
Workgroup: CFRG

Internet-Draft:

draft-irtf-cfrg-bbs-signatures-00

Published: 27 September 2022

Intended Status: Informational

Expires: 31 March 2023

Authors: T. Looker

MATTR

V. Kalos

MATTR

A. Whitehead

Portage

M. Lodder

CryptID

The BBS Signature Scheme

Abstract

BBS is a digital signature scheme categorized as a form of short

group signature that supports several unique properties. Notably,

the scheme supports signing multiple messages whilst producing a

single output digital signature. Through this capability, the

possessor of a signature is able to generate proofs that selectively

disclose subsets of the originally signed set of messages, whilst

preserving the verifiable authenticity and integrity of the

messages. Furthermore, these proofs are said to be zero-knowledge in

nature as they do not reveal the underlying signature; instead, what

they reveal is a proof of knowledge of the undisclosed signature.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/decentralized-identity/bbs-signature.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 31 March 2023.

¶

¶

¶

¶

¶

¶

¶

https://github.com/decentralized-identity/bbs-signature
https://github.com/decentralized-identity/bbs-signature
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Notation

1.3. Organization of this document

2. Conventions

3. Scheme Definition

3.1. Parameters

3.2. Considerations

3.2.1. Subgroup Selection

3.2.2. Messages and generators

3.3. Key Generation Operations

3.3.1. KeyGen

3.3.2. SkToPk

3.4. Core Operations

3.4.1. Sign

3.4.2. Verify

3.4.3. ProofGen

3.4.4. ProofVerify

4. Utility Operations

4.1. Generator point computation

4.2. MapMessageToScalar

4.2.1. MapMessageToScalarAsHash

4.3. Hash to Scalar

4.4. Serialization

4.4.1. OctetsToSignature

4.4.2. SignatureToOctets

4.4.3. OctetsToProof

4.4.4. ProofToOctets

4.4.5. OctetsToPublicKey

4.4.6. EncodeForHash

5. Security Considerations

5.1. Validating public keys

¶

¶

https://trustee.ietf.org/license-info

5.2. Point de-serialization

5.3. Skipping membership checks

5.4. Side channel attacks

5.5. Randomness considerations

5.6. Presentation header selection

5.7. Implementing hash_to_curve_g1

5.8. Choice of underlying curve

5.9. Security of proofs generated by ProofGen

6. Ciphersuites

6.1. Ciphersuite Format

6.1.1. Ciphersuite ID

6.1.2. Additional Parameters

6.2. BLS12-381 Ciphersuite

6.2.1. Test Vectors

7. IANA Considerations

8. Acknowledgements

9. Normative References

10. Informative References

Appendix A. BLS12-381 hash_to_curve definition using SHAKE-256

A.1. BLS12-381 G1

Appendix B. Use Cases

B.1. Non-correlating Security Token

B.2. Improved Bearer Security Token

B.3. Selectively Disclosure Enabled Identity Credentials

Appendix C. Additional BLS12-381 Ciphersuite Test Vectors

C.1. Modified Message Signature

C.2. Extra Unsigned Message Signature

C.3. Missing Message Signature

C.4. Reordered Message Signature

C.5. Wrong Public Key Signature

Appendix D. Proof Generation and Verification Algorithmic

Explanation

Appendix E. Document History

Authors' Addresses

1. Introduction

A digital signature scheme is a fundamental cryptographic primitive

that is used to provide data integrity and verifiable authenticity

in various protocols. The core premise of digital signature

technology is built upon asymmetric cryptography where-by the

possessor of a private key is able to sign a message, where anyone

in possession of the corresponding public key matching that of the

private key is able to verify the signature.

The name BBS is derived from the authors of the original academic

work of Dan Boneh, Xavier Boyen, and Hovav Shacham, where the scheme

was first described.

¶

¶

Beyond the core properties of a digital signature scheme, BBS

signatures provide multiple additional unique properties, three key

ones are:

Selective Disclosure - The scheme allows a signer to sign multiple

messages and produce a single -constant size- output signature. A

holder/prover then possessing the messages and the signature can

generate a proof whereby they can choose which messages to disclose,

while revealing no-information about the undisclosed messages. The

proof itself guarantees the integrity and authenticity of the

disclosed messages (e.g. that they were originally signed by the

signer).

Unlinkable Proofs - The proofs generated by the scheme are known as

zero-knowledge, proofs-of-knowledge of the signature, meaning a

verifying party in receipt of a proof is unable to determine which

signature was used to generate the proof, removing a common source

of correlation. In general, each proof generated is

indistinguishable from random even for two proofs generated from the

same signature.

Proof of Possession - The proofs generated by the scheme prove to a

verifier that the party who generated the proof (holder/prover) was

in possession of a signature without revealing it. The scheme also

supports binding a presentation header to the generated proof. The

presentation header can include arbitrary information such as a

cryptographic nonce, an audience/domain identifier and or time based

validity information.

Refer to the Appendix B for an elaboration on situations where these

properties are useful

Below is a basic diagram describing the main entities involved in

the scheme

¶

¶

¶

¶

¶

¶

SK

 (1) sign (3) ProofGen

 +----- +-----

 | | | |

 | | | |

 | \ / | \ /

+----------+ +-----------+

| | | |

| | | |

| | | |

| Signer |---(2)* Send signature + msgs----->| Holder/ |

| | | Prover |

| | | |

| | | |

+----------+ +-----------+

 |

 |

 |

 (4)* Send proof + disclosed msgs

 |

 |

 \ /

 +-----------+

 | |

 | |

 | |

 | Verifier |

 | |

 | |

 | |

 +-----------+

 | / \

 | |

 | |

 +-----

 (5) ProofVerify

Figure 1: Basic diagram capturing the main entities involved in using

the scheme

Note The protocols implied by the items annotated by an asterisk are

out of scope for this specification

1.1. Terminology

The following terminology is used throughout this document:

The secret key for the signature scheme.

¶

¶

¶

PK

L

R

U

msg

generator

signature

nonce

presentation_header (ph)

nizk

dst

I2OSP

OS2IP

a || b

I \ J

X[a..b]

range(a, b)

The public key for the signature scheme.

The total number of signed messages.

The number of message indexes that are disclosed (revealed) in a

proof-of-knowledge of a signature.

The number of message indexes that are undisclosed in a proof-of-

knowledge of a signature.

An input message to be signed by the signature scheme.

A valid point on the selected subgroup of the curve being

used that is employed to commit a value.

The digital signature output.

A cryptographic nonce

A payload generated and bound to the

context of a specific spk.

A non-interactive zero-knowledge proof from fiat-shamir

heuristic.

The domain separation tag.

As defined by Section 4 of [RFC8017]

As defined by Section 4 of [RFC8017].

1.2. Notation

The following notation and primitives are used:

Denotes the concatenation of octet strings a and b.

For sets I and J, denotes the difference of the two sets

i.e., all the elements of I that do not appear in J, in the same

order as they were in I.

Denotes a slice of the array X containing all elements from

and including the value at index a until and including the value

at index b. Note when this syntax is applied to an octet string,

each element in the array X is assumed to be a single byte.

For integers a and b, with a <= b, denotes the

ascending ordered list of all integers between a and b inclusive

(i.e., the integers "i" such that a <= i <= b).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

utf8(ascii_string)

length(input)

E1, E2

G1, G2

GT

e

r

P1, P2

Identity_G1, Identity_G2, Identity_GT

hash_to_curve_g1(ostr, dst) -> P

Encoding the inputted ASCII string to an octet

string using UTF-8 character encoding.

Takes as input either an array or an octet string. If

the input is an array, returns the number of elements of the

array. If the input is an octet string, returns the number of

bytes of the inputted octet string.

Terms specific to pairing-friendly elliptic curves that are relevant

to this document are restated below, originally defined in [I-

D.irtf-cfrg-pairing-friendly-curves]

elliptic curve groups defined over finite fields. This

document assumes that E1 has a more compact representation than

E2, i.e., because E1 is defined over a smaller field than E2.

subgroups of E1 and E2 (respectively) having prime order r.

a subgroup, of prime order r, of the multiplicative group of a

field extension.

G1 x G2 -> GT: a non-degenerate bilinear map.

The prime order of the G1 and G2 subgroups.

points on G1 and G2 respectively. For a pairing-friendly

curve, this document denotes operations in E1 and E2 in additive

notation, i.e., P + Q denotes point addition and x * P denotes

scalar multiplication. Operations in GT are written in

multiplicative notation, i.e., a * b is field multiplication.

The identity element for the

G1, G2, and GT subgroups respectively.

A cryptographic hash function that

takes an arbitrary octet string as input and returns a point in

G1, using the hash_to_curve operation defined in [I-D.irtf-cfrg-

hash-to-curve] and the inputted dst as the domain separation tag

for that operation (more specifically, the inputted dst will

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

point_to_octets_g1(P) -> ostr, point_to_octets_g2(P) -> ostr

octets_to_point_g1(ostr) -> P, octets_to_point_g2(ostr) -> P

subgroup_check(P) -> VALID or INVALID

become the DST parameter for the hash_to_field operation, called

by hash_to_curve).

returns the canonical representation of the point P for the

respective subgroup as an octet string. This operation is also

known as serialization.

returns the point P for the respective subgroup corresponding to

the canonical representation ostr, or INVALID if ostr is not a

valid output of the respective point_to_octets_g* function. This

operation is also known as deserialization.

returns VALID when the point

P is an element of the subgroup of order r, and INVALID

otherwise. This function can always be implemented by checking

that r * P is equal to the identity element. In some cases,

faster checks may also exist, e.g., [Bowe19].

1.3. Organization of this document

This document is organized as follows:

Scheme Definition defines the core operations and parameters for

the BBS signature scheme.

Utility Operations defines utilities used by the BBS signature

scheme.

Security Considerations describes a set of security

considerations associated to the signature scheme.

Ciphersuites defines the format of a ciphersuite, alongside a

concrete ciphersuite based on the BLS12-381 curve.

2. Conventions

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this

document, are to be interpreted as described in [RFC2119].

3. Scheme Definition

This section defines the BBS signature scheme, including the

parameters required to define a concrete ciphersuite.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

3.1. Parameters

The schemes operations defined in this section depend on the

following parameters:

A pairing-friendly elliptic curve, plus associated functionality

given in Section 1.2.

A hash-to-curve suite as defined in [I-D.irtf-cfrg-hash-to-

curve], using the aforementioned pairing-friendly curve. This

defines the hash_to_curve and expand_message operations, used by

this document.

PRF(n): a pseudo-random function similar to [RFC4868]. Returns n

pseudo randomly generated bytes.

3.2. Considerations

3.2.1. Subgroup Selection

In definition of this signature scheme there are two possible

variations based upon the sub-group selection, namely where public

keys are defined in G2 and signatures in G1 OR the opposite where

public keys are defined in G1 and signatures in G2. Some pairing

cryptography based digital signature schemes such as [I-D.irtf-cfrg-

bls-signature] elect to allow for both variations, because they

optimize for different things. However, in the case of this scheme,

due to the operations involved in both signature and proof

generation being computational in-efficient when performed in G2 and

in the pursuit of simplicity, the scheme is limited to a

construction where public keys are in G2 and signatures in G1.

3.2.2. Messages and generators

Throughout the operations of this signature scheme, each message

that is signed is paired with a specific generator (point in G1).

Specifically, if a generator H_1 is multiplied with msg_1 during

signing, then H_1 MUST be multiplied with msg_1 in all other

operations (signature verification, proof generation and proof

verification).

Aside from the message generators, the scheme uses two additional

generators: Q_1 and Q_2. The first (Q_1), is used for the blinding

value (s) of the signature. The second generator (Q_2), is used to

sign the signature's domain, which binds both the signature and

generated proofs to a specific context and cryptographically

protects any potential application-specific information (for

example, messages that must always be disclosed etc.).

¶

*

¶

*

¶

*

¶

¶

¶

¶

3.3. Key Generation Operations

3.3.1. KeyGen

This operation generates a secret key (SK) deterministically from a

secret octet string (IKM).

KeyGen uses an HKDF [RFC5869] instantiated with the hash function

hash.

For security, IKM MUST be infeasible to guess, e.g. generated by a

trusted source of randomness.

IKM MUST be at least 32 bytes long, but it MAY be longer.

Because KeyGen is deterministic, implementations MAY choose either

to store the resulting SK or to store IKM and call KeyGen to derive

SK when necessary.

KeyGen takes an optional parameter, key_info. This parameter MAY be

used to derive multiple independent keys from the same IKM. By

default, key_info is the empty string.

¶

¶

¶

¶

¶

¶

Note This operation is the RECOMMENDED way of generating a secret

key, but its use is not required for compatibility, and

implementations MAY use a different KeyGen procedure. For security,

such an alternative MUST output a secret key that is statistically

close to uniformly random in the range 0 < SK < r.

3.3.2. SkToPk

This operation takes a secret key (SK) and outputs a corresponding

public key (PK).

SK = KeyGen(IKM, key_info)

Inputs:

- IKM (REQUIRED), a secret octet string. See requirements above.

- key_info (OPTIONAL), an octet string. if this is not supplied, it

 MUST default to an empty string.

Definitions:

- HKDF-Extract is as defined in [@!RFC5869], instantiated with hash function hash.

- HKDF-Expand is as defined in [@!RFC5869], instantiated with hash function hash.

- I2OSP and OS2IP are as defined in [@!RFC8017], Section 4.

- L is the integer given by ceil((3 * ceil(log2(r))) / 16).

- INITSALT is the ASCII string "BBS-SIG-KEYGEN-SALT-".

Outputs:

- SK, a uniformly random integer such that 0 < SK < r.

Procedure:

1. salt = INITSALT

2. SK = 0

3. while SK == 0:

4. salt = hash(salt)

5. PRK = HKDF-Extract(salt, IKM || I2OSP(0, 1))

6. OKM = HKDF-Expand(PRK, key_info || I2OSP(L, 2), L)

7. SK = OS2IP(OKM) mod r

8. return SK

¶

¶

¶

3.4. Core Operations

The operations in this section make use of a "Precomputations" set

of steps. The "Precomputations" steps must be executed before the

steps in the "Procedure" of each operation and include computations

that can be cached and re-used multiple times (like creating the

generators etc.) or procedural steps like de-structuring inputted

arrays.

3.4.1. Sign

This operation computes a deterministic signature from a secret key

(SK) and optionally over a header and or a vector of messages.

PK = SkToPk(SK)

Inputs:

- SK (REQUIRED), a secret integer such that 0 < SK < r.

Outputs:

- PK, a public key encoded as an octet string.

Procedure:

1. W = SK * P2

2. return point_to_octets_g2(W)

¶

¶

¶

signature = Sign(SK, PK, header, messages)

Inputs:

- SK (REQUIRED), a non negative integer mod r outputted by the KeyGen

 operation.

- PK (REQUIRED), an octet string of the form outputted by the SkToPk

 operation provided the above SK as input.

- header (OPTIONAL), an octet string containing context and application

 specific information. If not supplied, it defaults

 to an empty string.

- messages (OPTIONAL), a vector of scalars. If not supplied, it defaults

 to the empty array "()".

Parameters:

- ciphersuite_id, ASCII string. The unique ID of the ciphersuite.

- generator_seed, ASCII string. The generators seed defined by the

 ciphersuite

Definitions:

- L, is the non-negative integer representing the number of messages to

 be signed e.g length(messages). If no messages are supplied as an

 input, the value of L MUST evaluate to zero (0).

Outputs:

- signature, a signature encoded as an octet string.

Precomputations:

1. msg_1, ..., msg_L = messages[1], ..., messages[L]

2. (Q_1, Q_2, H_1, ..., H_L) = create_generators(generator_seed, L+2)

Procedure:

1. dom_array = (PK, L, Q_1, Q_2, H_1, ..., H_L, ciphersuite_id, header)

2. dom_for_hash = encode_for_hash(dom_array)

3. if dom_for_hash is INVALID, return INVALID

4. domain = hash_to_scalar(dom_for_hash, 1)

5. e_s_for_hash = encode_for_hash((SK, domain, msg_1, ..., msg_L))

6. if e_s_for_hash is INVALID, return INVALID

7. (e, s) = hash_to_scalar(e_s_for_hash, 2)

8. B = P1 + Q_1 * s + Q_2 * domain + H_1 * msg_1 + ... + H_L * msg_L

9. A = B * (1 / (SK + e))

10. signature_octets = signature_to_octets(A, e, s)

11. return signature_octets

¶

Note When computing step 9 of the above procedure there is an

extremely small probability (around 2^(-r)) that the condition (SK +

e) = 0 mod r will be met. How implementations evaluate the inverse

of the scalar value 0 may vary, with some returning an error and

others returning 0 as a result. If the returned value from the

inverse operation 1/(SK + e) does evaluate to 0 the value of A will

equal Identity_G1 thus an invalid signature. Implementations MAY

elect to check (SK + e) = 0 mod r prior to step 9, and or A !=

Identity_G1 after step 9 to prevent the production of invalid

signatures.

3.4.2. Verify

This operation checks that a signature is valid for a given header

and vector of messages against a supplied public key (PK). The

messages MUST be supplied in this operation in the same order they

were supplied to Sign when creating the signature.

¶

¶

result = Verify(PK, signature, header, messages)

Inputs:

- PK (REQUIRED), an octet string of the form outputted by the SkToPk

 operation.

- signature (REQUIRED), an octet string of the form outputted by the

 Sign operation.

- header (OPTIONAL), an octet string containing context and application

 specific information. If not supplied, it defaults

 to an empty string.

- messages (OPTIONAL), a vector of scalars. If not supplied, it defaults

 to the empty array "()".

Parameters:

- ciphersuite_id, ASCII string. The unique ID of the ciphersuite.

- generator_seed, ASCII string. The generators seed defined by the

 ciphersuite.

Definitions:

- L, is the non-negative integer representing the number of messages to

 be signed e.g length(messages). If no messages are supplied as an

 input, the value of L MUST evaluate to zero (0).

Outputs:

- result, either VALID or INVALID.

Precomputations:

1. (msg_1, ..., msg_L) = messages

2. (Q_1, Q_2, H_1, ..., H_L) = create_generators(generator_seed, L+2)

Procedure:

1. signature_result = octets_to_signature(signature)

2. if signature_result is INVALID, return INVALID

3. (A, e, s) = signature_result

4. W = octets_to_pubkey(PK)

5. if W is INVALID, return INVALID

6. dom_array = (PK, L, Q_1, Q_2, H_1, ..., H_L, ciphersuite_id, header)

7. dom_for_hash = encode_for_hash(dom_array)

8. if dom_for_hash is INVALID, return INVALID

9. domain = hash_to_scalar(dom_for_hash, 1)

10. B = P1 + Q_1 * s + Q_2 * domain + H_1 * msg_1 + ... + H_L * msg_L

11. if e(A, W + P2 * e) * e(B, -P2) != Identity_GT, return INVALID

12. return VALID

¶

3.4.3. ProofGen

This operation computes a zero-knowledge proof-of-knowledge of a

signature, while optionally selectively disclosing from the original

set of signed messages. The "prover" may also supply a presentation

header, see Presentation header selection for more details.

The messages supplied in this operation MUST be in the same order as

when supplied to Sign. To specify which of those messages will be

disclosed, the prover can supply the list of indexes

(disclosed_indexes) that the disclosed messages have in the array of

signed messages. Each element in disclosed_indexes MUST be a non-

negative integer, in the range from 1 to length(messages).

¶

¶

proof = ProofGen(PK, signature, header, ph, messages, disclosed_indexes)

Inputs:

- PK (REQUIRED), an octet string of the form outputted by the SkToPk

 operation.

- signature (REQUIRED), an octet string of the form outputted by the

 Sign operation.

- header (OPTIONAL), an octet string containing context and application

 specific information. If not supplied, it defaults

 to an empty string.

- ph (OPTIONAL), octet string containing the presentation header. If not

 supplied, it defaults to an empty string.

- messages (OPTIONAL), a vector of scalars. If not supplied, it defaults

 to the empty array "()".

- disclosed_indexes (OPTIONAL), vector of unsigned integers in ascending

 order. Indexes of disclosed messages. If

 not supplied, it defaults to the empty

 array "()".

Parameters:

- ciphersuite_id, ASCII string. The unique ID of the ciphersuite.

- generator_seed, ASCII string. The generators seed defined by the

 ciphersuite.

Definitions:

- L, is the non-negative integer representing the number of messages,

 i.e., L = length(messages). If no messages are supplied, the

 value of L MUST evaluate to zero (0).

- R, is the non-negative integer representing the number of disclosed

 (revealed) messages, i.e., R = length(disclosed_indexes). If no

 messages are disclosed, R MUST evaluate to zero (0).

- U, is the non-negative integer representing the number of undisclosed

 messages, i.e., U = L - R.

- prf_len = ceil(ceil(log2(r))/8), where r defined by the ciphersuite.

Outputs:

- proof, octet string; or INVALID.

Precomputations:

1. (i1, ..., iR) = disclosed_indexes

2. (j1, ..., jU) = range(1, L) \ disclosed_indexes

3. (msg_1, ..., msg_L) = messages

4. (msg_i1, ..., msg_iR) = (messages[i1], ..., messages[iR])

5. (msg_j1, ..., msg_jU) = (messages[j1], ..., messages[jU])

6. (Q_1, Q_2, MsgGenerators) = create_generators(generator_seed, L+2)

7. (H_1, ..., H_L) = MsgGenerators

8. (H_j1, ..., H_jU) = (MsgGenerators[j1], ..., MsgGenerators[jU])

Procedure:

1. signature_result = octets_to_signature(signature)

2. if signature_result is INVALID, return INVALID

3. (A, e, s) = signature_result

4. dom_array = (PK, L, Q_1, Q_2, H_1, ..., H_L, ciphersuite_id, header)

5. dom_for_hash = encode_for_hash(dom_array)

6. if dom_for_hash is INVALID, return INVALID

7. domain = hash_to_scalar(dom_for_hash, 1)

8. (r1, r2, e~, r2~, r3~, s~) = hash_to_scalar(PRF(prf_len), 6)

9. (m~_j1, ..., m~_jU) = hash_to_scalar(PRF(prf_len), U)

10. B = P1 + Q_1 * s + Q_2 * domain + H_1 * msg_1 + ... + H_L * msg_L

11. r3 = r1 ^ -1 mod r

12. A' = A * r1

13. Abar = A' * (-e) + B * r1

14. D = B * r1 + Q_1 * r2

15. s' = r2 * r3 + s mod r

16. C1 = A' * e~ + Q_1 * r2~

17. C2 = D * (-r3~) + Q_1 * s~ + H_j1 * m~_j1 + ... + H_jU * m~_jU

18. c_array = (A', Abar, D, C1, C2, R, i1, ..., iR,

 msg_i1, ..., msg_iR, domain, ph)

19. c_for_hash = encode_for_hash(c_array)

20. if c_for_hash is INVALID, return INVALID

21. c = hash_to_scalar(c_for_hash, 1)

22. e^ = c * e + e~ mod r

23. r2^ = c * r2 + r2~ mod r

24. r3^ = c * r3 + r3~ mod r

25. s^ = c * s' + s~ mod r

26. for j in (j1, ..., jU): m^_j = c * msg_j + m~_j mod r

27. proof = (A', Abar, D, c, e^, r2^, r3^, s^, (m^_j1, ..., m^_jU))

28. return proof_to_octets(proof)

¶

3.4.4. ProofVerify

This operation checks that a proof is valid for a header, vector of

disclosed messages (along side their index corresponding to their

original position when signed) and presentation header against a

public key (PK).

The operation accepts the list of messages the prover indicated to

be disclosed. Those messages MUST be in the same order as when

supplied to Sign (as a subset of the signed messages list). The

operation also requires the total number of signed messages (L).

Lastly, it also accepts the indexes that the disclosed messages had

in the original array of messages supplied to Sign (i.e., the

disclosed_indexes list supplied to ProofGen). Every element in this

list MUST be a non-negative integer in the range from 1 to L, in

ascending order.

¶

¶

result = ProofVerify(PK, proof, L, header, ph,

 disclosed_messages,

 disclosed_indexes)

Inputs:

- PK (REQUIRED), an octet string of the form outputted by the SkToPk

 operation.

- proof (REQUIRED), an octet string of the form outputted by the

 ProofGen operation.

- L (REQUIRED), non-negative integer. The number of signed messages.

- header (OPTIONAL), an optional octet string containing context and

 application specific information. If not supplied,

 it defaults to an empty string.

- ph (OPTIONAL), octet string containing the presentation header. If not

 supplied, it defaults to an empty string.

- disclosed_messages (OPTIONAL), a vector of scalars. If not supplied,

 it defaults to the empty array "()".

- disclosed_indexes (OPTIONAL), vector of unsigned integers in ascending

 order. Indexes of disclosed messages. If

 not supplied, it defaults to the empty

 array "()".

Parameters:

- ciphersuite_id, ASCII string. The unique ID of the ciphersuite.

- generator_seed, ASCII string. The generators seed defined by the

 ciphersuite.

Definitions:

- R, is the non-negative integer representing the number of disclosed

 (revealed) messages, i.e., R = length(disclosed_indexes). If no

 messages are disclosed, the value of R MUST evaluate to zero (0).

- U, is the non-negative integer representing the number of undisclosed

 messages, i.e., U = L - R.

Outputs:

- result, either VALID or INVALID.

Precomputations:

1. (i1, ..., iR) = disclosed_indexes

2. (j1, ..., jU) = range(1, L) \ disclosed_indexes

3. (msg_i1, ..., msg_iR) = disclosed_messages

4. (Q_1, Q_2, MsgGenerators) = create_generators(generator_seed, L+2)

5. (H_1, ..., H_L) = MsgGenerators

6. (H_i1, ..., H_iR) = (MsgGenerators[i1], ..., MsgGenerators[iR])

7. (H_j1, ..., H_jU) = (MsgGenerators[j1], ..., MsgGenerators[jU])

Preconditions:

1. for i in (i1, ..., iR), if i < 1 or i > L, return INVALID

2. if length(disclosed_messages) != R, return INVALID

Procedure:

1. proof_result = octets_to_proof(proof)

2. if proof_result is INVALID, return INVALID

3. (A', Abar, D, c, e^, r2^, r3^, s^, (m^_j1,...,m^_jU)) = proof_result

4. W = octets_to_pubkey(PK)

5. if W is INVALID, return INVALID

6. dom_array = (PK, L, Q_1, Q_2, H_1, ..., H_L, ciphersuite_id, header)

7. dom_for_hash = encode_for_hash(dom_array)

8. if dom_for_hash is INVALID, return INVALID

9. domain = hash_to_scalar(dom_for_hash, 1)

10. C1 = (Abar - D) * c + A' * e^ + Q_1 * r2^

11. T = P1 + Q_2 * domain + H_i1 * msg_i1 + ... H_iR * msg_iR

12. C2 = T * c - D * r3^ + Q_1 * s^ + H_j1 * m^_j1 + ... + H_jU * m^_jU

13. cv_array = (A', Abar, D, C1, C2, R, i1, ..., iR,

 msg_i1, ..., msg_iR, domain, ph)

14. cv_for_hash = encode_for_hash(cv_array)

15. if cv_for_hash is INVALID, return INVALID

16. cv = hash_to_scalar(cv_for_hash, 1)

17. if c != cv, return INVALID

18. if A' == Identity_G1, return INVALID

19. if e(A', W) * e(Abar, -P2) != Identity_GT, return INVALID

20. return VALID

¶

4. Utility Operations

4.1. Generator point computation

This operation defines how to create a set of generators that form a

part of the public parameters used by the BBS Signature scheme to

accomplish operations such as Sign, Verify, ProofGen and

ProofVerify. It takes one input, the number of generator points to

create, which is determined in part by the number of signed

messages.

As an optimization, implementations MAY cache the result of

create_generators for a specific generator_seed (determined by the

ciphersuite) and count. The values n and v MAY also be cached in

order to efficiently extend a existing list of generator points.

¶

¶

generators = create_generators(count)

Inputs:

- count (REQUIRED), unsigned integer. Number of generators to create.

Parameters:

- hash_to_curve_suite, the hash to curve suite id defined by the

 ciphersuite.

- hash_to_curve_g1, the hash_to_curve operation for the G1 subgroup,

 defined by the suite specified by the

 hash_to_curve_suite parameter.

- expand_message, the expand_message operation defined by the suite

 specified by the hash_to_curve_suite parameter.

- generator_seed, octet string. A seed value selected by the

 ciphersuite.

Definitions:

- seed_dst, the octet string representing the ASCII encoded characters:

 "BBS_" || hash_to_curve_suite || "SIG_GENERATOR_SEED_".

- generator_dst, the octet string representing:

 "BBS_" || hash_to_curve_suite || "SIG_GENERATOR_DST_",

 in the ASCII characters encoding.

- seed_len = ceil((ceil(log2(r)) + k)/8), where r and k are defined by

 the ciphersuite.

Outputs:

- generators, an array of generators.

Procedure:

1. v = expand_message(generator_seed, seed_dst, seed_len)

2. n = 1

3. for i in range(1, count):

4. v = expand_message(v || I2OSP(n, 4), seed_dst, seed_len)

5. n = n + 1

6. generator_i = Identity_G1

7. candidate = hash_to_curve_g1(v, generator_dst)

8. if candidate in (P1, generator_1, ..., generator_i):

9. go back to step 4

10. generator_i = candidate

11. return (generator_1, ..., generator_count)

¶

4.2. MapMessageToScalar

There are multiple ways in which messages can be mapped to their

respective scalar values, which is their required form to be used

with the Sign, Verify, ProofGen and ProofVerify operations.

4.2.1. MapMessageToScalarAsHash

This operation takes an input message and maps it to a scalar value

via a cryptographic hash function for the given curve.

4.3. Hash to Scalar

This operation describes how to hash an arbitrary octet string to n

scalar values in the multiplicative group of integers mod r (i.e.,

values in the range [1, r-1]). This procedure acts as a helper

function, used internally in various places within the operations

described in the spec. To map a message to a scalar that would be

passed as input to the Sign, Verify, ProofGen and ProofVerify

functions, one must use MapMessageToScalarAsHash instead.

This operation makes use of expand_message defined in [I-D.irtf-

cfrg-hash-to-curve], in a similar way used by the hash_to_field

operation of Section 5 from the same document (with the additional

checks for getting a scalar that is 0). Note that, if an implementer

wants to use hash_to_field instead, they MUST use the multiplicative

group of integers mod r (Fr), as the target group (F). However, the

hash_to_curve ciphersuites used by this document, make use of

hash_to_field with the target group being the multiplicative group

¶

¶

result = MapMessageToScalarAsHash(msg, dst)

Inputs:

- msg (REQUIRED), octet string.

- dst (REQUIRED), octet string. Domain separation tag; note this is not

 defined as a function argument as per

 [@!I-D.irtf-cfrg-hash-to-curve] but as a parameter.

Outputs:

- result, a scalar value.

Procedure:

1. If length(dst) > 2^8 - 1 or length(msg) > 2^64 - 1, return INVALID

2. dst_prime = I2OSP(length(dst), 1) || dst

3. msg_prime = I2OSP(length(msg), 8) || msg

4. result = hash_to_scalar(msg_prime || dst_prime, 1)

5. return result

¶

¶

of integers mod p (Fp). For completeness, we define here the

operation making use of the expand_message function, that will be

defined by the hash-to-curve suite used. If someone also has a

hash_to_field implementation available, with the target group been

Fr, they can use this instead (adding the check for a scalar been

0).¶

scalars = hash_to_scalar(msg_octets, count)

Inputs:

- msg_octets (REQUIRED), octet string. The message to be hashed.

- count (REQUIRED), an integer greater or equal to 1. The number of

 scalars to output.

Parameters:

- hash_to_curve_suite, the hash to curve suite id defined by the

 ciphersuite.

- expand_message, the expand_message operation defined by the suite

 specified by the hash_to_curve_suite parameter.

Definitions:

- h2s_dst, the octet string representing the ASCII encoded characters:

 "BBS_" || hash_to_curve_suite || "HASH_TO_SCALAR_".

- expand_len = ceil((ceil(log2(r))+k)/8), where r and k are defined by

 the ciphersuite.

Outputs:

- scalars, an array of non-zero scalars mod r.

Procedure:

1. len_in_bytes = count * expand_len

2. t = 0

3. msg_prime = msg_octets || I2OSP(t, 1) || I2OSP(count, 4)

4. uniform_bytes = expand_message(msg_prime, h2s_dst, len_in_bytes)

5. for i in (1, ..., count):

6. tv = uniform_bytes[(i-1)*expand_len..i*expand_len-1]

7. scalar_i = OS2IP(tv) mod r

8. if 0 in (scalar_1, ..., scalar_count):

9. t = t + 1

10. go back to step 3

11. return (scalar_1, ..., scalar_count)

¶

4.4. Serialization

4.4.1. OctetsToSignature

This operation describes how to decode an octet string, validate it

and return the underlying components that make up the signature.

4.4.2. SignatureToOctets

This operation describes how to encode a signature to an octet

string.

Note this operation deliberately does not perform the relevant

checks on the inputs A, e and s because its assumed these are done

prior to its invocation, e.g as is the case with the Sign operation.

¶

signature = octets_to_signature(signature_octets)

Inputs:

- signature_octets (REQUIRED), octet string of the form output from

 signature_to_octets operation.

Outputs:

signature, a signature in the form (A, e, s), where A is a point in G1

 and e and s are non-zero scalars mod r.

Procedure:

1. expected_len = octet_point_length + 2 * octet_scalar_length

2. if length(signature_octets) != expected_len, return INVALID

3. A_octets = signature_octets[0..(octet_point_length - 1)]

4. A = octets_to_point_g1(A_octets)

5. if A is INVALID, return INVALID

6. if A == Identity_G1, return INVALID

7. index = octet_point_length

8. end_index = index + octet_scalar_length - 1

9. e = OS2IP(signature_octets[index..end_index])

10. if e = 0 OR e >= r, return INVALID

11. index += octet_scalar_length

12. end_index = index + octet_scalar_length - 1

13. s = OS2IP(signature_octets[index..end_index])

14. if s = 0 OR s >= r, return INVALID

15. return (A, e, s)

¶

¶

¶

4.4.3. OctetsToProof

This operation describes how to decode an octet string representing

a proof, validate it and return the underlying components that make

up the proof value.

The proof value outputted by this operation consists of the

following components, in that order:

Three (3) valid points of the G1 subgroup, each of which must

not equal the identity point.

Five (5) integers representing scalars in the range of 1 to r-1

inclusive.

A set of integers representing scalars in the range of 1 to r-1

inclusive, corresponding to the undisclosed from the proof

message commitments. This set can be empty (i.e., "()").

signature_octets = signature_to_octets(signature)

Inputs:

- signature (REQUIRED), a valid signature, in the form (A, e, s), where

 A a point in G1 and e, s non-zero scalars mod r.

Outputs:

- signature_octets, octet string.

Procedure:

1. (A, e, s) = signature

2. A_octets = point_to_octets_g1(A)

3. e_octets = I2OSP(e, octet_scalar_length)

4. s_octets = I2OSP(s, octet_scalar_length)

5. return (A_octets || e_octets || s_octets)

¶

¶

¶

1.

¶

2.

¶

3.

¶

proof = octets_to_proof(proof_octets)

Inputs:

- proof_octets (REQUIRED), octet string of the form outputted from the

 proof_to_octets operation.

Parameters:

- r (REQUIRED), non-negative integer. The prime order of the G1 and

 G2 groups, defined by the ciphersuite.

- octet_scalar_length (REQUIRED), non-negative integer. The length of

 a scalar octet representation, defined

 by the ciphersuite.

- octet_point_length (REQUIRED), non-negative integer. The length of

 a point in G1 octet representation,

 defined by the ciphersuite.

Outputs:

- proof, a proof value in the form described above or INVALID

Procedure:

1. proof_len_floor = 3 * octet_point_length + 5 * octet_scalar_length

2. if length(proof_octets) < proof_len_floor, return INVALID

// Points (i.e., (A', Abar, D) in ProofGen) de-serialization.

3. index = 0

4. for i in range(0, 2):

5. end_index = index + octet_point_length - 1

6. A_i = octets_to_point_g1(proof_octets[index..end_index])

7. if A_i is INVALID or Identity_G1, return INVALID

8. index += octet_point_length

// Scalars (i.e., (c, e^, r2^, r3^, s^, (m^_j1, ..., m^_jU)) in

// ProofGen) de-serialization.

9. j = 0

10. while index < length(proof_octets):

11. end_index = index + octet_scalar_length - 1

12. s_j = OS2IP(proof_octets[index..end_index])

13. if s_j = 0 or if s_j >= r, return INVALID

14. index += octet_scalar_length

15. j += 1

16. if index != length(proof_octets), return INVALID

17. msg_commitments = ()

18. If j > 5, set msg_commitments = (s_5, ..., s_(j-1))

19. return (A_0, A_1, A_2, s_0, s_1, s_2, s_3, s_4, msg_commitments)

¶

4.4.4. ProofToOctets

This operation describes how to encode a proof, as computed at step

25 in ProofGen, to an octet string. The input to the operation MUST

be a valid proof.

The inputed proof value must consist of the following components, in

that order:

Three (3) valid compressed points of the G1 subgroup, different

from the identity point of G1 (i.e., A', Abar, D, in ProofGen)

Five (5) integers representing scalars in the range of 1 to r-1

inclusive (i.e., c, e^, r2^, r3^, s^, in ProofGen).

A number of integers representing scalars in the range of 1 to

r-1 inclusive, corresponding to the undisclosed from the proof

messages (i.e., m^_j1, ..., m^_jU, in ProofGen, where U the

number of undisclosed messages).

¶

¶

1.

¶

2.

¶

3.

¶

4.4.5. OctetsToPublicKey

This operation describes how to decode an octet string representing

a public key, validates it and returns the corresponding point in

G2. Steps 2 to 5 check if the public key is valid. As an

optimization, implementations MAY cache the result of those steps,

to avoid unnecessarily repeating validation for known public keys.

proof_octets = proof_to_octets(proof)

Inputs:

- proof (REQUIRED), a BBS proof in the form calculated by ProofGen in

 step 25 (see above).

Parameters:

- octet_scalar_length (REQUIRED), non-negative integer. The length of

 a scalar octet representation, defined

 by the ciphersuite.

Outputs:

- proof_octets, octet string.

Procedure:

1. (A', Abar, D, c, e^, r2^, r3^, s^, (m^_1, ..., m^_U)) = proof

2. Let proof_octets be an empty octet string.

// Points Serialization.

3. for point in (A', Abar, D):

4. point_octets = point_to_octets_g1(point)

5. proof_octets = proof_octets || point_octets

// Scalar Serialization.

6. for scalar in (c, e^, r2^, r3^, s^, m^_1, ..., m^_U):

7. scalar_octets = I2OSP(scalar, octet_scalar_length)

8. proof_octets = proof_octets || scalar_octets

9. return proof_octets

¶

¶

4.4.6. EncodeForHash

This document uses the hash_to_scalar function to hash elements to

scalars in the multiplicative group mod r (see Section 5.3). To

avoid ambiguity, elements passed to that operation, must first be

encoded appropriately using encode_for_hash. The following procedure

describes how to encode each element accordingly by serializing it

to an appropriate format depending on its type and concatenating the

results. Specifically,

Points in G1 or G2 will be encoded using the point_to_octets_g*

implementation for a particular ciphersuite.

Non-negative integers will be encoded using I2OSP with an output

length of 8 bytes.

Scalars will be zero-extended to a fixed length, defined by a

particular ciphersuite.

Octet strings will be zero-extended to a length that is a

multiple of 8 bits. Then, the extended value is encoded directly.

ASCII strings will be transformed into octet strings using UTF-8

encoding.

After encoding, octet strings will be prepended with a value

representing the length of their binary representation in the form

of the number of bytes. This length must be encoded to octets using

I2OSP with output length of 8 bytes. The combined value (encoded

value + length prefix) binary representation is then encoded as a

single octet string. For example, the string 0x14d will be encoded

W = octets_to_pubkey(PK)

Inputs:

- PK, octet string. A public key in the form ouputted by the SkToPK

 operation

Outputs:

- W, a valid point in G2 or INVALID

Procedure:

1. W = octets_to_point_g2(PK)

2. If W is INVALID, return INVALID

3. if subgroup_check(W) is INVALID, return INVALID

4. If W == Identity_G2, return INVALID

5. return W

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

as 0x0000000000000002014d. If the length of the octet string is

larger than 2^64 - 1, the octet string must be rejected. Similarly,

ASCII strings, after encoded to octets (using utf8), will also be

appended with the length of their octet-string representation.

Optional input/parameters to operations that feature in a call to

hash_to_scalar, that are not supplied to the operation should

default to an empty octet string. For example, if X is an optional

input/parameter that is not supplied, whilst A and B are required,

then the procedural step of hash(A || X || B) MUST be evaluated to

hash(A || "" || B).

The above is further described in the following procedure.

¶

¶

¶

result = encode_for_hash(input_array)

Inputs:

- input_array, an array of elements to be hashed. All elements of this

 array that are octet strings MUST be multiples of 8 bits.

Parameters:

- octet_scalar_length, non-negative integer. The length of a scalar

 octet representation, defined by the ciphersuite.

Outputs:

- result, an octet string or INVALID.

Procedure:

1. let octets_to_hash be an empty octet string.

2. for el in input_array:

3. if el is an ASCII string: el = utf8(el)

4. if el is an octet string representing a public key: el_octs = el

5. else if el is an octet string:

6. if length(el) > 2^64 - 1, return INVALID

7. el_octs = I2OSP(length(el), 8) || el

8. else if el is a Point in G1: el_octs = point_to_octets_g1(el)

9. else if el is a Point in G2: el_octs = point_to_octets_g2(el)

10. else if el is a Scalar: el_octs = I2OSP(el, octet_scalar_length)

11. else if el is a non-negative integer: el_octs = I2OSP(el, 8)

12. else: return INVALID

13. octets_to_hash = octets_to_hash || el_octs

14. return octets_to_hash

¶

5. Security Considerations

5.1. Validating public keys

It is RECOMENDED for any operation in Core Operations involving

public keys, that they deserialize the public key first using the

OctetsToPublicKey operation, even if they only require the octet-

string representation of the public key. If the octets_to_pubkey

procedure (see the OctetsToPublicKey section) returns INVALID, the

calling operation should also return INVALID and abort. An example

of where this recommendation applies is the Sign operation. An

example of where an explicit invocation to the octets_to_pubkey

operation is already defined and therefore required is the Verify

operation.

5.2. Point de-serialization

This document makes use of octet_to_point_g* to parse octet strings

to elliptic curve points (either in G1 or G2). It is assumed (even

if not explicitly described) that the result of this operation will

not be INVALID. If octet_to_point_g* returns INVALID, then the

calling operation should immediately return INVALID as well and

abort the operation. Note that the only place where the output is

assumed to be VALID implicitly is in the EncodingForHash section.

5.3. Skipping membership checks

Some existing implementations skip the subgroup_check invocation in

Verify, whose purpose is ensuring that the signature is an element

of a prime-order subgroup. This check is REQUIRED of conforming

implementations, for two reasons.

For most pairing-friendly elliptic curves used in practice, the

pairing operation e Section 1.2 is undefined when its input

points are not in the prime-order subgroups of E1 and E2. The

resulting behavior is unpredictable, and may enable forgeries.

Even if the pairing operation behaves properly on inputs that

are outside the correct subgroups, skipping the subgroup check

breaks the strong unforgeability property [ADR02].

5.4. Side channel attacks

Implementations of the signing algorithm SHOULD protect the secret

key from side-channel attacks. One method for protecting against

certain side-channel attacks is ensuring that the implementation

executes exactly the same sequence of instructions and performs

exactly the same memory accesses, for any value of the secret key.

In other words, implementations on the underlying pairing-friendly

elliptic curve SHOULD run in constant time.

¶

¶

¶

1.

¶

2.

¶

¶

5.5. Randomness considerations

The IKM input to KeyGen MUST be infeasible to guess and MUST be kept

secret. One possibility is to generate IKM from a trusted source of

randomness. Guidelines on constructing such a source are outside the

scope of this document.

Secret keys MAY be generated using other methods; in this case they

MUST be infeasible to guess and MUST be indistinguishable from

uniformly random modulo r.

BBS proofs are nondeterministic, meaning care must be taken against

attacks arising from using bad randomness, for example, the nonce

reuse attack on ECDSA [HDWH12]. It is RECOMMENDED that the

presentation header used in this specification contain a nonce

chosen at random from a trusted source of randomness, see the

Section 5.6 for additional considerations.

When a trusted source of randomness is used, signatures and proofs

are much harder to forge or break due to the use of multiple nonces.

5.6. Presentation header selection

The signature proofs of knowledge generated in this specification

are created using a specified presentation header. A verifier-

specified cryptographically random value (e.g., a nonce) featuring

in the presentation header provides strong protections against

replay attacks, and is RECOMMENDED in most use cases. In some

settings, proofs can be generated in a non-interactive fashion, in

which case verifiers MUST be able to verify the uniqueness of the

presentation header values.

5.7. Implementing hash_to_curve_g1

The security analysis models hash_to_curve_g1 as random oracles. It

is crucial that these functions are implemented using a

cryptographically secure hash function. For this purpose,

implementations MUST meet the requirements of [I-D.irtf-cfrg-hash-

to-curve].

In addition, ciphersuites MUST specify unique domain separation tags

for hash_to_curve. Some guidance around defining this can be found

in Section 6.

5.8. Choice of underlying curve

BBS signatures can be implemented on any pairing-friendly curve.

However care MUST be taken when selecting one that is appropriate,

this specification defines a ciphersuite for using the BLS12-381

curve in Section 6 which as a curve achieves around 117 bits of

¶

¶

¶

¶

¶

¶

¶

security according to a recent NCC ZCash cryptography review [ZCASH-

REVIEW].

5.9. Security of proofs generated by ProofGen

The proof, as returned by ProofGen, is a zero-knowledge proof-of-

knowledge [CDL16]. This guarantees that no information will be

revealed about the signature itself or the undisclosed messages,

from the output of ProofGen. Note that the security proofs in

[CDL16] work on type 3 pairing setting. This means that G1 should be

different from G2 and with no efficient isomorphism between them.

6. Ciphersuites

This section defines the format for a BBS ciphersuite. It also gives

concrete ciphersuites based on the BLS12-381 pairing-friendly

elliptic curve [I-D.irtf-cfrg-pairing-friendly-curves].

6.1. Ciphersuite Format

6.1.1. Ciphersuite ID

The following section defines the format of the unique identifier

for the ciphersuite denoted ciphersuite_id. The REQUIRED format for

this string is

Strings in double quotes are ASCII-encoded literals.

H2C_SUITE_ID is the suite ID of the hash-to-curve suite used to

define the hashtocurve function.

ADD_INFO is an optional string indicating any additional

information used to uniquely qualify the ciphersuite. When

present this value MUST only contain ASCII characters between

0x21 and 0x7e (inclusive), and MUST end with an underscore

(0x5f), other than the last character the string MUST not contain

any other underscores (0x5f).

6.1.2. Additional Parameters

The parameters that each ciphersuite needs to define are generally

divided into three main categories; the basic parameters (a hash

function etc.,), the serialization operations (point_to_octets_g1

etc.,) and the generator parameters. See below for more details.

Basic parameters:

hash: a cryptographic hash function.

¶

¶

¶

¶

 "BBS_" || H2C_SUITE_ID || ADD_INFO¶

* ¶

*

¶

*

¶

¶

¶

* ¶

octet_scalar_length: Number of bytes to represent a scalar value,

in the multiplicative group of integers mod r, encoded as an

octet string. It is RECOMMENDED this value be set to

ceil(log2(r)/8).

octet_point_length: Number of bytes to represent a point encoded

as an octet string outputted by the point_to_octets_g* function.

It is RECOMMENDED that this value is set to ceil(log2(p)/8).

hash_to_curve_suite: The hash-to-curve ciphersuite id, in the

form defined in [I-D.irtf-cfrg-hash-to-curve]. This defines the

hash_to_curve_g1 (the hash_to_curve operation for the G1

subgroup, see the Notation section) and the expand_message

(either expand_message_xmd or expand_message_xof) operations used

in this document.

Serialization functions:

point_to_octets_g1: a function that returns the canonical

representation of the point P for the G1 subgroup as an octet

string.

point_to_octets_g2: a function that returns the canonical

representation of the point P for the G2 subgroup as an octet

string.

octets_to_point_g1: a function that returns the point P in the

subgroup G1 corresponding to the canonical representation ostr,

or INVALID if ostr is not a valid output of point_to_octets_g1.

octets_to_point_g2: a function that returns the point P in the

subgroup G2 corresponding to the canonical representation ostr,

or INVALID if ostr is not a valid output of point_to_octets_g2.

Generator parameters:

generator_seed: The seed used to determine the generator points

which form part of the public parameters used by the BBS

signature scheme. Note there are multiple possible scopes for

this seed, including: a globally shared seed (where the resulting

message generators are common across all BBS signatures); a

signer specific seed (where the message generators are specific

to a signer); and a signature specific seed (where the message

generators are specific per signature). The ciphersuite MUST

define this seed OR how to compute it as a pre-cursor operation

to any others.

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

6.2. BLS12-381 Ciphersuite

The following ciphersuite is based on the BLS12-381 elliptic curve

defined in Section 4.2.1 of [I-D.irtf-cfrg-pairing-friendly-curves].

The targeted security level of the suite in bits is k = 128. The

ciphersuite makes use of an extendable output function, and most

specifically of SHAKE-256, as defined in Section 6.2 of [SHA3]. It

also uses the hash-to-curve suite defined by this document in

Appendix A.1, which also makes use of the SHAKE-256 function.

Basic parameters:

Ciphersuite_ID: "BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_"

hash: SHAKE-256 as defined in [SHA3].

octet_scalar_length: 32, based on the RECOMMENDED approach of

ceil(log2(r)/8).

octet_point_length: 48, based on the RECOMMENDED approach of

ceil(log2(p)/8).

hash_to_curve_suite: "BLS12381G1_XOF:SHAKE-256_SSWU_R0_" as

defined in Appendix A.1 for the G1 subgroup.

Serialization functions:

point_to_octets_g1: follows the format documented in Appendix C

section 1 of [I-D.irtf-cfrg-pairing-friendly-curves] for the G1

subgroup, using compression (i.e., setting C_bit = 1).

point_to_octets_g2: follows the format documented in Appendix C

section 1 of [I-D.irtf-cfrg-pairing-friendly-curves] for the G2

subgroup, using compression (i.e., setting C_bit = 1).

octets_to_point_g1: follows the format documented in Appendix C

section 2 of [I-D.irtf-cfrg-pairing-friendly-curves] for the G1

subgroup.

octets_to_point_g2: follows the format documented in Appendix C

section 2 of [I-D.irtf-cfrg-pairing-friendly-curves] for the G2

subgroup.

Generator parameters:

generator_seed: A global seed value of

"BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_MESSAGE_GENERATOR_SEED"

which is used by the create_generators operation to compute the

required set of message generators.

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

6.2.1. Test Vectors

The following section details a basic set of test vectors that can

be used to confirm an implementations correctness

NOTE All binary data below is represented as octet strings encoded

in hexadecimal format

NOTE These fixtures are a work in progress and subject to change

Further fixtures are available in Appendix C

6.2.1.1. Message Generators

Following the procedure defined in Section 4.1 with an input seed

value of

a dst of

and a length value of 10

Outputs the following values

6.2.1.2. Key Pair

Following the procedure defined in Section 3.3.1 with an input IKM

value as follows

¶

¶

¶

¶

¶

BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_MESSAGE_GENERATOR_SEED¶

¶

BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_¶

¶

¶

{{ $generators[0] }}

{{ $generators[1] }}

{{ $generators[2] }}

{{ $generators[3] }}

{{ $generators[4] }}

{{ $generators[5] }}

{{ $generators[6] }}

{{ $generators[7] }}

{{ $generators[8] }}

{{ $generators[9] }}

¶

¶

Outputs the following SK value

Following the procedure defined in Section 3.3.2 with an input SK

value as above produces the following PK value

6.2.1.3. Valid Single Message Signature

Using the following message

Along with the SK value as defined in Section 6.2.1.2 as inputs into

the Sign operations, yields the following output signature

6.2.1.4. Valid Multi-Message Signature

Using the following messages (Note the ordering of the messages MUST

be preserved)

Along with the SK value as defined in Section 6.2.1.2 as inputs into

the Sign operations, yields the following output signature

{{ $keyPair.seed }}¶

¶

{{ $keyPair.keyPair.secretKey }}¶

¶

{{ $keyPair.keyPair.publicKey }}¶

¶

{{ $signatureFixtures.signature001.messages[0] }}¶

¶

{{ $signatureFixtures.signature001.signature }}¶

¶

{{ $signatureFixtures.signature004.messages[0] }}

{{ $signatureFixtures.signature004.messages[1] }}

{{ $signatureFixtures.signature004.messages[2] }}

{{ $signatureFixtures.signature004.messages[3] }}

{{ $signatureFixtures.signature004.messages[4] }}

{{ $signatureFixtures.signature004.messages[5] }}

{{ $signatureFixtures.signature004.messages[6] }}

{{ $signatureFixtures.signature004.messages[7] }}

{{ $signatureFixtures.signature004.messages[8] }}

{{ $signatureFixtures.signature004.messages[9] }}

¶

¶

{{ $signatureFixtures.signature004.signature }}¶

[I-D.irtf-cfrg-pairing-friendly-curves]

[RFC2119]

[RFC4868]

[RFC5869]

[RFC8017]

7. IANA Considerations

This document does not make any requests of IANA.

8. Acknowledgements

The authors would like to acknowledge the significant amount of

academic work that preceeded the development of this document. In

particular the original work of [BBS04] which was subsequently

developed in [ASM06] and in [CDL16]. This last academic work is the

one mostly used by this document.

The current state of this document is the product of the work of the

Decentralized Identity Foundation Applied Cryptography Working

group, which includes numerous active participants. In particular,

the following individuals contributed ideas, feedback and wording

that influenced this specification:

Orie Steele, Christian Paquin, Alessandro Guggino and Tomislav

Markovski

9. Normative References

Sakemi, Y., Kobayashi, T.,

Saito, T., and R. S. Wahby, "Pairing-Friendly Curves",

Work in Progress, Internet-Draft, draft-irtf-cfrg-

pairing-friendly-curves-10, 30 July 2021, <https://

www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-

curves-10.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-

SHA-384, and HMAC-SHA-512 with IPsec", RFC 4868, DOI

10.17487/RFC4868, May 2007, <https://www.rfc-editor.org/

info/rfc4868>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-10.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-10.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-10.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc8017

[I-D.irtf-cfrg-hash-to-curve]

[SHA3]

[ZCASH-REVIEW]

[Bowe19]

[CDL16]

[I-D.irtf-cfrg-bls-signature]

[ADR02]

[BBS04]

[HDWH12]

[ASM06]

Faz-Hernandez, A., Scott, S.,

Sullivan, N., Wahby, R. S., and C. A. Wood, "Hashing to

Elliptic Curves", Work in Progress, Internet-Draft,

draft-irtf-cfrg-hash-to-curve-16, 15 June 2022, <https://

www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-

curve-16.txt>.

NIST, "SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions", <https://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.202.pdf>.

10. Informative References

NCC Group, "Zcash Overwinter Consensus and Sapling

Cryptography Review", <https://research.nccgroup.com/wp-

content/uploads/2020/07/

NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf>.

Bowe, S., "Faster subgroup checks for BLS12-381", July

2019, <https://eprint.iacr.org/2019/814>.

Camenisch, J., Drijvers, M., and A. Lehmann, "Anonymous

Attestation Using the Strong Diffie Hellman Assumption

Revisited", 2016, <https://eprint.iacr.org/2016/663.pdf>.

Boneh, D., Gorbunov, S., Wahby, R. S.,

Wee, H., Wood, C. A., and Z. Zhang, "BLS Signatures",

Work in Progress, Internet-Draft, draft-irtf-cfrg-bls-

signature-05, 16 June 2022, <https://www.ietf.org/

archive/id/draft-irtf-cfrg-bls-signature-05.txt>.

An, J. H., Dodis, Y., and T. Rabin, "On the Security of

Joint Signature and Encryption", April 2002, <https://

doi.org/10.1007/3-540-46035-7_6>.

Boneh, D., Boyen, X., and H. Shacham, "Short Group

Signatures", 2004, <https://link.springer.com/chapter/

10.1007/978-3-540-28628-8_3>.

Heninger, N., Durumeric, Z., Wustrow, E., and J.A.

Halderman, "Mining your Ps and Qs: Detection of

widespread weak keys in network devices", August 2012,

<https://www.usenix.org/system/files/conference/

usenixsecurity12/sec12-final228.pdf>.

Au, M. H., Susilo, W., and Y. Mu, "Constant-Size Dynamic

k-TAA", 2006, <https://link.springer.com/chapter/

10.1007/11832072_8>.

https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.txt
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://research.nccgroup.com/wp-content/uploads/2020/07/NCC_Group_Zcash2018_Public_Report_2019-01-30_v1.3.pdf
https://eprint.iacr.org/2019/814
https://eprint.iacr.org/2016/663.pdf
https://www.ietf.org/archive/id/draft-irtf-cfrg-bls-signature-05.txt
https://www.ietf.org/archive/id/draft-irtf-cfrg-bls-signature-05.txt
https://doi.org/10.1007/3-540-46035-7_6
https://doi.org/10.1007/3-540-46035-7_6
https://link.springer.com/chapter/10.1007/978-3-540-28628-8_3
https://link.springer.com/chapter/10.1007/978-3-540-28628-8_3
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
https://link.springer.com/chapter/10.1007/11832072_8
https://link.springer.com/chapter/10.1007/11832072_8

Appendix A. BLS12-381 hash_to_curve definition using SHAKE-256

The following defines a hash_to_curve suite [I-D.irtf-cfrg-hash-to-

curve] for the BLS12-381 curve for both the G1 and G2 subgroups

using the extendable output function (xof) of SHAKE-256 as per the

guidance defined in section 8.9 of [I-D.irtf-cfrg-hash-to-curve].

Note the notation used in the below definitions is sourced from [I-

D.irtf-cfrg-hash-to-curve].

A.1. BLS12-381 G1

The suite of BLS12381G1_XOF:SHAKE-256_SSWU_R0_ is defined as

follows:

¶

¶

¶

Note that the h_eff values for this suite are copied from that

defined for the BLS12381G1_XMD:SHA-256_SSWU_RO_ suite defined in

section 8.8.1 of [I-D.irtf-cfrg-hash-to-curve].

An optimized example implementation of the Simplified SWU mapping to

the curve E' isogenous to BLS12-381 G1 is given in Appendix F.2 [I-

D.irtf-cfrg-hash-to-curve].

* encoding type: hash_to_curve (Section 3 of

 [@!I-D.irtf-cfrg-hash-to-curve])

* E: y^2 = x^3 + 4

* p: 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f624

 1eabfffeb153ffffb9feffffffffaaab

* r: 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

* m: 1

* k: 128

* expand_message: expand_message_xof (Section 5.3.2 of

 [@!I-D.irtf-cfrg-hash-to-curve])

* hash: SHAKE-256

* L: 64

* f: Simplified SWU for AB == 0 (Section 6.6.3 of

 [@!I-D.irtf-cfrg-hash-to-curve])

* Z: 11

* E': y'^2 = x'^3 + A' * x' + B', where

 - A' = 0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aef

 d881ac98936f8da0e0f97f5cf428082d584c1d

 - B' = 0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14f

 cef35ef55a23215a316ceaa5d1cc48e98e172be0

* iso_map: the 11-isogeny map from E' to E given in Appendix E.2 of

 [@!I-D.irtf-cfrg-hash-to-curve]

* h_eff: 0xd201000000010001

¶

¶

¶

Appendix B. Use Cases

B.1. Non-correlating Security Token

In the most general sense BBS signatures can be used in any

application where a cryptographically secured token is required but

correlation caused by usage of the token is un-desirable.

For example in protocols like OAuth2.0 the most commonly used form

of the access token leverages the JWT format alongside conventional

cryptographic primitives such as traditional digital signatures or

HMACs. These access tokens are then used by a relying party to prove

authority to a resource server during a request. However, because

the access token is most commonly sent by value as it was issued by

the authorization server (e.g in a bearer style scheme), the access

token can act as a source of strong correlation for the relying

party. Relevant prior art can be found here.

BBS Signatures due to their unique properties removes this source of

correlation but maintains the same set of guarantees required by a

resource server to validate an access token back to its relevant

authority (note that an approach to signing JSON tokens with BBS

that may be of relevance is the JWP format and serialization). In

the context of a protocol like OAuth2.0 the access token issued by

the authorization server would feature a BBS Signature, however

instead of the relying party providing this access token as issued,

in their request to a resource server, they generate a unique proof

from the original access token and include that in the request

instead, thus removing this vector of correlation.

B.2. Improved Bearer Security Token

Bearer based security tokens such as JWT based access tokens used in

the OAuth2.0 protocol are a highly popular format for expressing

authorization grants. However their usage has several security

limitations. Notably a bearer based authorization scheme often has

to rely on a secure transport between the authorized party (client)

and the resource server to mitigate the potential for a MITM attack

or a malicious interception of the access token. The scheme also has

to assume a degree of trust in the resource server it is presenting

an access token to, particularly when the access token grants more

than just access to the target resource server, because in a bearer

based authorization scheme, anyone who possesses the access token

has authority to what it grants. Bearer based access tokens also

suffer from the threat of replay attacks.

Improved schemes around authorization protocols often involve adding

a layer of proof of cryptographic key possession to the presentation

of an access token, which mitigates the deficiencies highlighted

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-private-access-tokens-01.html
https://json-web-proofs.github.io/json-web-proofs/draft-jmiller-json-web-proof.html

above as well as providing a way to detect a replay attack. However,

approaches that involve proof of cryptographic key possession such

as DPoP (https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

dpop-04) suffer from an increase in protocol complexity. A party

requesting authorization must pre-generate appropriate key material,

share the public portion of this with the authorization server

alongside proving possession of the private portion of the key

material. The authorization server must also be-able to accommodate

receiving this information and validating it.

BBS Signatures ofter an alternative model that solves the same

problems that proof of cryptographic key possession schemes do for

bearer based schemes, but in a way that doesn't introduce new up-

front protocol complexity. In the context of a protocol like

OAuth2.0 the access token issued by the authorization server would

feature a BBS Signature, however instead of the client providing

this access token as issued, in their request to a resource server,

they generate a unique proof from the original access token and

include that in the request instead. Because the access token is not

shared in a request to a resource server, attacks such as MITM are

mitigated. A resource server also obtains the ability to detect a

replay attack by ensuring the proof presented is unique.

B.3. Selectively Disclosure Enabled Identity Credentials

BBS signatures when applied to the problem space of identity

credentials can help to enhance user privacy. For example a digital

drivers license that is cryptographically signed with a BBS

signature, allows the holder or subject of the license to disclose

different claims from their drivers license to different parties.

Furthermore, the unlinkable presentations property of proofs

generated by the scheme remove an important possible source of

correlation for the holder across multiple presentations.

Appendix C. Additional BLS12-381 Ciphersuite Test Vectors

NOTE These fixtures are a work in progress and subject to change

C.1. Modified Message Signature

Using the following message

And the following signature

¶

¶

¶

¶

¶

{{ $signatureFixtures.signature002.messages[0] }}¶

¶

{{ $signatureFixtures.signature002.signature }}¶

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-dpop-04

Along with the PK value as defined in Section 6.2.1.2 as inputs into

the Verify operation should fail signature validation due to the

message value being different from what was signed

C.2. Extra Unsigned Message Signature

Using the following messages

And the following signature

Along with the PK value as defined in Section 6.2.1.2 as inputs into

the Verify operation should fail signature validation due to an

additional message being supplied that was not signed

C.3. Missing Message Signature

Using the following messages

And the following signature

Along with the PK value as defined in Section 6.2.1.2 as inputs into

the Verify operation should fail signature validation due to missing

messages that were originally present during the signing

C.4. Reordered Message Signature

Using the following messages

¶

¶

{{ $signatureFixtures.signature003.messages[0] }}

{{ $signatureFixtures.signature003.messages[1] }}

¶

¶

{{ $signatureFixtures.signature002.signature }}¶

¶

¶

{{ $signatureFixtures.signature005.messages[0] }}

{{ $signatureFixtures.signature005.messages[1] }}

¶

¶

{{ $signatureFixtures.signature005.signature }}¶

¶

¶

And the following signature

Along with the PK value as defined in Section 6.2.1.2 as inputs into

the Verify operation should fail signature validation due to

messages being re-ordered from the order in which they were signed

C.5. Wrong Public Key Signature

Using the following messages

{{ $signatureFixtures.signature006.messages[0] }}

{{ $signatureFixtures.signature006.messages[1] }}

{{ $signatureFixtures.signature006.messages[2] }}

{{ $signatureFixtures.signature006.messages[3] }}

{{ $signatureFixtures.signature006.messages[4] }}

{{ $signatureFixtures.signature006.messages[5] }}

{{ $signatureFixtures.signature006.messages[6] }}

{{ $signatureFixtures.signature006.messages[7] }}

{{ $signatureFixtures.signature006.messages[8] }}

{{ $signatureFixtures.signature006.messages[9] }}

¶

¶

{{ $signatureFixtures.signature006.signature }}¶

¶

¶

{{ $signatureFixtures.signature007.messages[0] }}

{{ $signatureFixtures.signature007.messages[1] }}

{{ $signatureFixtures.signature007.messages[2] }}

{{ $signatureFixtures.signature007.messages[3] }}

{{ $signatureFixtures.signature007.messages[4] }}

{{ $signatureFixtures.signature007.messages[5] }}

{{ $signatureFixtures.signature007.messages[6] }}

{{ $signatureFixtures.signature007.messages[7] }}

{{ $signatureFixtures.signature007.messages[8] }}

{{ $signatureFixtures.signature007.messages[9] }}

¶

And the following signature

Along with the PK value as defined in Section 6.2.1.2 as inputs into

the Verify operation should fail signature validation due to public

key used to verify is in-correct

Appendix D. Proof Generation and Verification Algorithmic Explanation

The following section provides an explanation of how the ProofGen

and ProofVerify operations work.

Let the prover be in possession of a BBS signature (A, e, s) on

messages msg_1, ..., msg_L and a domain value (see Sign). Let A = B

* (1/(e + SK)) where SK the signer's secret key and,

Let (i1, ..., iR) be the indexes of generators corresponding to

messages the prover wants to disclose and (j1, ..., jU) be the

indexes corresponding to undisclosed messages (i.e., (j1, ..., jU) =

range(1, L) \ (i1, ..., iR)). To prove knowledge of a signature on

the disclosed messages, work as follows,

Hide the signature by randomizing it. To randomize the signature

(A, e, s), take uniformly random r1, r2 in [1, r-1], and

calculate,

Also set,

The values (A', Abar, D) will be part of the proof and are used

to prove possession of a BBS signature, without revealing the

signature itself. Note that; e(A', PK) = e(Abar, P2) where PK the

signer's public key and P2 the base element in G2 (used to create

the signer's PK, see SkToPk). This also serves to bind the proof

to the signer's PK.

Set the following,

¶

{{ $signatureFixtures.signature007.signature }}¶

¶

¶

¶

B = P1 + Q_1 * s + Q_2 * domain + H_1 * msg_1 + ... + H_L * msg_L¶

¶

*

¶

1. A' = A * r1,

2. Abar = A' * (-e) + B * r1

3. D = B * r1 + H0 * r2.

¶

¶

4. r3 = r1 ^ -1 mod r

5. s' = r2 * r3 + s mod r.

¶

¶

* ¶

1. C1 = Abar - D

2. C2 = P1 + Q_2 * domain + H_i1 * msg_i1 + ... + H_iR * msg_iR

¶

Create a non-interactive zero-knowledge proof-of-knowledge (nizk)

of the values e, r2, r3, s' and msg_j1, ..., msg_jU (the

undisclosed messages) so that both of the following equalities

hold,

Note that the verifier will know the elements in the left side of

the above equations (i.e., C1 and C2) but not in the right side

(i.e., s', r3 and the undisclosed messages: msg_j1, ..., msg_jU).

However, using the nizk, the prover can convince the verifier that

they (the prover) know the elements that satisfy those equations,

without disclosing them. Then, if both EQ1 and EQ2 hold, and e(A',

PK) = e(Abar, P2), an extractor can return a valid BBS signature

from the signer's SK, on the disclosed messages. The proof returned

is (A', Abar, D, nizk). To validate the proof, a verifier checks

that e(A', PK) = e(Abar, P2) and verifies the nizk. Validating the

proof, will guarantee the authenticity and integrity of the

disclosed messages, as well as ownership of the undisclosed messages

and of the signature.

Appendix E. Document History

-00

Initial version

-01

Populated fixtures

Authors' Addresses

Tobias Looker

MATTR

Email: tobias.looker@mattr.global

Vasilis Kalos

MATTR

Email: vasilis.kalos@mattr.global

Andrew Whitehead

Portage

Email: andrew.whitehead@portagecybertech.com

Mike Lodder

¶

EQ1. C1 = A' * (-e) - H0 * r2

EQ2. C2 = H0 * s' - D * r3 + H_j1 * msg_j1 + ... + H_jU * msg_jU.

¶

¶

¶

* ¶

¶

* ¶

mailto:tobias.looker@mattr.global
mailto:vasilis.kalos@mattr.global
mailto:andrew.whitehead@portagecybertech.com

CryptID

Email: redmike7@gmail.com

mailto:redmike7@gmail.com

	The BBS Signature Scheme
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Notation
	1.3. Organization of this document

	2. Conventions
	3. Scheme Definition
	3.1. Parameters
	3.2. Considerations
	3.2.1. Subgroup Selection
	3.2.2. Messages and generators

	3.3. Key Generation Operations
	3.3.1. KeyGen
	3.3.2. SkToPk

	3.4. Core Operations
	3.4.1. Sign
	3.4.2. Verify
	3.4.3. ProofGen
	3.4.4. ProofVerify

	4. Utility Operations
	4.1. Generator point computation
	4.2. MapMessageToScalar
	4.2.1. MapMessageToScalarAsHash

	4.3. Hash to Scalar
	4.4. Serialization
	4.4.1. OctetsToSignature
	4.4.2. SignatureToOctets
	4.4.3. OctetsToProof
	4.4.4. ProofToOctets
	4.4.5. OctetsToPublicKey
	4.4.6. EncodeForHash

	5. Security Considerations
	5.1. Validating public keys
	5.2. Point de-serialization
	5.3. Skipping membership checks
	5.4. Side channel attacks
	5.5. Randomness considerations
	5.6. Presentation header selection
	5.7. Implementing hash_to_curve_g1
	5.8. Choice of underlying curve
	5.9. Security of proofs generated by ProofGen

	6. Ciphersuites
	6.1. Ciphersuite Format
	6.1.1. Ciphersuite ID
	6.1.2. Additional Parameters

	6.2. BLS12-381 Ciphersuite
	6.2.1. Test Vectors
	6.2.1.1. Message Generators
	6.2.1.2. Key Pair
	6.2.1.3. Valid Single Message Signature
	6.2.1.4. Valid Multi-Message Signature

	7. IANA Considerations
	8. Acknowledgements
	9. Normative References
	10. Informative References
	Appendix A. BLS12-381 hash_to_curve definition using SHAKE-256
	A.1. BLS12-381 G1

	Appendix B. Use Cases
	B.1. Non-correlating Security Token
	B.2. Improved Bearer Security Token
	B.3. Selectively Disclosure Enabled Identity Credentials

	Appendix C. Additional BLS12-381 Ciphersuite Test Vectors
	C.1. Modified Message Signature
	C.2. Extra Unsigned Message Signature
	C.3. Missing Message Signature
	C.4. Reordered Message Signature
	C.5. Wrong Public Key Signature

	Appendix D. Proof Generation and Verification Algorithmic Explanation
	Appendix E. Document History
	Authors' Addresses

