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Abstract

   This memo specifies two elliptic curves over prime fields that offer
   high practical security in cryptographic applications, including
   Transport Layer Security (TLS).  These curves are intended to operate
   at the ~128-bit and ~224-bit security level, respectively, and are
   generated deterministically based on a list of required properties.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 11, 2016.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Since the initial standardization of elliptic curve cryptography (ECC
   [RFC6090]) in [SEC1] there has been significant progress related to
   both efficiency and security of curves and implementations.  Notable
   examples are algorithms protected against certain side-channel
   attacks, various 'special' prime shapes that allow faster modular
   arithmetic, and a larger set of curve models from which to choose.
   There is also concern in the community regarding the generation and
   potential weaknesses of the curves defined by NIST [NIST].

   This memo specifies two elliptic curves ("curve25519" and "curve448")
   that lend themselves to constant-time implementation and an
   exception-free scalar multiplication that is resistant to a wide
   range of side-channel attacks, including timing and cache attacks.
   They are Montgomery curves (where y^2 = x^3 + A*x^2 + x) and thus
   have birationally equivalent Edwards versions.  Edwards curves
   support the fastest (currently known) complete formulas for the
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   elliptic-curve group operations, specifically the Edwards curve x^2 +
   y^2 = 1 + d*x^2*y^2 for primes p when p = 3 mod 4, and the twisted
   Edwards curve -x^2 + y^2 = 1 + d*x^2*y^2 when p = 1 mod 4.  The maps
   to/from the Montgomery curves to their (twisted) Edwards equivalents
   are also given.

   This memo also specifies how these curves can be used with the
   Diffie-Hellman protocol for key agreement.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Notation

   Throughout this document, the following notation is used:

   p  Denotes the prime number defining the underlying field.

   GF(p)  The finite field with p elements.

   A  An element in the finite field GF(p), not equal to -2 or 2.

   d  A non-zero element in the finite field GF(p), not equal to 1, in
      the case of an Edwards curve, or not equal to -1, in the case of a
      twisted Edwards curve.

   P  A generator point defined over GF(p) of prime order.

   X(P)  The x-coordinate of the elliptic curve point P on a (twisted)
      Edwards curve.

   Y(P)  The y-coordinate of the elliptic curve point P on a (twisted)
      Edwards curve.

   u, v  Coordinates on a Montgomery curve.

   x, y  Coordinates on a (twisted) Edwards curve.

4.  Recommended Curves

4.1.  Curve25519

   For the ~128-bit security level, the prime 2^255-19 is recommended
   for performance on a wide-range of architectures.  Few primes of the
   form 2^c-s with s small exist between 2^250 and 2^521, and other

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   choices of coefficient are not as competitive in performance.  This
   prime is congruent to 1 mod 4 and the derivation procedure in

Appendix A results in the following Montgomery curve v^2 = u^3 +
   A*u^2 + u, called "curve25519":

   p  2^255-19

   A  486662

   order  2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

   cofactor  8

   The base point is u = 9, v = 1478161944758954479102059356840998688726
   4606134616475288964881837755586237401.

   This curve is birationally equivalent to a twisted Edwards curve -x^2
   + y^2 = 1 + d*x^2*y^2, called "edwards25519", where:

   p  2^255-19

   d  370957059346694393431380835087545651895421138798432190163887855330
      85940283555

   order  2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed

   cofactor  8

   X(P)  151122213495354007725011514095885315114540126930418572060461132
      83949847762202

   Y(P)  463168356949264781694283940034751631413079938662562256157830336
      03165251855960

   The birational maps are:

     (u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)
     (x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))

   The Montgomery curve defined here is equal to the one defined in
   [curve25519] and the equivalent twisted Edwards curve is equal to the
   one defined in [ed25519].

4.2.  Curve448

   For the ~224-bit security level, the prime 2^448-2^224-1 is
   recommended for performance on a wide-range of architectures.  This
   prime is congruent to 3 mod 4 and the derivation procedure in



Langley, et al.          Expires April 11, 2016                 [Page 4]



Internet-Draft                  cfrgcurve                   October 2015

Appendix A results in the following Montgomery curve, called
   "curve448":

   p  2^448-2^224-1

   A  156326

   order  2^446 -
      0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d

   cofactor  4

   The base point is u = 5, v = 3552939267855681752641275020637833348089
   763993877142718318808984351690887869674100029326737658645509101427741
   47268105838985595290606362.

   This curve is birationally equivalent to the Edwards curve x^2 + y^2
   = 1 + d*x^2*y^2 where:

   p  2^448-2^224-1

   d  611975850744529176160423220965553317543219696871016626328968936415
      087860042636474891785599283666020414768678979989378147065462815545
      017

   order  2^446 -
      0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d

   cofactor  4

   X(P)  345397493039729516374008604150537410266655260075183290216406970
      281645695073672344430481787759340633221708391583424041788924124567
      700732

   Y(P)  363419362147803445274661903944002267176820680343659030140745099
      590306164083365386343198191849338272965044442230921818680526749009
      182718

   The birational maps are:

     (u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)
     (x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))

   Both of those curves are also 4-isogenous to the following Edwards
   curve x^2 + y^2 = 1 + d*x^2*y^2, called "edwards448", where:

   p  2^448-2^224-1
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   d  -39081

   order  2^446 -
      0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d

   cofactor  4

   X(P)  224580040295924300187604334099896036246789641632564134246125461
      686950415467406032909029192869357953282578032075146446173674602635
      247710

   Y(P)  298819210078481492676017930443930673437544040154080242095928241
      372331506189835876003536878655418784733982303233503462500531545062
      832660

   The 4-isogeny maps between the Montgomery curve and this Edwards
   curve are:

     (u, v) = (y^2/x^2, (2 - x^2 - y^2)*y/x^3)
     (x, y) = (4*v*(u^2 - 1)/(u^4 - 2*u^2 + 4*v^2 + 1),
               -(u^5 - 2*u^3 - 4*u*v^2 + u)/
               (u^5 - 2*u^2*v^2 - 2*u^3 - 2*v^2 + u))

   The curve edwards448 defined here is also called "Goldilocks" and is
   equal to the one defined in [goldilocks].

5.  The X25519 and X448 functions

   The "X25519" and "X448" functions perform scalar multiplication on
   the Montgomery form of the above curves.  (This is used when
   implementing Diffie-Hellman.)  The functions take a scalar and a
   u-coordinate as inputs and produce a u-coordinate as output.
   Although the functions work internally with integers, the inputs and
   outputs are 32-byte strings (for X25519) or 56-byte strings (for
   X448) and this specification defines their encoding.

   The u-coordinates are elements of the underlying field GF(2^255-19)
   or GF(2^448-2^224-1) and are encoded as an array of bytes, u, in
   little-endian order such that u[0] + 256*u[1] + 256^2*u[2] + ... +
   256^(n-1)*u[n-1] is congruent to the value modulo p and u[n-1] is
   minimal.  When receiving such an array, implementations of X25519
   (but not X448) MUST mask the most-significant bit in the final byte.
   This is done to preserve compatibility with point formats which
   reserve the sign bit for use in other protocols and to increase
   resistance to implementation fingerprinting.

   Implementations MUST accept non-canonical values and process them as
   if they had been reduced modulo the field prime.  The non-canonical
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   values are 2^255-19 through 2^255-1 for X25519 and 2^448-2^224-1
   through 2^448-1 for X448.

   The following functions implement this in Python, although the Python
   code is not intended to be performant nor side-channel free.  Here
   the "bits" parameter should be set to 255 for X25519 and 448 for
   X448:

   <CODE BEGINS>
   def decodeLittleEndian(b, bits):
       return sum([b[i] << 8*i for i in range((bits+7)/8)])

   def decodeUCoordinate(u, bits):
       u_list = [ord(b) for b in u]
       # Ignore any unused bits.
       if bits % 8:
           u_list[-1] &= (1<<(bits%8))-1
       return decodeLittleEndian(u_list, bits)

   def encodeUCoordinate(u, bits):
       u = u % p
       return ''.join([chr((u >> 8*i) & 0xff)
                       for i in range((bits+7)/8)])
   <CODE ENDS>

   Scalars are assumed to be randomly generated bytes.  For X25519, in
   order to decode 32 random bytes as an integer scalar, set the three
   least significant bits of the first byte and the most significant bit
   of the last to zero, set the second most significant bit of the last
   byte to 1 and, finally, decode as little-endian.  This means that
   resulting integer is of the form 2^254 plus eight times a value
   between 0 and (2^251)-1 (inclusive).  Likewise, for X448, set the two
   least significant bits of the first byte to 0, and the most
   significant bit of the last byte to 1.  This means that the resulting
   integer is of the form 2^447 plus four times a value between 0 and
   (2^445)-1 (inclusive).
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   <CODE BEGINS>
   def decodeScalar25519(k):
       k_list = [ord(b) for b in k]
       k_list[0] &= 248
       k_list[31] &= 127
       k_list[31] |= 64
       return decodeLittleEndian(k_list, 255)

   def decodeScalar448(k):
       k_list = [ord(b) for b in k]
       k_list[0] &= 252
       k_list[55] |= 128
       return decodeLittleEndian(k_list, 448)
   <CODE ENDS>

   To implement the X25519(k, u) and X448(k, u) functions (where k is
   the scalar and u is the u-coordinate) first decode k and u and then
   perform the following procedure, which is taken from [curve25519] and
   based on formulas from [montgomery].  All calculations are performed
   in GF(p), i.e., they are performed modulo p.  The constant a24 is
   (486662 - 2) / 4 = 121665 for curve25519/X25519 and (156326 - 2) / 4
   = 39081 for curve448/X448.
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   x_1 = u
   x_2 = 1
   z_2 = 0
   x_3 = u
   z_3 = 1
   swap = 0

   For t = bits-1 down to 0:
       k_t = (k >> t) & 1
       swap ^= k_t
       // Conditional swap; see text below.
       (x_2, x_3) = cswap(swap, x_2, x_3)
       (z_2, z_3) = cswap(swap, z_2, z_3)
       swap = k_t

       A = x_2 + z_2
       AA = A^2
       B = x_2 - z_2
       BB = B^2
       E = AA - BB
       C = x_3 + z_3
       D = x_3 - z_3
       DA = D * A
       CB = C * B
       x_3 = (DA + CB)^2
       z_3 = x_1 * (DA - CB)^2
       x_2 = AA * BB
       z_2 = E * (AA + a24 * E)

   // Conditional swap; see text below.
   (x_2, x_3) = cswap(swap, x_2, x_3)
   (z_2, z_3) = cswap(swap, z_2, z_3)
   Return x_2 * (z_2^(p - 2))

   (Note that these formulas are slightly different from Montgomery's
   original paper.  Implementations are free to use any correct
   formulas.)

   Finally, encode the resulting value as 32 or 56 bytes in little-
   endian order.  For X25519, the unused, most-significant bit MUST be
   zero.

   The cswap function SHOULD be implemented in constant time (i.e.
   independent of the swap argument).  For example, this can be done as
   follows:
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   cswap(swap, x_2, x_3):
         dummy = mask(swap) AND (x_2 XOR x_3)
         x_2 = x_2 XOR dummy
         x_3 = x_3 XOR dummy
         Return (x_2, x_3)

   Where mask(swap) is the all-1 or all-0 word of the same length as x_2
   and x_3, computed, e.g., as mask(swap) = 0 - swap.

5.1.  Side-channel considerations

   X25519 and X448 are designed so that fast, constant-time
   implementations are easier to produce.  The procedure above ensures
   that the same sequence of field operations is performed for all
   values of the secret key, thus eliminating a common source of side-
   channel leakage.  However, this alone does not prevent all side-
   channels by itself.  It is important that the pattern of memory
   accesses and jumps not depend on the values of any of the bits of k.
   It is also important that the arithmetic used not leak information
   about the integers modulo p, for example by having b*c be
   distinguishable from c*c.  On some architectures, even primitive
   machine instructions, such as single-word division, can have variable
   timing based on their inputs.

   Side-channel attacks are an active research area that still sees
   significant, new results.  Implementors are advised to follow this
   research closely.

5.2.  Test vectors

   Two types of tests are provided.  The first is a pair of test vectors
   for each function that consist of expected outputs for the given
   inputs.  The inputs are generally given as 64 or 112 hexadecimal
   digits that need to be decoded as 32 or 56 binary bytes before
   processing.

   X25519:

   Input scalar:
     a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4
   Input scalar as a number (base 10):
     31029842492115040904895560451863089656
     472772604678260265531221036453811406496
   Input u-coordinate:
     e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
   Input u-coordinate as a number:
     34426434033919594451155107781188821651
     316167215306631574996226621102155684838
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   Output u-coordinate:
     c3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552

   Input scalar:
     4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
   Input scalar as a number (base 10):
     35156891815674817266734212754503633747
     128614016119564763269015315466259359304
   Input u-coordinate:
     e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493
   Input u-coordinate as a number:
     88838573511839298940907593866106493194
     17338800022198945255395922347792736741
   Output u-coordinate:
     95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957

   X448:

   Input scalar:
     3d262fddf9ec8e88495266fea19a34d28882acef045104d0d1aae121
     700a779c984c24f8cdd78fbff44943eba368f54b29259a4f1c600ad3
   Input scalar as a number (base 10):
     599189175373896402783756016145213256157230856
     085026129926891459468622403380588640249457727
     683869421921443004045221642549886377526240828
   Input u-coordinate:
     06fce640fa3487bfda5f6cf2d5263f8aad88334cbd07437f020f08f9
     814dc031ddbdc38c19c6da2583fa5429db94ada18aa7a7fb4ef8a086
   Input u-coordinate as a number:
     382239910814107330116229961234899377031416365
     240571325148346555922438025162094455820962429
     142971339584360034337310079791515452463053830
   Output u-coordinate:
     ce3e4ff95a60dc6697da1db1d85e6afbdf79b50a2412d7546d5f239f
     e14fbaadeb445fc66a01b0779d98223961111e21766282f73dd96b6f

   Input scalar:
     203d494428b8399352665ddca42f9de8fef600908e0d461cb021f8c5
     38345dd77c3e4806e25f46d3315c44e0a5b4371282dd2c8d5be3095f
   Input scalar as a number (base 10):
     633254335906970592779259481534862372382525155
     252028961056404001332122152890562527156973881
     968934311400345568203929409663925541994577184
   Input u-coordinate:
     0fbcc2f993cd56d3305b0b7d9e55d4c1a8fb5dbb52f8e9a1e9b6201b
     165d015894e56c4d3570bee52fe205e28a78b91cdfbde71ce8d157db
   Input u-coordinate as a number:
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     622761797758325444462922068431234180649590390
     024811299761625153767228042600197997696167956
     134770744996690267634159427999832340166786063
   Output u-coordinate:
     884a02576239ff7a2f2f63b2db6a9ff37047ac13568e1e30fe63c4a7
     ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d

   The second type of test vector consists of the result of calling the
   function in question a specified number of times.  Initially, set k
   and u to be the following values:

   For X25519:
     0900000000000000000000000000000000000000000000000000000000000000
   For X448:
     05000000000000000000000000000000000000000000000000000000
     00000000000000000000000000000000000000000000000000000000

   For each iteration, set k to be the result of calling the function
   and u to be the old value of k.  The final result is the value left
   in k.

   X25519:

   After one iteration:
       422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079
   After 1,000 iterations:
       684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51
   After 1,000,000 iterations:
       7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd2d24f665424

   X448:

   After one iteration:
       3f482c8a9f19b01e6c46ee9711d9dc14fd4bf67af30765c2ae2b846a
       4d23a8cd0db897086239492caf350b51f833868b9bc2b3bca9cf4113
   After 1,000 iterations:
       aa3b4749d55b9daf1e5b00288826c467274ce3ebbdd5c17b975e09d4
       af6c67cf10d087202db88286e2b79fceea3ec353ef54faa26e219f38
   After 1,000,000 iterations:
       077f453681caca3693198420bbe515cae0002472519b3e67661a7e89
       cab94695c8f4bcd66e61b9b9c946da8d524de3d69bd9d9d66b997e37

6.  Diffie-Hellman
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6.1.  Curve25519

   The X25519 function can be used in an elliptic-curve Diffie-Hellman
   (ECDH) protocol as follows:

   Alice generates 32 random bytes in f[0] to f[31] and transmits K_A =
   X25519(f, 9) to Bob, where 9 is the u-coordinate of the base point
   and is encoded as a byte with value 9, followed by 31 zero bytes.

   Bob similarly generates 32 random bytes in g[0] to g[31] and computes
   K_B = X25519(g, 9) and transmits it to Alice.

   Using their generated values and the received input, Alice computes
   X25519(f, K_B) and Bob computes X25519(g, K_A).

   Both now share K = X25519(f, X25519(g, 9)) = X25519(g, X25519(f, 9))
   as a shared secret.  Both MUST check, without leaking extra
   information about the value of K, whether K is the all-zero value and
   abort if so (see below).  Alice and Bob can then use a key-derivation
   function that includes K, K_A and K_B to derive a key.

   The check for the all-zero value results from the fact that the
   X25519 function produces that value if it operates on an input
   corresponding to a point with order dividing the co-factor, h, of the
   curve.  This check is cheap and so MUST always be carried out.  The
   check may be performed by ORing all the bytes together and checking
   whether the result is zero as this eliminates standard side-channels
   in software implementations.

   Test vector:

   Alice's private key, f:
     77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a
   Alice's public key, X25519(f, 9):
     8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a
   Bob's private key, g:
     5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb
   Bob's public key, X25519(g, 9):
     de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f
   Their shared secret, K:
     4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742

6.2.  Curve448

   The X448 function can be used in an ECDH protocol very much like the
   X25519 function.
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   If X448 is to be used, the only differences are that Alice and Bob
   generate 56 random bytes (not 32) and calculate K_A = X448(f, 5) or
   K_B = X448(g, 5) where 5 is the u-coordinate of the base point and is
   encoded as a byte with value 5, followed by 55 zero bytes.

   As with X25519, both sides MUST check, without leaking extra
   information about the value of K, whether the resulting shared K is
   the all-zero value and abort if so.

   Test vector:

   Alice's private key, f:
     9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28d
     d9c9baf574a9419744897391006382a6f127ab1d9ac2d8c0a598726b
   Alice's public key, X448(f, 5):
     9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c
     22c5d9bbc836647241d953d40c5b12da88120d53177f80e532c41fa0
   Bob's private key, g:
     1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d
     6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d
   Bob's public key, X448(g, 5):
     3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bdb0d4f345b430
     27d8b972fc3e34fb4232a13ca706dcb57aec3dae07bdc1c67bf33609
   Their shared secret, K:
     07fff4181ac6cc95ec1c16a94a0f74d12da232ce40a77552281d282b
     b60c0b56fd2464c335543936521c24403085d59a449a5037514a879d

7.  Security Considerations

   The security level (i.e. the number of "operations" needed for a
   brute-force attack on a primitive) of curve25519 is slightly under
   the standard 128-bit level.  This is acceptable because the standard
   security levels are primarily driven by much simplier, symmetric
   primitives where the security level naturally falls on a power of
   two.  For asymmetric primitives, rigidly adhering to a power-of-two
   security level would require compromises in other parts of the
   design, which we reject.  Additionally, comparing security levels
   between types of primitives can be misleading under common threat
   models where multiple targets can be attacked concurrently
   [bruteforce].

   The ~224-bit security level of curve448 is a trade-off between
   performance and paranoia.  Large quantum computers, if ever created,
   will break both curve25519 and curve448, and reasonable projections
   of the abilities of classical computers conclude that curve25519 is
   perfectly safe.  However, some designs have relaxed performance
   requirements and wish to hedge against some amount of analytical
   advance against elliptic curves and thus curve448 is also provided.
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8.  IANA Considerations

   This document has no actions for IANA.
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Appendix A.  Deterministic Generation

   This section specifies the procedure that was used to generate the
   above curves; specifically it defines how to generate the parameter A
   of the Montgomery curve y^2 = x^3 + A*x^2 + x.  This procedure is
   intended to be as objective as can reasonably be achieved so that
   it's clear that no untoward considerations influenced the choice of
   curve.  The input to this process is p, the prime that defines the
   underlying field.  The size of p determines the amount of work needed
   to compute a discrete logarithm in the elliptic curve group and
   choosing a precise p depends on many implementation concerns.  The
   performance of the curve will be dominated by operations in GF(p) so
   carefully choosing a value that allows for easy reductions on the
   intended architecture is critical.  This document does not attempt to
   articulate all these considerations.

   The value (A-2)/4 is used in several of the elliptic curve point
   arithmetic formulas.  For simplicity and performance reasons, it is
   beneficial to make this constant small, i.e. to choose A so that
   (A-2) is a small integer which is divisible by four.

   For each curve at a specific security level:

   1.  The trace of Frobenius MUST NOT be in {0, 1} in order to rule out
       the attacks described in [smart], [satoh], and [semaev], as in
       [brainpool] and [safecurves].

   2.  MOV Degree [reducing]: the embedding degree k MUST be greater
       than (r - 1) / 100, as in [brainpool] and [safecurves].

   3.  CM Discriminant: discriminant D MUST be greater than 2^100, as in
       [safecurves].

A.1.  p = 1 mod 4

   For primes congruent to 1 mod 4, the minimal cofactors of the curve
   and its twist are either {4, 8} or {8, 4}. We choose a curve with the
   latter cofactors so that any algorithms that take the cofactor into
   account don't have to worry about checking for points on the twist,
   because the twist cofactor will be the smaller of the two.

   To generate the Montgomery curve we find the minimal, positive A
   value, such that A > 2 and (A-2) is divisible by four and where the

http://www.hpl.hp.com/techreports/97/HPL-97-128.pdf
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   cofactors are as desired.  The find1Mod4 function in the following
   Sage script returns this value given p:

   <CODE BEGINS>
   def findCurve(prime, curveCofactor, twistCofactor):
       F = GF(prime)

       for A in xrange(3, 1e9):
           if (A-2) % 4 != 0:
             continue

           try:
             E = EllipticCurve(F, [0, A, 0, 1, 0])
           except:
             continue

           order = E.order()
           twistOrder = 2*(prime+1)-order

           if (order % curveCofactor == 0 and
               is_prime(order // curveCofactor) and
               twistOrder % twistCofactor == 0 and
               is_prime(twistOrder // twistCofactor)):
               return A

   def find1Mod4(prime):
       assert((prime % 4) == 1)
       return findCurve(prime, 8, 4)
   <CODE ENDS>

                   Generating a curve where p = 1 mod 4

A.2.  p = 3 mod 4

   For a prime congruent to 3 mod 4, both the curve and twist cofactors
   can be 4 and this is minimal.  Thus we choose the curve with these
   cofactors and minimal, positive A such that A > 2 and (A-2) is
   divisible by four.  The find3Mod4 function in the following Sage
   script returns this value given p:

   <CODE BEGINS>
   def find3Mod4(prime):
       assert((prime % 4) == 3)
       return findCurve(prime, 4, 4)
   <CODE ENDS>

                   Generating a curve where p = 3 mod 4
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A.3.  Base points

   The base point for a curve is the point with minimal, positive u
   value that is in the correct subgroup.  The findBasepoint function in
   the following Sage script returns this value given p and A:

   <CODE BEGINS>
   def findBasepoint(prime, A):
       F = GF(prime)
       E = EllipticCurve(F, [0, A, 0, 1, 0])

       for uInt in range(1, 1e3):
         u = F(uInt)
         v2 = u^3 + A*u^2 + u
         if not v2.is_square():
           continue
         v = v2.sqrt()

         point = E(u, v)
         order = point.order()
         if order > 8 and order.is_prime():
           return point
   <CODE ENDS>

                         Generating the base point
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