
CFRG A. Langley
Internet-Draft Google
Intended status: Informational M. Hamburg
Expires: March 1, 2016 Rambus Cryptography Research
 S. Turner
 IECA, Inc.
 August 29, 2015

Elliptic Curves for Security
draft-irtf-cfrg-curves-07

Abstract

 This memo specifies two elliptic curves over prime fields that offer
 high practical security in cryptographic applications, including
 Transport Layer Security (TLS). These curves are intended to operate
 at the ~128-bit and ~224-bit security level, respectively, and are
 generated deterministically based on a list of required properties.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 1, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Langley, et al. Expires March 1, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft cfrgcurve August 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Language . 3
3. Notation . 3
4. Recommended Curves . 3
4.1. Curve25519 . 3
4.2. Curve448 . 4

5. The X25519 and X448 functions 6
5.1. Side-channel considerations 9
5.2. Test vectors . 9

6. Diffie-Hellman . 12
6.1. Curve25519 . 12
6.2. Curve448 . 13

7. Security Considerations 14
8. Acknowledgements . 14
9. References . 15
9.1. Normative References 15
9.2. Informative References 15

Appendix A. Deterministic Generation 16
A.1. p = 1 mod 4 . 17
A.2. p = 3 mod 4 . 18
A.3. Base points . 18

 Authors' Addresses . 19

1. Introduction

 Since the initial standardization of elliptic curve cryptography (ECC
 [RFC6090]) in [SEC1] there has been significant progress related to
 both efficiency and security of curves and implementations. Notable
 examples are algorithms protected against certain side-channel
 attacks, various 'special' prime shapes that allow faster modular
 arithmetic, and a larger set of curve models from which to choose.
 There is also concern in the community regarding the generation and
 potential weaknesses of the curves defined by NIST [NIST].

 This memo specifies two elliptic curves ("curve25519" and "curve448")
 that lend themselves to constant-time implementation and an
 exception-free scalar multiplication that is resistant to a wide
 range of side-channel attacks, including timing and cache attacks.
 They are Montgomery curves (where y^2 = x^3 + Ax^2 + x) and thus have
 birationally equivalent Edwards versions. Edwards curves support the
 fastest (currently known) complete formulas for the elliptic-curve
 group operations, specifically the Edwards curve x^2 + y^2 = 1 +

https://datatracker.ietf.org/doc/html/rfc6090

Langley, et al. Expires March 1, 2016 [Page 2]

Internet-Draft cfrgcurve August 2015

 dx^2y^2 for primes p when p = 3 mod 4, and the twisted Edwards curve
 -x^2 + y^2 = 1 + dx^2y^2 when p = 1 mod 4. The maps to/from the
 Montgomery curves to their (twisted) Edwards equivalents are also
 given.

 This memo also specifies how these curves can be used with the
 Diffie-Hellman protocol for key agreement.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Notation

 Throughout this document, the following notation is used:

 p Denotes the prime number defining the underlying field.

 GF(p) The finite field with p elements.

 A An element in the finite field GF(p), not equal to -2 or 2.

 d A non-zero element in the finite field GF(p), not equal to 1, in
 the case of an Edwards curve, or not equal to -1, in the case of a
 twisted Edwards curve.

 P A generator point defined over GF(p) of prime order.

 X(P) The x-coordinate of the elliptic curve point P on a (twisted)
 Edwards curve.

 Y(P) The y-coordinate of the elliptic curve point P on a (twisted)
 Edwards curve.

 u, v Coordinates on a Montgomery curve.

 x, y Coordinates on a (twisted) Edwards curve.

4. Recommended Curves

4.1. Curve25519

 For the ~128-bit security level, the prime 2^255-19 is recommended
 for performance on a wide-range of architectures. Few primes of the
 form 2^c-s with s small exist between 2^250 and 2^521, and other
 choices of coefficient are not as competitive in performance. This

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Langley, et al. Expires March 1, 2016 [Page 3]

Internet-Draft cfrgcurve August 2015

 prime is congruent to 1 mod 4 and the derivation procedure in
Appendix A results in the following Montgomery curve v^2 = u^3 +

 A*u^2 + u, called "curve25519":

 p 2^255-19

 A 486662

 order 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

 cofactor 8

 The base point is u = 9, v = 1478161944758954479102059356840998688726
 4606134616475288964881837755586237401.

 This curve is birationally equivalent to a twisted Edwards curve -x^2
 + y^2 = 1 + d*x^2*y^2, called "edwards25519", where:

 p 2^255-19

 d 370957059346694393431380835087545651895421138798432190163887855330
 85940283555

 order 2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

 cofactor 8

 X(P) 151122213495354007725011514095885315114540126930418572060461132
 83949847762202

 Y(P) 463168356949264781694283940034751631413079938662562256157830336
 03165251855960

 The birational maps are:

 (u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)
 (x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1)

 The Montgomery curve defined here is equal to the one defined in
 [curve25519] and the equivalent twisted Edwards curve is equal to the
 one defined in [ed25519].

4.2. Curve448

 For the ~224-bit security level, the prime 2^448-2^224-1 is
 recommended for performance on a wide-range of architectures. This
 prime is congruent to 3 mod 4 and the derivation procedure in

Langley, et al. Expires March 1, 2016 [Page 4]

Internet-Draft cfrgcurve August 2015

Appendix A results in the following Montgomery curve, called
 "curve448":

 p 2^448-2^224-1

 A 156326

 order 2^446 -
 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d

 cofactor 4

 The base point is u = 5, v = 3552939267855681752641275020637833348089
 763993877142718318808984351690887869674100029326737658645509101427741
 47268105838985595290606362.

 This curve is birationally equivalent to the Edwards curve x^2 + y^2
 = 1 + d*x^2*y^2 where:

 p 2^448-2^224-1

 d 611975850744529176160423220965553317543219696871016626328968936415
 087860042636474891785599283666020414768678979989378147065462815545
 017

 order 2^446 -
 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d

 cofactor 4

 X(P) 345397493039729516374008604150537410266655260075183290216406970
 281645695073672344430481787759340633221708391583424041788924124567
 700732

 Y(P) 363419362147803445274661903944002267176820680343659030140745099
 590306164083365386343198191849338272965044442230921818680526749009
 182718

 The birational maps are:

 (u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)
 (x, y) = (sqrt(156324)*u/v, (1+u)/(1-u)

 Both of those curves are also 4-isogenous to the following Edwards
 curve x^2 + y^2 = 1 + d*x^2*y^2, called "edwards448", where:

 p 2^448-2^224-1

Langley, et al. Expires March 1, 2016 [Page 5]

Internet-Draft cfrgcurve August 2015

 d -39081

 order 2^446 -
 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d

 cofactor 4

 X(P) 224580040295924300187604334099896036246789641632564134246125461
 686950415467406032909029192869357953282578032075146446173674602635
 247710

 Y(P) 298819210078481492676017930443930673437544040154080242095928241
 372331506189835876003536878655418784733982303233503462500531545062
 832660

 The 4-isogeny maps between the Montgomery curve and this Edwards
 curve are:

 (u, v) = (y^2/x^2, -(2 - x^2 - y^2)*y/x^3)
 (x, y) = (4*v*(u^2 - 1)/(u^4 - 2*u^2 + 4*v^2 + 1),
 (u^5 - 2*u^3 - 4*u*v^2 + u)/
 (u^5 - 2*u^2*v^2 - 2*u^3 - 2*v^2 + u))

 The curve "edwards448" defined here is also called "Goldilocks" and
 is equal to the one defined in [goldilocks].

5. The X25519 and X448 functions

 The "X25519" and "X448" functions perform scalar multiplication on
 the Montgomery form of the above curves. (This is used when
 implementing Diffie-Hellman.) The functions take a scalar and a
 u-coordinate as inputs and produce a u-coordinate as output.
 Although the functions work internally with integers, the inputs and
 outputs are 32-byte strings (for "X25519") or 56-byte strings (for
 "X448") and this specification defines their encoding.

 The u-coordinates are elements of the underlying field GF(2^255-19)
 or GF(2^448-2^224-1) and are encoded as an array of bytes, u, in
 little-endian order such that u[0] + 256*u[1] + 256^2*u[2] + ... +
 256^(n-1)*u[n-1] is congruent to the value modulo p and u[n-1] is
 minimal. When receiving such an array, implementations of "X25519"
 (but not "X448") MUST mask the most-significant bit in the final
 byte. This is done to preserve compatibility with point formats
 which reserve the sign bit for use in other protocols and to increase
 resistance to implementation fingerprinting.

 Implementations MUST accept non-canonical values and process them as
 if they had been reduced modulo the field prime. The non-canonical

Langley, et al. Expires March 1, 2016 [Page 6]

Internet-Draft cfrgcurve August 2015

 values are 2^255-19 through 2^255-1 for "X25519" and 2^448-2^224-1
 through 2^448-1 for "X448".

 The following functions implement this in Python, although the Python
 code is not intended to be performant nor side-channel free. Here
 the "bits" parameter should be set to 255 for "X25519" and 448 for
 "X448":

 def decodeLittleEndian(b, bits):
 return sum([b[i] << 8*i for i in range((bits+7)/8)])

 def decodeUCoordinate(u, bits):
 u_list = [ord(b) for b in u]
 # Ignore any unused bits.
 if bits % 8:
 u_list[-1] &= (1<<(bits%8))-1
 return decodeLittleEndian(u_list, bits)

 def encodeUCoordinate(u, bits):
 u = u % p
 return ''.join([chr((u >> 8*i) & 0xff)
 for i in range((bits+7)/8)])

 Scalars are assumed to be randomly generated bytes. For "X25519", in
 order to decode 32 random bytes as an integer scalar, set the three
 least significant bits of the first byte and the most significant bit
 of the last to zero, set the second most significant bit of the last
 byte to 1 and, finally, decode as little-endian. This means that
 resulting integer is of the form 2^254 + 8 * {0, 1, ..., 2^(251) -
 1}. Likewise, for "X448", set the two least significant bits of the
 first byte to 0, and the most significant bit of the last byte to 1.
 This means that the resulting integer is of the form 2^447 + 4 * {0,
 1, ..., 2^(445) - 1}.

 def decodeScalar25519(k):
 k_list = [ord(b) for b in k]
 k_list[0] &= 248
 k_list[31] &= 127
 k_list[31] |= 64
 return decodeLittleEndian(k_list, 255)

 def decodeScalar448(k):
 k_list = [ord(b) for b in k]
 k_list[0] &= 252
 k_list[55] |= 128
 return decodeLittleEndian(k_list, 448)

Langley, et al. Expires March 1, 2016 [Page 7]

Internet-Draft cfrgcurve August 2015

 To implement the "X25519(k, u)" and "X448(k, u)" functions (where "k"
 is the scalar and "u" is the u-coordinate) first decode "k" and "u"
 and then perform the following procedure, which is taken from
 [curve25519] and based on formulas from [montgomery]. All
 calculations are performed in GF(p), i.e., they are performed modulo
 p. The constant a24 is (486662 - 2) / 4 = 121665 for
 "curve25519"/"X25519" and (156326 - 2) / 4 = 39081 for
 "curve448"/"X448".

 x_1 = u
 x_2 = 1
 z_2 = 0
 x_3 = u
 z_3 = 1
 swap = 0

 For t = bits-1 down to 0:
 k_t = (k >> t) & 1
 swap ^= k_t
 // Conditional swap; see text below.
 (x_2, x_3) = cswap(swap, x_2, x_3)
 (z_2, z_3) = cswap(swap, z_2, z_3)
 swap = k_t

 A = x_2 + z_2
 AA = A^2
 B = x_2 - z_2
 BB = B^2
 E = AA - BB
 C = x_3 + z_3
 D = x_3 - z_3
 DA = D * A
 CB = C * B
 x_3 = (DA + CB)^2
 z_3 = x_1 * (DA - CB)^2
 x_2 = AA * BB
 z_2 = E * (AA + a24 * E)

 // Conditional swap; see text below.
 (x_2, x_3) = cswap(swap, x_2, x_3)
 (z_2, z_3) = cswap(swap, z_2, z_3)
 Return x_2 * (z_2^(p - 2))

 (Note that these formulas are slightly different from Montgomery's
 original paper. Implementations are free to use any correct
 formulas.)

Langley, et al. Expires March 1, 2016 [Page 8]

Internet-Draft cfrgcurve August 2015

 Finally, encode the resulting value as 32 or 56 bytes in little-
 endian order. For "X25519", the unused, most-significant bit MUST be
 zero.

 The cswap function SHOULD be implemented in constant time (i.e.
 independent of the "swap" argument). For example, this can be done
 as follows:

 cswap(swap, x_2, x_3):
 dummy = mask(swap) AND (x_2 XOR x_3)
 x_2 = x_2 XOR dummy
 x_3 = x_3 XOR dummy
 Return (x_2, x_3)

 Where "mask(swap)" is the all-1 or all-0 word of the same length as
 x_2 and x_3, computed, e.g., as mask(swap) = 0 - swap.

5.1. Side-channel considerations

 "X25519" and "X448" are designed so that fast, constant-time
 implementations are easier to produce. The procedure above ensures
 that the same sequence of field operations is performed for all
 values of the secret key, thus eliminating a common source of side-
 channel leakage. However, this alone does not prevent all side-
 channels by itself. It is important that the pattern of memory
 accesses and jumps not depend on the values of any of the bits of
 "k". It is also important that the arithmetic used not leak
 information about the integers modulo p, for example by having b*c be
 distinguishable from c*c. On some architectures, even primitive
 machine instructions, such as single-word division, can have variable
 timing based on their inputs.

 Side-channel attacks are an active research area that still sees
 significant, new results. Implementors are advised to follow this
 research closely.

5.2. Test vectors

 Two types of tests are provided. The first is a pair of test vectors
 for each function that consist of expected outputs for the given
 inputs. The inputs are generally given as 64 or 112 hexadecimal
 digits that need to be decoded as 32 or 56 binary bytes before
 processing.

 X25519:

 Input scalar:
 a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4

Langley, et al. Expires March 1, 2016 [Page 9]

Internet-Draft cfrgcurve August 2015

 Input scalar as a number (base 10):
 31029842492115040904895560451863089656
 472772604678260265531221036453811406496
 Input u-coordinate:
 e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
 Input u-coordinate as a number:
 34426434033919594451155107781188821651
 316167215306631574996226621102155684838
 Output u-coordinate:
 c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552

 Input scalar:
 4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
 Input scalar as a number (base 10):
 35156891815674817266734212754503633747
 128614016119564763269015315466259359304
 Input u-coordinate:
 e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493
 Input u-coordinate as a number:
 88838573511839298940907593866106493194
 17338800022198945255395922347792736741
 Output u-coordinate:
 95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957

 X448:

 Input scalar:
 3d262fddf9ec8e88495266fea19a34d28882acef045104d0d1aae121
 700a779c984c24f8cdd78fbff44943eba368f54b29259a4f1c600ad3
 Input scalar as a number (base 10):
 599189175373896402783756016145213256157230856
 085026129926891459468622403380588640249457727
 683869421921443004045221642549886377526240828
 Input u-coordinate:
 06fce640fa3487bfda5f6cf2d5263f8aad88334cbd07437f020f08f9
 814dc031ddbdc38c19c6da2583fa5429db94ada18aa7a7fb4ef8a086
 Input u-coordinate as a number:
 382239910814107330116229961234899377031416365
 240571325148346555922438025162094455820962429
 142971339584360034337310079791515452463053830
 Output u-coordinate:
 ce3e4ff95a60dc6697da1db1d85e6afbdf79b50a2412d7546d5f239f
 e14fbaadeb445fc66a01b0779d98223961111e21766282f73dd96b6f

 Input scalar:
 203d494428b8399352665ddca42f9de8fef600908e0d461cb021f8c5
 38345dd77c3e4806e25f46d3315c44e0a5b4371282dd2c8d5be3095f

Langley, et al. Expires March 1, 2016 [Page 10]

Internet-Draft cfrgcurve August 2015

 Input scalar as a number (base 10):
 633254335906970592779259481534862372382525155
 252028961056404001332122152890562527156973881
 968934311400345568203929409663925541994577184
 Input u-coordinate:
 0fbcc2f993cd56d3305b0b7d9e55d4c1a8fb5dbb52f8e9a1e9b6201b
 165d015894e56c4d3570bee52fe205e28a78b91cdfbde71ce8d157db
 Input u-coordinate as a number:
 622761797758325444462922068431234180649590390
 024811299761625153767228042600197997696167956
 134770744996690267634159427999832340166786063
 Output u-coordinate:
 884a02576239ff7a2f2f63b2db6a9ff37047ac13568e1e30fe63c4a7
 ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d

 The second type of test vector consists of the result of calling the
 function in question a specified number of times. Initially, set "k"
 and "u" to be the following values:

 For X25519:
 0900
 For X448:
 0500
 00

 For each iteration, set "k" to be the result of calling the function
 and "u" to be the old value of "k". The final result is the value
 left in "k".

Langley, et al. Expires March 1, 2016 [Page 11]

Internet-Draft cfrgcurve August 2015

 X25519:

 After one iteration:
 422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079
 After 1,000 iterations:
 684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51
 After 1,000,000 iterations:
 7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd2d24f665424

 X448:

 After one iteration:
 3f482c8a9f19b01e6c46ee9711d9dc14fd4bf67af30765c2ae2b846a
 4d23a8cd0db897086239492caf350b51f833868b9bc2b3bca9cf4113
 After 1,000 iterations:
 aa3b4749d55b9daf1e5b00288826c467274ce3ebbdd5c17b975e09d4
 af6c67cf10d087202db88286e2b79fceea3ec353ef54faa26e219f38
 After 1,000,000 iterations:
 077f453681caca3693198420bbe515cae0002472519b3e67661a7e89
 cab94695c8f4bcd66e61b9b9c946da8d524de3d69bd9d9d66b997e37

6. Diffie-Hellman

6.1. Curve25519

 The "X25519" function can be used in an elliptic-curve Diffie-Hellman
 (ECDH) protocol as follows:

 Alice generates 32 random bytes in f[0] to f[31] and transmits K_A =
 "X25519"(f, 9) to Bob, where 9 is the u-coordinate of the base point
 and is encoded as a byte with value 9, followed by 31 zero bytes.

 Bob similarly generates 32 random bytes in g[0] to g[31] and computes
 K_B = "X25519"(g, 9) and transmits it to Alice.

 Using their generated values and the received input, Alice computes
 "X25519"(f, K_B) and Bob computes "X25519"(g, K_A).

 Both now share K = "X25519"(f, "X25519"(g, 9)) = "X25519"(g,
 "X25519"(f, 9)) as a shared secret. Both MUST check, without leaking
 extra information about the value of K, whether K is the all-zero
 value and abort if so (see below). Alice and Bob can then use a key-
 derivation function that includes K, K_A and K_B to derive a key.

 The check for the all-zero value results from the fact that the
 "X25519" function produces that value if it operates on an input
 corresponding to a point with order dividing the co-factor, h, of the

Langley, et al. Expires March 1, 2016 [Page 12]

Internet-Draft cfrgcurve August 2015

 curve. This check is cheap and so MUST always be carried out. The
 check may be performed by ORing all the bytes together and checking
 whether the result is zero as this eliminates standard side-channels
 in software implementations.

 Test vector:

 Alice's private key, f:
 77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a
 Alice's public key, X25519(f, 9):
 8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a
 Bob's private key, g:
 5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb
 Bob's public key, X25519(g, 9):
 de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f
 Their shared secret, K:
 4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742

6.2. Curve448

 The "X448" function can be used in an ECDH protocol very much like
 the "X25519" function.

 If "X448" is to be used, the only differences are that Alice and Bob
 generate 56 random bytes (not 32) and calculate K_A = "X448"(f, 5) or
 K_B = "X448"(g, 5) where 5 is the u-coordinate of the base point and
 is encoded as a byte with value 5, followed by 55 zero bytes.

 As with "X25519", both sides MUST check, without leaking extra
 information about the value of K, whether the resulting shared K is
 the all-zero value and abort if so.

 Test vector:

Langley, et al. Expires March 1, 2016 [Page 13]

Internet-Draft cfrgcurve August 2015

 Alice's private key, f:
 9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28d
 d9c9baf574a9419744897391006382a6f127ab1d9ac2d8c0a598726b
 Alice's public key, X448(f, 5):
 9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c
 22c5d9bbc836647241d953d40c5b12da88120d53177f80e532c41fa0
 Bob's private key, g:
 1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d
 6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d
 Bob's public key, X448(g, 5):
 3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bdb0d4f345b430
 27d8b972fc3e34fb4232a13ca706dcb57aec3dae07bdc1c67bf33609
 Their shared secret, K:
 07fff4181ac6cc95ec1c16a94a0f74d12da232ce40a77552281d282b
 b60c0b56fd2464c335543936521c24403085d59a449a5037514a879d

7. Security Considerations

 The security level (i.e. the number of "operations" needed for a
 brute-force attack on a primitive) of "curve25519" is slightly under
 the standard 128-bit level. This is acceptable because the standard
 security levels are primarily driven by much simplier, symmetric
 primtives where the security level naturally falls on a power of two.
 For asymmetric primitives, rigidly adhering to a power-of-two
 security level would require compromises in other parts of the
 design, which we reject. Additionally, comparing security levels
 between types of primitives can be misleading under common threat
 models where multiple targets can be attacked concurrently
 [bruteforce].

 The ~224-bit security level of "curve448" is a trade-off between
 performance and paranoia. Large quantum computers, if ever created,
 will break both "curve25519" and "curve448", and reasonable
 projections of the abilities of classical computers conclude that
 "curve25519" is perfectly safe. However, some designs have relaxed
 performance requirements and wish to hedge against some amount of
 analytical advance against elliptic curves and thus "curve448" is
 also provided.

8. Acknowledgements

 This document merges "draft-black-rpgecc-01" and "draft-turner-
thecurve25519function-01". The following authors of those documents

 wrote much of the text and figures but are not listed as authors on
 this document: Benjamin Black, Joppe W. Bos, Craig Costello, Patrick
 Longa, Michael Naehrig and Watson Ladd.

https://datatracker.ietf.org/doc/html/draft-black-rpgecc-01
https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function-01
https://datatracker.ietf.org/doc/html/draft-turner-thecurve25519function-01

Langley, et al. Expires March 1, 2016 [Page 14]

Internet-Draft cfrgcurve August 2015

 The authors would also like to thank Tanja Lange, Rene Struik, Rich
 Salz, Ilari Liusvaara, Deirdre Connolly and Simon Josefsson for their
 reviews and contributions.

 The "X25519" function was developed by Daniel J. Bernstein in
 [curve25519].

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

9.2. Informative References

 [brainpool]
 ECC Brainpool, "ECC Brainpool Standard Curves and Curve
 Generation", October 2005, <http://www.ecc-

brainpool.org/download/Domain-parameters.pdf>.

 [bruteforce]
 Bernstein, D., "Understanding brute force", April 2005,
 <http://cr.yp.to/snuffle/bruteforce-20050425.pdf>.

 [curve25519]
 Bernstein, D., "Curve25519 -- new Diffie-Hellman speed
 records", 2006,
 <http://www.iacr.org/cryptodb/archive/2006/

PKC/3351/3351.pdf>.

 [ed25519] Bernstein, D., Duif, N., Lange, T., Schwabe, P., and B.
 Yang, "High-speed high-security signatures", 2011,
 <http://link.springer.com/

chapter/10.1007/978-3-642-23951-9_9>.

 [goldilocks]
 Hamburg, M., "Ed448-Goldilocks, a new elliptic curve",
 2015, <http://eprint.iacr.org/2015/625.pdf>.

 [montgomery]
 Montgomery, P., "Speeding the Pollard and elliptic curve
 methods of factorization", 1983,
 <http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://cr.yp.to/snuffle/bruteforce-20050425.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://link.springer.com/chapter/10.1007/978-3-642-23951-9_9
http://link.springer.com/chapter/10.1007/978-3-642-23951-9_9
http://eprint.iacr.org/2015/625.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf

Langley, et al. Expires March 1, 2016 [Page 15]

Internet-Draft cfrgcurve August 2015

 [NIST] National Institute of Standards, "Recommended Elliptic
 Curves for Federal Government Use", July 1999,
 <http://csrc.nist.gov/groups/ST/toolkit/documents/dss/

NISTReCur.pdf>.

 [reducing]
 Menezes, A., Okamoto, T., and S. Vanstone, "Reducing
 elliptic curve logarithms to logarithms in a finite
 field", 1993, <http://ieeexplore.ieee.org/xpl/login.jsp?tp
 =&arnumber=259647&url=http%3A%2F%2Fieeexplore.ieee.org%2Fi
 el1%2F18%2F6560%2F00259647>.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090,
 DOI 10.17487/RFC6090, February 2011,
 <http://www.rfc-editor.org/info/rfc6090>.

 [safecurves]
 Bernstein, D. and T. Lange, "SafeCurves: choosing safe
 curves for elliptic-curve cryptography", Oct 2013,
 <http://safecurves.cr.yp.to/>.

 [satoh] Satoh, T. and K. Araki, "Fermat quotients and the
 polynomial time discrete log algorithm for anomalous
 elliptic curves", 1998.

 [SEC1] Certicom Research, "SEC 1: Elliptic Curve Cryptography",
 September 2000,
 <http://www.secg.org/collateral/sec1_final.pdf>.

 [semaev] Semaev, I., "Evaluation of discrete logarithms on some
 elliptic curves", 1998.

 [smart] Smart, N., "The discrete logarithm problem on elliptic
 curves of trace one", 1999,
 <http://www.hpl.hp.com/techreports/97/HPL-97-128.pdf>.

Appendix A. Deterministic Generation

 This section specifies the procedure that was used to generate the
 above curves; specifically it defines how to generate the parameter A
 of the Montgomery curve y^2 = x^3 + Ax^2 + x. This procedure is
 intended to be as objective as can reasonably be achieved so that
 it's clear that no untoward considerations influenced the choice of
 curve. The input to this process is p, the prime that defines the
 underlying field. The size of p determines the amount of work needed
 to compute a discrete logarithm in the elliptic curve group and
 choosing a precise p depends on many implementation concerns. The

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp
https://datatracker.ietf.org/doc/html/rfc6090
http://www.rfc-editor.org/info/rfc6090
http://safecurves.cr.yp.to/
http://www.secg.org/collateral/sec1_final.pdf
http://www.hpl.hp.com/techreports/97/HPL-97-128.pdf

Langley, et al. Expires March 1, 2016 [Page 16]

Internet-Draft cfrgcurve August 2015

 performance of the curve will be dominated by operations in GF(p) so
 carefully choosing a value that allows for easy reductions on the
 intended architecture is critical. This document does not attempt to
 articulate all these considerations.

 The value (A-2)/4 is used in several of the elliptic curve point
 arithmetic formulas. For simplicity and performance reasons, it is
 beneficial to make this constant small, i.e. to choose A so that
 (A-2) is a small integer which is divisible by four.

 For each curve at a specific security level:

 1. The trace of Frobenius MUST NOT be in {0, 1} in order to rule out
 the attacks described in [smart], [satoh], and [semaev], as in
 [brainpool] and [safecurves].

 2. MOV Degree [reducing]: the embedding degree k MUST be greater
 than (r - 1) / 100, as in [brainpool] and [safecurves].

 3. CM Discriminant: discriminant D MUST be greater than 2^100, as in
 [safecurves].

A.1. p = 1 mod 4

 For primes congruent to 1 mod 4, the minimal cofactors of the curve
 and its twist are either {4, 8} or {8, 4}. We choose a curve with the
 latter cofactors so that any algorithms that take the cofactor into
 account don't have to worry about checking for points on the twist,
 because the twist cofactor will be the smaller of the two.

 To generate the Montgomery curve we find the minimal, positive A
 value, such that A > 2 and (A-2) is divisible by four and where the
 cofactors are as desired. The "find1Mod4" function in the following
 Sage script returns this value given p:

Langley, et al. Expires March 1, 2016 [Page 17]

Internet-Draft cfrgcurve August 2015

 def findCurve(prime, curveCofactor, twistCofactor):
 F = GF(prime)

 for A in xrange(3, 1e9):
 if (A-2) % 4 != 0:
 continue

 try:
 E = EllipticCurve(F, [0, A, 0, 1, 0])
 except:
 continue

 order = E.order()
 twistOrder = 2*(prime+1)-order

 if (order % curveCofactor == 0 and
 is_prime(order // curveCofactor) and
 twistOrder % twistCofactor == 0 and
 is_prime(twistOrder // twistCofactor)):
 return A

 def find1Mod4(prime):
 assert((prime % 4) == 1)
 return findCurve(prime, 8, 4)

 Generating a curve where p = 1 mod 4

A.2. p = 3 mod 4

 For a prime congruent to 3 mod 4, both the curve and twist cofactors
 can be 4 and this is minimal. Thus we choose the curve with these
 cofactors and minimal, positive A such that A > 2 and (A-2) is
 divisible by four. The "find3Mod4" function in the following Sage
 script returns this value given p:

 def find3Mod4(prime):
 assert((prime % 4) == 3)
 return findCurve(prime, 4, 4)

 Generating a curve where p = 3 mod 4

A.3. Base points

 The base point for a curve is the point with minimal, positive u
 value that is in the correct subgroup. The "findBasepoint" function
 in the following Sage script returns this value given p and A:

Langley, et al. Expires March 1, 2016 [Page 18]

Internet-Draft cfrgcurve August 2015

 def findBasepoint(prime, A):
 F = GF(prime)
 E = EllipticCurve(F, [0, A, 0, 1, 0])

 for uInt in range(1, 1e3):
 u = F(uInt)
 v2 = u^3 + A*u^2 + u
 if not v2.is_square():
 continue
 v = v2.sqrt()

 point = E(u, v)
 order = point.order()
 if order > 8 and order.is_prime():
 return point

 Generating the base point

Authors' Addresses

 Adam Langley
 Google
 345 Spear St
 San Francisco, CA 94105
 US

 Email: agl@google.com

 Mike Hamburg
 Rambus Cryptography Research
 425 Market Street, 11th Floor
 San Francisco, CA 94105
 US

 Email: mike@shiftleft.org

 Sean Turner
 IECA, Inc.
 3057 Nutley Street
 Suite 106
 Fairfax, VA 22031
 US

 Email: turners@ieca.com

Langley, et al. Expires March 1, 2016 [Page 19]

