CFRG
Internet-Draft
Intended status: Informational
Expires: February 19, 2016
A. Langley

Google
M. Hamburg

Rambus Cryptography Research
S. Turner

IECA, Inc.
August 18, 2015

Elliptic Curves for Security draft-irtf-cfrg-curves-04

Abstract

This memo specifies two elliptic curves over prime fields that offer high practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~ 128-bit and ~ 224-bit security level, respectively, and are generated deterministically based on a list of required properties.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current InternetDrafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 19, 2016.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction 2
2. Requirements Language 3
3. Notation 3
4. Recommended Curves 3
4.1. Curve25519 3
4.2. Curve448 4
5. The curve25519 and curve448 functions 6
5.1. Test vectors 9
6. Diffie-Hellman 11
6.1. Curve25519 11
6.2. Curve448 12
7. Deterministic Generation 13
7.1. $p=1 \bmod 4$ 14
7.2. $p=3 \bmod 4$ 14
7.3. Base points 15
8. Acknowledgements 15
9. References 16
9.1. Normative References 16
9.2. Informative References 16
Authors' Addresses 17

1. Introduction

Since the initial standardization of elliptic curve cryptography (ECC) in [SEC1] there has been significant progress related to both efficiency and security of curves and implementations. Notable examples are algorithms protected against certain side-channel attacks, various 'special' prime shapes that allow faster modular arithmetic, and a larger set of curve models from which to choose. There is also concern in the community regarding the generation and potential weaknesses of the curves defined by NIST [NIST].

This memo specifies two elliptic curves (curve25519 and curve448) that support constant-time, exception-free scalar multiplication that is resistant to a wide range of side-channel attacks, including timing and cache attacks. These curves are of the form that supports the fastest (currently known) complete formulas for the ellipticcurve group operations, specifically the Edwards curve $\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2=1$ $+\mathrm{dx}^{\wedge} 2 \mathrm{y}^{\wedge} 2$ for primes p when $\mathrm{p}=3 \mathrm{mod} 4$, and the twisted Edwards curve $-x^{\wedge} 2+y^{\wedge} 2=1+d^{\wedge} 2 y^{\wedge} 2$ when $p=1 \bmod 4$.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

3. Notation

Throughout this document, the following notation is used:
p Denotes the prime number defining the underlying field.
GF(p) The finite field with p elements.
A An element in the finite field $G F(p)$, not equal to -2 or 2.
d An element in the finite field $G F(p)$, not equal to 0 or 1.
P A generator point defined over GF(p) of prime order.

X(P) The x-coordinate of the elliptic curve point P on a (twisted) Edwards curve.
$Y(P)$ The y-coordinate of the elliptic curve point P on a (twisted) Edwards curve.
u, v Coordinates on a Montgomery curve.
x, y Coordinates on a (twisted) Edwards curve.

4. Recommended Curves

4.1. Curve25519

For the ~128-bit security level, the prime 2^255-19 is recommended for performance on a wide-range of architectures. This prime is congruent to 1 mod 4 and the derivation procedure in Section 7 results in the following Montgomery curve $v^{\wedge} 2=u \wedge 3+A^{*} u^{\wedge} 2+u$, called "curve25519":
p 2^255-19
A 486662
order $2^{\wedge} 252+0 x 14 d e f 9 d e a 2 f 79 c d 65812631 a 5 c f 5 d 3 e d$
cofactor 8

The base point is u = 9, v = 1478161944758954479102059356840998688726 4606134616475288964881837755586237401 .

This curve is isomorphic to a twisted Edwards curve $-x^{\wedge} 2+y^{\wedge} 2=1+$ $d^{*} x^{\wedge} 2^{*} y^{\wedge} 2$, called "edwards25519", where:
p 2^255-19
d 370957059346694393431380835087545651895421138798432190163887855330 85940283555
order 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed
cofactor 8

X(P) 151122213495354007725011514095885315114540126930418572060461132 83949847762202

Y(P) 463168356949264781694283940034751631413079938662562256157830336 03165251855960

The isomorphism maps are:

```
(u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)
(x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1)
```

The Montgomery curve defined here is equal to the one defined in [curve25519] and the isomorphic twisted Edwards curve is equal to the one defined in [ed25519].

4.2. Curve448

For the ~224-bit security level, the prime 2^448-2^224-1 is recommended for performance on a wide-range of architectures. This prime is congruent to 3 mod 4 and the derivation procedure in Section 7 results in the following Montgomery curve, called "curve448":
p 2^448-2^224-1

A 156326
order 2^446 -
0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d
cofactor 4

The base point is u = 5, v = 3552939267855681752641275020637833348089 763993877142718318808984351690887869674100029326737658645509101427741 47268105838985595290606362 .

This curve is isomorphic to the Edwards curve $x^{\wedge} 2+y^{\wedge} 2=1+$ $d^{*} x^{\wedge} 2^{*} y^{\wedge} 2$ where:

```
p 2^448-2^224-1
```

d 611975850744529176160423220965553317543219696871016626328968936415 087860042636474891785599283666020414768678979989378147065462815545 017

```
order 2^446 -
```

 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d
 cofactor 4
X(P) 345397493039729516374008604150537410266655260075183290216406970
281645695073672344430481787759340633221708391583424041788924124567
700732
Y(P) 363419362147803445274661903944002267176820680343659030140745099
590306164083365386343198191849338272965044442230921818680526749009
182718

The isomorphism maps are:

```
(u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)
(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u)
```

That curve is also 4 -isogenous to the following Edward's curve $x^{\wedge} 2+$ $y^{\wedge} 2=1+d^{*} x^{\wedge} 2^{*} y^{\wedge} 2$, called "edwards448", where:
p 2^448-2^224-1
d -39081
order 2^446 -
0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d
cofactor 4

X(P) 224580040295924300187604334099896036246789641632564134246125461 686950415467406032909029192869357953282578032075146446173674602635 247710

```
Y(P) 298819210078481492676017930443930673437544040154080242095928241
    372331506189835876003536878655418784733982303233503462500531545062
    832660
```

The 4-isogeny maps between the Montgomery curve this the Edward's curve are:

```
(u, v) = (y^2/x^2, -(2 - x^^2 - y^2)* y/x^^3)
(x, y) = (4*v*(u^2 - 1)/(u^4 - 2*u^2 + 4*v^2 + 1),
    (u^5 - 2*u^3 - 4*u*v^2 + u)/
    (u^5 - 2*u^2*v^2 - 2*u^3 - 2*v^2 + u))
```

The curve "edwards448" defined here is also called "Goldilocks" and is equal to the one defined in [goldilocks].

5. The curve25519 and curve448 functions

The "curve25519" and "curve448" functions perform scalar multiplication on the Montgomery form of the above curves. (This is used when implementing Diffie-Hellman.) The functions take a scalar and a u-coordinate as inputs and produce a u-coordinate as output. Although the functions work internally with integers, the inputs and outputs are 32 -byte or 56 -byte strings and this specification defines their encoding.

U-coordinates are elements of the underlying field GF(2^255-19) or GF($\left.2^{\wedge} 448-2^{\wedge} 224-1\right)$ and are encoded as an array of bytes, u, in littleendian order such that $u[0]+256 * u[1]+256 \wedge 2 * u[2]+\ldots+$ $256 \wedge n * u[n]$ is congruent to the value modulo p and $u[n]$ is minimal. When receiving such an array, implementations of curve25519 (but not curve448) MUST mask the most-significant bit in the final byte. This is done to preserve compatibility with point formats which reserve the sign bit for use in other protocols and to increase resistance to implementation fingerprinting.

Implementations MUST accept non-canonical values and process them as if they had been reduced modulo the field prime. The non-canonical values are 2^255-19 through 2^255-1 for curve25519 and 2^448-2^224-1 through 2^448-1 for curve448.

The following functions implement this in Python, although the Python code is not intended to be performant nor side-channel free. Here the "bits" parameter should be set to 255 for curve25519 and 448 for curve448:

```
def decodeLittleEndian(b, bits):
    return sum([b[i] << 8*i for i in range((bits+7)/8)])
def decodeUCoordinate(u, bits):
    u_list = [ord(b) for b in u]
    # Ignore any unused bits.
    if bits % 8:
        u_list[-1] &= (1<<(bits%8))-1
    return decodeLittleEndian(u_list, bits)
def encodeUCoordinate(u, bits):
    u = u % p
    return ''.join([chr((u >> 8*i) & 0xff) for i in range((bits+7)/8)])
```

Scalars are assumed to be randomly generated bytes. For curve25519, in order to decode 32 random bytes as an integer scalar, set the three least significant bits of the first byte and the most significant bit of the last to zero, set the second most significant bit of the last byte to 1 and, finally, decode as little-endian. This means that resulting integer is of the form $2 \wedge 254+8$ * \{0, 1, ..., $2^{\wedge(251) ~-~ 1\} . ~ L i k e w i s e, ~ f o r ~ c u r v e 448, ~ s e t ~ t h e ~ t w o ~ l e a s t ~}$ significant bits of the first byte to 0 , and the most significant bit of the last byte to 1 . This means that the resulting integer is of the form $2 \wedge 447+4 *\left\{0,1, \ldots, 2^{\wedge}(445)-1\right\}$.
def decodeScalar25519(k):
k_list $=$ [ord(b) for b in $k]$
k_list[0] \&= 248
k_list[31] \&= 127
k_list[31] |= 64
return decodeLittleEndian(k_list, 255)
def decodeScalar448(k):
k_list $=$ [ord(b) for b in $k]$
k_list[0] \&= 252
k_list[55] |= 128
return decodeLittleEndian(k_list, 448)
To implement the "curve25519(k, u)" and "curve448(k, u)" functions (where "k" is the scalar and "u" is the u-coordinate) first decode "k" and "u" and then perform the following procedure, which is taken from [curve25519] and based on formulas from [montgomery]. All calculations are performed in GF(p), i.e., they are performed modulo p. The constant a24 is (486662-2) / $4=121665$ for curve25519 and (156326-2) / $4=39081$ for curve448.

```
x_1 = u
x_2 = 1
z_2 = 0
x_3 = u
z_3 = 1
swap = 0
For t = bits-1 down to 0:
    k_t = (k >> t) & 1
    swap ^= k_t
    // Conditional swap; see text below.
    (x_2, x_3) = cswap(swap, x_2, x_3)
    (z_2, z_3) = cswap(swap, z_2, z_3)
    swap = k_t
    A = x_2 + z_2
    AA = A^2
    B = x_2 - z_2
    BB = B^2
    E = AA - BB
    C = x_3 + z_3
    D = x_3 - z_3
    DA = D * A
    CB = C * B
    x_3 = (DA + CB)^2
    z_3 = x_1 * (DA - CB)^2
    x_2 = AA * BB
    z_2 = E * (AA + a24 * E)
// Conditional swap; see text below.
(x_2, x_3) = cswap(swap, x_2, x_3)
(z_2, z_3) = cswap(swap, z_2, z_3)
Return x_2 * (z_2^(p - 2))
(Note that these formulas are slightly different from Montgomery's original paper. Implementations are free to use any correct formulas.)
Finally, encode the resulting value as 32 or 56 bytes in littleendian order. For curve25519, the unused, most-significant bit MUST be zero.
When implementing this procedure, due to the existence of sidechannels in commodity hardware, it is important that the pattern of memory accesses and jumps not depend on the values of any of the bits of "k". It is also important that the arithmetic used not leak information about the integers modulo \(p\) (such as having \(b^{*} c\) be distinguishable from c*c).
```

The cswap function SHOULD be implemented in constant time (i.e. independent of the "swap" argument). For example, this can be done as follows:

```
cswap(swap, x_2, x_3):
    dummy \(=\) mask(swap) AND (x_2 XOR x_3)
    x_2 = x_2 XOR dummy
    x_3 = x_3 XOR dummy
    Return (x_2, x_3)
```

Where "mask(swap)" is the all-1 or all-0 word of the same length as x_2 and x_3, computed, e.g., as mask(swap) = 0 - swap.

5.1. Test vectors

Two types of tests are provided. The first is a pair of test vectors for each function that consist of expected outputs for the given inputs:
curve25519:

Input scalar:
a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4
Input scalar as a number (base 10):
31029842492115040904895560451863089656
472772604678260265531221036453811406496
Input U-coordinate:
e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
Input U-coordinate as a number:
34426434033919594451155107781188821651
316167215306631574996226621102155684838
Output U-coordinate:
c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552

Input scalar:
4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
Input scalar as a number (base 10):
35156891815674817266734212754503633747
128614016119564763269015315466259359304
Input U-coordinate:
e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493
Input U-coordinate as a number:
88838573511839298940907593866106493194
17338800022198945255395922347792736741
Output U-coordinate:
95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957
curve448:

Input scalar:
3d262fddf9ec8e88495266fea19a34d28882acef045104d0d1aae121
700a779c984c24f8cdd78fbff44943eba368f54b29259a4f1c600ad3
Input scalar as a number (base 10):
5991891753738964027837560161452132561572308560850261299268914594686 \} 22403380588640249457727683869421921443004045221642549886377526240828
Input U-coordinate:
06fce640fa3487bfda5f6cf2d5263f8aad88334cbd07437f020f08f9 814dc031ddbdc38c19c6da2583fa5429db94ada18aa7a7fb4ef8a086
Input U-coordinate as a number: 3822399108141073301162299612348993770314163652405713251483465559224 \} 38025162094455820962429142971339584360034337310079791515452463053830
Output U-coordinate:
ce3e4ff95a60dc6697da1db1d85e6afbdf79b50a2412d7546d5f239f
e14fbaadeb445fc66a01b0779d98223961111e21766282f73dd96b6f

Input scalar:
203d494428b8399352665ddca42f9de8fef600908e0d461cb021f8c5 38345dd77c3e4806e25f46d3315c44e0a5b4371282dd2c8d5be3095f
Input scalar as a number (base 10): 6332543359069705927792594815348623723825251552520289610564040013321 \} 22152890562527156973881968934311400345568203929409663925541994577184
Input U-coordinate:
0fbcc2f993cd56d3305b0b7d9e55d4c1a8fb5dbb52f8e9a1e9b6201b
165d015894e56c4d3570bee52fe205e28a78b91cdfbde71ce8d157db
Input U-coordinate as a number:
6227617977583254444629220684312341806495903900248112997616251537672 \} 28042600197997696167956134770744996690267634159427999832340166786063
Output U-coordinate:
884a02576239ff7a2f2f63b2db6a9ff37047ac13568e1e30fe63c4a7 ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d

The second type of test vector consists of the result of calling the function in question a specified number of times. Initially, set "k" and "u" to be the following values:

For curve25519:
0900
For curve448:
0500
00

For each iteration, set "k" to be the result of calling the function and "u" to be the old value of "k". The final result is the value left in "k".
curve25519:

After one iteration:
422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079
After 1,000 iterations:
684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51
After 1,000,000 iterations:
7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd2d24f665424
curve448:

After one iteration:
3f482c8a9f19b01e6c46ee9711d9dc14fd4bf67af30765c2ae2b846a
4d23a8cd0db897086239492caf350b51f833868b9bc2b3bca9cf4113
After 1,000 iterations:
aa3b4749d55b9daf1e5b00288826c467274ce3ebbdd5c17b975e09d4
af6c67cf10d087202db88286e2b79fceea3ec353ef54faa26e219f38
After 1,000,000 iterations:
077f453681caca3693198420bbe515cae0002472519b3e67661a7e89
cab94695c8f4bcd66e61b9b9c946da8d524de3d69bd9d9d66b997e37

6. Diffie-Hellman

6.1. Curve25519

The "curve25519" function can be used in an elliptic-curve DiffieHellman (ECDH) protocol as follows:

Alice generates 32 random bytes in $f[0]$ to $f[31]$ and transmits $K _A=$ curve25519(f, 9) to Bob, where 9 is the u-coordinate of the base point and is encoded as a byte with value 9, followed by 31 zero bytes.

Bob similarly generates 32 random bytes in g[0] to g[31] and computes K_B $=$ curve25519 (g, 9) and transmits it to Alice.

Using their generated values and the received input, Alice computes curve25519(f, K_B) and Bob computes curve25519(g, K_A).

Both now share $K=$ curve25519(f, curve25519(g, 9)) $=$ curve25519 (9 , curve25519(f, 9)) as a shared secret. Both MUST check, without leaking extra information about the value of K, whether K is the allzero value and abort if so (see below). Alice and Bob can then use a key-derivation function that includes K, K_A and K_B to derive a key.

The check for the all-zero value results from the fact that the curve25519 function produces that value if it operates on an input
corresponding to a point with order dividing the co-factor, h, of the curve. This check is cheap and so MUST always be carried out. The check may be performed by ORing all the bytes together and checking whether the result is zero as this eliminates standard side-channels in software implementations.

Test vector:

Alice's private key, f:
77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a
Alice's public key, curve25519(f, 9):
8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a
Bob's private key, g:
5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb Bob's public key, curve25519(g, 9):
de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f
Their shared secret, K:
4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742

6.2. Curve448

The "curve448" function can be used very much like "curve22519" function in an ECDH protocol.

If "curve448" is to be used the only differences are that Alice and Bob generate 56 random bytes (not 32) and calculate $K _A=$ curve448(f, 5) or $K _B=$ curve448 $(9,5)$ where 5 is the u-coordinate of the base point and is encoded as a byte with value 5, followed by 55 zero bytes.

The test for the all-zeros result is still required.

Test vector:

```
Alice's private key, f:
    9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28d
    d9c9baf574a9419744897391006382a6f127ab1d9ac2d8c0a598726b
Alice's public key, curve448(f, 5):
    9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c
    22c5d9bbc836647241d953d40c5b12da88120d53177f80e532c41fa0
Bob's private key, g:
    1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d
    6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d
Bob's public key, curve448(g, 5):
    3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bdb0d4f345b430
    27d8b972fc3e34fb4232a13ca706dcb57aec3dae07bdc1c67bf33609
Their shared secret, K:
    fe2d52f1ca113e5441538037dc4a9d4cb381035fb4a990ac50ac4333
    63dc072301d1d4f2e82883b35103be96068c11e7c84b8fff74bb6ab0
```


7. Deterministic Generation

This section specifies the procedure that was used to generate the above curves; specifically it defines how to generate the parameter A of the Montgomery curve $y^{\wedge} 2=x^{\wedge} 3+A x^{\wedge} 2+x$. This procedure is intended to be as objective as can reasonably be achieved so that it's clear that no untoward considerations influenced the choice of curve. The input to this process is p, the prime that defines the underlying field. The size of p determines the amount of work needed to compute a discrete logarithm in the elliptic curve group and choosing a precise p depends on many implementation concerns. The performance of the curve will be dominated by operations in GF(p) so carefully choosing a value that allows for easy reductions on the intended architecture is critical. This document does not attempt to articulate all these considerations.

The value (A-2)/4 is used in several of the elliptic curve point arithmetic formulas. For simplicity and performance reasons, it is beneficial to make this constant small, i.e. to choose A so that (A-2) is a small integer which is divisible by four.

For each curve at a specific security level:

1. The trace of Frobenius MUST NOT be in $\{0,1\}$ in order to rule out the attacks described in [smart], [satoh], and [semaev], as in [brainpool].
2. MOV Degree: the embedding degree k MUST be greater than (r - 1) / 100, as in [brainpool].
3. CM Discriminant: discriminant D MUST be greater than $2^{\wedge \wedge 100, ~ a s ~ i n ~}$ [safecurves].

7.1. $p=1 \bmod 4$

For primes congruent to 1 mod 4, the minimal cofactors of the curve and its twist are either $\{4,8\}$ or $\{8,4\}$. We choose a curve with the latter cofactors so that any algorithms that take the cofactor into account don't have to worry about checking for points on the twist, because the twist cofactor will be the smaller of the two.

To generate the Montgomery curve we find the minimal, positive A value, such that $A>2$ and (A-2) is divisible by four and where the cofactors are as desired. The "find1Mod4" function in the following Sage script returns this value given p:

```
def findCurve(prime, curveCofactor, twistCofactor):
```

 F = GF (prime)
 for \(A\) in xrange(3, 1e9):
 if (A-2) \% 4 != 0 :
 continue
 try:
 E = EllipticCurve(F, [0, A, 0, 1, 0])
 except:
 continue
 order = E.order()
 twistOrder \(=2 *(p r i m e+1)\)-order
 if (order \% curveCofactor == 0 and
 is_prime(order // curveCofactor) and
 twistOrder \% twistCofactor == 0 and
 is_prime(twistOrder // twistCofactor)):
 return A
 def find1Mod4(prime):
assert((prime \% 4) == 1)
return findCurve(prime, 8, 4)
Generating a curve where $\mathrm{p}=1 \bmod 4$

7.2. $p=3 \bmod 4$

For a prime congruent to 3 mod 4, both the curve and twist cofactors can be 4 and this is minimal. Thus we choose the curve with these cofactors and minimal, positive A such that $A>2$ and (A-2) is divisible by four. The "find3Mod4" function in the following Sage script returns this value given p :

```
def find3Mod4(prime):
    assert((prime % 4) == 3)
    return findCurve(prime, 4, 4)
```

 Generating a curve where \(\mathrm{p}=3 \bmod 4\)

7.3. Base points

The base point for a curve is the point with minimal, positive u value that is in the correct subgroup. The "findBasepoint" function in the following Sage script returns this value given p and $A:$

```
def findBasepoint(prime, A):
    F = GF(prime)
    E = EllipticCurve(F, [0, A, 0, 1, 0])
    for uInt in range(1, 1e3):
        u = F(uInt)
        v2 = u^3 + A* u^2 + u
        if not v2.is_square():
            continue
        v = v2.sqrt()
        point = E(u, v)
        order = point.order()
        if order > 8 and order.is_prime():
            return point
```

 Generating the base point

8. Acknowledgements

This document merges "draft-black-rpgecc-01" and "draft-turner-thecurve25519function-01". The following authors of those documents wrote much of the text and figures but are not listed as authors on this document: Benjamin Black, Joppe W. Bos, Craig Costello, Patrick Longa, Michael Naehrig and Watson Ladd.

The authors would also like to thank Tanja Lange, Rene Struik and Rich Salz for their reviews and contributions.

The curve25519 function was developed by Daniel J. Bernstein in [curve25519].

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, http://www.rfc-editor.org/info/rfc2119.

9.2. Informative References

[brainpool]
ECC Brainpool, "ECC Brainpool Standard Curves and Curve Generation", October 2005, http://www.ecc-brainpool.org/download/Domain-parameters.pdf.
[curve25519]
Bernstein, D., "Curve25519 -- new Diffie-Hellman speed records", 2006, <http://www.iacr.org/cryptodb/archive/2006/ PKC/3351/3351.pdf>.
[ed25519] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B. Yang, "High-speed high-security signatures", 2011, http://ed25519.cr.yp.to/ed25519-20110926.pdf.
[goldilocks]
Hamburg, M., "Ed448-Goldilocks, a new elliptic curve", 2015, http://eprint.iacr.org/2015/625.pdf.
[montgomery]
Montgomery, P., "Speeding the Pollard and elliptic curve methods of factorization", 1983, <http://www.ams.org/journals/mcom/1987-48-177/ S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf>.
[NIST] National Institute of Standards, "Recommended Elliptic Curves for Federal Government Use", July 1999, <http://csrc.nist.gov/groups/ST/toolkit/documents/dss/ NISTReCur.pdf>.
[safecurves]
Bernstein, D. and T. Lange, "SafeCurves: choosing safe curves for elliptic-curve cryptography", June 2014, http://safecurves.cr.yp.to/.

```
    [satoh] Satoh, T. and K. Araki, "Fermat quotients and the
        polynomial time discrete log algorithm for anomalous
        elliptic curves", 1998.
    [SEC1] Certicom Research, "SEC 1: Elliptic Curve Cryptography",
        September 2000,
        <http://www.secg.org/collateral/sec1_final.pdf>.
    [semaev] Semaev, I., "Evaluation of discrete logarithms on some
        elliptic curves", 1998.
    [smart] Smart, N., "The discrete logarithm problem on elliptic
        curves of trace one", 1999.
```

Authors' Addresses
Adam Langley
Google
345 Spear St
San Francisco, CA 94105
US
Email: agl@google.com
Mike Hamburg
Rambus Cryptography Research
425 Market Street, 11th Floor
San Francisco, CA 94105
US
Email: mike@shiftleft.org
Sean Turner
IECA, Inc.
3057 Nutley Street
Suite 106
Fairfax, VA 22031
US
Email: turners@ieca.com

