
Workgroup: Network Working Group

Internet-Draft: draft-irtf-cfrg-aead-limits-03

Published: 12 July 2021

Intended Status: Informational

Expires: 13 January 2022

Authors: F. Günther

ETH Zurich

M. Thomson

Mozilla

C.A. Wood

Cloudflare

Usage Limits on AEAD Algorithms

Abstract

An Authenticated Encryption with Associated Data (AEAD) algorithm

provides confidentiality and integrity. Excessive use of the same

key can give an attacker advantages in breaking these properties.

This document provides simple guidance for users of common AEAD

functions about how to limit the use of keys in order to bound the

advantage given to an attacker. It considers limits in both single-

and multi-key settings.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/cfrg/draft-irtf-cfrg-aead-limits.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/cfrg/draft-irtf-cfrg-aead-limits
https://github.com/cfrg/draft-irtf-cfrg-aead-limits
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Requirements Notation

3. Notation

4. Calculating Limits

5. Single-Key AEAD Limits

5.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM

5.1.1. Confidentiality Limit

5.1.2. Integrity Limit

5.2. AEAD_CHACHA20_POLY1305

5.3. AEAD_AES_128_CCM

5.3.1. Confidentiality Limit

5.3.2. Integrity Limit

5.4. AEAD_AES_128_CCM_8

5.5. Single-Key Examples

6. Multi-Key AEAD Limits

6.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM

6.1.1. Authenticated Encryption Security Limit

6.1.2. Confidentiality Limit

6.1.3. Integrity Limit

6.2. AEAD_CHACHA20_POLY1305, AEAD_AES_128_CCM, and

AEAD_AES_128_CCM_8

6.2.1. AEAD_CHACHA20_POLY1305

6.2.2. AEAD_AES_128_CCM and AEAD_AES_128_CCM_8

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction

An Authenticated Encryption with Associated Data (AEAD) algorithm

provides confidentiality and integrity. [RFC5116] specifies an AEAD

as a function with four inputs -- secret key, nonce, plaintext,

associated data (of which plaintext and associated data can

optionally be zero-length) -- that produces ciphertext output and an

¶

https://trustee.ietf.org/license-info

error code indicating success or failure. The ciphertext is

typically composed of the encrypted plaintext bytes and an

authentication tag.

The generic AEAD interface does not describe usage limits. Each AEAD

algorithm does describe limits on its inputs, but these are

formulated as strict functional limits, such as the maximum length

of inputs, which are determined by the properties of the underlying

AEAD composition. Degradation of the security of the AEAD as a

single key is used multiple times is not given a thorough treatment.

These limits might also be influenced by the number of "users" of a

given key. In the traditional setting, there is one key shared

between two parties. Any limits on the maximum length of inputs or

encryption operations apply to that single key. The attacker's goal

is to break security (confidentiality or integrity) of that specific

key. However, in practice, there are often many users with

independent keys. This multi-key security setting, often referred to

as the multi-user setting in the academic literature, hence

considers an attacker's advantage in breaking security of any of

these many keys, further assuming the attacker may have done some

offline work to help break security. As a result, AEAD algorithm

limits may depend on offline work and the number of keys. However,

given that a multi-key attacker does not target any specific key,

acceptable advantages may differ from that of the single-key

setting.

The number of times a single pair of key and nonce can be used might

also be relevant to security. For some algorithms, such as

AEAD_AES_128_GCM or AEAD_AES_256_GCM, this limit is 1 and using the

same pair of key and nonce has serious consequences for both

confidentiality and integrity; see [NonceDisrespecting]. Nonce-reuse

resistant algorithms like AEAD_AES_128_GCM_SIV can tolerate a

limited amount of nonce reuse.

It is good practice to have limits on how many times the same key

(or pair of key and nonce) are used. Setting a limit based on some

measurable property of the usage, such as number of protected

messages or amount of data transferred, ensures that it is easy to

apply limits. This might require the application of simplifying

assumptions. For example, TLS 1.3 specifies limits on the number of

records that can be protected, using the simplifying assumption that

records are the same size; see Section 5.5 of [TLS].

Currently, AEAD limits and usage requirements are scattered among

peer-reviewed papers, standards documents, and other RFCs.

Determining the correct limits for a given setting is challenging as

papers do not use consistent labels or conventions, and rarely apply

any simplifications that might aid in reaching a simple limit.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8446#section-5.5

The intent of this document is to collate all relevant information

about the proper usage and limits of AEAD algorithms in one place.

This may serve as a standard reference when considering which AEAD

algorithm to use, and how to use it.

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Notation

This document defines limitations in part using the quantities

below.

Symbol Description

n AEAD block length (in bits)

k AEAD key length (in bits)

r AEAD nonce length (in bits)

t Size of the authentication tag (in bits)

l Maximum length of each message (in blocks)

s Total plaintext length in all messages (in blocks)

q Number of protected messages (AEAD encryption invocations)

v
Number of attacker forgery attempts (failed AEAD decryption

invocations)

p Upper bound on adversary attack probability

o
Offline adversary work (in number of encryption and

decryption queries; multi-key setting only)

u Number of keys (multi-key setting only)

B
Maximum number of blocks encrypted by any key (multi-key

setting only)

Table 1

For each AEAD algorithm, we define the (passive) confidentiality and

(active) integrity advantage roughly as the advantage an attacker

has in breaking the corresponding classical security property for

the algorithm. A passive attacker can query ciphertexts for

arbitrary plaintexts. An active attacker can additionally query

plaintexts for arbitrary ciphertexts. Moreover, we define the

combined authenticated encryption advantage guaranteeing both

confidentiality and integrity against an active attacker.

Specifically:

Confidentiality advantage (CA): The probability of a passive

attacker succeeding in breaking the confidentiality properties

(IND-CPA) of the AEAD scheme. In this document, the definition of

¶

¶

¶

¶

*

confidentiality advantage roughly is the probability that an

attacker successfully distinguishes the ciphertext outputs of the

AEAD scheme from the outputs of a random function.

Integrity advantage (IA): The probability of a active attacker

succeeding in breaking the integrity properties (INT-CTXT) of the

AEAD scheme. In this document, the definition of integrity

advantage roughly is the probability that an attacker is able to

forge a ciphertext that will be accepted as valid.

Authenticated Encryption advantage (AEA): The probability of a

active attacker succeeding in breaking the authenticated-

encryption properties of the AEAD scheme. In this document, the

definition of authenticated encryption advantage roughly is the

probability that an attacker successfully distinguishes the

ciphertext outputs of the AEAD scheme from the outputs of a

random function or is able to forge a ciphertext that will be

accepted as valid.

See [AEComposition], [AEAD] for the formal definitions of and

relations between passive confidentiality (IND-CPA), ciphertext

integrity (INT-CTXT), and authenticated encryption security (AE).

The authenticated encryption advantage subsumes, and can be derived

as the combination of, both CA and IA:

Each application requires an individual determination of limits in

order to keep CA and IA sufficiently small. For instance, TLS aims

to keep CA below 2 and IA below 2 in the single-key setting; see

Section 5.5 of [TLS].

4. Calculating Limits

Once upper bounds on CA, IA, or AEA are determined, this document

defines a process for determining three overall operational limits:

Confidentiality limit (CL): The number of messages an application

can encrypt before giving the adversary a confidentiality

advantage higher than CA.

Integrity limit (IL): The number ciphertexts an application can

decrypt, either successfully or not, before giving the adversary

an integrity advantage higher than IA.

Authenticated encryption limit (AEL): The combined number of

messages and number of ciphertexts an application can encrypt or

¶

*

¶

*

¶

¶

CA <= AEA

IA <= AEA

AEA <= CA + IA

¶

-60 -57

¶

¶

*

¶

*

¶

*

https://rfc-editor.org/rfc/rfc8446#section-5.5

decrypt before giving the adversary an authenticated encryption

advantage higher than AEA.

When limits are expressed as a number of messages an application can

encrypt or decrypt, this requires assumptions about the size of

messages and any authenticated additional data (AAD). Limits can

instead be expressed in terms of the number of bytes, or blocks, of

plaintext and maybe AAD in total.

To aid in translating between message-based and byte/block-based

limits, a formulation of limits that includes a maximum message size

(l) and the AEAD schemes' block length in bits (n) is provided.

All limits are based on the total number of messages, either the

number of protected messages (q) or the number of forgery attempts

(v); which correspond to CL and IL respectively.

Limits are then derived from those bounds using a target attacker

probability. For example, given an integrity advantage of IA = v *

(8l / 2^106) and a targeted maximum attacker success probability of

IA = p, the algorithm remains secure, i.e., the adversary's

advantage does not exceed the targeted probability of success,

provided that v <= (p * 2^106) / 8l. In turn, this implies that v <=

(p * 2^103) / l is the corresponding limit.

To apply these limits, implementations can count the number of

messages that are protected or rejected against the determined

limits (q and v respectively). This requires that messages cannot

exceed the maximum message size (l) that is chosen.

This analysis assumes a message-based approach to setting limits.

Implementations that use byte counting rather than message counting

could use a maximum message size (l) of one to determine a limit for

q that can be applied with byte counting. This results in

attributing per-message overheads to every byte, so the resulting

limit could be significantly lower than necessary. Actions, like

rekeying, that are taken to avoid the limit might occur more often

as a result.

5. Single-Key AEAD Limits

This section summarizes the confidentiality and integrity bounds and

limits for modern AEAD algorithms used in IETF protocols, including:

AEAD_AES_128_GCM [RFC5116], AEAD_AES_256_GCM [RFC5116],

AEAD_AES_128_CCM [RFC5116], AEAD_CHACHA20_POLY1305 [RFC8439],

AEAD_AES_128_CCM_8 [RFC6655].

The CL and IL values bound the total number of encryption and

forgery queries (q and v). Alongside each value, we also specify

these bounds.

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM

The CL and IL values for AES-GCM are derived in [AEBounds] and

summarized below. For this AEAD, n = 128 and t = 128 [GCM]. In this

example, the length s is the sum of AAD and plaintext, as described

in [GCMProofs].

5.1.1. Confidentiality Limit

This implies the following usage limit:

Which, for a message-based protocol with s <= q * l, if we assume

that every packet is size l, produces the limit:

5.1.2. Integrity Limit

This implies the following limit:

5.2. AEAD_CHACHA20_POLY1305

The only known analysis for AEAD_CHACHA20_POLY1305

[ChaCha20Poly1305Bounds] combines the confidentiality and integrity

limits into a single expression, covered below:

This advantage is a tight reduction based on the underlying Poly1305

PRF [Poly1305]. It implies the following limit:

5.3. AEAD_AES_128_CCM

The CL and IL values for AEAD_AES_128_CCM are derived from [CCM-

ANALYSIS] and specified in the QUIC-TLS mapping specification [I-

D.ietf-quic-tls]. This analysis uses the total number of underlying

block cipher operations to derive its bound. For CCM, this number is

the sum of: the length of the associated data in blocks, the length

¶

CA <= ((s + q + 1)^2) / 2^129¶

¶

q + s <= p^(1/2) * 2^(129/2) - 1¶

¶

q <= (p^(1/2) * 2^(129/2) - 1) / (l + 1)¶

IA <= 2 * (v * (l + 1)) / 2^128¶

¶

v <= (p * 2^127) / (l + 1)¶

¶

CA <= v * ((8 * l) / 2^106)

IA <= v * ((8 * l) / 2^106)

¶

¶

v <= (p * 2^103) / l¶

of the ciphertext in blocks, the length of the plaintext in blocks,

plus 1.

In the following limits, this is simplified to a value of twice the

length of the packet in blocks, i.e., 2l represents the effective

length, in number of block cipher operations, of a message with l

blocks. This simplification is based on the observation that common

applications of this AEAD carry only a small amount of associated

data compared to ciphertext. For example, QUIC has 1 to 3 blocks of

AAD.

For this AEAD, n = 128 and t = 128.

5.3.1. Confidentiality Limit

This implies the following limit:

5.3.2. Integrity Limit

This implies the following limit:

In a setting where v or q is sufficiently large, v is negligible

compared to (2l * (v + q))^2, so this this can be simplified to:

5.4. AEAD_AES_128_CCM_8

The analysis in [CCM-ANALYSIS] also applies to this AEAD, but the

reduced tag length of 64 bits changes the integrity limit

calculation considerably.

This results in reducing the limit on v by a factor of 2^64.

¶

¶

¶

CA <= (2l * q)^2 / 2^n

 <= (2l * q)^2 / 2^128

¶

¶

q <= sqrt((p * 2^126) / l^2)¶

IA <= v / 2^t + (2l * (v + q))^2 / 2^n

 <= v / 2^128 + (2l * (v + q))^2 / 2^128

¶

¶

v + (2l * (v + q))^2 <= p * 2^128¶

¶

v + q <= p^(1/2) * 2^63 / l¶

¶

IA <= v / 2^t + (2l * (v + q))^2 / 2^n

 <= v / 2^64 + (2l * (v + q))^2 / 2^128

¶

¶

v * 2^64 + (2l * (v + q))^2 <= p * 2^128¶

5.5. Single-Key Examples

An example protocol might choose to aim for a single-key CA and IA

that is at most 2 . If the messages exchanged in the protocol are

at most a common Internet MTU of around 1500 bytes, then a value for

l might be set to 2 . The values in Table 2 show values of q and v

that might be chosen under these conditions.

AEAD Maximum q Maximum v

AEAD_AES_128_GCM 2 2

AEAD_AES_256_GCM 2 2

AEAD_CHACHA20_POLY1305 n/a 2

AEAD_AES_128_CCM 2 2

AEAD_AES_128_CCM_8 2 2

Table 2: Example limits

AEAD_CHACHA20_POLY1305 provides no limit to q based on the provided

analysis.

The limit for q on AEAD_AES_128_CCM and AEAD_AES_128_CCM_8 is

reduced due to a need to reduce the value of q to ensure that IA

does not exceed the target. This assumes equal proportions for q and

v for AEAD_AES_128_CCM. AEAD_AES_128_CCM_8 in permits a much smaller

value of v due to the shorter tag, which permits a higher limit for

q.

Some protocols naturally limit v to 1, such as TCP-based variants of

TLS, which terminate sessions on decryption failure. If v is limited

to 1, q can be increased to 2 for both CCM AEADs.

6. Multi-Key AEAD Limits

In the multi-key setting, each user is assumed to have an

independent and identically distributed key, though nonces may be

re-used across users with some very small probability. The success

probability in attacking one of these many independent keys can be

generically bounded by the success probability of attacking a single

key multiplied by the number of keys present [MUSecurity], [GCM-MU].

Absent concrete multi-key bounds, this means the attacker advantage

in the multi-key setting is the product of the single-key advantage

and the number of keys.

This section summarizes the confidentiality and integrity bounds and

limits for the same algorithms as in Section 5 for the multi-key

setting. The CL and IL values bound the total number of encryption

and forgery queries (q and v). Alongside each value, we also specify

these bounds.

-50

7

¶

32.5 71

32.5 71

46

30 30

30.9 13

¶

¶

31 ¶

¶

¶

6.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM

Concrete multi-key bounds for AEAD_AES_128_GCM and AEAD_AES_256_GCM

exist due to Theorem 4.3 in [GCM-MU2], which covers protocols with

nonce randomization, like TLS 1.3 [TLS] and QUIC [RFC9001].

Results for AES-GCM without nonce randomization are captured by

Theorem 3.1 in [GCM-MU2], which apply to protocols such as TLS 1.2

[RFC5246]. This produces similar limits under most conditions.

For this AEAD, n = 128, t = 128, and r = 96; the key length is k =

128 or k = 256 for AEAD_AES_128_GCM and AEAD_AES_128_GCM

respectively.

6.1.1. Authenticated Encryption Security Limit

Protocols with nonce randomization have a limit of:

This implies the following limit:

This assumes that B is much larger than 100; that is, each user

enciphers significantly more than 1600 bytes of data. Otherwise, B

should be increased by 161 for AEAD_AES_128_GCM and by 97 for

AEAD_AES_256_GCM.

Protocols without nonce randomization have limits that are

essentially the same provided that p is not less than 2 , as the

simplified expression for AEA does not include the 2 term:

Without nonce randomization, B should be increased by an additional

0.5.

6.1.2. Confidentiality Limit

The confidentiality advantage is essentially dominated by the same

terms as the AE advantage for protocols with nonce randomization:

This implies the following limit:

As before, the limit without nonce randomization is:

¶

¶

¶

¶

AEA <= ((q+v)*l*B / 2^127) + (1 / 2^48)¶

¶

q + v <= (p * 2^127 - 2^79) / (l * B)¶

¶

-48

-48 ¶

q + v <= p * 2^127 / (l * B)¶

¶

¶

CA <= (q*l*B / 2^127) + (1 / 2^48)¶

¶

q <= (p * 2^127 - 2^79) / (l * B)¶

¶

6.1.3. Integrity Limit

There is currently no dedicated integrity multi-key bound available

for AEAD_AES_128_GCM and AEAD_AES_256_GCM. The AE limit can be used

to derive an integrity limit as:

Section 6.1.1 therefore contains the integrity limits.

6.2. AEAD_CHACHA20_POLY1305, AEAD_AES_128_CCM, and AEAD_AES_128_CCM_8

There are currently no concrete multi-key bounds for

AEAD_CHACHA20_POLY1305, AEAD_AES_128_CCM, or AEAD_AES_128_CCM_8.

Thus, to account for the additional factor u, i.e., the number of

keys, each p term in the confidentiality and integrity limits is

replaced with p / u.

6.2.1. AEAD_CHACHA20_POLY1305

The combined confidentiality and integrity limit for

AEAD_CHACHA20_POLY1305 is as follows.

6.2.2. AEAD_AES_128_CCM and AEAD_AES_128_CCM_8

The integrity limit for AEAD_AES_128_CCM is as follows.

Likewise, the integrity limit for AEAD_AES_128_CCM_8 is as follows.

7. Security Considerations

The different analyses of AEAD functions that this work is based

upon generally assume that the underlying primitives are ideal. For

example, that the pseudorandom function (PRF) or pseudorandom

permutation (PRP) the AEAD builds upon is indistinguishable from a

truly random function. Thus, the advantage estimates assume that the

attacker is not able to exploit a weakness in an underlying

primitive.

Many of the formulae in this document depend on simplifying

assumptions, from differing models, which means that results are not

q <= (p * 2^127) / (l * B)¶

¶

IA <= AEA¶

¶

¶

¶

v <= ((p / u) * 2^106) / 8l

 <= (p * 2^103) / (l * u)

¶

¶

v + q <= (p / u)^(1/2) * 2^63 / l¶

¶

v * 2^64 + (2l * (v + q))^2 <= (p / u) * 2^128¶

¶

[AEAD]

[AEBounds]

[AEComposition]

[CCM-ANALYSIS]

universally applicable. When using this document to set limits, it

is necessary to validate all these assumptions for the setting in

which the limits might apply. In most cases, the goal is to use

assumptions that result in setting a more conservative limit, but

this is not always the case. As an example of one such

simplification, this document defines v as the total number of

failed decryption queries (that is, failed forgery attempts),

whereas models usually count in v all forgery attempts.

The CA and IL values defined in this document are upper bounds based

on existing cryptographic research. Future analysis may introduce

tighter bounds. Applications SHOULD NOT assume these bounds are

rigid, and SHOULD accommodate changes. In particular, in two-party

communication, one participant cannot regard apparent overuse of a

key by other participants as being in error, when it could be that

the other participant has better information about bounds.

Note that the limits in this document apply to the adversary's

ability to conduct a single successful forgery. For some algorithms

and in some cases, an adversary's success probability in repeating

forgeries may be noticeably larger than that of the first forgery.

As an example, [MF05] describes such multiple forgery attacks in the

context of AES-GCM in more detail.

8. IANA Considerations

This document does not make any request of IANA.

9. References

9.1. Normative References

Rogaway, P., "Authenticated-Encryption with Associated-

Data", September 2002, <https://cseweb.ucsd.edu/~mihir/

papers/musu.pdf>.

Luykx, A. and K. Paterson, "Limits on Authenticated

Encryption Use in TLS", 8 March 2016, <http://

www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf>.

Bellare, M. and C. Namprempre, "Authenticated

Encryption: Relations among notions and analysis of the

generic composition paradigm", July 2007, <http://

cseweb.ucsd.edu/~mihir/papers/oem.pdf>.

Jonsson, J., "On the Security of CTR + CBC-MAC",

Selected Areas in Cryptography pp. 76-93, DOI

10.1007/3-540-36492-7_7, 2003, <https://doi.org/

10.1007/3-540-36492-7_7>.

¶

¶

¶

¶

https://cseweb.ucsd.edu/~mihir/papers/musu.pdf
https://cseweb.ucsd.edu/~mihir/papers/musu.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://cseweb.ucsd.edu/~mihir/papers/oem.pdf
http://cseweb.ucsd.edu/~mihir/papers/oem.pdf
https://doi.org/10.1007/3-540-36492-7_7
https://doi.org/10.1007/3-540-36492-7_7

[ChaCha20Poly1305Bounds]

[GCM]

[GCM-MU]

[GCM-MU2]

[GCMProofs]

[MUSecurity]

[Poly1305]

[RFC2119]

[RFC5116]

[RFC6655]

[RFC8174]

Procter, G., "A Security Analysis of the

Composition of ChaCha20 and Poly1305", 11 August 2014,

<https://eprint.iacr.org/2014/613.pdf>.

Dworkin, M., "Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC", NIST

Special Publication 800-38D, November 2007.

Bellare, M. and B. Tackmann, "The Multi-User Security of

Authenticated Encryption: AES-GCM in TLS 1.3", 27

November 2017, <https://eprint.iacr.org/2016/564.pdf>.

Hoang, V.T., Tessaro, S., and A. Thiruvengadam, "The

Multi-user Security of GCM, Revisited: Tight Bounds for

Nonce Randomization", 15 October 2018, <https://

eprint.iacr.org/2018/993.pdf>.

Iwata, T., Ohashi, K., and K. Minematsu, "Breaking and

Repairing GCM Security Proofs", 1 August 2012, <https://

eprint.iacr.org/2012/438.pdf>.

Bellare, M., Boldyreva, A., and S. Micali, "Public-Key

Encryption in a Multi-user Setting: Security Proofs and

Improvements", May 2000, <https://cseweb.ucsd.edu/~mihir/

papers/musu.pdf>.

Bernstein, D., "The Poly1305-AES Message-Authentication

Code", Fast Software Encryption pp. 32-49, DOI

10.1007/11502760_3, 2005, <https://doi.org/

10.1007/11502760_3>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/rfc/

rfc5116>.

McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for

Transport Layer Security (TLS)", RFC 6655, DOI 10.17487/

RFC6655, July 2012, <https://www.rfc-editor.org/rfc/

rfc6655>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

https://eprint.iacr.org/2014/613.pdf
https://eprint.iacr.org/2016/564.pdf
https://eprint.iacr.org/2018/993.pdf
https://eprint.iacr.org/2018/993.pdf
https://eprint.iacr.org/2012/438.pdf
https://eprint.iacr.org/2012/438.pdf
https://cseweb.ucsd.edu/~mihir/papers/musu.pdf
https://cseweb.ucsd.edu/~mihir/papers/musu.pdf
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11502760_3
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc6655
https://www.rfc-editor.org/rfc/rfc6655
https://www.rfc-editor.org/rfc/rfc8174

[RFC8439]

[I-D.ietf-quic-tls]

[MF05]

[NonceDisrespecting]

[RFC5246]

[RFC9001]

[TLS]

Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF

Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,

<https://www.rfc-editor.org/rfc/rfc8439>.

9.2. Informative References

Thomson, M. and S. Turner, "Using TLS to Secure

QUIC", Work in Progress, Internet-Draft, draft-ietf-quic-

tls-34, 14 January 2021, <https://datatracker.ietf.org/

doc/html/draft-ietf-quic-tls-34>.

McGrew, D.A. and S.R. Fluhrer, "Multiple forgery attacks

against Message Authentication Codes", 31 May 2005,

<https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-

Techniques/documents/BCM/Comments/CWC-GCM/multi-

forge-01.pdf>.

Bock, H., Zauner, A., Devlin, S., Somorovsky,

J., and P. Jovanovic, "Nonce-Disrespecting Adversaries --

Practical Forgery Attacks on GCM in TLS", 17 May 2016,

<https://eprint.iacr.org/2016/475.pdf>.

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/rfc/

rfc5246>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/rfc/rfc9001>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Authors' Addresses

Felix Günther

ETH Zurich

Email: mail@felixguenther.info

Martin Thomson

Mozilla

Email: mt@lowentropy.net

Christopher A. Wood

Cloudflare

https://www.rfc-editor.org/rfc/rfc8439
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-34
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/multi-forge-01.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/multi-forge-01.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/multi-forge-01.pdf
https://eprint.iacr.org/2016/475.pdf
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc5246
https://www.rfc-editor.org/rfc/rfc9001
https://www.rfc-editor.org/rfc/rfc8446
mailto:mail@felixguenther.info
mailto:mt@lowentropy.net

Email: caw@heapingbits.net

mailto:caw@heapingbits.net

	Usage Limits on AEAD Algorithms
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Notation
	3. Notation
	4. Calculating Limits
	5. Single-Key AEAD Limits
	5.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM
	5.1.1. Confidentiality Limit
	5.1.2. Integrity Limit

	5.2. AEAD_CHACHA20_POLY1305
	5.3. AEAD_AES_128_CCM
	5.3.1. Confidentiality Limit
	5.3.2. Integrity Limit

	5.4. AEAD_AES_128_CCM_8
	5.5. Single-Key Examples

	6. Multi-Key AEAD Limits
	6.1. AEAD_AES_128_GCM and AEAD_AES_256_GCM
	6.1.1. Authenticated Encryption Security Limit
	6.1.2. Confidentiality Limit
	6.1.3. Integrity Limit

	6.2. AEAD_CHACHA20_POLY1305, AEAD_AES_128_CCM, and AEAD_AES_128_CCM_8
	6.2.1. AEAD_CHACHA20_POLY1305
	6.2.2. AEAD_AES_128_CCM and AEAD_AES_128_CCM_8

	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

