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Abstract

   This memo describes an algorithm for deterministically generating
   parameters for elliptic curves over prime fields offering high
   practical security in cryptographic applications, including Transport
   Layer Security (TLS) and X.509 certificates.  It also specifies a
   specific curve at the ~128-bit security level.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 1, 2015.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Since the initial standardization of elliptic curve cryptography
   (ECC) in [SEC1] there has been significant progress related to both
   efficiency and security of curves and implementations.  Notable
   examples are algorithms protected against certain side-channel
   attacks, various 'special' prime shapes which allow faster modular
   arithmetic, and a larger set of curve models from which to choose.
   There is also concern in the community regarding the generation and
   potential weaknesses of the curves defined in [NIST].

   This memo describes a deterministic algorithm for generating
   cryptographic elliptic curves over a given prime field.  The
   constraints in the generation process produce curves that support
   constant-time, exception-free scalar multiplications that are
   resistant to a wide range of side-channel attacks including timing
   and cache attacks, thereby offering high practical security in
   cryptographic applications.  The deterministic algorithm operates
   without any input parameters that would permit manipulation of the
   resulting curves.  The selection between curve models is determined
   by choosing the curve form that supports the fastest (currently
   known) complete formulas for each modularity option of the underlying
   field prime.  Specifically, the Edwards curve x^2 + y^2 = 1 + dx^2y^2
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   is used with primes p with p = 3 mod 4, and the twisted Edwards curve
   -x^2 + y^2 = 1 + dx^2y^2 is used when p = 1 mod 4.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Security Requirements

   For each curve at a specific security level:

   1.  The domain parameters SHALL be generated in a simple,
       deterministic manner, without any secret or random inputs.  The
       derivation of the curve parameters is defined in Section 5.

   2.  The trace of Frobenius MUST NOT be in {0, 1} in order to rule out
       the attacks described in [Smart], [AS], and [S], as in [EBP].

   3.  MOV Degree: the embedding degree k MUST be greater than (r - 1) /
       100, as in [EBP].

   4.  CM Discriminant: discriminant D MUST be greater than 2^100, as in
       [SC].

4.  Notation

   Throughout this document, the following notation is used:

   p  Denotes the prime number defining the underlying field.

   GF(p)  The finite field with p elements.

   d  An element in the finite field GF(p), not equal to -1 or zero.

   Ed An Edwards curve: an elliptic curve over GF(p) with equation x^2 +
      y^2 = 1 + dx^2y^2.

   tEd  A twisted Edwards curve where a=-1: an elliptic curve over GF(p)
      with equation -x^2 + y^2 = 1 + dx^2y^2.

   oddDivisor  The largest odd divisor of the number of GF(p)-rational
      points on a (twisted) Edwards curve.

   oddDivisor'  The largest odd divisor of the number of GF(p)-rational
      points on the non-trivial quadratic twist of a (twisted) Edwards
      curve.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   cofactor  The cofactor of the subgroup of order oddDivisor in the
      group of GF(p)-rational points of a (twisted) Edwards curve.

   cofactor'  The cofactor of the subgroup of order oddDivisor in the
      group of GF(p)-rational points on the non-trivial quadratic twist
      of a (twisted) Edwards curve.

   trace  The trace of Frobenius of Ed or tEd such that #Ed(GF(p)) = p +
      1 - trace or #tEd(GF(p)) = p + 1 - trace, respectively.

   P  A generator point defined over GF(p) of prime order oddDivisor on
      Ed or tEd.

   X(P)  The x-coordinate of the elliptic curve point P.

   Y(P)  The y-coordinate of the elliptic curve point P.

5.  Parameter Generation

   This section describes the generation of the curve parameter, namely
   d, of the elliptic curve.  The input to this process is p, the prime
   that defines the underlying field.  The size of p determines the
   amount of work needed to compute a discrete logarithm in the elliptic
   curve group and choosing a precise p depends on many implementation
   concerns.  The performance of the curve will be dominated by
   operations in GF(p) and thus carefully choosing a value that allows
   for easy reductions on the intended architecture is critical.  This
   document does not attempt to articulate all these considerations.

5.1.  Edwards Curves

   For p = 3 mod 4, the elliptic curve Ed in Edwards form is determined
   by the non-square element d from GF(p) (not equal to -1 or zero) with
   smallest absolute value such that #Ed(GF(p)) = cofactor * oddDivisor,
   #Ed'(GF(p)) = cofactor' * oddDivisor', cofactor = cofactor' = 4, and
   both subgroup orders oddDivisor and oddDivisor' are prime.  In
   addition, care must be taken to ensure the MOV degree and CM
   discriminant requirements from Section 3 are met.

   These cofactors are chosen because they are minimal.
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Input: a prime p, with p = 3 mod 4
Output: the parameter d defining the curve Ed
1. Set d = 0
2. repeat
     repeat
       if (d > 0) then
         d = -d
       else
         d = -d + 1
       end if
     until d is not a square in GF(p)

     Compute oddDivisor, oddDivisor', cofactor and cofactor' where #Ed(GF(p)) =
     cofactor * oddDivisor, #Ed'(GF(p)) = cofactor' * oddDivisor', cofactor and
     cofactor' are powers of 2 and oddDivisor, oddDivisor' are odd.
   until ((cofactor = cofactor' = 4), oddDivisor is prime and oddDivisor' is 
prime)
3. Output d

                           GenerateCurveEdwards

5.2.  Twisted Edwards Curves

   For a prime p = 1 mod 4, the elliptic curve tEd in twisted Edwards
   form is determined by the non-square element d from GF(p) (not equal
   to -1 or zero) with smallest absolute value such that #tEd(GF(p)) =
   cofactor * oddDivisor, #tEd'(GF(p)) = cofactor' * oddDivisor',
   cofactor = 8, cofactor' = 4 and both subgroup orders oddDivisor and
   oddDivisor' are prime.  In addition, care must be taken to ensure the
   MOV degree and CM discriminant requirements from Section 3 are met.

   These cofactors are chosen so that they are minimal such that the
   cofactor of the main curve is greater than the cofactor of the twist.
   For 1 mod 4 primes, the cofactors are never equal.  If the cofactor
   of the twist is larger than the cofactor of the curve, algorithms may
   be vulnerable to a small-subgroup attack if a point on the twist is
   incorrectly accepted.
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Input: a prime p, with p = 1 mod 4
Output: the parameter d defining the curve tEd
1. Set d = 0
2. repeat
     repeat
       if (d > 0) then
         d = -d
       else
         d = -d + 1
       end if
     until d is not a square in GF(p)

     Compute oddDivisor, oddDivisor', cofactor, cofactor' where #tEd(GF(p)) =
     cofactor * oddDivisor, #tEd'(GF(p)) = cofactor' * oddDivisor', cofactor
     and cofactor' are powers of 2 and oddDivisor, oddDivisor' are odd.
   until (cofactor = 8 and cofactor' = 4 and rd is prime and rd' is prime)
3. Output d

                           GenerateCurveTEdwards

6.  Recommended Curves

   For the ~128-bit security level, the prime 2^255-19 is recommended
   for performance on a wide-range of architectures.  This prime is
   congruent to 1 mod 4 and the above procedure results in the following
   twisted Edwards curve, called "intermediate25519":

   p  2^255-19

   d  121665

   order  2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

   cofactor  8

   In order to be compatible with widespread existing practice, the
   recommended curve is an isogeny of this curve.  An isogeny is a
   "renaming" of the points on the curve and thus cannot affect the
   security of the curve:

   p  2^255-19

   d  370957059346694393431380835087545651895421138798432190163887855330
      85940283555

   order  2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

   cofactor  8
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   X(P)  151122213495354007725011514095885315114540126930418572060461132
      83949847762202

   Y(P)  463168356949264781694283940034751631413079938662562256157830336
      03165251855960

   The d value in this curve is much larger than the generated curve and
   this might slow down some implementations.  If this is a problem then
   implementations are free to calculate on the original curve, with
   small d, as the isogeny map can be merged into the affine transform
   without any performance impact.

   The latter curve is isomorphic to a Montgomery curve defined by v^2 =
   u^3 + 486662u^2 + u where the maps are:

   (u, v) = ((1+y)/(1-y), sqrt(-1)*sqrt(486664)*u/x)
   (x, y) = (sqrt(-1)*sqrt(486664)*u/v, (u-1)/(u+1)

   The base point maps onto the Montgomery curve such that u = 9, v = 14
   781619447589544791020593568409986887264606134616475288964881837755586
   237401.

   The Montgomery curve defined here is equal to the one defined in
   [curve25519] and the isomorphic twisted Edwards curve is equal to the
   one defined in [ed25519].

7.  The curve25519 function

   The "curve25519" function performs scalar multiplication on the
   Montgomery form of the above curve.  (This is used when implementing
   Diffie-Hellman.)  The function takes a scalar and a u-coordinate as
   inputs and produces a u-coordinate as output.  Although the function
   works internally with integers, the inputs and outputs are 32-byte
   strings and this specification defines their encoding.

   U-coordinates are elements of the underlying field GF(2^255-19) and
   are encoded as an array of bytes, u, in little-endian order such that
   u[0] + 256 * u[1] + 256^2 * u[2] + ... + 256^n * u[n] is congruent to
   the value modulo p and u[n] is minimal.  When receiving such an
   array, implementations MUST mask the most-significant bit in the
   final byte.  This is done to preserve compatibility with point
   formats which reserve the sign bit for use in other protocols and to
   increase resistance to implementation fingerprinting.

   For example, the following functions implement this in Python,
   although the Python code is not intended to be performant nor side-
   channel free:
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   def decodeLittleEndian(b):
       return sum([b[i] << 8*i for i in range(32)])

   def decodeUCoordinate(u):
       u_list = [ord(b) for b in u]
       u_list[31] &= 0x7f
       return decodeLittleEndian(u_list)

   def encodeUCoordinate(u):
       u = u % p
       return ''.join([chr((u >> 8*i) & 0xff) for i in range(32)])

   (EDITORS NOTE: draft-turner-thecurve25519function also says
   "Implementations MUST reject numbers in the range [2^255-19,
   2^255-1], inclusive." but I'm not aware of any implementations that
   do so.)

   Scalars are assumed to be randomly generated bytes.  In order to
   decode 32 bytes into an integer scalar, set the three least
   significant bits of the first byte and the most significant bit of
   the last to zero, set the second most significant bit of the last
   byte to 1 and, finally, decode as little-endian.  This means that
   resulting integer is of the form 2^254 + 8 * {0, 1, ..., 2^(251) -
   1}.

   def decodeScalar(k):
       k_list = [ord(b) for b in k]
       k_list[0] &= 248
       k_list[31] &= 127
       k_list[31] |= 64
       return decodeLittleEndian(k_list)

   To implement the "curve25519(k, u)" function (where "k" is the scalar
   and "u" is the u-coordinate) first decode "k" and "u" and then
   perform the following procedure, taken from [curve25519] and based on
   formulas from [montgomery].  All calculations are performed in GF(p),
   i.e., they are performed modulo p.  The constant a24 is (486662 - 2)
   / 4 = 121665.

https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function
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   x_1 = u
   x_2 = 1
   z_2 = 0
   x_3 = u
   z_3 = 1
   swap = 0

   For t = 254 down to 0:
       k_t = (k >> t) & 1
       swap ^= k_t
       // Conditional swap; see text below.
       (x_2, x_3) = cswap(swap, x_2, x_3)
       (z_2, z_3) = cswap(swap, z_2, z_3)
       swap = k_t

       A = x_2 + z_2
       AA = A^2
       B = x_2 - z_2
       BB = B^2
       E = AA - BB
       C = x_3 + z_3
       D = x_3 - z_3
       DA = D * A
       CB = C * B
       x_3 = (DA + CB)^2
       z_3 = x_1 * (DA - CB)^2
       x_2 = AA * BB
       z_2 = E * (AA + a24 * E)

   // Conditional swap; see text below.
   (x_2, x_3) = cswap(swap, x_2, x_3)
   (z_2, z_3) = cswap(swap, z_2, z_3)
   Return x_2 * (z_2^(p - 2))

   (TODO: Note the difference in the formula from Montgomery's original
   paper.  See https://www.ietf.org/mail-archive/web/cfrg/current/

msg05872.html.)

   Finally, encode the resulting value as 32 bytes in little-endian
   order.

   When implementing this procedure, due to the existence of side-
   channels in commodity hardware, it is important that the pattern of
   memory accesses and jumps not depend on the values of any of the bits
   of "k".  It is also important that the arithmetic used not leak
   information about the integers modulo p (such as having b*c be
   distinguishable from c*c).

https://www.ietf.org/mail-archive/web/cfrg/current/msg05872.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg05872.html
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   The cswap instruction SHOULD be implemented in constant time
   (independent of "swap") as follows:

   cswap(swap, x_2, x_3):
         dummy = swap * (x_2 - x_3)
         x_2 = x_2 - dummy
         x_3 = x_3 + dummy
         Return (x_2, x_3)

   where "swap" is 1 or 0.  Alternatively, an implementation MAY use the
   following:

   cswap(swap, x_2, x_3):
         dummy = mask(swap) AND (x_2 XOR x_3)
         x_2 = x_2 XOR dummy
         x_3 = x_3 XOR dummy
         Return (x_2, x_3)

   where "mask(swap)" is the all-1 or all-0 word of the same length as
   x_2 and x_3, computed, e.g., as mask(swap) = 1 - swap.  The latter
   version is often more efficient.

7.1.  Test vectors

Input scalar:
  a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4
Input scalar as a number (base 10):
  31029842492115040904895560451863089656472772604678260265531221036453811406496
Input U-coordinate:
  e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
Input U-coordinate as a number:
  34426434033919594451155107781188821651316167215306631574996226621102155684838
Output U-coordinate:
  c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552

Input scalar:
  4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
Input scalar as a number (base 10):
  35156891815674817266734212754503633747128614016119564763269015315466259359304
Input U-coordinate:
  e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493
Input U-coordinate as a number:
  8883857351183929894090759386610649319417338800022198945255395922347792736741
Output U-coordinate:
  95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957
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8.  Diffie-Hellman

   The "curve25519" function can be used in an ECDH protocol as follows:

   Alice generates 32 random bytes in f[0] to f[31] and transmits K_A =
   curve25519(f, 9) to Bob, where 9 is the u-coordinate of the base
   point and is encoded as a byte with value 9, followed by 31 zero
   bytes.

   Bob similarly generates 32 random bytes in g[0] to g[31] and computes
   K_B = curve25519(g, 9) and transmits it to Alice.

   Alice computes curve25519(f, K_B); Bob computes curve25519(g, K_A)
   using their generated values and the received input.

   Both now share K = curve25519(f, curve25519(g, 9)) = curve25519(g,
   curve25519(f, 9)) as a shared secret.  Alice and Bob can then use a
   key-derivation function, such as hashing K, to compute a key.

   Note that this Diffie-Hellman protocol is not contributory, e.g. if
   the u-coordinate is zero then the output will always be zero.  A
   contributory Diffie-Hellman function would ensure that the output was
   unpredictable no matter what the peer's input.  This is not a problem
   for the vast majority of cases but, if a contributory function is
   specifically required, then "curve25519" should not be used.

8.1.  Test vectors

   Alice's private key, f:
     77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a
   Alice's public key, curve25519(f, 9):
     8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a
   Bob's private key, g:
     5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb
   Bob's public key, curve25519(g, 9):
     de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f
   Their shared secret, K:
     4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742

9.  Acknowledgements

   This document merges "draft-black-rpgecc-01" and "draft-turner-
thecurve25519function-01".  The following authors of those documents

   wrote much of the text and figures but are not listed as authors on
   this document: Benjamin Black, Joppe W.  Bos, Craig Costello, Patrick
   Longa, Michael Naehrig and Watson Ladd.

https://datatracker.ietf.org/doc/html/draft-black-rpgecc-01
https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function-01
https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function-01


Langley, et al.          Expires August 1, 2015                [Page 11]



Internet-Draft                  cfrgcurve                   January 2015

   The authors would also like to thank Tanja Lange and Rene Struik for
   their reviews.

10.  References

10.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2.  Informative References

   [AS]       Satoh, T. and K. Araki, "Fermat quotients and the
              polynomial time discrete log algorithm for anomalous
              elliptic curves", 1998.

   [EBP]      ECC Brainpool, "ECC Brainpool Standard Curves and Curve
              Generation", October 2005, <http://www.ecc-

brainpool.org/download/Domain-parameters.pdf>.

   [NIST]     National Institute of Standards, "Recommended Elliptic
              Curves for Federal Government Use", July 1999,
              <http://csrc.nist.gov/groups/ST/toolkit/documents/dss/

NISTReCur.pdf>.

   [S]        Semaev, I., "Evaluation of discrete logarithms on some
              elliptic curves", 1998.

   [SC]       Bernstein, D. and T. Lange, "SafeCurves: choosing safe
              curves for elliptic-curve cryptography", June 2014,
              <http://safecurves.cr.yp.to/>.

   [SEC1]     Certicom Research, "SEC 1: Elliptic Curve Cryptography",
              September 2000,
              <http://www.secg.org/collateral/sec1_final.pdf>.

   [Smart]    Smart, N., "The discrete logarithm problem on elliptic
              curves of trace one", 1999.

   [curve25519]
              Bernstein, D., "Curve25519 -- new Diffie-Hellman speed
              records", 2006,
              <http://www.iacr.org/cryptodb/archive/2006/

PKC/3351/3351.pdf>.

   [ed25519]  Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
              Yang, "High-speed high-security signatures", 2011,
              <http://ed25519.cr.yp.to/ed25519-20110926.pdf>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://safecurves.cr.yp.to/
http://www.secg.org/collateral/sec1_final.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://ed25519.cr.yp.to/ed25519-20110926.pdf


Langley, et al.          Expires August 1, 2015                [Page 12]



Internet-Draft                  cfrgcurve                   January 2015

   [montgomery]
              Montgomery, P., "Speeding the Pollard and elliptic curve
              methods of factorization", 1983,
              <http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf>.

Authors' Addresses

   Adam Langley
   Google
   345 Spear St
   San Francisco, CA  94105
   US

   Email: agl@google.com

   Rich Salz
   Akamai Technologies
   8 Cambridge Center
   Cambridge, MA  02142
   US

   Email: rsalz@akamai.com

   Sean Turner
   IECA, Inc.
   3057 Nutley Street
   Suite 106
   Fairfax, VA  22031
   US

   Email: turners@ieca.com

http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf


Langley, et al.          Expires August 1, 2015                [Page 13]


