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Abstract

Authenticated Encryption with Associated Data (AEAD) algorithms

provide confidentiality and integrity of data. The extensive use of

AEAD algorithms in various high-level applications has caused the

need for AEAD algorithms with additional properties and motivated

research in the area. This document gives definitions for the most

common of those properties intending to improve consistency in the

field.
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1. Introduction

An Authenticated Encryption with Associated Data (AEAD) algorithm is

an extension of authenticated encryption, which provides

¶



confidentiality for the plaintext to be encrypted and integrity for

the plaintext and some Associated Data (sometimes called Header).

AEAD algorithms are used in numerous applications and have become an

important field in cryptographic research.

1.1. Background

AEAD algorithms are formally defined in [RFC5116]. The main benefit

of AEAD algorithms is that they provide data confidentiality and

integrity and have a simple unified interface.

The importance of the AEAD algorithms is mainly explained by their

exploitation simplicity: they have a unified interface, easy-to-

understand security guarantees, and are much easier to implement

properly than MAC and encryption schemes separately. Therefore,

their embedding into high-level schemes and protocols is highly

transparent since, for example, there is no need for additional key

derivation procedures. Apart from that, when using the AEAD

algorithm, it is possible to reduce the key and state sizes and

improve the data processing speed. For instance, such algorithms are

mandatory for TLS 1.3 [RFC8446], IPsec ESP [RFC4303] [RFC8221], and

QUIC [RFC9000]. Hence, the research and standardization efforts in

the field are extremely active. Most AEAD algorithms usually come

with security guarantees, formal proofs, usage guidelines, and

reference implementations.

Even though providing core properties of AEAD algorithms is enough

for many applications, some environments require other unusual

cryptographic properties, which commonly require additional analysis

and research. With the growing number of such properties and

research papers, misunderstanding and confusion inevitably appear.

Some properties might be understood in different ways; for some,

only non-trivial formal security notions are provided, while others

require modification or extension of the standard AEAD interface to

support additional functionality. Therefore, the risk of misuse of

AEAD algorithms increases, which can lead to security issues.

1.2. Scope

In the following document, we provide a short overview of the most

common properties of AEAD algorithms by giving high-level

definitions of these properties in Section 4. The document aims to

improve clarity and establish a common language in the field.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

¶



BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. AEAD algorithms

This section gives a general definition of an AEAD algorithm

following [RFC5116].

Definition. An AEAD algorithm is defined by two operations, which

are authenticated encryption and authenticated decryption:

A deterministic operation of authenticated encryption has four

inputs, each a binary string: a secret key K of a fixed bit

length, a nonce N, associated data A, and a plaintext P. The

plaintext contains the data to be encrypted and authenticated,

and the associated data contains the data to be authenticated

only. Each nonce value must be unique in every distinct

invocation of the operation for any particular value of the key.

The authenticated encryption operation outputs a ciphertext C.

A deterministic operation of authenticated decryption has four

inputs, each a binary string: a secret key K of a fixed bit

length, a nonce N, associated data A, and a ciphertext C. The

operation verifies the integrity of the ciphertext and associated

data and decrypts the ciphertext. It returns a special symbol

FAIL if the inputs are not authentic; otherwise, the operation

returns a plaintext P.

For more details on AEAD definition, please refer to [RFC5116].

Throughout this document, by default, we will consider nonce-based

AEAD algorithms, which have an interface from the definition above,

and give no other restrictions on their structure. However, some

properties defined in the document apply only to particular classes

of such algorithms, like block cipher-based AEAD algorithms (such

algorithms use block cipher as a building block). If that is the

case, we explicitly point that out in the corresponding section.

Some other properties, on the contrary, are defined for algorithms

with extended or completely different interfaces. We address that

issue in Section 4.1.

We will call an AEAD algorithm secure if it provides such properties

as Confidentiality and Data integrity, defined in Section 4.2,

against any active nonce-respecting adversary. Even though we aim to

give high-level definitions, we sometimes use the advantage notion.

Specifically, we will use the Authenticated Encryption advantage

notion. We adopt the corresponding definition from 

[I-D.irtf-cfrg-aead-limits].
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Definition. Authenticated Encryption advantage is the probability of

an active adversary succeeding in breaking the authenticated-

encryption properties of the AEAD algorithm. In this document, the

definition of authenticated encryption advantage roughly is the

probability that an attacker successfully distinguishes the

ciphertext outputs of the AEAD scheme from the outputs of a random

function or is able to forge a ciphertext that will be accepted as

valid.

4. AEAD properties

4.1. Classification of AEAD properties

In this document we use a high-level classification of additional

properties. The classification aims to give an intuition on how one

can benefit from the property. The additional properties fall into

one of these three categories:

Security properties. We say that the property is a security

property if it considers new threats or adversarial capabilities,

in addition to those of the usual nonce-respecting adversary,

which aims to break confidentiality or data integrity.

Implementation properties. We say that the property is an

implementation property if it allows for more efficient

implementations of the AEAD algorithm in special cases or

environments.

Additional functionality properties. We say that the property is

an additional functionality property if it provides new features

in addition to the regular authenticated encryption with

associated data.

We notice that the distinction between the security and additional

functionality properties might be vague. The convention in this

document is that additional functionality requires some extension of

the standard AEAD interface. In fact, each additional functionality

property defines a new class of algorithms, which is not a subclass

of regular AEAD. Hence, the basic threats and adversarial

capabilities must be redefined for each of these classes. As a

result, additional functionality properties consider the basic

threats and adversarial capabilities for their class of algorithms

and, in contrast to security properties, not the extended ones.

4.2. Base properties

4.2.1. Confidentiality

Definition. An AEAD algorithm guarantees that the plaintext is

available only to those authorized to obtain it, i.e., those
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possessing the secret key. That property is required for the AEAD

algorithm to be called secure.

Synonyms. Privacy.

Further reading. [R2002], [BN2000]

4.2.2. Data integrity

Definition. An AEAD algorithm guarantees that the plaintext and the

associated data have not been changed or forged by those not

authorized to, i.e., those not possessing the secret key. That

property is required for the AEAD algorithm to be called secure.

Synonyms. Message authentication.

Further reading. [R2002], [BN2000]

4.3. Security properties

4.3.1. Blockwise security

Definition. An AEAD algorithm provides security even if an adversary

can adaptively choose the next block of the plaintext depending on

already computed ciphertext blocks during an encryption operation.

Note. The case when an adversary can adaptively choose the next

block of the ciphertext depending on already computed blocks of the

plaintext, which appear in the device memory before the integrity

verification during the decryption, can also be considered. This

case is strongly related to RUP security, defined in Section 4.3.9.

Further reading. [JMV2002], [FJMV2004]

4.3.2. Key Dependent Messages (KDM) security

Definition. An AEAD algorithm provides security even when key-

dependent plaintexts are encrypted.

Notes. KDM security is achievable only if nonces are chosen randomly

and associated data is key-independent.

Further reading. [BK2011]

4.3.3. Key commitment

Definition. An AEAD algorithm guarantees that it is difficult to

find a tuple of the nonce, associated data, and ciphertext such that

it can be decrypted correctly with more than one key.
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Synonyms. Key-robustness, key collision resistance.

Further reading. [FOR17], [LGR21], [GLR17]

4.3.4. Leakage resistance

Definition. An AEAD algorithm provides security even if some

additional information about computations of an encryption (and

possibly decryption) operation is obtained via side-channel

leakages.

Further reading. [GPPS19], [B20]

4.3.5. Multi-user security

Definition. An AEAD algorithm Authenticated Encryption advantage

increases sublinearly in the number of users.

Further reading. [BT16]

4.3.6. Nonce misuse

Definition. An AEAD algorithm provides security (resilience or

resistance) even if an adversary can repeat nonces in its encryption

queries. Nonce misuse resilience and resistance are defined as

follows:

Nonce misuse resilience. Security is provided only for messages

encrypted with unique nonces.

Nonce misuse resistance. Security is provided for all messages.

Further reading. [RS06], [ADL17]

4.3.7. Nonce-hiding

Definition. An AEAD algorithm decryption operation doesn't require

the nonce to perform decryption and provides privacy for the nonce

value used for encryption.

Note. In nonce-hiding AEAD algorithms, the ciphertext contains

information equivalent to an encrypted nonce. Hence, retrieving

information about nonce from the ciphertext has to be difficult.

Further reading. [BNT19]
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4.3.8. Reforgeability resilience

Definition. An AEAD algorithm guarantees that once a successful

forgery for the algorithm has been found, it is still hard to find

any subsequent forgery.

Further reading. [BC09], [FLLW17]

4.3.9. Release of unverified plaintext (RUP) security

Definition. An AEAD algorithm provides security even if the

plaintext is released for every ciphertext, including those with

failed integrity verification.

Further reading. [A14]

4.4. Implementation properties

4.4.1. Inverse-free

Definition. A block cipher-based AEAD algorithm can be securely

implemented without evaluating the block cipher inverse.

4.4.2. Lightweight

Definition. An AEAD algorithm can be efficiently and securely

implemented on resource-constrained devices. In particular, it meets

the criteria required in the NIST Lightweight Cryptography

competition [MBTM17].

Further reading. [MBTM17]

4.4.3. Online

Definition. An AEAD algorithm encryption (decryption) operation can

be implemented with a constant memory and a single one-direction

pass over the plaintext (ciphertext), writing out the result during

that pass.

Further reading. [HRRV15] [FJMV2004]

4.4.4. Parallelizable

Definition. An AEAD algorithm can fully exploit the parallel

computation infrastructure.

Synonyms. Pipelineable.

Further reading. [C20]
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4.4.5. Single pass

Definition. An AEAD algorithm encryption (decryption) operation can

be implemented with a single pass over the plaintext (ciphertext).

4.4.6. Static Associated Data

Definition. An AEAD algorithm allows pre-computation for static (or

repeating) associated data so that static AD doesn't significantly

contribute to the computational cost of encryption.

4.4.7. ZK-friendly

Definition. An AEAD algorithm operates on binary and prime fields

with a low number of non-linear operations (often called

multiplicative complexity). Thus, it allows efficient implementation

using a domain-specific language (DSL) for writing zk-SNARKs

circuits.

Synonyms. ZK-focused, Arithmetization-oriented, Low Multiplicative

Complexity

Further reading. [DGGK21]

4.5. Additional functionality properties

4.5.1. Incremental

Definition. An AEAD algorithm allows encrypting and authenticating a

message (associated data and a plaintext pair), which only partly

differs from some previous message, faster than processing it from

scratch.

Further reading. [SY16], [BKY02], [M05]

4.5.2. Remotely-keyed

Definition. An AEAD algorithm can be implemented with most of the

operations in encryption/decryption performed by an insecure (i.e.,

it leaks all intermediate values) device, which has no access to the

key, while another secure device performs operations involving the

key.

Further reading. [BFN98], [DA03]

4.5.3. Robust

Definition. An AEAD algorithm allows the user to choose an arbitrary

value l >= 0 for every plaintext and then encrypts it into a

ciphertext, which is l bits longer.
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[RFC2119]

[RFC5116]

[RFC8174]

[A14]

[ADL17]

Further reading. [HKR2015]

5. Security Considerations

This document defines the properties of AEAD algorithms. However,

the document does not describe any concrete mechanisms providing

these properties, neither it describes how to achieve them. In fact,

one can claim that an AEAD algorithm provides any of the defined

properties only if its analysis in the relevant models was carried

out.

6. IANA Considerations

This document has no IANA actions.
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