
CFRG A. Langley
Internet-Draft Google
Intended status: Informational R. Salz
Expires: August 1, 2015 Akamai Technologies
 S. Turner
 IECA, Inc.
 January 28, 2015

Elliptic Curves for Security
draft-irtf-cfrg-curves-01

Abstract

 This memo describes an algorithm for deterministically generating
 parameters for elliptic curves over prime fields offering high
 practical security in cryptographic applications, including Transport
 Layer Security (TLS) and X.509 certificates. It also specifies a
 specific curve at the ~128-bit security level.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 1, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Langley, et al. Expires August 1, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft cfrgcurve January 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Language . 3
3. Security Requirements . 3
4. Notation . 3
5. Parameter Generation . 4
5.1. Edwards Curves . 4
5.2. Twisted Edwards Curves 5

6. Recommended Curves . 6
7. The curve25519 function 7
7.1. Test vectors . 10

8. Diffie-Hellman . 11
8.1. Test vectors . 11

9. Acknowledgements . 11
10. References . 12
10.1. Normative References 12
10.2. Informative References 12

 Authors' Addresses . 13

1. Introduction

 Since the initial standardization of elliptic curve cryptography
 (ECC) in [SEC1] there has been significant progress related to both
 efficiency and security of curves and implementations. Notable
 examples are algorithms protected against certain side-channel
 attacks, various 'special' prime shapes which allow faster modular
 arithmetic, and a larger set of curve models from which to choose.
 There is also concern in the community regarding the generation and
 potential weaknesses of the curves defined in [NIST].

 This memo describes a deterministic algorithm for generating
 cryptographic elliptic curves over a given prime field. The
 constraints in the generation process produce curves that support
 constant-time, exception-free scalar multiplications that are
 resistant to a wide range of side-channel attacks including timing
 and cache attacks, thereby offering high practical security in
 cryptographic applications. The deterministic algorithm operates
 without any input parameters that would permit manipulation of the
 resulting curves. The selection between curve models is determined
 by choosing the curve form that supports the fastest (currently
 known) complete formulas for each modularity option of the underlying
 field prime. Specifically, the Edwards curve x^2 + y^2 = 1 + dx^2y^2

Langley, et al. Expires August 1, 2015 [Page 2]

Internet-Draft cfrgcurve January 2015

 is used with primes p with p = 3 mod 4, and the twisted Edwards curve
 -x^2 + y^2 = 1 + dx^2y^2 is used when p = 1 mod 4.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Security Requirements

 For each curve at a specific security level:

 1. The domain parameters SHALL be generated in a simple,
 deterministic manner, without any secret or random inputs. The
 derivation of the curve parameters is defined in Section 5.

 2. The trace of Frobenius MUST NOT be in {0, 1} in order to rule out
 the attacks described in [Smart], [AS], and [S], as in [EBP].

 3. MOV Degree: the embedding degree k MUST be greater than (r - 1) /
 100, as in [EBP].

 4. CM Discriminant: discriminant D MUST be greater than 2^100, as in
 [SC].

4. Notation

 Throughout this document, the following notation is used:

 p Denotes the prime number defining the underlying field.

 GF(p) The finite field with p elements.

 d An element in the finite field GF(p), not equal to -1 or zero.

 Ed An Edwards curve: an elliptic curve over GF(p) with equation x^2 +
 y^2 = 1 + dx^2y^2.

 tEd A twisted Edwards curve where a=-1: an elliptic curve over GF(p)
 with equation -x^2 + y^2 = 1 + dx^2y^2.

 oddDivisor The largest odd divisor of the number of GF(p)-rational
 points on a (twisted) Edwards curve.

 oddDivisor' The largest odd divisor of the number of GF(p)-rational
 points on the non-trivial quadratic twist of a (twisted) Edwards
 curve.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Langley, et al. Expires August 1, 2015 [Page 3]

Internet-Draft cfrgcurve January 2015

 cofactor The cofactor of the subgroup of order oddDivisor in the
 group of GF(p)-rational points of a (twisted) Edwards curve.

 cofactor' The cofactor of the subgroup of order oddDivisor in the
 group of GF(p)-rational points on the non-trivial quadratic twist
 of a (twisted) Edwards curve.

 trace The trace of Frobenius of Ed or tEd such that #Ed(GF(p)) = p +
 1 - trace or #tEd(GF(p)) = p + 1 - trace, respectively.

 P A generator point defined over GF(p) of prime order oddDivisor on
 Ed or tEd.

 X(P) The x-coordinate of the elliptic curve point P.

 Y(P) The y-coordinate of the elliptic curve point P.

5. Parameter Generation

 This section describes the generation of the curve parameter, namely
 d, of the elliptic curve. The input to this process is p, the prime
 that defines the underlying field. The size of p determines the
 amount of work needed to compute a discrete logarithm in the elliptic
 curve group and choosing a precise p depends on many implementation
 concerns. The performance of the curve will be dominated by
 operations in GF(p) and thus carefully choosing a value that allows
 for easy reductions on the intended architecture is critical. This
 document does not attempt to articulate all these considerations.

5.1. Edwards Curves

 For p = 3 mod 4, the elliptic curve Ed in Edwards form is determined
 by the non-square element d from GF(p) (not equal to -1 or zero) with
 smallest absolute value such that #Ed(GF(p)) = cofactor * oddDivisor,
 #Ed'(GF(p)) = cofactor' * oddDivisor', cofactor = cofactor' = 4, and
 both subgroup orders oddDivisor and oddDivisor' are prime. In
 addition, care must be taken to ensure the MOV degree and CM
 discriminant requirements from Section 3 are met.

 These cofactors are chosen because they are minimal.

Langley, et al. Expires August 1, 2015 [Page 4]

Internet-Draft cfrgcurve January 2015

Input: a prime p, with p = 3 mod 4
Output: the parameter d defining the curve Ed
1. Set d = 0
2. repeat
 repeat
 if (d > 0) then
 d = -d
 else
 d = -d + 1
 end if
 until d is not a square in GF(p)

 Compute oddDivisor, oddDivisor', cofactor and cofactor' where #Ed(GF(p)) =
 cofactor * oddDivisor, #Ed'(GF(p)) = cofactor' * oddDivisor', cofactor and
 cofactor' are powers of 2 and oddDivisor, oddDivisor' are odd.
 until ((cofactor = cofactor' = 4), oddDivisor is prime and oddDivisor' is
prime)
3. Output d

 GenerateCurveEdwards

5.2. Twisted Edwards Curves

 For a prime p = 1 mod 4, the elliptic curve tEd in twisted Edwards
 form is determined by the non-square element d from GF(p) (not equal
 to -1 or zero) with smallest absolute value such that #tEd(GF(p)) =
 cofactor * oddDivisor, #tEd'(GF(p)) = cofactor' * oddDivisor',
 cofactor = 8, cofactor' = 4 and both subgroup orders oddDivisor and
 oddDivisor' are prime. In addition, care must be taken to ensure the
 MOV degree and CM discriminant requirements from Section 3 are met.

 These cofactors are chosen so that they are minimal such that the
 cofactor of the main curve is greater than the cofactor of the twist.
 For 1 mod 4 primes, the cofactors are never equal. If the cofactor
 of the twist is larger than the cofactor of the curve, algorithms may
 be vulnerable to a small-subgroup attack if a point on the twist is
 incorrectly accepted.

Langley, et al. Expires August 1, 2015 [Page 5]

Internet-Draft cfrgcurve January 2015

Input: a prime p, with p = 1 mod 4
Output: the parameter d defining the curve tEd
1. Set d = 0
2. repeat
 repeat
 if (d > 0) then
 d = -d
 else
 d = -d + 1
 end if
 until d is not a square in GF(p)

 Compute oddDivisor, oddDivisor', cofactor, cofactor' where #tEd(GF(p)) =
 cofactor * oddDivisor, #tEd'(GF(p)) = cofactor' * oddDivisor', cofactor
 and cofactor' are powers of 2 and oddDivisor, oddDivisor' are odd.
 until (cofactor = 8 and cofactor' = 4 and rd is prime and rd' is prime)
3. Output d

 GenerateCurveTEdwards

6. Recommended Curves

 For the ~128-bit security level, the prime 2^255-19 is recommended
 for performance on a wide-range of architectures. This prime is
 congruent to 1 mod 4 and the above procedure results in the following
 twisted Edwards curve, called "intermediate25519":

 p 2^255-19

 d 121665

 order 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

 cofactor 8

 In order to be compatible with widespread existing practice, the
 recommended curve is an isogeny of this curve. An isogeny is a
 "renaming" of the points on the curve and thus cannot affect the
 security of the curve:

 p 2^255-19

 d 370957059346694393431380835087545651895421138798432190163887855330
 85940283555

 order 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

 cofactor 8

Langley, et al. Expires August 1, 2015 [Page 6]

Internet-Draft cfrgcurve January 2015

 X(P) 151122213495354007725011514095885315114540126930418572060461132
 83949847762202

 Y(P) 463168356949264781694283940034751631413079938662562256157830336
 03165251855960

 The d value in this curve is much larger than the generated curve and
 this might slow down some implementations. If this is a problem then
 implementations are free to calculate on the original curve, with
 small d, as the isogeny map can be merged into the affine transform
 without any performance impact.

 The latter curve is isomorphic to a Montgomery curve defined by v^2 =
 u^3 + 486662u^2 + u where the maps are:

 (u, v) = ((1+y)/(1-y), sqrt(-1)*sqrt(486664)*u/x)
 (x, y) = (sqrt(-1)*sqrt(486664)*u/v, (u-1)/(u+1)

 The base point maps onto the Montgomery curve such that u = 9, v = 14
 781619447589544791020593568409986887264606134616475288964881837755586
 237401.

 The Montgomery curve defined here is equal to the one defined in
 [curve25519] and the isomorphic twisted Edwards curve is equal to the
 one defined in [ed25519].

7. The curve25519 function

 The "curve25519" function performs scalar multiplication on the
 Montgomery form of the above curve. (This is used when implementing
 Diffie-Hellman.) The function takes a scalar and a u-coordinate as
 inputs and produces a u-coordinate as output. Although the function
 works internally with integers, the inputs and outputs are 32-byte
 strings and this specification defines their encoding.

 U-coordinates are elements of the underlying field GF(2^255-19) and
 are encoded as an array of bytes, u, in little-endian order such that
 u[0] + 256 * u[1] + 256^2 * u[2] + ... + 256^n * u[n] is congruent to
 the value modulo p and u[n] is minimal. When receiving such an
 array, implementations MUST mask the most-significant bit in the
 final byte. This is done to preserve compatibility with point
 formats which reserve the sign bit for use in other protocols and to
 increase resistance to implementation fingerprinting.

 For example, the following functions implement this in Python,
 although the Python code is not intended to be performant nor side-
 channel free:

Langley, et al. Expires August 1, 2015 [Page 7]

Internet-Draft cfrgcurve January 2015

 def decodeLittleEndian(b):
 return sum([b[i] << 8*i for i in range(32)])

 def decodeUCoordinate(u):
 u_list = [ord(b) for b in u]
 u_list[31] &= 0x7f
 return decodeLittleEndian(u_list)

 def encodeUCoordinate(u):
 u = u % p
 return ''.join([chr((u >> 8*i) & 0xff) for i in range(32)])

 (EDITORS NOTE: draft-turner-thecurve25519function also says
 "Implementations MUST reject numbers in the range [2^255-19,
 2^255-1], inclusive." but I'm not aware of any implementations that
 do so.)

 Scalars are assumed to be randomly generated bytes. In order to
 decode 32 bytes into an integer scalar, set the three least
 significant bits of the first byte and the most significant bit of
 the last to zero, set the second most significant bit of the last
 byte to 1 and, finally, decode as little-endian. This means that
 resulting integer is of the form 2^254 + 8 * {0, 1, ..., 2^(251) -
 1}.

 def decodeScalar(k):
 k_list = [ord(b) for b in k]
 k_list[0] &= 248
 k_list[31] &= 127
 k_list[31] |= 64
 return decodeLittleEndian(k_list)

 To implement the "curve25519(k, u)" function (where "k" is the scalar
 and "u" is the u-coordinate) first decode "k" and "u" and then
 perform the following procedure, taken from [curve25519] and based on
 formulas from [montgomery]. All calculations are performed in GF(p),
 i.e., they are performed modulo p. The constant a24 is (486662 - 2)
 / 4 = 121665.

https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function

Langley, et al. Expires August 1, 2015 [Page 8]

Internet-Draft cfrgcurve January 2015

 x_1 = u
 x_2 = 1
 z_2 = 0
 x_3 = u
 z_3 = 1
 swap = 0

 For t = 254 down to 0:
 k_t = (k >> t) & 1
 swap ^= k_t
 // Conditional swap; see text below.
 (x_2, x_3) = cswap(swap, x_2, x_3)
 (z_2, z_3) = cswap(swap, z_2, z_3)
 swap = k_t

 A = x_2 + z_2
 AA = A^2
 B = x_2 - z_2
 BB = B^2
 E = AA - BB
 C = x_3 + z_3
 D = x_3 - z_3
 DA = D * A
 CB = C * B
 x_3 = (DA + CB)^2
 z_3 = x_1 * (DA - CB)^2
 x_2 = AA * BB
 z_2 = E * (AA + a24 * E)

 // Conditional swap; see text below.
 (x_2, x_3) = cswap(swap, x_2, x_3)
 (z_2, z_3) = cswap(swap, z_2, z_3)
 Return x_2 * (z_2^(p - 2))

 (TODO: Note the difference in the formula from Montgomery's original
 paper. See https://www.ietf.org/mail-archive/web/cfrg/current/

msg05872.html.)

 Finally, encode the resulting value as 32 bytes in little-endian
 order.

 When implementing this procedure, due to the existence of side-
 channels in commodity hardware, it is important that the pattern of
 memory accesses and jumps not depend on the values of any of the bits
 of "k". It is also important that the arithmetic used not leak
 information about the integers modulo p (such as having b*c be
 distinguishable from c*c).

https://www.ietf.org/mail-archive/web/cfrg/current/msg05872.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg05872.html

Langley, et al. Expires August 1, 2015 [Page 9]

Internet-Draft cfrgcurve January 2015

 The cswap instruction SHOULD be implemented in constant time
 (independent of "swap") as follows:

 cswap(swap, x_2, x_3):
 dummy = swap * (x_2 - x_3)
 x_2 = x_2 - dummy
 x_3 = x_3 + dummy
 Return (x_2, x_3)

 where "swap" is 1 or 0. Alternatively, an implementation MAY use the
 following:

 cswap(swap, x_2, x_3):
 dummy = mask(swap) AND (x_2 XOR x_3)
 x_2 = x_2 XOR dummy
 x_3 = x_3 XOR dummy
 Return (x_2, x_3)

 where "mask(swap)" is the all-1 or all-0 word of the same length as
 x_2 and x_3, computed, e.g., as mask(swap) = 1 - swap. The latter
 version is often more efficient.

7.1. Test vectors

Input scalar:
 a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4
Input scalar as a number (base 10):
 31029842492115040904895560451863089656472772604678260265531221036453811406496
Input U-coordinate:
 e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
Input U-coordinate as a number:
 34426434033919594451155107781188821651316167215306631574996226621102155684838
Output U-coordinate:
 c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552

Input scalar:
 4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
Input scalar as a number (base 10):
 35156891815674817266734212754503633747128614016119564763269015315466259359304
Input U-coordinate:
 e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493
Input U-coordinate as a number:
 8883857351183929894090759386610649319417338800022198945255395922347792736741
Output U-coordinate:
 95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957

Langley, et al. Expires August 1, 2015 [Page 10]

Internet-Draft cfrgcurve January 2015

8. Diffie-Hellman

 The "curve25519" function can be used in an ECDH protocol as follows:

 Alice generates 32 random bytes in f[0] to f[31] and transmits K_A =
 curve25519(f, 9) to Bob, where 9 is the u-coordinate of the base
 point and is encoded as a byte with value 9, followed by 31 zero
 bytes.

 Bob similarly generates 32 random bytes in g[0] to g[31] and computes
 K_B = curve25519(g, 9) and transmits it to Alice.

 Alice computes curve25519(f, K_B); Bob computes curve25519(g, K_A)
 using their generated values and the received input.

 Both now share K = curve25519(f, curve25519(g, 9)) = curve25519(g,
 curve25519(f, 9)) as a shared secret. Alice and Bob can then use a
 key-derivation function, such as hashing K, to compute a key.

 Note that this Diffie-Hellman protocol is not contributory, e.g. if
 the u-coordinate is zero then the output will always be zero. A
 contributory Diffie-Hellman function would ensure that the output was
 unpredictable no matter what the peer's input. This is not a problem
 for the vast majority of cases but, if a contributory function is
 specifically required, then "curve25519" should not be used.

8.1. Test vectors

 Alice's private key, f:
 77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a
 Alice's public key, curve25519(f, 9):
 8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a
 Bob's private key, g:
 5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb
 Bob's public key, curve25519(g, 9):
 de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f
 Their shared secret, K:
 4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742

9. Acknowledgements

 This document merges "draft-black-rpgecc-01" and "draft-turner-
thecurve25519function-01". The following authors of those documents

 wrote much of the text and figures but are not listed as authors on
 this document: Benjamin Black, Joppe W. Bos, Craig Costello, Patrick
 Longa, Michael Naehrig and Watson Ladd.

https://datatracker.ietf.org/doc/html/draft-black-rpgecc-01
https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function-01
https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function-01

Langley, et al. Expires August 1, 2015 [Page 11]

Internet-Draft cfrgcurve January 2015

 The authors would also like to thank Tanja Lange and Rene Struik for
 their reviews.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [AS] Satoh, T. and K. Araki, "Fermat quotients and the
 polynomial time discrete log algorithm for anomalous
 elliptic curves", 1998.

 [EBP] ECC Brainpool, "ECC Brainpool Standard Curves and Curve
 Generation", October 2005, <http://www.ecc-

brainpool.org/download/Domain-parameters.pdf>.

 [NIST] National Institute of Standards, "Recommended Elliptic
 Curves for Federal Government Use", July 1999,
 <http://csrc.nist.gov/groups/ST/toolkit/documents/dss/

NISTReCur.pdf>.

 [S] Semaev, I., "Evaluation of discrete logarithms on some
 elliptic curves", 1998.

 [SC] Bernstein, D. and T. Lange, "SafeCurves: choosing safe
 curves for elliptic-curve cryptography", June 2014,
 <http://safecurves.cr.yp.to/>.

 [SEC1] Certicom Research, "SEC 1: Elliptic Curve Cryptography",
 September 2000,
 <http://www.secg.org/collateral/sec1_final.pdf>.

 [Smart] Smart, N., "The discrete logarithm problem on elliptic
 curves of trace one", 1999.

 [curve25519]
 Bernstein, D., "Curve25519 -- new Diffie-Hellman speed
 records", 2006,
 <http://www.iacr.org/cryptodb/archive/2006/

PKC/3351/3351.pdf>.

 [ed25519] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
 Yang, "High-speed high-security signatures", 2011,
 <http://ed25519.cr.yp.to/ed25519-20110926.pdf>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://safecurves.cr.yp.to/
http://www.secg.org/collateral/sec1_final.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://ed25519.cr.yp.to/ed25519-20110926.pdf

Langley, et al. Expires August 1, 2015 [Page 12]

Internet-Draft cfrgcurve January 2015

 [montgomery]
 Montgomery, P., "Speeding the Pollard and elliptic curve
 methods of factorization", 1983,
 <http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf>.

Authors' Addresses

 Adam Langley
 Google
 345 Spear St
 San Francisco, CA 94105
 US

 Email: agl@google.com

 Rich Salz
 Akamai Technologies
 8 Cambridge Center
 Cambridge, MA 02142
 US

 Email: rsalz@akamai.com

 Sean Turner
 IECA, Inc.
 3057 Nutley Street
 Suite 106
 Fairfax, VA 22031
 US

 Email: turners@ieca.com

http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf

Langley, et al. Expires August 1, 2015 [Page 13]

