this document

defines a process for determining two overall limits:

Confidentiality limit (CL): The number of bytes of plaintext and

maybe authenticated additional data (AAD) an application can

encrypt before giving the adversary a non-negligible CA.

Integrity limit (IL): The number of bytes of ciphertext and maybe

authenticated additional data (AAD) an application can process,

either successfully or not, before giving the adversary a non-

negligible IA.

For an AEAD based on a block function, it is common for these limits

to be expressed instead in terms of the number of blocks rather than

bytes. Furthermore, it might be more appropriate to track the number

of messages rather than track bytes. Therefore, the guidance is

usually based on the total number of blocks processed (s). To aid in

calculating limits for message-based protocols, a formulation of

limits that includes a maximum message size (l) is included.

All limits are based on the total number of messages, either the

number of protected messages (q) or the number of forgery attempts

(v); which correspond to CL and IL respectively.

Limits are then derived from those bounds using a target attacker

probability. For example, given a confidentiality advantage of v *

(8l / 2^106) and attacker success probability of p, the algorithm

remains secure, i.e., the adversary's advantage does not exceed the

probability of success, provided that v <= (p * 2^106) / 8l. In

turn, this implies that v <= (p * 2^106) / 8l is the corresponding

limit.

5. Single-User AEAD Limits

This section summarizes the confidentiality and integrity bounds and

limits for modern AEAD algorithms used in IETF protocols, including:

AEAD_AES_128_GCM [RFC5116], AEAD_AES_256_GCM [RFC5116],

AEAD_AES_128_CCM [RFC5116], AEAD_CHACHA20_POLY1305 [RFC8439],

AEAD_AES_128_CCM_8 [RFC6655].

The CL and IL values bound the total number of encryption and

forgery queries (q and v). Alongside each value, we also specify

these bounds.

5.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM

The CL and IL values for AES-GCM are derived in [AEBounds] and

summarized below. For this AEAD, n = 128 and t = 128 [GCM]. In this
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example, the length s is the sum of AAD and plaintext, as described

in [GCMProofs].

5.1.1. Confidentiality Limit

This implies the following usage limit:

Which, for a message-based protocol with s <= q * l, if we assume

that every packet is size l, produces the limit:

5.1.2. Integrity Limit

This implies the following limit:

5.2. AEAD_CHACHA20_POLY1305

The only known analysis for AEAD_CHACHA20_POLY1305 

[ChaCha20Poly1305Bounds] combines the confidentiality and integrity

limits into a single expression, covered below:

This advantage is a tight reduction based on the underlying Poly1305

PRF [Poly1305]. It implies the following limit:

5.3. AEAD_AES_128_CCM

The CL and IL values for AEAD_AES_128_CCM are derived from [CCM-

ANALYSIS] and specified in the QUIC-TLS mapping specification [I-

D.ietf-quic-tls]. This analysis uses the total number of underlying

block cipher operations to derive its bound. For CCM, this number is

the sum of: the length of the associated data in blocks, the length

of the ciphertext in blocks, the length of the plaintext in blocks,

plus 1.

In the following limits, this is simplified to a value of twice the

length of the packet in blocks, i.e., 2l represents the effective

¶

CA <= ((s + q + 1)^2) / 2^129¶

¶

q + s <= p^(1/2) * 2^(129/2) - 1¶

¶

q <= (p^(1/2) * 2^(129/2) - 1) / (l + 1)¶

IA <= 2 * (v * (l + 1)) / 2^128¶

¶

v <= (p * 2^127) / (l + 1)¶

¶

CA <= v * ((8 * l) / 2^106)

IA <= v * ((8 * l) / 2^106)

¶

¶

v <= (p * 2^103) / l¶

¶



length, in number of block cipher operations, of a message with l

blocks. This simplification is based on the observation that common

applications of this AEAD carry only a small amount of associated

data compared to ciphertext. For example, QUIC has 1 to 3 blocks of

AAD.

For this AEAD, n = 128 and t = 128.

5.3.1. Confidentiality Limit

This implies the following limit:

5.3.2. Integrity Limit

This implies the following limit:

In a setting where v or q is sufficiently large, v is negligible

compared to (2l * (v + q))^2, so this this can be simplified to:

5.4. AEAD_AES_128_CCM_8

The analysis in [CCM-ANALYSIS] also applies to this AEAD, but the

reduced tag length of 64 bits changes the integrity limit

calculation considerably.

This results in reducing the limit on v by a factor of 2^64.

6. Multi-User AEAD Limits

In the public-key, multi-user setting, [MUSecurity] proves that the

success probability in attacking one of many independently users is

bounded by the success probability of attacking a single user

multiplied by the number of users present. Each user is assumed to

¶

¶

CA <= (2l * q)^2 / 2^n

   <= (2l * q)^2 / 2^128

¶

¶

q <= sqrt((p * 2^126) / l^2)¶

IA <= v / 2^t + (2l * (v + q))^2 / 2^n

   <= v / 2^128 + (2l * (v + q))^2 / 2^128

¶

¶

v + (2l * (v + q))^2 <= p * 2^128¶

¶

v + q <= p^(1/2) * 2^63 / l¶

¶

IA <= v / 2^t + (2l * (v + q))^2 / 2^n

   <= v / 2^64 + (2l * (v + q))^2 / 2^128

¶

¶

v * 2^64 + (2l * (v + q))^2 <= p * 2^128¶



have an independent and identically distributed key, though some may

share nonces with some very small probability. Absent concrete

multi-user bounds, this means the attacker advantage in the multi-

user setting is the product of the single-user advantage and the

number of users.

This section summarizes the confidentiality and integrity bounds and

limits for the same algorithms as in Section 5, except in the multi-

user setting. The CL and IL values bound the total number of

encryption and forgery queries (q and v). Alongside each value, we

also specify these bounds.

6.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM

Concrete multi-user bounds for AEAD_AES_128_GCM and AEAD_AES_256_GCM

exist due to [GCM-MU]. AES-GCM without nonce randomization is also

discussed in [GCM-MU], though this section does not include those

results as they do not apply to protocols such as TLS 1.3 [RFC8446].

6.1.1. Confidentiality Limit

This implies the following limit:

6.1.2. Integrity Limit

When k = 128, the last term in this inequality dominates. Thus, we

can simplify this to:

This implies the following limit:

When k = 256, the second and fourth terms in the CA inequality

dominate. Thus, we can simplify this to:

This implies the following limit:

¶

¶

¶

CA <= ((v + q) * l)^2 / (u * 2^128)¶

¶

v + q <= sqrt(p * u * 2^128) / l¶

CA <= (1 / 2^1024) + ((2 * (v + q)) / 2^256)

        + ((2 * o * (v + q)) / 2^(k + 128))

        + (128 * ((v + q) + ((v + q) * l)) / 2^k)

¶

¶

CA <= (128 * ((v + q) + ((v + q) * l)) / 2^128)¶

¶

v + q <= (p * 2^128) / (128 * (l + 1))¶

¶

CA <= ((2 * (v + q)) / 2^256)

        + (128 * ((v + q) + ((v + q) * l)) / 2^256)

¶

¶



6.2. AEAD_CHACHA20_POLY1305, AEAD_AES_128_CCM, and AEAD_AES_128_CCM_8

There are currently no concrete multi-user bounds for

AEAD_CHACHA20_POLY1305, AEAD_AES_128_CCM, or AEAD_AES_128_CCM_8.

Thus, to account for the additional factor u, i.e., the number of

users, each p term in the confidentiality and integrity limits is

replaced with p / u.

6.2.1. AEAD_CHACHA20_POLY1305

The combined confidentiality and integrity limit for

AEAD_CHACHA20_POLY1305 is as follows.

6.2.2. AEAD_AES_128_CCM and AEAD_AES_128_CCM_8

The integrity limit for AEAD_AES_128_CCM is as follows.

Likewise, the integrity limit for AEAD_AES_128_CCM_8 is as follows.

7. Security Considerations

Many of the formulae in this document depend on simplifying

assumptions that are not universally applicable. When using this

document to set limits, it is necessary to validate all these

assumptions for the setting in which the limits might apply. In most

cases, the goal is to use assumptions that result in setting a more

conservative limit, but this is not always the case.

8. IANA Considerations

This document does not make any request of IANA.

v + q <= (p * 2^255) / ((64 * l) + 65)¶

¶

¶

v <= ((p / u) * 2^106) / 8l

  <= (p * 2^103) / (l * u)

¶

¶

v + q <= (p / u)^(1/2) * 2^63 / l¶

¶

v * 2^64 + (2l * (v + q))^2 <= (p / u) * 2^128¶

¶

¶
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