
CFRG D. Boneh
Internet-Draft Stanford University
Intended status: Informational S. Gorbunov
Expires: 14 March 2021 University of Waterloo
 R. Wahby
 Stanford University
 H. Wee
 NTT Research and ENS, Paris
 Z. Zhang
 Algorand
 10 September 2020

BLS Signatures
draft-irtf-cfrg-bls-signature-04

Abstract

 BLS is a digital signature scheme with aggregation properties. Given
 set of signatures (signature_1, ..., signature_n) anyone can produce
 an aggregated signature. Aggregation can also be done on secret keys
 and public keys. Furthermore, the BLS signature scheme is
 deterministic, non-malleable, and efficient. Its simplicity and
 cryptographic properties allows it to be useful in a variety of use-
 cases, specifically when minimal storage space or bandwidth are
 required.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 March 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Boneh, et al. Expires 14 March 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft BLS-signature September 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Comparison with ECDSA 4
1.2. Organization of this document 4
1.3. Terminology and definitions 5
1.4. API . 6
1.5. Requirements . 7

2. Core operations . 7
2.1. Variants . 7
2.2. Parameters . 7
2.3. KeyGen . 9
2.4. SkToPk . 10
2.5. KeyValidate . 11
2.6. CoreSign . 11
2.7. CoreVerify . 12
2.8. Aggregate . 12
2.9. CoreAggregateVerify 13

3. BLS Signatures . 14
3.1. Basic scheme . 14
3.1.1. AggregateVerify 15

3.2. Message augmentation 15
3.2.1. Sign . 15
3.2.2. Verify . 16
3.2.3. AggregateVerify 16

3.3. Proof of possession 17
3.3.1. Parameters . 18
3.3.2. PopProve . 18
3.3.3. PopVerify . 19
3.3.4. FastAggregateVerify 19

4. Ciphersuites . 20
4.1. Ciphersuite format 20
4.2. Ciphersuites for BLS12-381 22
4.2.1. Basic . 22
4.2.2. Message augmentation 22
4.2.3. Proof of possession 23

5. Security Considerations 24
5.1. Validating public keys 24
5.2. Skipping membership check 24

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Boneh, et al. Expires 14 March 2021 [Page 2]

Internet-Draft BLS-signature September 2020

5.3. Side channel attacks 25
5.4. Randomness considerations 25
5.5. Implementing hash_to_point and hash_pubkey_to_point . . . 25

6. Implementation Status . 25
7. Related Standards . 26
8. IANA Considerations . 26
9. Normative References . 26
10. Informative References 27
Appendix A. BLS12-381 . 28
Appendix B. Test Vectors . 29
Appendix C. Security analyses 29

 Authors' Addresses . 29

1. Introduction

 A signature scheme is a fundamental cryptographic primitive that is
 used to protect authenticity and integrity of communication. Only
 the holder of a secret key can sign messages, but anyone can verify
 the signature using the associated public key.

 Signature schemes are used in point-to-point secure communication
 protocols, PKI, remote connections, etc. Designing efficient and
 secure digital signature is very important for these applications.

 This document describes the BLS signature scheme. The scheme enjoys
 a variety of important efficiency properties:

 1. The public key and the signatures are encoded as single group
 elements.

 2. Verification requires 2 pairing operations.

 3. A collection of signatures (signature_1, ..., signature_n) can be
 aggregated into a single signature. Moreover, the aggregate
 signature can be verified using only n+1 pairings (as opposed to
 2n pairings, when verifying n signatures separately).

 Given the above properties, the scheme enables many interesting
 applications. The immediate applications include

 * Authentication and integrity for Public Key Infrastructure (PKI)
 and blockchains.

 - The usage is similar to classical digital signatures, such as
 ECDSA.

 * Aggregating signature chains for PKI and Secure Border Gateway
 Protocol (SBGP).

Boneh, et al. Expires 14 March 2021 [Page 3]

Internet-Draft BLS-signature September 2020

 - Concretely, in a PKI signature chain of depth n, we have n
 signatures by n certificate authorities on n distinct
 certificates. Similarly, in SBGP, each router receives a list
 of n signatures attesting to a path of length n in the network.
 In both settings, using the BLS signature scheme would allow us
 to aggregate the n signatures into a single signature.

 * consensus protocols for blockchains.

 - There, BLS signatures are used for authenticating transactions
 as well as votes during the consensus protocol, and the use of
 aggregation significantly reduces the bandwidth and storage
 requirements.

1.1. Comparison with ECDSA

 The following comparison assumes BLS signatures with curve BLS12-381,
 targeting 128 bits security.

 For 128 bits security, ECDSA takes 37 and 79 micro-seconds to sign
 and verify a signature on a typical laptop. In comparison, for the
 same level of security, BLS takes 370 and 2700 micro-seconds to sign
 and verify a signature.

 In terms of sizes, ECDSA uses 32 bytes for public keys and 64 bytes
 for signatures; while BLS uses 96 bytes for public keys, and 48 bytes
 for signatures. Alternatively, BLS can also be instantiated with 48
 bytes of public keys and 96 bytes of signatures. BLS also allows for
 signature aggregation. In other words, a single signature is
 sufficient to authenticate multiple messages and public keys.

1.2. Organization of this document

 This document is organized as follows:

 * The remainder of this section defines terminology and the high-
 level API.

 * Section 2 defines primitive operations used in the BLS signature
 scheme. These operations MUST NOT be used alone.

 * Section 3 defines three BLS Signature schemes giving slightly
 different security and performance properties.

 * Section 4 defines the format for a ciphersuites and gives
 recommended ciphersuites.

 * The appendices give test vectors, etc.

Boneh, et al. Expires 14 March 2021 [Page 4]

Internet-Draft BLS-signature September 2020

1.3. Terminology and definitions

 The following terminology is used through this document:

 * SK: The secret key for the signature scheme.

 * PK: The public key for the signature scheme.

 * message: The input to be signed by the signature scheme.

 * signature: The digital signature output.

 * aggregation: Given a list of signatures for a list of messages and
 public keys, an aggregation algorithm generates one signature that
 authenticates the same list of messages and public keys.

 * rogue key attack: An attack in which a specially crafted public
 key (the "rogue" key) is used to forge an aggregated signature.

Section 3 specifies methods for securing against rogue key
 attacks.

 The following notation and primitives are used:

 * a || b denotes the concatenation of octet strings a and b.

 * A pairing-friendly elliptic curve defines the following primitives
 (see [I-D.irtf-cfrg-pairing-friendly-curves] for detailed
 discussion):

 - E1, E2: elliptic curve groups defined over finite fields. This
 document assumes that E1 has a more compact representation than
 E2, i.e., because E1 is defined over a smaller field than E2.

 - G1, G2: subgroups of E1 and E2 (respectively) having prime
 order r.

 - P1, P2: distinguished points that generate G1 and G2,
 respectively.

 - GT: a subgroup, of prime order r, of the multiplicative group
 of a field extension.

 - e : G1 x G2 -> GT: a non-degenerate bilinear map.

 * For the above pairing-friendly curve, this document writes
 operations in E1 and E2 in additive notation, i.e., P + Q denotes
 point addition and x * P denotes scalar multiplication.

Boneh, et al. Expires 14 March 2021 [Page 5]

Internet-Draft BLS-signature September 2020

 Operations in GT are written in multiplicative notation, i.e., a *
 b is field multiplication.

 * For each of E1 and E2 defined by the above pairing-friendly curve,
 we assume that the pairing-friendly elliptic curve definition
 provides several primitives, described below.

 Note that these primitives are named generically. When referring
 to one of these primitives for a specific group, this document
 appends the name of the group, e.g., point_to_octets_E1,
 subgroup_check_E2, etc.

 - point_to_octets(P) -> ostr: returns the canonical
 representation of the point P as an octet string. This
 operation is also known as serialization.

 - octets_to_point(ostr) -> P: returns the point P corresponding
 to the canonical representation ostr, or INVALID if ostr is not
 a valid output of point_to_octets. This operation is also
 known as deserialization.

 - subgroup_check(P) -> VALID or INVALID: returns VALID when the
 point P is an element of the subgroup of order r, and INVALID
 otherwise. This function can always be implemented by checking
 that r * P is equal to the identity element. In some cases,
 faster checks may also exist, e.g., [Bowe19].

 * I2OSP and OS2IP are the functions defined in [RFC8017], Section 4.

 * hash_to_point(ostr) -> P: a cryptographic hash function that takes
 as input an arbitrary octet string and returns a point on an
 elliptic curve. Functions of this kind are defined in
 [I-D.irtf-cfrg-hash-to-curve]. Each of the ciphersuites in

Section 4 specifies the hash_to_point algorithm to be used.

1.4. API

 The BLS signature scheme defines the following API:

 * KeyGen(IKM) -> SK: a key generation algorithm that takes as input
 an octet string comprising secret keying material, and outputs a
 secret key SK.

 * SkToPk(SK) -> PK: an algorithm that takes as input a secret key
 and outputs the corresponding public key.

 * Sign(SK, message) -> signature: a signing algorithm that generates
 a deterministic signature given a secret key SK and a message.

https://datatracker.ietf.org/doc/html/rfc8017#section-4

Boneh, et al. Expires 14 March 2021 [Page 6]

Internet-Draft BLS-signature September 2020

 * Verify(PK, message, signature) -> VALID or INVALID: a verification
 algorithm that outputs VALID if signature is a valid signature of
 message under public key PK, and INVALID otherwise.

 * Aggregate((signature_1, ..., signature_n)) -> signature: an
 aggregation algorithm that aggregates a collection of signatures
 into a single signature.

 * AggregateVerify((PK_1, ..., PK_n), (message_1, ..., message_n),
 signature) -> VALID or INVALID: an aggregate verification
 algorithm that outputs VALID if signature is a valid aggregated
 signature for a collection of public keys and messages, and
 outputs INVALID otherwise.

1.5. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Core operations

 This section defines core operations used by the schemes defined in
Section 3. These operations MUST NOT be used except as described in

 that section.

2.1. Variants

 Each core operation has two variants that trade off signature and
 public key size:

 1. Minimal-signature-size: signatures are points in G1, public keys
 are points in G2. (Recall from Section 1.3 that E1 has a more
 compact representation than E2.)

 2. Minimal-pubkey-size: public keys are points in G1, signatures are
 points in G2.

 Implementations using signature aggregation SHOULD use this
 approach, since the size of (PK_1, ..., PK_n, signature) is
 dominated by the public keys even for small n.

2.2. Parameters

 The core operations in this section depend on several parameters:

 * A signature variant, either minimal-signature-size or minimal-
 pubkey-size. These are defined in Section 2.1.

https://datatracker.ietf.org/doc/html/rfc2119

Boneh, et al. Expires 14 March 2021 [Page 7]

Internet-Draft BLS-signature September 2020

 * A pairing-friendly elliptic curve, plus associated functionality
 given in Section 1.3.

 * H, a hash function that MUST be a secure cryptographic hash
 function, e.g., SHA-256 [FIPS180-4]. For security, H MUST output
 at least ceil(log2(r)) bits, where r is the order of the subgroups
 G1 and G2 defined by the pairing-friendly elliptic curve.

 * hash_to_point, a function whose interface is described in
Section 1.3. When the signature variant is minimal-signature-

 size, this function MUST output a point in G1. When the signature
 variant is minimal-pubkey size, this function MUST output a point
 in G2. For security, this function MUST be either a random oracle
 encoding or a nonuniform encoding, as defined in
 [I-D.irtf-cfrg-hash-to-curve].

 In addition, the following primitives are determined by the above
 parameters:

 * P, an elliptic curve point. When the signature variant is
 minimal-signature-size, P is the distinguished point P2 that
 generates the group G2 (see Section 1.3). When the signature
 variant is minimal-pubkey-size, P is the distinguished point P1
 that generates the group G1.

 * r, the order of the subgroups G1 and G2 defined by the pairing-
 friendly curve.

 * pairing, a function that invokes the function e of Section 1.3,
 with argument order depending on signature variant:

 - For minimal-signature-size:

 pairing(U, V) := e(U, V)

 - For minimal-pubkey-size:

 pairing(U, V) := e(V, U)

 * point_to_pubkey and point_to_signature, functions that invoke the
 appropriate serialization routine (Section 1.3) depending on
 signature variant:

 - For minimal-signature-size:

 point_to_pubkey(P) := point_to_octets_E2(P)

 point_to_signature(P) := point_to_octets_E1(P)

Boneh, et al. Expires 14 March 2021 [Page 8]

Internet-Draft BLS-signature September 2020

 - For minimal-pubkey-size:

 point_to_pubkey(P) := point_to_octets_E1(P)

 point_to_signature(P) := point_to_octets_E2(P)

 * pubkey_to_point and signature_to_point, functions that invoke the
 appropriate deserialization routine (Section 1.3) depending on
 signature variant:

 - For minimal-signature-size:

 pubkey_to_point(ostr) := octets_to_point_E2(ostr)

 signature_to_point(ostr) := octets_to_point_E1(ostr)

 - For minimal-pubkey-size:

 pubkey_to_point(ostr) := octets_to_point_E1(ostr)

 signature_to_point(ostr) := octets_to_point_E2(ostr)

 * pubkey_subgroup_check and signature_subgroup_check, functions that
 invoke the appropriate subgroup check routine (Section 1.3)
 depending on signature variant:

 - For minimal-signature-size:

 pubkey_subgroup_check(P) := subgroup_check_E2(P)

 signature_subgroup_check(P) := subgroup_check_E1(P)

 - For minimal-pubkey-size:

 pubkey_subgroup_check(P) := subgroup_check_E1(P)

 signature_subgroup_check(P) := subgroup_check_E2(P)

2.3. KeyGen

 The KeyGen procedure described in this section generates a secret key
 SK deterministically from a secret octet string IKM. SK is
 guaranteed to be nonzero, as required by KeyValidate (Section 2.5).

 KeyGen uses HKDF [RFC5869] instantiated with the hash function H.

 For security, IKM MUST be infeasible to guess, e.g., generated by a

https://datatracker.ietf.org/doc/html/rfc5869

Boneh, et al. Expires 14 March 2021 [Page 9]

Internet-Draft BLS-signature September 2020

 trusted source of randomness. IKM MUST be at least 32 bytes long,
 but it MAY be longer.

 KeyGen takes an optional parameter, key_info. This parameter MAY be
 used to derive multiple independent keys from the same IKM. By
 default, key_info is the empty string.

 SK = KeyGen(IKM)

 Inputs:
 - IKM, a secret octet string. See requirements above.

 Outputs:
 - SK, a uniformly random integer such that 1 <= SK < r.

 Parameters:
 - key_info, an optional octet string.
 If key_info is not supplied, it defaults to the empty string.

 Definitions:
 - HKDF-Extract is as defined in RFC5869, instantiated with hash H.
 - HKDF-Expand is as defined in RFC5869, instantiated with hash H.
 - I2OSP and OS2IP are as defined in RFC8017, Section 4.
 - L is the integer given by ceil((3 * ceil(log2(r))) / 16).
 - "BLS-SIG-KEYGEN-SALT-" is an ASCII string comprising 20 octets.

 Procedure:
 1. salt = "BLS-SIG-KEYGEN-SALT-"
 2. SK = 0
 3. while SK == 0:
 4. salt = H(salt)
 5. PRK = HKDF-Extract(salt, IKM || I2OSP(0, 1))
 6. OKM = HKDF-Expand(PRK, key_info || I2OSP(L, 2), L)
 7. SK = OS2IP(OKM) mod r
 8. return SK

 KeyGen is the RECOMMENDED way of generating secret keys, but its use
 is not required for compatibility, and implementations MAY use a
 different KeyGen procedure. For security, such an alternative KeyGen
 procedure MUST output SK that is statistically close to uniformly
 random in the range 1 <= SK < r.

2.4. SkToPk

 The SkToPk algorithm takes a secret key SK and outputs the
 corresponding public key PK. Section 2.3 discusses requirements for
 SK.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8017#section-4

Boneh, et al. Expires 14 March 2021 [Page 10]

Internet-Draft BLS-signature September 2020

 PK = SkToPk(SK)

 Inputs:
 - SK, a secret integer such that 1 <= SK < r.

 Outputs:
 - PK, a public key encoded as an octet string.

 Procedure:
 1. xP = SK * P
 2. PK = point_to_pubkey(xP)
 3. return PK

2.5. KeyValidate

 The KeyValidate algorithm ensures that a public key is valid. In
 particular, it ensures that a public key represents a valid, non-
 identity point that is in the correct subgroup. See Section 5.1 for
 further discussion.

 As an optimization, implementations MAY cache the result of
 KeyValidate in order to avoid unnecessarily repeating validation for
 known keys.

 result = KeyValidate(PK)

 Inputs:
 - PK, a public key in the format output by SkToPk.

 Outputs:
 - result, either VALID or INVALID

 Procedure:
 1. xP = pubkey_to_point(PK)
 2. If xP is INVALID, return INVALID
 3. If xP is the identity element, return INVALID
 4. If pubkey_subgroup_check(xP) is INVALID, return INVALID
 5. return VALID

2.6. CoreSign

 The CoreSign algorithm computes a signature from SK, a secret key,
 and message, an octet string.

Boneh, et al. Expires 14 March 2021 [Page 11]

Internet-Draft BLS-signature September 2020

 signature = CoreSign(SK, message)

 Inputs:
 - SK, a secret key in the format output by KeyGen.
 - message, an octet string.

 Outputs:
 - signature, an octet string.

 Procedure:
 1. Q = hash_to_point(message)
 2. R = SK * Q
 3. signature = point_to_signature(R)
 4. return signature

2.7. CoreVerify

 The CoreVerify algorithm checks that a signature is valid for the
 octet string message under the public key PK.

 result = CoreVerify(PK, message, signature)

 Inputs:
 - PK, a public key in the format output by SkToPk.
 - message, an octet string.
 - signature, an octet string in the format output by CoreSign.

 Outputs:
 - result, either VALID or INVALID.

 Procedure:
 1. R = signature_to_point(signature)
 2. If R is INVALID, return INVALID
 3. If signature_subgroup_check(R) is INVALID, return INVALID
 4. If KeyValidate(PK) is INVALID, return INVALID
 5. xP = pubkey_to_point(PK)
 6. Q = hash_to_point(message)
 7. C1 = pairing(Q, xP)
 8. C2 = pairing(R, P)
 9. If C1 == C2, return VALID, else return INVALID

2.8. Aggregate

 The Aggregate algorithm aggregates multiple signatures into one.

Boneh, et al. Expires 14 March 2021 [Page 12]

Internet-Draft BLS-signature September 2020

 signature = Aggregate((signature_1, ..., signature_n))

 Inputs:
 - signature_1, ..., signature_n, octet strings output by
 either CoreSign or Aggregate.

 Outputs:
 - signature, an octet string encoding a aggregated signature
 that combines all inputs; or INVALID.

 Precondition: n >= 1, otherwise return INVALID.

 Procedure:
 1. aggregate = signature_to_point(signature_1)
 2. If aggregate is INVALID, return INVALID
 3. for i in 2, ..., n:
 4. next = signature_to_point(signature_i)
 5. If next is INVALID, return INVALID
 6. aggregate = aggregate + next
 7. signature = point_to_signature(aggregate)
 8. return signature

2.9. CoreAggregateVerify

 The CoreAggregateVerify algorithm checks an aggregated signature over
 several (PK, message) pairs.

Boneh, et al. Expires 14 March 2021 [Page 13]

Internet-Draft BLS-signature September 2020

 result = CoreAggregateVerify((PK_1, ..., PK_n),
 (message_1, ... message_n),
 signature)

 Inputs:
 - PK_1, ..., PK_n, public keys in the format output by SkToPk.
 - message_1, ..., message_n, octet strings.
 - signature, an octet string output by Aggregate.

 Outputs:
 - result, either VALID or INVALID.

 Precondition: n >= 1, otherwise return INVALID.

 Procedure:
 1. R = signature_to_point(signature)
 2. If R is INVALID, return INVALID
 3. If signature_subgroup_check(R) is INVALID, return INVALID
 4. C1 = 1 (the identity element in GT)
 5. for i in 1, ..., n:
 6. If KeyValidate(PK_i) is INVALID, return INVALID
 7. xP = pubkey_to_point(PK_i)
 8. Q = hash_to_point(message_i)
 9. C1 = C1 * pairing(Q, xP)
 10. C2 = pairing(R, P)
 11. If C1 == C2, return VALID, else return INVALID

3. BLS Signatures

 This section defines three signature schemes: basic, message
 augmentation, and proof of possession. These schemes differ in the
 ways that they defend against rogue key attacks (Section 1.3).

 All of the schemes in this section are built on a set of core
 operations defined in Section 2. Thus, defining a scheme requires
 fixing a set of parameters as defined in Section 2.2.

 All three schemes expose the KeyGen, SkToPk, and Aggregate operations
 that are defined in Section 2. The sections below define the other
 API functions (Section 1.4) for each scheme.

3.1. Basic scheme

 In a basic scheme, rogue key attacks are handled by requiring all
 messages signed by an aggregate signature to be distinct. This
 requirement is enforced in the definition of AggregateVerify.

Boneh, et al. Expires 14 March 2021 [Page 14]

Internet-Draft BLS-signature September 2020

 The Sign and Verify functions are identical to CoreSign and
 CoreVerify (Section 2), respectively. AggregateVerify is defined
 below.

3.1.1. AggregateVerify

 This function first ensures that all messages are distinct, and then
 invokes CoreAggregateVerify.

 result = AggregateVerify((PK_1, ..., PK_n),
 (message_1, ..., message_n),
 signature)

 Inputs:
 - PK_1, ..., PK_n, public keys in the format output by SkToPk.
 - message_1, ..., message_n, octet strings.
 - signature, an octet string output by Aggregate.

 Outputs:
 - result, either VALID or INVALID.

 Precondition: n >= 1, otherwise return INVALID.

 Procedure:
 1. If any two input messages are equal, return INVALID.
 2. return CoreAggregateVerify((PK_1, ..., PK_n),
 (message_1, ..., message_n),
 signature)

3.2. Message augmentation

 In a message augmentation scheme, signatures are generated over the
 concatenation of the public key and the message, ensuring that
 messages signed by different public keys are distinct.

3.2.1. Sign

 To match the API for Sign defined in Section 1.4, this function
 recomputes the public key corresponding to the input SK.
 Implementations MAY instead implement an interface that takes the
 public key as an input.

 Note that the point P and the point_to_pubkey function are defined in
Section 2.2.

Boneh, et al. Expires 14 March 2021 [Page 15]

Internet-Draft BLS-signature September 2020

 signature = Sign(SK, message)

 Inputs:
 - SK, a secret key in the format output by KeyGen.
 - message, an octet string.

 Outputs:
 - signature, an octet string.

 Procedure:
 1. PK = SkToPk(SK)
 2. return CoreSign(SK, PK || message)

3.2.2. Verify

 result = Verify(PK, message, signature)

 Inputs:
 - PK, a public key in the format output by SkToPk.
 - message, an octet string.
 - signature, an octet string in the format output by CoreSign.

 Outputs:
 - result, either VALID or INVALID.

 Procedure:
 1. return CoreVerify(PK, PK || message, signature)

3.2.3. AggregateVerify

Boneh, et al. Expires 14 March 2021 [Page 16]

Internet-Draft BLS-signature September 2020

 result = AggregateVerify((PK_1, ..., PK_n),
 (message_1, ..., message_n),
 signature)

 Inputs:
 - PK_1, ..., PK_n, public keys in the format output by SkToPk.
 - message_1, ..., message_n, octet strings.
 - signature, an octet string output by Aggregate.

 Outputs:
 - result, either VALID or INVALID.

 Precondition: n >= 1, otherwise return INVALID.

 Procedure:
 1. for i in 1, ..., n:
 2. mprime_i = PK_i || message_i
 3. return CoreAggregateVerify((PK_1, ..., PK_n),
 (mprime_1, ..., mprime_n),
 signature)

3.3. Proof of possession

 A proof of possession scheme uses a separate public key validation
 step, called a proof of possession, to defend against rogue key
 attacks. This enables an optimization to aggregate signature
 verification for the case that all signatures are on the same
 message.

 The Sign, Verify, and AggregateVerify functions are identical to
 CoreSign, CoreVerify, and CoreAggregateVerify (Section 2),
 respectively. In addition, a proof of possession scheme defines
 three functions beyond the standard API (Section 1.4):

 * PopProve(SK) -> proof: an algorithm that generates a proof of
 possession for the public key corresponding to secret key SK.

 * PopVerify(PK, proof) -> VALID or INVALID: an algorithm that
 outputs VALID if proof is valid for PK, and INVALID otherwise.

 * FastAggregateVerify((PK_1, ..., PK_n), message, signature) ->
 VALID or INVALID: a verification algorithm for the aggregate of
 multiple signatures on the same message. This function is faster
 than AggregateVerify.

 All public keys used by Verify, AggregateVerify, and
 FastAggregateVerify MUST be accompanied by a proof of possession, and

Boneh, et al. Expires 14 March 2021 [Page 17]

Internet-Draft BLS-signature September 2020

 the result of evaluating PopVerify on the public key and proof MUST
 be VALID.

3.3.1. Parameters

 In addition to the parameters required to instantiate the core
 operations (Section 2.2), a proof of possession scheme requires one
 further parameter:

 * hash_pubkey_to_point(PK) -> P: a cryptographic hash function that
 takes as input a public key and outputs a point in the same
 subgroup as the hash_to_point algorithm used to instantiate the
 core operations.

 For security, this function MUST be domain separated from the
 hash_to_point function. In addition, this function MUST be either
 a random oracle encoding or a nonuniform encoding, as defined in
 [I-D.irtf-cfrg-hash-to-curve].

 The RECOMMENDED way of instantiating hash_pubkey_to_point is to
 use the same hash-to-curve function as hash_to_point, with a
 different domain separation tag (see
 [I-D.irtf-cfrg-hash-to-curve], Section 3.1). Section 4.1
 discusses the RECOMMENDED way to construct the domain separation
 tag.

3.3.2. PopProve

 This function recomputes the public key coresponding to the input SK.
 Implementations MAY instead implement an interface that takes the
 public key as input.

 Note that the point P and the point_to_pubkey and point_to_signature
 functions are defined in Section 2.2. The hash_pubkey_to_point
 function is defined in Section 3.3.1.

Boneh, et al. Expires 14 March 2021 [Page 18]

Internet-Draft BLS-signature September 2020

 proof = PopProve(SK)

 Inputs:
 - SK, a secret key in the format output by KeyGen.

 Outputs:
 - proof, an octet string.

 Procedure:
 1. PK = SkToPk(SK)
 2. Q = hash_pubkey_to_point(PK)
 3. R = SK * Q
 4. proof = point_to_signature(R)
 5. return proof

3.3.3. PopVerify

 PopVerify uses several functions defined in Section 2. The
 hash_pubkey_to_point function is defined in Section 3.3.1.

 As an optimization, implementations MAY cache the result of PopVerify
 in order to avoid unnecessarily repeating validation for known keys.

 result = PopVerify(PK, proof)

 Inputs:
 - PK, a public key in the format output by SkToPk.
 - proof, an octet string in the format output by PopProve.

 Outputs:
 - result, either VALID or INVALID

 Procedure:
 1. R = signature_to_point(proof)
 2. If R is INVALID, return INVALID
 3. If signature_subgroup_check(R) is INVALID, return INVALID
 4. If KeyValidate(PK) is INVALID, return INVALID
 5. xP = pubkey_to_point(PK)
 6. Q = hash_pubkey_to_point(PK)
 7. C1 = pairing(Q, xP)
 8. C2 = pairing(R, P)
 9. If C1 == C2, return VALID, else return INVALID

3.3.4. FastAggregateVerify

 FastAggregateVerify uses several functions defined in Section 2.

Boneh, et al. Expires 14 March 2021 [Page 19]

Internet-Draft BLS-signature September 2020

 result = FastAggregateVerify((PK_1, ..., PK_n), message, signature)

 Inputs:
 - PK_1, ..., PK_n, public keys in the format output by SkToPk.
 - message, an octet string.
 - signature, an octet string output by Aggregate.

 Outputs:
 - result, either VALID or INVALID.

 Precondition: n >= 1, otherwise return INVALID.

 Procedure:
 1. aggregate = pubkey_to_point(PK_1)
 2. for i in 2, ..., n:
 3. next = pubkey_to_point(PK_i)
 4. aggregate = aggregate + next
 5. PK = point_to_pubkey(aggregate)
 6. return CoreVerify(PK, message, signature)

4. Ciphersuites

 This section defines the format for a BLS ciphersuite. It also gives
 concrete ciphersuites based on the BLS12-381 pairing-friendly
 elliptic curve [I-D.irtf-cfrg-pairing-friendly-curves].

4.1. Ciphersuite format

 A ciphersuite specifies all parameters from Section 2.2, a scheme
 from Section 3, and any parameters the scheme requires. In
 particular, a ciphersuite comprises:

 * ID: the ciphersuite ID, an ASCII string. The REQUIRED format for
 this string is

 "BLS_SIG_" || H2C_SUITE_ID || SC_TAG || "_"

 - Strings in double quotes are ASCII-encoded literals.

 - H2C_SUITE_ID is the suite ID of the hash-to-curve suite used to
 define the hash_to_point and hash_pubkey_to_point functions.

 - SC_TAG is a string indicating the scheme and, optionally,
 additional information. The first three characters of this
 string MUST chosen as follows:

 o "NUL" if SC is basic,

Boneh, et al. Expires 14 March 2021 [Page 20]

Internet-Draft BLS-signature September 2020

 o "AUG" if SC is message-augmentation, or

 o "POP" if SC is proof-of-possession.

 o Other values MUST NOT be used.

 SC_TAG MAY be used to encode other information about the
 ciphersuite, for example, a version number. When used in this
 way, SC_TAG MUST contain only ASCII characters between 0x21 and
 0x7e (inclusive), except that it MUST NOT contain underscore
 (0x5f).

 The RECOMMENDED way to add user-defined information to SC_TAG
 is to append a colon (':', ASCII 0x3a) and then the
 informational string. For example, "NUL:version=2" is an
 appropriate SC_TAG value.

 Note that hash-to-curve suite IDs always include a trailing
 underscore, so no field separator is needed between H2C_SUITE_ID
 and SC_TAG.

 * SC: the scheme, one of basic, message-augmentation, or proof-of-
 possession.

 * SV: the signature variant, either minimal-signature-size or
 minimal-pubkey-size.

 * EC: a pairing-friendly elliptic curve, plus all associated
 functionality (Section 1.3).

 * H: a cryptographic hash function.

 * hash_to_point: a hash from arbitrary strings to elliptic curve
 points. hash_to_point MUST be defined in terms of a hash-to-curve
 suite [I-D.irtf-cfrg-hash-to-curve].

 The RECOMMENDED hash-to-curve domain separation tag is the
 ciphersuite ID string defined above.

 * hash_pubkey_to_point (only specified when SC is proof-of-
 possession): a hash from serialized public keys to elliptic curve
 points. hash_pubkey_to_point MUST be defined in terms of a hash-
 to-curve suite [I-D.irtf-cfrg-hash-to-curve].

 The hash-to-curve domain separation tag MUST be distinct from the
 domain separation tag used for hash_to_point. It is RECOMMENDED
 that the domain separation tag be constructed similarly to the
 ciphersuite ID string, namely:

Boneh, et al. Expires 14 March 2021 [Page 21]

Internet-Draft BLS-signature September 2020

 "BLS_POP_" || H2C_SUITE_ID || SC_TAG || "_"

4.2. Ciphersuites for BLS12-381

 The following ciphersuites are all built on the BLS12-381 elliptic
 curve. The required primitives for this curve are given in

Appendix A.

 These ciphersuites use the hash-to-curve suites BLS12381G1_XMD:SHA-
 256_SSWU_RO_ and BLS12381G2_XMD:SHA-256_SSWU_RO_ defined in
 [I-D.irtf-cfrg-hash-to-curve], Section 8.7. Each ciphersuite defines
 a unique hash_to_point function by specifying a domain separation tag
 (see [@I-D.irtf-cfrg-hash-to-curve, Section 3.1).

4.2.1. Basic

 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_NUL_ is defined as follows:

 * SC: basic

 * SV: minimal-signature-size

 * EC: BLS12-381, as defined in Appendix A.

 * H: SHA-256

 * hash_to_point: BLS12381G1_XMD:SHA-256_SSWU_RO_ with the ASCII-
 encoded domain separation tag

 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_NUL_

 BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_ is identical to
 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_NUL_, except for the following
 parameters:

 * SV: minimal-pubkey-size

 * hash_to_point: BLS12381G2_XMD:SHA-256_SSWU_RO_ with the ASCII-
 encoded domain separation tag

 BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_

4.2.2. Message augmentation

 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_AUG_ is defined as follows:

 * SC: message-augmentation

Boneh, et al. Expires 14 March 2021 [Page 22]

Internet-Draft BLS-signature September 2020

 * SV: minimal-signature-size

 * EC: BLS12-381, as defined in Appendix A.

 * H: SHA-256

 * hash_to_point: BLS12381G1_XMD:SHA-256_SSWU_RO_ with the ASCII-
 encoded domain separation tag

 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_AUG_

 BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_AUG_ is identical to
 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_AUG_, except for the following
 parameters:

 * SV: minimal-pubkey-size

 * hash_to_point: BLS12381G2_XMD:SHA-256_SSWU_RO_ with the ASCII-
 encoded domain separation tag

 BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_AUG_

4.2.3. Proof of possession

 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_ is defined as follows:

 * SC: proof-of-possession

 * SV: minimal-signature-size

 * EC: BLS12-381, as defined in Appendix A.

 * H: SHA-256

 * hash_to_point: BLS12381G1_XMD:SHA-256_SSWU_RO_ with the ASCII-
 encoded domain separation tag

 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_

 * hash_pubkey_to_point: BLS12381G1_XMD:SHA-256_SSWU_RO_ with the
 ASCII-encoded domain separation tag

 BLS_POP_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_

 BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_ is identical to
 BLS_SIG_BLS12381G1_XMD:SHA-256_SSWU_RO_POP_, except for the following
 parameters:

Boneh, et al. Expires 14 March 2021 [Page 23]

Internet-Draft BLS-signature September 2020

 * SV: minimal-pubkey-size

 * hash_to_point: BLS12381G2_XMD:SHA-256_SSWU_RO_ with the ASCII-
 encoded domain separation tag

 BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_

 * hash_pubkey_to_point: BLS12381G2_XMD:SHA-256_SSWU_RO_ with the
 ASCII-encoded domain separation tag

 BLS_POP_BLS12381G2_XMD:SHA-256_SSWU_RO_POP_

5. Security Considerations

5.1. Validating public keys

 All algorithms in Section 2 and Section 3 that operate on public keys
 require first validating those keys. For the basic and message
 augmentation schemes, the use of KeyValidate is REQUIRED. For the
 proof of possession scheme, each public key MUST be accompanied by a
 proof of possession, and use of PopVerify is REQUIRED.

 KeyValidate requires all public keys to represent valid, non-identity
 points in the correct subgroup. A valid point and subgroup
 membership are required to ensure that the pairing operation is
 defined (Section 5.2).

 A non-identity point is required because the identity public key has
 the property that the corresponding secret key is equal to zero,
 which means that the identity point is the unique valid signature for
 every message under this key. A malicious signer could take
 advantage of this fact to equivocate about which message he signed.
 While non-equivocation is not a required property for a signature
 scheme, equivocation is infeasible for BLS signatures under any
 nonzero secret key because it would require finding colliding inputs
 to the hash_to_point function, which is assumed to be collision
 resistant. Prohibiting SK == 0 eliminates the exceptional case,
 which may help to prevent equivocation-related security issues in
 protocols that use BLS signatures.

5.2. Skipping membership check

 Some existing implementations skip the signature_subgroup_check
 invocation in CoreVerify (Section 2.7), whose purpose is ensuring
 that the signature is an element of a prime-order subgroup. This
 check is REQUIRED of conforming implementations, for two reasons.

Boneh, et al. Expires 14 March 2021 [Page 24]

Internet-Draft BLS-signature September 2020

 1. For most pairing-friendly elliptic curves used in practice, the
 pairing operation e (Section 1.3) is undefined when its input
 points are not in the prime-order subgroups of E1 and E2. The
 resulting behavior is unpredictable, and may enable forgeries.

 2. Even if the pairing operation behaves properly on inputs that are
 outside the correct subgroups, skipping the subgroup check breaks
 the strong unforgeability property [ADR02].

5.3. Side channel attacks

 Implementations of the signing algorithm SHOULD protect the secret
 key from side-channel attacks. One method for protecting against
 certain side-channel attacks is ensuring that the implementation
 executes exactly the same sequence of instructions and performs
 exactly the same memory accesses, for any value of the secret key.
 In other words, implementations on the underlying pairing-friendly
 elliptic curve SHOULD run in constant time.

5.4. Randomness considerations

 BLS signatures are deterministic. This protects against attacks
 arising from signing with bad randomness, for example, the nonce
 reuse attack on ECDSA [HDWH12].

 As discussed in Section 2.3, the IKM input to KeyGen MUST be
 infeasible to guess and MUST be kept secret. One possibility is to
 generate IKM from a trusted source of randomness. Guidelines on
 constructing such a source are outside the scope of this document.

5.5. Implementing hash_to_point and hash_pubkey_to_point

 The security analysis models hash_to_point and hash_pubkey_to_point
 as random oracles. It is crucial that these functions are
 implemented using a cryptographically secure hash function. For this
 purpose, implementations MUST meet the requirements of
 [I-D.irtf-cfrg-hash-to-curve].

 In addition, ciphersuites MUST specify unique domain separation tags
 for hash_to_point and hash_pubkey_to_point. The domain separation
 tag format used in Section 4 is the RECOMMENDED one.

6. Implementation Status

 This section will be removed in the final version of the draft.
 There are currently several implementations of BLS signatures using
 the BLS12-381 curve.

Boneh, et al. Expires 14 March 2021 [Page 25]

Internet-Draft BLS-signature September 2020

 * Algorand: bls_sigs_ref (https://github.com/kwantam/bls_sigs_ref).

 * Chia: spec (https://github.com/Chia-Network/bls-
signatures/blob/master/SPEC.md) python/C++ (https://github.com/
Chia-Network/bls-signatures). Here, they are swapping G1 and G2

 so that the public keys are small, and the benefits of avoiding a
 membership check during signature verification would even be more
 substantial. The current implementation does not seem to
 implement the membership check. Chia uses the Fouque-Tibouchi
 hashing to the curve, which can be done in constant time.

 * Dfinity: go (https://github.com/dfinity/go-dfinity-crypto) BLS
 (https://github.com/dfinity/bls). The current implementations do
 not seem to implement the membership check.

 * Ethereum 2.0: spec (https://github.com/ethereum/eth2.0-
specs/blob/master/specs/bls_signature.md).

7. Related Standards

 * Pairing-friendly curves, [I-D.irtf-cfrg-pairing-friendly-curves]

 * Pairing-based Identity-Based Encryption IEEE 1363.3
 (https://ieeexplore.ieee.org/document/6662370).

 * Identity-Based Cryptography Standard rfc5901
 (https://tools.ietf.org/html/rfc5091).

 * Hashing to Elliptic Curves [I-D.irtf-cfrg-hash-to-curve], in order
 to implement the hash function hash_to_point.

 * EdDSA rfc8032 (https://tools.ietf.org/html/rfc8032).

8. IANA Considerations

 TBD (consider to register ciphersuite identifiers for BLS signature
 and underlying pairing curves)

9. Normative References

 [ZCash] Electric Coin Company, "BLS12-381", July 2017,
 <https://github.com/zkcrypto/pairing/blob/master/src/

bls12_381/README.md#serialization>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://github.com/kwantam/bls_sigs_ref
https://github.com/Chia-Network/bls-signatures/blob/master/SPEC.md
https://github.com/Chia-Network/bls-signatures/blob/master/SPEC.md
https://github.com/Chia-Network/bls-signatures
https://github.com/Chia-Network/bls-signatures
https://github.com/dfinity/go-dfinity-crypto
https://github.com/dfinity/bls
https://github.com/ethereum/eth2.0-specs/blob/master/specs/bls_signature.md
https://github.com/ethereum/eth2.0-specs/blob/master/specs/bls_signature.md
https://ieeexplore.ieee.org/document/6662370
https://datatracker.ietf.org/doc/html/rfc5901
https://tools.ietf.org/html/rfc5091
https://datatracker.ietf.org/doc/html/rfc8032
https://tools.ietf.org/html/rfc8032
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md#serialization
https://github.com/zkcrypto/pairing/blob/master/src/bls12_381/README.md#serialization
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Boneh, et al. Expires 14 March 2021 [Page 26]

Internet-Draft BLS-signature September 2020

10. Informative References

 [BGLS03] Boneh, D., Gentry, C., Lynn, B., and H. Shacham,
 "Aggregate and verifiably encrypted signatures from
 bilinear maps", May 2003, <https://link.springer.com/

chapter/10.1007%2F3-540-39200-9_26>.

 [BNN07] Bellare, M., Namprempre, C., and G. Neven, "Unrestricted
 aggregate signatures", July 2007,
 <https://link.springer.com/

chapter/10.1007%2F978-3-540-73420-8_37>.

 [RY07] Ristenpart, T. and S. Yilek, "The Power of Proofs-of-
 Possession: Securing Multiparty Signatures against Rogue-
 Key Attacks", May 2007, <https://link.springer.com/

chapter/10.1007%2F978-3-540-72540-4_13>.

 [HDWH12] Heninger, N., Durumeric, Z., Wustrow, E., and J.A.
 Halderman, "Mining your Ps and Qs: Detection of widespread
 weak keys in network devices", August 2012,
 <https://www.usenix.org/system/files/conference/

usenixsecurity12/sec12-final228.pdf>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [ADR02] An, J. H., Dodis, Y., and T. Rabin, "On the Security of
 Joint Signature and Encryption", April 2002,
 <https://doi.org/10.1007/3-540-46035-7_6>.

 [LOSSW06] Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., and B.
 Waters, "Sequential Aggregate Signatures and
 Multisignatures Without Random Oracles", May 2006,
 <https://link.springer.com/chapter/10.1007/11761679_28>.

 [Bowe19] Bowe, S., "Faster subgroup checks for BLS12-381", July
 2019, <https://eprint.iacr.org/2019/814>.

 [I-D.irtf-cfrg-hash-to-curve]
 Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
 C. Wood, "Hashing to Elliptic Curves", Work in Progress,
 Internet-Draft, draft-irtf-cfrg-hash-to-curve-09, 29 June
 2020, <https://tools.ietf.org/html/draft-irtf-cfrg-hash-

to-curve-09>.

https://link.springer.com/chapter/10.1007%2F3-540-39200-9_26
https://link.springer.com/chapter/10.1007%2F3-540-39200-9_26
https://link.springer.com/chapter/10.1007%2F978-3-540-73420-8_37
https://link.springer.com/chapter/10.1007%2F978-3-540-73420-8_37
https://link.springer.com/chapter/10.1007%2F978-3-540-72540-4_13
https://link.springer.com/chapter/10.1007%2F978-3-540-72540-4_13
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final228.pdf
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://doi.org/10.1007/3-540-46035-7_6
https://link.springer.com/chapter/10.1007/11761679_28
https://eprint.iacr.org/2019/814
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-09
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-09
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-09

Boneh, et al. Expires 14 March 2021 [Page 27]

Internet-Draft BLS-signature September 2020

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [FIPS180-4]
 National Institute of Standards and Technology (NIST),
 "FIPS Publication 180-4: Secure Hash Standard", August
 2015, <https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.180-4.pdf>.

 [BLS01] Boneh, D., Lynn, B., and H. Shacham, "Short signatures
 from the Weil pairing", December 2001,
 <https://www.iacr.org/archive/asiacrypt2001/22480516.pdf>.

 [Bol03] Boldyreva, A., "Threshold Signatures, Multisignatures and
 Blind Signatures Based on the Gap-Diffie-Hellman-Group
 Signature Scheme", January 2003,
 <https://link.springer.com/

chapter/10.1007%2F3-540-36288-6_3>.

 [BDN18] Boneh, D., Drijvers, M., and G. Neven, "Compact multi-
 signatures for shorter blockchains", December 2018,
 <https://link.springer.com/

chapter/10.1007/978-3-030-03329-3_15>.

 [I-D.irtf-cfrg-pairing-friendly-curves]
 Sakemi, Y., Kobayashi, T., Saito, T., and R. Wahby,
 "Pairing-Friendly Curves", Work in Progress, Internet-
 Draft, draft-irtf-cfrg-pairing-friendly-curves-07, 18 June
 2020, <https://tools.ietf.org/html/draft-irtf-cfrg-

pairing-friendly-curves-07>.

Appendix A. BLS12-381

 The ciphersuites in Section 4 are based upon the BLS12-381 pairing-
 friendly elliptic curve. The following defines the correspondence
 between the primitives in Section 1.3 and the parameters given in
 Section 4.2.2 of [I-D.irtf-cfrg-pairing-friendly-curves].

 * E1, G1: the curve E and its order-r subgroup.

 * E2, G2: the curve E' and its order-r subgroup.

 * GT: the subgroup G_T.

 * P1: the point BP.

https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
https://link.springer.com/chapter/10.1007%2F3-540-36288-6_3
https://link.springer.com/chapter/10.1007%2F3-540-36288-6_3
https://link.springer.com/chapter/10.1007/978-3-030-03329-3_15
https://link.springer.com/chapter/10.1007/978-3-030-03329-3_15
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-07
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-07
https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-07

Boneh, et al. Expires 14 March 2021 [Page 28]

Internet-Draft BLS-signature September 2020

 * P2: the point BP'.

 * e: the optimal Ate pairing defined in Appendix A of
 [I-D.irtf-cfrg-pairing-friendly-curves].

 * point_to_octets and octets_to_point use the compressed
 serialization formats for E1 and E2 defined by [ZCash].

 * subgroup_check MAY use either the naive check described in
Section 1.3 or the optimized check given by [Bowe19].

Appendix B. Test Vectors

 TBA: (i) test vectors for both variants of the signature scheme
 (signatures in G2 instead of G1) , (ii) test vectors ensuring
 membership checks, (iii) intermediate computations ctr, hm.

Appendix C. Security analyses

 The security properties of the BLS signature scheme are proved in
 [BLS01].

 [BGLS03] prove the security of aggregate signatures over distinct
 messages, as in the basic scheme of Section 3.1.

 [BNN07] prove security of the message augmentation scheme of
Section 3.2.

 [Bol03][LOSSW06][RY07] prove security of constructions related to the
 proof of possession scheme of Section 3.3.

 [BDN18] prove the security of another rogue key defense; this defense
 is not standardized in this document.

Authors' Addresses

 Dan Boneh
 Stanford University
 United States of America

 Email: dabo@cs.stanford.edu

 Sergey Gorbunov
 University of Waterloo
 Waterloo, ON
 Canada

Boneh, et al. Expires 14 March 2021 [Page 29]

Internet-Draft BLS-signature September 2020

 Email: sgorbunov@uwaterloo.ca

 Riad S. Wahby
 Stanford University
 United States of America

 Email: rsw@cs.stanford.edu

 Hoeteck Wee
 NTT Research and ENS, Paris
 Boston, MA,
 United States of America

 Email: wee@di.ens.fr

 Zhenfei Zhang
 Algorand
 Boston, MA,
 United States of America

 Email: zhenfei@algorand.com

Boneh, et al. Expires 14 March 2021 [Page 30]

