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Abstract

In this draft, we present the two-round signing variant of FROST, a

Flexible Round-Optimized Schnorr Threshold signature scheme. FROST

signatures can be issued after a threshold number of entities

cooperate to issue a signature, allowing for improved distribution

of trust and redundancy with respect to a secret key. Further, this

draft specifies signatures that are compatible with [RFC8032].

However, unlike [RFC8032], the protocol for producing signatures in

this draft is not deterministic, so as to ensure protection against

a key-recovery attack that is possible when even only one

participant is malicious.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Crypto Forum Research

Group mailing list (cfrg@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/search/?email_list=cfrg.

Source for this draft and an issue tracker can be found at https://

github.com/cfrg/draft-irtf-cfrg-frost.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents
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at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 September 2022.
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This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of
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1. Introduction

DISCLAIMER: This is a work-in-progress draft of FROST.

RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH The source for

this draft is maintained in GitHub. Suggested changes should be

submitted as pull requests at https://github.com/cfrg/draft-irtf-

cfrg-frost. Instructions are on that page as well.

Unlike signatures in a single-party setting, threshold signatures

require cooperation among a threshold number of signers each holding

a share of a common private key. The security of threshold schemes

in general assume that an adversary can corrupt strictly fewer than

a threshold number of participants.

This document presents a variant of a Flexible Round-Optimized

Schnorr Threshold (FROST) signature scheme originally defined in 

[FROST20]. FROST reduces network overhead during threshold signing

operations while employing a novel technique to protect against

forgery attacks applicable to prior Schnorr-based threshold

signature constructions. The variant of FROST presented in this

document requires two rounds to compute a signature, and implements

signing efficiency improvements described by [Schnorr21]. Single-

round signing with FROST is out of scope.

For select ciphersuites, the signatures produced by this draft are

compatible with [RFC8032]. However, unlike [RFC8032], signatures
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produced by FROST are not deterministic, since deriving nonces

deterministically allows for a complete key-recovery attack in

multi-party discrete logarithm-based signatures, such as FROST.

Key generation for FROST signing is out of scope for this document.

However, for completeness, key generation with a trusted dealer is

specified in Appendix B.

1.1. Change Log

draft-04

Added methods to verify VSS commitments and derive group info

(#126, #132).

Changed check for participants to consider only nonnegative

numbers (#133).

Changed sampling for secrets and coefficients to allow the zero

element (#130).

Split test vectors into separate files (#129)

Update wire structs to remove commitment shares where not

necessary (#128)

Add failure checks (#127)

Update group info to include each participant's key and clarify

how public key material is obtained (#120, #121).

Define cofactor checks for verification (#118)

Various editorial improvements and add contributors (#124, #123,

#119, #116, #113, #109)

draft-03

Refactor the second round to use state from the first round

(#94).

Ensure that verification of signature shares from the second

round uses commitments from the first round (#94).

Clarify RFC8032 interoperability based on PureEdDSA (#86).

Specify signature serialization based on element and scalar

serialization (#85).

Fix hash function domain separation formatting (#83).
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Make trusted dealer key generation deterministic (#104).

Add additional constraints on participant indexes and nonce usage

(#105, #103, #98, #97).

Apply various editorial improvements.

draft-02

Fully specify both rounds of FROST, as well as trusted dealer key

generation.

Add ciphersuites and corresponding test vectors, including suites

for RFC8032 compatibility.

Refactor document for editorial clarity.

draft-01

Specify operations, notation and cryptographic dependencies.

draft-00

Outline CFRG draft based on draft-komlo-frost.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following notation and terminology are used throughout this

document.

A participant is an entity that is trusted to hold a secret

share.

NUM_SIGNERS denotes the number of participants, and the number of

shares that s is split into. This value MUST NOT exceed 2^16-1.

THRESHOLD_LIMIT denotes the threshold number of participants

required to issue a signature. More specifically, at least

THRESHOLD_LIMIT shares must be combined to issue a valid

signature.

len(x) is the length of integer input x as an 8-byte, big-endian

integer.
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encode_uint16(x): Convert two byte unsigned integer (uint16) x to

a 2-byte, big-endian byte string. For example, encode_uint16(310)

= [0x01, 0x36].

|| denotes concatenation, i.e., x || y = xy.

Unless otherwise stated, we assume that secrets are sampled

uniformly at random using a cryptographically secure pseudorandom

number generator (CSPRNG); see [RFC4086] for additional guidance on

the generation of random numbers.

3. Cryptographic Dependencies

FROST signing depends on the following cryptographic constructs:

Prime-order Group, Section 3.1;

Cryptographic hash function, Section 3.2;

These are described in the following sections.

3.1. Prime-Order Group

FROST depends on an abelian group G of prime order p. The

fundamental group operation is addition + with identity element I.

For any elements A and B of the group G, A + B = B + A is also a

member of G. Also, for any A in GG, there exists an element -A such

that A + (-A) = (-A) + A = I. Scalar multiplication is equivalent to

the repeated application of the group operation on an element A with

itself r-1 times, this is denoted as r*A = A + ... + A. For any

element A, p * A = I. We denote B as the fixed generator of the

group. Scalar base multiplication is equivalent to the repeated

application of the group operation B with itself r-1 times, this is

denoted as ScalarBaseMult(r). The set of scalars corresponds to 

GF(p), which refer to as the scalar field. This document uses types 

Element and Scalar to denote elements of the group G and its set of

scalars, respectively. We denote equality comparison as == and

assignment of values by =.

We now detail a number of member functions that can be invoked on a

prime-order group G.

Order(): Outputs the order of G (i.e. p).

Identity(): Outputs the identity element of the group (i.e. I).

RandomScalar(): A member function of G that chooses at random a

Scalar element in GF(p).
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RandomNonzeroScalar(): A member function of G that chooses at

random a non-zero Scalar element in GF(p).

SerializeElement(A): A member function of G that maps an Element 

A to a unique byte array buf of fixed length Ne.

DeserializeElement(buf): A member function of G that attempts to

map a byte array buf to an Element A, and fails if the input is

not a valid byte representation of an element of the group. This

function can raise a DeserializeError if deserialization fails or

A is the identity element of the group; see Section 6 for group-

specific input validation steps.

SerializeScalar(s): A member function of G that maps a Scalar s

to a unique byte array buf of fixed length Ns.

DeserializeScalar(buf): A member function of G that attempts to

map a byte array buf to a Scalar s. This function can raise a

DeserializeError if deserialization fails; see Section 6 for

group-specific input validation steps.

3.2. Cryptographic Hash Function

FROST requires the use of a cryptographically secure hash function,

generically written as H, which functions effectively as a random

oracle. For concrete recommendations on hash functions which SHOULD

BE used in practice, see Section 6. Using H, we introduce three

separate domain-separated hashes, H1, H2, and H3, where H1 and H2

map arbitrary inputs to non-zero Scalar elements of the prime-order

group scalar field, and H3 is an alias for H with domain separation

applied. The details of H1, H2, and H3 vary based on ciphersuite.

See Section 6 for more details about each.

4. Helper functions

Beyond the core dependencies, the protocol in this document depends

on the following helper operations:

Schnorr signatures, Section 4.1;

Polynomial operations, Section 4.2;

Encoding operations, Section 4.3;

Signature binding Section 4.4, group commitment Section 4.5, and

challenge computation Section 4.6

This sections describes these operations in more detail.
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4.1. Schnorr Signature Operations

In the single-party setting, a Schnorr signature is generated with

the following operation.

The corresponding verification operation is as follows. Here, h is

the cofactor for the group being operated over, e.g. h=8 for the

case of Curve25519, h=4 for Ed448, and h=1 for groups such as

ristretto255 and secp256k1, etc. This final scalar multiplication

MUST be performed when h>1.

¶

  schnorr_signature_generate(msg, SK):

  Inputs:

  - msg, message to be signed, an octet string

  - SK, private key, a scalar

  Outputs: signature (R, z), a pair of scalar values

  def schnorr_signature_generate(msg, SK):

    PK = G.ScalarBaseMult(SK)

    k = G.RandomScalar()

    R = G.ScalarBaseMult(k)

    comm_enc = G.SerializeElement(R)

    pk_enc = G.SerializeElement(PK)

    challenge_input = comm_enc || pk_enc || msg

    c = H2(challenge_input)

    z = k + (c * SK)

    return (R, z)

¶
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4.2. Polynomial Operations

This section describes operations on and associated with polynomials

that are used in the main signing protocol. A polynomial of degree t

is represented as a sorted list of t coefficients. A point on the

polynomial is a tuple (x, y), where y = f(x). For notational

convenience, we refer to the x-coordinate and y-coordinate of a

point p as p.x and p.y, respectively.

4.2.1. Evaluation of a polynomial

This section describes a method for evaluating a polynomial f at a

particular input x, i.e., y = f(x) using Horner's method.

  schnorr_signature_verify(msg, sig, PK):

  Inputs:

  - msg, signed message, an octet string

  - sig, a tuple (R, z) output from schnorr_signature_generate or FROST

  - PK, public key, a group element

  Outputs: 1 if signature is valid, and 0 otherwise

  def schnorr_signature_verify(msg, sig = (R, z), PK):

    comm_enc = G.SerializeElement(R)

    pk_enc = G.SerializeElement(PK)

    challenge_input = comm_enc || pk_enc || msg

    c = H2(challenge_input)

    l = G.ScalarBaseMult(z)

    r = R + (c * PK)

    check = (l - r) * h

    return check == G.Identity()

¶
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4.2.2. Lagrange coefficients

Lagrange coefficients are used in FROST to evaluate a polynomial f

at f(0), given a set of t other points, where f is represented as a

set of coefficients.

  polynomial_evaluate(x, coeffs):

  Inputs:

  - x, input at which to evaluate the polynomial, a scalar

  - coeffs, the polynomial coefficients, a list of scalars

  Outputs: Scalar result of the polynomial evaluated at input x

  def polynomial_evaluate(x, coeffs):

    value = 0

    for (counter, coeff) in coeffs.reverse():

      if counter == coeffs.len() - 1:

        value += coeff // add the constant term

      else:

        value += coeff

        value *= x

    return value

¶
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4.2.3. Deriving the constant term of a polynomial

Secret sharing requires "splitting" a secret, which is represented

as a constant term of some polynomial f of degree t. Recovering the

constant term occurs with a set of t points using polynomial

interpolation, defined as follows.

  derive_lagrange_coefficient(x_i, L):

  Inputs:

  - x_i, an x-coordinate contained in L, a scalar

  - L, the set of x-coordinates, each a scalar

  Outputs: L_i, the i-th Lagrange coefficient

  Errors:

  - "invalid parameters", if any coordinate is less than or equal to 0

  def derive_lagrange_coefficient(x_i, L):

    if x_i = 0:

      raise "invalid parameters"

    for x_j in L:

      if x_j = 0:

        raise "invalid parameters"

    numerator = 1

    denominator = 1

    for x_j in L:

      if x_j == x_i: continue

      numerator *= x_j

      denominator *= x_j - x_i

    L_i = numerator / denominator

    return L_i

¶
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4.3. Commitment List Encoding

This section describes the subroutine used for encoding a list of

signer commitments into a bytestring that is used in the FROST

protocol.

4.4. Binding Factor Computation

This section describes the subroutine for computing the binding

factor based on the signer commitment list and message to be signed.

  Inputs:

  - points, a set of `t` points on a polynomial f, each a tuple of two

    scalar values representing the x and y coordinates

  Outputs: The constant term of f, i.e., f(0)

  def polynomial_interpolation(points):

    L = []

    for point in points:

      L.append(point.x)

    f_zero = F(0)

    for point in points:

      delta = point.y * derive_lagrange_coefficient(point.x, L)

      f_zero = f_zero + delta

    return f_zero

¶

¶

  Inputs:

  - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of commitments issued by each signer,

    where each element in the list indicates the signer index i and their

    two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i). This list MUST be sorted in ascending order

    by signer index.

  Outputs: A byte string containing the serialized representation of commitment_list.

  def encode_group_commitment_list(commitment_list):

    encoded_group_commitment = nil

    for (index, hiding_nonce_commitment, binding_nonce_commitment) in commitment_list:

      encoded_commitment = encode_uint16(index) ||

                           G.SerializeElement(hiding_nonce_commitment) ||

                           G.SerializeElement(binding_nonce_commitment)

      encoded_group_commitment = encoded_group_commitment || encoded_commitment

    return encoded_group_commitment

¶
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4.5. Group Commitment Computation

This section describes the subroutine for creating the group

commitment from a commitment list.

4.6. Signature Challenge Computation

This section describes the subroutine for creating the per-message

challenge.

  Inputs:

  - encoded_commitment_list, an encoded commitment list (as computed

    by encode_group_commitment_list)

  - msg, the message to be signed (sent by the Coordinator).

  Outputs: binding_factor, a Scalar representing the binding factor

  def compute_binding_factor(encoded_commitment_list, msg):

    msg_hash = H3(msg)

    rho_input = encoded_commitment_list || msg_hash

    binding_factor = H1(rho_input)

    return binding_factor

¶

¶

  Inputs:

  - commitment_list = [(i, hiding_nonce_commitment_i, binding_nonce_commitment_i), ...], a list of

    commitments issued by each signer, where each element in the list indicates the signer index i and their

    two commitment Element values (hiding_nonce_commitment_i, binding_nonce_commitment_i).

    This list MUST be sorted in ascending order by signer index.

  - binding_factor, a Scalar

  Outputs: An Element representing the group commitment

  def compute_group_commitment(commitment_list, binding_factor):

    group_commitment = G.Identity()

    for (_, hiding_nonce_commitment, binding_nonce_commitment) in commitment_list:

      group_commitment = group_commitment + (hiding_nonce_commitment + (binding_nonce_commitment * binding_factor))

    return group_commitment

¶
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5. Two-Round FROST Signing Protocol

We now present the two-round variant of the FROST threshold

signature protocol for producing Schnorr signatures. It involves

signer participants and a coordinator. Signing participants are

entities with signing key shares that participate in the threshold

signing protocol. The coordinator is a distinguished signer with the

following responsibilities:

Determining which signers will participate (at least

THRESHOLD_LIMIT in number);

Coordinating rounds (receiving and forwarding inputs among

participants); and

Aggregating signature shares output by each participant, and

publishing the resulting signature.

FROST assumes the selection of all participants, including the

dealer, signer, and Coordinator are all chosen external to the

protocol. Note that it is possible to deploy the protocol without a

distinguished Coordinator; see Section 7.3 for more information.

Because key generation is not specified, all signers are assumed to

have the (public) group state that we refer to as "group info"

below, and their corresponding signing key shares.

In particular, it is assumed that the coordinator and each signing

participant P_i knows the following group info:

Group public key, denoted PK = G.ScalarMultBase(s), corresponding

to the group secret key s. PK is an output from the group's key

generation protocol, such as trusted_dealer_keygenor a DKG.

  Inputs:

  - group_commitment, an Element representing the group commitment

  - group_public_key, public key corresponding to the signer secret key share.

  - msg, the message to be signed (sent by the Coordinator).

  Outputs: a challenge Scalar value

  def compute_challenge(group_commitment, group_public_key, msg):

    group_comm_enc = G.SerializeElement(group_commitment)

    group_public_key_enc = G.SerializeElement(group_public_key)

    challenge_input = group_comm_enc || group_public_key_enc || msg

    challenge = H2(challenge_input)

    return challenge

¶

¶

1. 

¶

2. 

¶

3. 

¶

¶

¶

¶

*

¶



Public keys for each signer, denoted PK_i =

G.ScalarMultBase(sk_i), which are similarly outputs from the

group's key generation protocol.

And that each participant with identifier i additionally knows the

following:

Participant is signing key share sk_i, which is the i-th secret

share of s.

The exact key generation mechanism is out of scope for this

specification. In general, key generation is a protocol that outputs

(1) a shared, group public key PK owned by each Signer, and (2)

individual shares of the signing key owned by each Signer. In

general, two possible key generation mechanisms are possible, one

that requires a single, trusted dealer, and the other which requires

performing a distributed key generation protocol. We highlight key

generation mechanism by a trusted dealer in Appendix B, for

reference.

This signing variant of FROST requires signers to perform two

network rounds: 1) generating and publishing commitments, and 2)

signature share generation and publication. The first round serves

for each participant to issue a commitment to a nonce. The second

round receives commitments for all signers as well as the message,

and issues a signature share with respect to that message. The

Coordinator performs the coordination of each of these rounds. At

the end of the second round, the Coordinator then performs an

aggregation step and outputs the final signature. This complete

interaction is shown in Figure 1.
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Figure 1: FROST signature overview

Details for round one are described in Section 5.1, and details for

round two are described in Section 5.2. The final Aggregation step

is described in Section 5.3.

FROST assumes reliable message delivery between Coordinator and

signing participants in order for the protocol to complete. Messages

exchanged during signing operations are all within the public

domain. An attacker masquerading as another participant will result

only in an invalid signature; see Section 7.

        (group info)            (group info,     (group info,

            |               signing key share)   signing key share)

            |                         |                |

            v                         v                v

        Coordinator               Signer-1   ...   Signer-n

    ------------------------------------------------------------

   message

------------>

            |

      == Round 1 (Commitment) ==

            |    signer commitment   |                 |

            |<-----------------------+                 |

            |          ...                             |

            |    signer commitment                     |

            |<-----------------------------------------+

      == Round 2 (Signature Share Generation) ==

            |

            |     signer input       |                 |

            +------------------------>                 |

            |     signature share    |                 |

            |<-----------------------+                 |

            |          ...                             |

            |     signer input                         |

            +------------------------------------------>

            |     signature share                      |

            <------------------------------------------+

            |

      == Aggregation ==

            |

  signature |

<-----------+
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5.1. Round One - Commitment

Round one involves each signer generating a pair of nonces and their

corresponding public commitments. A nonce is a pair of Scalar

values, and a commitment is a pair of Element values.

Each signer in round one generates a nonce nonce = (hiding_nonce,

binding_nonce) and commitment comm = (hiding_nonce_commitment,

binding_nonce_commitment).

The private output nonce from Participant P_i is stored locally and

kept private for use in the second round. This nonce MUST NOT be

reused in more than one invocation of FROST, and it MUST be

generated from a source of secure randomness. The public output comm

from Participant P_i is sent to the Coordinator; see Appendix C.1

for encoding recommendations.

5.2. Round Two - Signature Share Generation

In round two, the Coordinator is responsible for sending the message

to be signed, and for choosing which signers will participate (of

number at least THRESHOLD_LIMIT). Signers additionally require

locally held data; specifically, their private key and the nonces

corresponding to their commitment issued in round one.

The Coordinator begins by sending each signer the message to be

signed along with the set of signing commitments for other signers

in the participant list. Each signer MUST validate the inputs before

processing the Coordinator's request. In particular, the Signer MUST

validate commitment_list, deserializing each group Element in the

list using DeserializeElement from Section 3.1. If deserialization

fails, the Signer MUST abort the protocol. Applications which

require that signers not process arbitrary input messages are also

required to also perform relevant application-layer input validation

checks; see Section 7.4 for more details.

¶

¶

  Inputs: None

  Outputs: (nonce, comm), a tuple of nonce and nonce commitment pairs.

  def commit():

    hiding_nonce = G.RandomNonzeroScalar()

    binding_nonce = G.RandomNonzeroScalar()

    hiding_nonce_commitment = G.ScalarBaseMult(hiding_nonce)

    binding_nonce_commitment = G.ScalarBaseMult(binding_nonce)

    nonce = (hiding_nonce, binding_nonce)

    comm = (hiding_nonce_commitment, binding_nonce_commitment)

    return (nonce, comm)

¶
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Upon receipt and successful input validation, each Signer then runs

the following procedure to produce its own signature share.

The output of this procedure is a signature share. Each signer then

sends these shares back to the collector; see Appendix C.3 for

encoding recommendations. Each signer MUST delete the nonce and

corresponding commitment after this round completes.

Upon receipt from each Signer, the Coordinator MUST validate the

input signature using DeserializeElement. If validation fails, the

Coordinator MUST abort the protocol. If validation succeeds, the

Coordinator then verifies the set of signature shares using the

following procedure.

¶

  Inputs:

  - index, Index `i` of the signer. Note index will never equal `0`.

  - sk_i, Signer secret key share.

  - group_public_key, public key corresponding to the signer secret key share.

  - nonce_i, pair of Scalar values (hiding_nonce, binding_nonce) generated in round one.

  - msg, the message to be signed (sent by the Coordinator).

  - commitment_list = [(j, hiding_nonce_commitment_j, binding_nonce_commitment_j), ...], a

    list of commitments issued in Round 1 by each signer, where each element in the list indicates the signer index j and their

    two commitment Element values (hiding_nonce_commitment_j, binding_nonce_commitment_j).

    This list MUST be sorted in ascending order by signer index.

  - participant_list, a set containing identifiers for each signer, similarly of length

    NUM_SIGNERS (sent by the Coordinator).

  Outputs: a Scalar value representing the signature share

  def sign(index, sk_i, group_public_key, nonce_i, msg, commitment_list, participant_list):

    # Encode the commitment list

    encoded_commitments = encode_group_commitment_list(commitment_list)

    # Compute the binding factor

    binding_factor = compute_binding_factor(encoded_commitments, msg)

    # Compute the group commitment

    group_commitment = compute_group_commitment(commitment_list, binding_factor)

    # Compute Lagrange coefficient

    lambda_i = derive_lagrange_coefficient(index, participant_list)

    # Compute the per-message challenge

    challenge = compute_challenge(group_commitment, group_public_key, msg)

    # Compute the signature share

    (hiding_nonce, binding_nonce) = nonce_i

    sig_share = hiding_nonce + (binding_nonce * binding_factor) + (lambda_i * sk_i * challenge)

    return sig_share

¶

¶

¶



5.3. Signature Share Verification and Aggregation

After signers perform round two and send their signature shares to

the Coordinator, the Coordinator verifies each signature share for

correctness. In particular, for each signer, the Coordinator uses

commitment pairs generated during round one and the signature share

generated during round two, along with other group parameters, to

check that the signature share is valid using the following

procedure.¶



If any signature share fails to verify, i.e., if

verify_signature_share returns False for any signer share, the

Coordinator MUST abort the protocol. Otherwise, if all signer shares

are valid, the Coordinator performs the aggregate operation and

publishes the resulting signature.

  Inputs:

  - index, Index `i` of the signer. Note index will never equal `0`.

  - PK_i, the public key for the ith signer, where `PK_i = G.ScalarBaseMult(sk_i)`

  - comm_i, pair of Element values (hiding_nonce_commitment, binding_nonce_commitment) generated

    in round one from the ith signer.

  - sig_share_i, a Scalar value indicating the signature share as produced in round two from the ith signer.

  - commitment_list = [(j, hiding_nonce_commitment_j, binding_nonce_commitment_j), ...], a list of commitments

    issued in Round 1 by each signer, where each element in the list indicates the signer index j and their

    two commitment Element values (hiding_nonce_commitment_j, binding_nonce_commitment_j).

    This list MUST be sorted in ascending order by signer index.

  - participant_list, a set containing identifiers for each signer, similarly of length

    NUM_SIGNERS (sent by the Coordinator).

  - group_public_key, the public key for the group

  - msg, the message to be signed

  Outputs: True if the signature share is valid, and False otherwise.

  def verify_signature_share(index, PK_i, comm_i, sig_share_i, commitment_list,

                             participant_list, group_public_key, msg):

    # Encode the commitment list

    encoded_commitments = encode_group_commitment_list(commitment_list)

    # Compute the binding factor

    binding_factor = compute_binding_factor(encoded_commitments, msg)

    # Compute the group commitment

    group_commitment = compute_group_commitment(commitment_list, binding_factor)

    # Compute the commitment share

    (hiding_nonce_commitment, binding_nonce_commitment) = comm_i

    comm_share = hiding_nonce_commitment + (binding_nonce_commitment * binding_factor)

    # Compute the challenge

    challenge = compute_challenge(group_commitment, group_public_key, msg)

    # Compute Lagrange coefficient

    lambda_i = derive_lagrange_coefficient(index, participant_list)

    # Compute relation values

    l = G.ScalarBaseMult(sig_share_i)

    r = comm_share + (PK_i * challenge * lambda_i)

    return l == r

¶

¶



The output signature (R, z) from the aggregation step MUST be

encoded as follows:

Where Signature.R_encoded is G.SerializeElement(R) and

Signature.z_encoded is G.SerializeScalar(z).

6. Ciphersuites

A FROST ciphersuite must specify the underlying prime-order group

details and cryptographic hash function. Each ciphersuite is denoted

as (Group, Hash), e.g., (ristretto255, SHA-512). This section

contains some ciphersuites.

The RECOMMENDED ciphersuite is (ristretto255, SHA-512) Section 6.2.

The (Ed25519, SHA-512) ciphersuite is included for backwards

compatibility with [RFC8032].

The DeserializeElement and DeserializeScalar functions instantiated

for a particular prime-order group corresponding to a ciphersuite

MUST adhere to the description in Section 3.1. Validation steps for

these functions are described for each the ciphersuites below.

Future ciphersuites MUST describe how input validation is done for

DeserializeElement and DeserializeScalar.

6.1. FROST(Ed25519, SHA-512)

This ciphersuite uses edwards25519 for the Group and SHA-512 for the

Hash function H meant to produce signatures indistinguishable from

  Inputs:

  - group_commitment, the group commitment returned by compute_group_commitment

  - sig_shares, a set of signature shares z_i for each signer, of length NUM_SIGNERS,

  where THRESHOLD_LIMIT <= NUM_SIGNERS <= MAX_SIGNERS.

  Outputs: (R, z), a Schnorr signature consisting of an Element and Scalar value.

  def frost_aggregate(group_commitment, sig_shares):

    z = 0

    for z_i in sig_shares:

      z = z + z_i

    return (group_commitment, z)

¶

¶

  struct {

    opaque R_encoded[Ne];

    opaque z_encoded[Ns];

  } Signature;

¶

¶

¶

¶

¶



Ed25519 as specified in [RFC8032]. The value of the contextString

parameter is empty.

Group: edwards25519 [RFC8032]

Cofactor (h): 8

SerializeElement: Implemented as specified in [RFC8032], 

Section 5.1.2.

DeserializeElement: Implemented as specified in [RFC8032], 

Section 5.1.3. Additionally, this function validates that the

resulting element is not the group identity element.

SerializeScalar: Implemented by outputting the little-endian

32-byte encoding of the Scalar value.

DeserializeScalar: Implemented by attempting to deserialize a

Scalar from a 32-byte string. This function can fail if the

input does not represent a Scalar between the value 0 and 

G.Order() - 1.

Hash (H): SHA-512, and Nh = 64.

H1(m): Implemented by computing H("rho" || m), interpreting

the lower 32 bytes as a little-endian integer, and reducing

the resulting integer modulo L =

2^252+27742317777372353535851937790883648493.

H2(m): Implemented by computing H(m), interpreting the lower

32 bytes as a little-endian integer, and reducing the

resulting integer modulo L =

2^252+27742317777372353535851937790883648493.

H3(m): Implemented as an alias for H, i.e., H(m).

Normally H2 would also include a domain separator, but for backwards

compatibility with [RFC8032], it is omitted.

6.2. FROST(ristretto255, SHA-512)

This ciphersuite uses ristretto255 for the Group and SHA-512 for the

Hash function H. The value of the contextString parameter is "FROST-

RISTRETTO255-SHA512".

Group: ristretto255 [RISTRETTO]

Cofactor (h): 1
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SerializeElement: Implemented using the 'Encode' function from

[RISTRETTO].

DeserializeElement: Implemented using the 'Decode' function

from [RISTRETTO].

SerializeScalar: Implemented by outputting the little-endian

32-byte encoding of the Scalar value.

DeserializeScalar: Implemented by attempting to deserialize a

Scalar from a 32-byte string. This function can fail if the

input does not represent a Scalar between the value 0 and 

G.Order() - 1.

Hash (H): SHA-512, and Nh = 64.

H1(m): Implemented by computing H(contextString || "rho" || m)

and mapping the output to a Scalar as described in 

[RISTRETTO], Section 4.4.

H2(m): Implemented by computing H(contextString || "chal" ||

m) and mapping the output to a Scalar as described in 

[RISTRETTO], Section 4.4.

H3(m): Implemented by computing H(contextString || "digest" ||

m).

6.3. FROST(Ed448, SHAKE256)

This ciphersuite uses edwards448 for the Group and SHA256 for the

Hash function H meant to produce signatures indistinguishable from

Ed448 as specified in [RFC8032]. The value of the contextString

parameter is empty.

Group: edwards448 [RFC8032]

Cofactor (h): 4

SerializeElement: Implemented as specified in [RFC8032], 

Section 5.2.2.

DeserializeElement: Implemented as specified in [RFC8032], 

Section 5.2.3. Additionally, this function validates that the

resulting element is not the group identity element.

SerializeScalar: Implemented by outputting the little-endian

48-byte encoding of the Scalar value.

DeserializeScalar: Implemented by attempting to deserialize a

Scalar from a 48-byte string. This function can fail if the
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input does not represent a Scalar between the value 0 and 

G.Order() - 1.

Hash (H): SHAKE256, and Nh = 117.

H1(m): Implemented by computing H("rho" || m), interpreting

the lower 57 bytes as a little-endian integer, and reducing

the resulting integer modulo L = 2^446 -

13818066809895115352007386748515426880336692474882178609894547503885.

H2(m): Implemented by computing H(m), interpreting the lower

57 bytes as a little-endian integer, and reducing the

resulting integer modulo L = 2^446 -

13818066809895115352007386748515426880336692474882178609894547503885.

H3(m): Implemented as an alias for H, i.e., H(m).

Normally H2 would also include a domain separator, but for backwards

compatibility with [RFC8032], it is omitted.

6.4. FROST(P-256, SHA-256)

This ciphersuite uses P-256 for the Group and SHA-256 for the Hash

function H. The value of the contextString parameter is "FROST-P256-

SHA256".

Group: P-256 (secp256r1) [x9.62]

Cofactor (h): 1

SerializeElement: Implemented using the compressed Elliptic-

Curve-Point-to-Octet-String method according to [SECG].

DeserializeElement: Implemented by attempting to deserialize a

public key using the compressed Octet-String-to-Elliptic-

Curve-Point method according to [SECG], and then performs

partial public-key validation as defined in section 5.6.2.3.4

of [KEYAGREEMENT]. This includes checking that the coordinates

of the resulting point are in the correct range, that the

point is on the curve, and that the point is not the point at

infinity. Additionally, this function validates that the

resulting element is not the group identity element. If these

checks fail, deserialization returns an error.

SerializeScalar: Implemented using the Field-Element-to-Octet-

String conversion according to [SECG].
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DeserializeScalar: Implemented by attempting to deserialize a

Scalar from a 32-byte string using Octet-String-to-Field-

Element from [SECG]. This function can fail if the input does

not represent a Scalar between the value 0 and G.Order() - 1.

Hash (H): SHA-256, and Nh = 32.

H1(m): Implemented using hash_to_field from [HASH-TO-CURVE], 

Section 5.3 using L = 48, expand_message_xmd with SHA-256, DST

= contextString || "rho", and prime modulus equal to Order().

H2(m): Implemented using hash_to_field from [HASH-TO-CURVE], 

Section 5.3 using L = 48, expand_message_xmd with SHA-256, DST

= contextString || "chal", and prime modulus equal to Order().

H3(m): Implemented by computing H(contextString || "digest" ||

m).

7. Security Considerations

A security analysis of FROST exists in [FROST20] and [Schnorr21].

The protocol as specified in this document assumes the following

threat model.

Trusted dealer. The dealer that performs key generation is

trusted to follow the protocol, although participants still are

able to verify the consistency of their shares via a VSS

(verifiable secret sharing) step; see Appendix B.2.

Unforgeability assuming less than (t-1) corrupted signers. So

long as an adverary corrupts fewer than (t-1) participants, the

scheme remains secure against EUF-CMA attacks.

Coordinator. We assume the Coordinator at the time of signing

does not perform a denial of service attack. A denial of service

would include any action which either prevents the protocol from

completing or causing the resulting signature to be invalid. Such

actions for the latter include sending inconsistent values to

signing participants, such as messages or the set of individual

commitments. Note that the Coordinator is not trusted with any

private information and communication at the time of signing can

be performed over a public but reliable channel.

The protocol as specified in this document does not target the

following goals:

Post quantum security. FROST, like plain Schnorr signatures,

requires the hardness of the Discrete Logarithm Problem.
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Robustness. In the case of failure, FROST requires aborting the

protocol.

Downgrade prevention. The sender and receiver are assumed to

agree on what algorithms to use.

Metadata protection. If protection for metadata is desired, a

higher-level communication channel can be used to facilitate key

generation and signing.

The rest of this section documents issues particular to

implementations or deployments.

7.1. Nonce Reuse Attacks

Nonces generated by each participant in the first round of signing

must be sampled uniformly at random and cannot be derived from some

deterministic function. This is to avoid replay attacks initiated by

other signers, which allows for a complete key-recovery attack.

Coordinates MAY further hedge against nonce reuse attacks by

tracking signer nonce commitments used for a given group key, at the

cost of additional state.

7.2. Protocol Failures

We do not specify what implementations should do when the protocol

fails, other than requiring that the protocol abort. Examples of

viable failure include when a verification check returns invalid or

if the underlying transport failed to deliver the required messages.

7.3. Removing the Coordinator Role

In some settings, it may be desirable to omit the role of the

coordinator entirely. Doing so does not change the security

implications of FROST, but instead simply requires each participant

to communicate with all other participants. We loosely describe how

to perform FROST signing among signers without this coordinator

role. We assume that every participant receives as input from an

external source the message to be signed prior to performing the

protocol.

Every participant begins by performing frost_commit() as is done in

the setting where a coordinator is used. However, instead of sending

the commitment SigningCommitment to the coordinator, every

participant instead will publish this commitment to every other

participant. Then, in the second round, instead of receiving a 

SigningPackage from the coordinator, signers will already have

sufficient information to perform signing. They will directly

perform frost_sign. All participants will then publish a 

SignatureShare to one another. After having received all signature
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[HASH-TO-CURVE]

shares from all other signers, each signer will then perform 

frost_verify and then frost_aggregate directly.

The requirements for the underlying network channel remain the same

in the setting where all participants play the role of the

coordinator, in that all messages that are exchanged are public and

so the channel simply must be reliable. However, in the setting that

a player attempts to split the view of all other players by sending

disjoint values to a subset of players, the signing operation will

output an invalid signature. To avoid this denial of service,

implementations may wish to define a mechanism where messages are

authenticated, so that cheating players can be identified and

excluded.

7.4. Input Message Validation

Some applications may require that signers only process messages of

a certain structure. For example, in digital currency applications

wherein multiple signers may collectively sign a transaction, it is

reasonable to require that each signer check the input message to be

a syntactically valid transaction. As another example, use of

threshold signatures in TLS [TLS] to produce signatures of

transcript hashes might require that signers check that the input

message is a valid TLS transcript from which the corresponding

transcript hash can be derived.

In general, input message validation is an application-specific

consideration that varies based on the use case and threat model.

However, it is RECOMMENDED that applications take additional

precautions and validate inputs so that signers do not operate as

signing oracles for arbitrary messages.
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Appendix B. Trusted Dealer Key Generation

One possible key generation mechanism is to depend on a trusted

dealer, wherein the dealer generates a group secret s uniformly at

random and uses Shamir and Verifiable Secret Sharing as described in

Sections Appendix B.1 and Appendix B.2 to create secret shares of s

to be sent to all other participants. We highlight at a high level

how this operation can be performed.

It is assumed the dealer then sends one secret key share to each of

the NUM_SIGNERS participants, along with C. After receiving their

secret key share and C each participant MUST perform 

vss_verify(secret_key_share_i, C). It is assumed that all

participant have the same view of C. The trusted dealer MUST delete

the secret_key and secret_key_shares upon completion.

Use of this method for key generation requires a mutually

authenticated secure channel between the dealer and participants to

¶

¶

  Inputs:

  - s, a group secret that MUST be derived from at least `Ns` bytes of entropy

  - n, the number of shares to generate, an integer

  - t, the threshold of the secret sharing scheme, an integer

  Outputs:

  - signer_private_keys, `n` shares of the secret key `s`, each a Scalar value.

  - vss_commitment, a vector commitment to each of the coefficients in the polynomial defined by secret_key_shares and whose constant term is s.

  def trusted_dealer_keygen(s, n, t):

    signer_private_keys, coefficients = secret_share_shard(secret_key, n, t)

    vss_commitment = vss_commit(coefficients):

    PK = G.ScalarBaseMult(secret_key)

    return signer_private_keys, vss_commitment
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send secret key shares, wherein the channel provides confidentiality

and integrity. Mutually authenticated TLS is one possible deployment

option.

B.1. Shamir Secret Sharing

In Shamir secret sharing, a dealer distributes a secret s to n

participants in such a way that any cooperating subset of t

participants can recover the secret. There are two basic steps in

this scheme: (1) splitting a secret into multiple shares, and (2)

combining shares to reveal the resulting secret.

This secret sharing scheme works over any field F. In this

specification, F is the scalar field of the prime-order group G.

The procedure for splitting a secret into shares is as follows.
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Let points be the output of this function. The i-th element in 

points is the share for the i-th participant, which is the randomly

generated polynomial evaluated at coordinate i. We denote a secret

share as the tuple (i, points[i]), and the list of these shares as 

shares. i MUST never equal 0; recall that f(0) = s, where f is the

polynomial defined in a Shamir secret sharing operation.

The procedure for combining a shares list of length t to recover the

secret s is as follows.

  secret_share_shard(s, n, t):

  Inputs:

  - s, secret to be shared, an element of F

  - n, the number of shares to generate, an integer

  - t, the threshold of the secret sharing scheme, an integer

  Outputs:

  - secret_key_shares, A list of n secret shares, which is a tuple

  consisting of the participant identifier and the key share, each of

  which is an element of F

  - coefficients, a vector of the t coefficients which uniquely determine

  a polynomial f.

  Errors:

  - "invalid parameters", if t > n or if t is less than 2

  def secret_share_shard(s, n, t):

    if t > n:

      raise "invalid parameters"

    if t < 2:

      raise "invalid parameters"

    # Generate random coefficients for the polynomial, yielding

    # a polynomial of degree (t - 1)

    coefficients = [s]

    for i in range(t - 1):

      coefficients.append(G.RandomScalar())

    # Evaluate the polynomial for each point x=1,...,n

    secret_key_shares = []

    for x_i in range(1, n + 1):

      y_i = polynomial_evaluate(x_i, coefficients)

      secret_key_share_i = (x_i, y_i)

      secret_key_share.append(secret_key_share_i)

    return secret_key_shares, coefficients
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B.2. Verifiable Secret Sharing

Feldman's Verifiable Secret Sharing (VSS) builds upon Shamir secret

sharing, adding a verification step to demonstrate the consistency

of a participant's share with a public commitment to the polynomial 

f for which the secret s is the constant term. This check ensure

that all participants have a point (their share) on the same

polynomial, ensuring that they can later reconstruct the correct

secret.

The procedure for committing to a polynomial f of degree t-1 is as

follows.

The procedure for verification of a participant's share is as

follows. If vss_verify fails, the participant MUST abort the

protocol, and failure should be investigated out of band.

  secret_share_combine(shares):

  Inputs:

  - shares, a list of t secret shares, each a tuple (i, f(i))

  Outputs: The resulting secret s, that was previously split into shares

  Errors:

  - "invalid parameters", if less than t input shares are provided

  def secret_share_combine(shares):

    if len(shares) < t:

      raise "invalid parameters"

    s = polynomial_interpolation(shares)

    return s

¶

¶

¶

    vss_commit(coeffs):

    Inputs:

    - coeffs, a vector of the t coefficients which uniquely determine

    a polynomial f.

    Outputs: a commitment vss_commitment, which is a vector commitment to each of the

    coefficients in coeffs.

    def vss_commit(coeffs):

      vss_commitment = []

      for coeff in coeffs:

        A_i = G.ScalarBaseMult(coeff)

        vss_commitment.append(A_i)

      return vss_commitment

¶

¶



We now define how the coordinator and signing participants can

derive group info, which is an input into the FROST signing

protocol.

Appendix C. Wire Format

Applications are responsible for encoding protocol messages between

peers. This section contains RECOMMENDED encodings for different

protocol messages as described in Section 5.

    vss_verify(share_i, vss_commitment):

    Inputs:

    - share_i: A tuple of the form (i, sk_i), where i indicates the participant

    identifier, and sk_i the participant's secret key, where sk_i is a secret share of

    the constant term of f.

    - vss_commitment: A VSS commitment to a secret polynomial f.

    Outputs: 1 if sk_i is valid, and 0 otherwise

    vss_verify(share_i, commitment)

      (i, sk_i) = share_i

      S_i = ScalarBaseMult(sk_i)

      S_i' = G.Identity()

      for j in range(0, THRESHOLD_LIMIT-1):

        S_i' += vss_commitment_j * i^j

      if S_i == S_i':

        return 1

      return 0

¶

¶

    derive_group_info(MAX_SIGNERS, THRESHOLD_LIMIT, vss_commitment):

    Inputs:

    - MAX_SIGNERS, the number of shares to generate, an integer

    - THRESHOLD_LIMIT, the threshold of the secret sharing scheme, an integer

    - vss_commitment: A VSS commitment to a secret polynomial f.

    Outputs:

    - PK, the public key representing the group

    - signer_public_keys, a list of MAX_SIGNERS public keys PK_i for i=1,...,MAX_SIGNERS, where PK_i is the public key for participant i.

    derive_group_info(MAX_SIGNERS, THRESHOLD_LIMIT, vss_commitment)

      PK = vss_commitment[0]

      signer_public_keys = []

      for i in range(1, MAX_SIGNERS):

        PK_i = G.Identity()

        for j in range(0, THRESHOLD_LIMIT-1):

          PK_i += vss_commitment_j * i^j

        signer_public_keys.append(PK_i)

      return PK, signer_public_keys

¶

¶



id

D

E

signing_commitments

msg

C.1. Signing Commitment

A commitment from a signer is a pair of Element values. It can be

encoded in the following manner.

The SignerID.

The commitment hiding factor encoded as a serialized group

element.

The commitment binding factor encoded as a serialized group

element.

C.2. Signing Packages

The Coordinator sends "signing packages" to each Signer in Round

two. Each package contains the list of signing commitments generated

during round one along with the message to sign. This package can be

encoded in the following manner.

An list of SIGNING_COUNT SigningCommitment

values, where THRESHOLD_LIMIT <= SIGNING_COUNT <= NUM_SIGNERS,

ordered in ascending order by SigningCommitment.id. This list

MUST NOT contain more than one SigningCommitment value

corresponding to each signer. Signers MUST ignore SigningPackage

values with duplicate SignerIDs.

The message to be signed.

C.3. Signature Share

The output of each signer is a signature share which is sent to the

Coordinator. This can be constructed as follows.

¶

  SignerID uint64;

  struct {

    SignerID id;

    opaque D[Ne];

    opaque E[Ne];

  } SigningCommitment;

¶

¶

¶

¶

¶

struct {

  SigningCommitment signing_commitments<1..2^16-1>;

  opaque msg<0..2^16-1>;

} SigningPackage;

¶

¶

¶

¶



id

signature_share

The SignerID.

The signature share from this signer encoded as a

serialized scalar.

Appendix D. Test Vectors

This section contains test vectors for all ciphersuites listed in 

Section 6. All Element and Scalar values are represented in

serialized form and encoded in hexadecimal strings. Signatures are

represented as the concatenation of their constituent parts. The

input message to be signed is also encoded as a hexadecimal string.

Each test vector consists of the following information.

Configuration: This lists the fixed parameters for the particular

instantiation of FROST, including MAX_SIGNERS, THRESHOLD_LIMIT,

and NUM_SIGNERS.

Group input parameters: This lists the group secret key and

shared public key, generated by a trusted dealer as described in 

Appendix B, as well as the input message to be signed. All values

are encoded as hexadecimal strings.

Signer input parameters: This lists the signing key share for

each of the NUM_SIGNERS signers.

Round one parameters and outputs: This lists the NUM_SIGNERS

participants engaged in the protocol, identified by their integer

index, the hiding and binding commitment values produced in 

Section 5.1, as well as the resulting group binding factor input,

computed in part from the group commitment list encoded as

described in Section 4.3, and group binding factor as computed

in Section 5.2).

Round two parameters and outputs: This lists the NUM_SIGNERS

participants engaged in the protocol, identified by their integer

index, along with their corresponding output signature share as

produced in Section 5.2.

Final output: This lists the aggregate signature as produced in 

Section 5.3.

  struct {

    SignerID id;

    opaque signature_share[Ns];

  } SignatureShare;

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶



D.1. FROST(Ed25519, SHA-512)



// Configuration information

MAX_SIGNERS: 3

THRESHOLD_LIMIT: 2

NUM_SIGNERS: 2

// Group input parameters

group_secret_key: 7b1c33d3f5291d85de664833beb1ad469f7fb6025a0ec78b3a7

90c6e13a98304

group_public_key: 15d21ccd7ee42959562fc8aa63224c8851fb3ec85a3faf66040

d380fb9738673

message: 74657374

// Signer input parameters

S1 signer_share: 929dcc590407aae7d388761cddb0c0db6f5627aea8e217f4a033

f2ec83d93509

S2 signer_share: a91e66e012e4364ac9aaa405fcafd370402d9859f7b6685c07ee

d76bf409e80d

S3 signer_share: d3cb090a075eb154e82fdb4b3cb507f110040905468bb9c46da8

bdea643a9a02

// Round one parameters

participants: 1,2

group_binding_factor_input: 000178e175d15cb5cec1257e0d84d797ba8c3dd9b

4c7bc50f3fa527c200bcc6c4a954cdad16ae67ac5919159d655b681bd038574383bab

423614f8967396ee12ca62000288a4e6c3d8353dc3f4aca2e10d10a75fb98d9fbea98

981bfb25375996c5767c932bbf10c41feb17d41cc6433e69f16cceccc42a00aedf72f

eb5f44929fdf2e2fee26b0dd4af7e749aa1a8ee3c10ae9923f618980772e473f8819a

5d4940e0db27ac185f8a0e1d5f84f88bc887fd67b143732c304cc5fa9ad8e6f57f500

28a8ff

group_binding_factor: c4d7668d793ff4c6ec424fb493cdab3ef5b625eefffe775

71ff28a345e5f700a

// Signer round one outputs

S1 hiding_nonce: 570f27bfd808ade115a701eeee997a488662bca8c2a073143e66

2318f1ed8308

S1 binding_nonce: 6720f0436bd135fe8dddc3fadd6e0d13dbd58a1981e587d377d

48e0b8f1c3c01

S1 hiding_nonce_commitment: 78e175d15cb5cec1257e0d84d797ba8c3dd9b4c7b

c50f3fa527c200bcc6c4a95

S1 binding_nonce_commitment: 4cdad16ae67ac5919159d655b681bd038574383b

ab423614f8967396ee12ca62

S2 hiding_nonce: 2a67c5e85884d0275a7a740ba8f53617527148418797345071dd

cf1a1bd37206

S2 binding_nonce: a0609158eeb448abe5b0df27f5ece96196df5722c01a999e8a4

5d2d5dfc5620c

S2 hiding_nonce_commitment: 88a4e6c3d8353dc3f4aca2e10d10a75fb98d9fbea

98981bfb25375996c5767c9

S2 binding_nonce_commitment: 32bbf10c41feb17d41cc6433e69f16cceccc42a0

0aedf72feb5f44929fdf2e2f



// Round two parameters

participants: 1,2

// Signer round two outputs

S1 sig_share: b7e8f03a1a1149adacb96f952dbc39b6034facceafe4a70d6963592

fce75570c

S2 sig_share: cd388f9aff4376397c5ad231713fe6b167bed9cc88a1cc97b0b6bbe

0316a7909

sig: ebe7efbb42c4b1c55106b5536fb5e9ac7a6d0803ea4ae9c8c629ca51e05c230e

974d8a78fff1ac8e52774a24c00141536b0d869b388674a5191a151000e0d005

¶



D.2. FROST(Ed448, SHAKE256)



// Configuration information

MAX_SIGNERS: 3

THRESHOLD_LIMIT: 2

NUM_SIGNERS: 2

// Group input parameters

group_secret_key: cdf4a803a21d82fa90692e86541e08d878c9f688e5d71a2bd35

4a9a3af62b8c7c89753055949cab8fd044c17c94211f167672b053659420b00

group_public_key: 800e9b495543b04aaebdba2813de65d1aefe78e8b219d38966b

c0afa1d5d9d685c740c8ab720bff3c84cd9f4a701c1588e40d981f4abb19600

message: 74657374

// Signer input parameters

S1 signer_share: d208a2f1d9ead0cc4b4b9b2e84a22f8e2aa2ab4ee715febe7a08

175d4298dd6bbe2e1c0b29aaa972c78555ea3b3d7308b248994780219e0800

S2 signer_share: d71c9bdf11b81f9f062d08d7b3265744dc7a6014e953e15222bc

8416d5cd0210b4c5e410f90a892c91065fbdae37d51ffc29078acae9f90500

S3 signer_share: dc3094cd49856e71c10e757fe3aa7efa8d5315daea91c4e6c96f

f2cf670328b4a95cad16c96b68e65a87689021323737460b75cc14b2550300

// Round one parameters

participants: 1,2

group_binding_factor_input: 00016d8ef55145bab18c129311f1d07bef2110d0b

6841aae919eb6abf5e523d26f819d3695d78f8aa246c6b6d6fd6c2b8a63dd1cf8e8c8

9a870400a0c29f750605b10c52e347fc538af0d4ebddd23a1e0300482a7d98a39d408

356b9041d5fbaa274c2dc3f248601f21cee912e2f5700c1753a80000242c2fdc11e5f

726d4c897ed118f668a27bfb0d5946b5f513e975638b7c4b0a46cf5184d4a9c1f6310

fd3c10f84d9de704a33aab2af976d60804fa4ecba88458bcf7677a3952f540e20556d

5e90d5aa7e8f226d303ef7b88fb33a63f6cac6a9d638089b1739a5d2564d15fb3e43e

1b0b28a80b54ff7255705a71ee2925e4a3e30e41aed489a579d5595e0df13e32e1e4d

d202a7c7f68b31d6418d9845eb4d757adda6ab189e1bb340db818e5b3bc725d992faf

63e9b0500db10517fe09d3f566fba3a80e46a403e0c7d41548fbf75cf2662b00225b5

02961f98d8c9ff937de0b24c231845

group_binding_factor: 2716e157c3da80b65149b1c2cb546723516272ccf75e111

334533e2840a9bf85f3c71478ade11be26d26d8e4b9a1667af88f7df61670f60a00

// Signer round one outputs

S1 hiding_nonce: 04eccfe12348a5a2e4b30e95efcf4e494ce64b89f6504de46b3d

67a5341baaa931e455c57c6c5c81f4895e333da9d71f7d119fcfbd0d7d2000

S1 binding_nonce: 80bcd1b09e82d7d2ff6dd433b0f81e012cadd4661011c44d929

1269cf24820f5c5086d4363dc67450f24ebe560eb4c2059883545d54aa43a00

S1 hiding_nonce_commitment: 6d8ef55145bab18c129311f1d07bef2110d0b6841

aae919eb6abf5e523d26f819d3695d78f8aa246c6b6d6fd6c2b8a63dd1cf8e8c89a87

0400

S1 binding_nonce_commitment: a0c29f750605b10c52e347fc538af0d4ebddd23a

1e0300482a7d98a39d408356b9041d5fbaa274c2dc3f248601f21cee912e2f5700c17

53a80

S2 hiding_nonce: 3b3bbe82babf2a67ded81b308ba45f73b88f6cf3f6aaa4442256

b7a0354d1567478cfde0a2bba98ba4c3e65645e1b77386eb4063f925e00700



S2 binding_nonce: bcbd112a88bebf463e3509076c5ef280304cb4f1b3a7499cca1

d5e282cc2010a92ff56a3bdcf5ba352e0f4241ba2e54c1431a895c19fff0600

S2 hiding_nonce_commitment: 42c2fdc11e5f726d4c897ed118f668a27bfb0d594

6b5f513e975638b7c4b0a46cf5184d4a9c1f6310fd3c10f84d9de704a33aab2af976d

6080

S2 binding_nonce_commitment: 4fa4ecba88458bcf7677a3952f540e20556d5e90

d5aa7e8f226d303ef7b88fb33a63f6cac6a9d638089b1739a5d2564d15fb3e43e1b0b

28a80

// Round two parameters

participants: 1,2

// Signer round two outputs

S1 sig_share: c5ab0a80c561d1a616ac70f4f13d993156f65f2b44a4a90f37f0640

7a1b62e3940bf14199301d128358b812bef32cb4bffaf03030238772000

S2 sig_share: 15211cb96d6aa73de803d46caf2043859fd796a6282f9adb00033f1

4f4827f23f8cc792c2e322a1f30631ec7690ac587e5eb9c2afd323e3300

sig: 4d9883057726b029d042418600abe88ad3fec06d6a48dca289482e9d51c10353

37e4d1aae5fd1c73a55701133238602f423886fc134a3c6580e787ce8da00900c1a92

07fd32e9c6f956597202323f8f4264ecfd99e9539ae5c388c8e45c133fb4765ee9ff2

583d90d3e49ba02dff6ab51300

¶



D.3. FROST(ristretto255, SHA-512)



// Configuration information

MAX_SIGNERS: 3

THRESHOLD_LIMIT: 2

NUM_SIGNERS: 2

// Group input parameters

group_secret_key: b020be204b5e758960458ca9c4675b56b12a8faff2be9c94891

d5e1cd75c880e

group_public_key: e22ac4850672021eac8e0a36dfc4811466fb01108c3427d2347

827467ba02a34

message: 74657374

// Signer input parameters

S1 signer_share: 92ae65bb90030a89507fa00fff08dfed841cf996de5a0c574f1f

4693ddcb6705

S2 signer_share: 611003b3f00bb1e01656ac1818a4419a580e637ecaf67b191521

2e0ae43a470c

S3 signer_share: 439eaa4d36b145e00690c07e5245c5312c00cd65b692ebdbda22

1681eaa92603

// Round one parameters

participants: 1,2

group_binding_factor_input: 0001824e9eddddf02b2a9caf5859825e999d791ca

094f65b814a8bca6013d9cc312774c7e1271d2939a84a9a867e3a06579b4d25659b42

7439ccf0d745b43f75b76600028013834ff4d48e7d6b76c2e732bc611f54720ef8933

c4ca4de7eaaa77ff5cd125e056ecc4f7c4657d3a742354430d768f945db229c335d25

8e9622ad99f3e7582d07b35bd9849ce4af6ad403090d69a7d0eb88bba669a9f985175

d70cd15ad5f1ef5b734c98a32b4aab7b43a57e93fc09281f2e7a207076b31e416ba63

f53d9d

group_binding_factor: f00ae6007f2d74a1507c962cf30006be77596106db28f2d

5443fd66d755e780c

// Signer round one outputs

S1 hiding_nonce: 349b3bb8464a1d87f7d6b56f4559a3f9a6335261a3266089a9b1

2d9d6f6ce209

S1 binding_nonce: ce7406016a854be4291f03e7d24fe30e77994c3465de031515a

4c116f22ca901

S1 hiding_nonce_commitment: 824e9eddddf02b2a9caf5859825e999d791ca094f

65b814a8bca6013d9cc3127

S1 binding_nonce_commitment: 74c7e1271d2939a84a9a867e3a06579b4d25659b

427439ccf0d745b43f75b766

S2 hiding_nonce: 4d66d319f20a728ec3d491cbf260cc6be687bd87cc2b5fdb4d5f

528f65fd650d

S2 binding_nonce: 278b9b1e04632e6af3f1a3c144d07922ffcf5efd3a341b47abc

19c43f48ce306

S2 hiding_nonce_commitment: 8013834ff4d48e7d6b76c2e732bc611f54720ef89

33c4ca4de7eaaa77ff5cd12

S2 binding_nonce_commitment: 5e056ecc4f7c4657d3a742354430d768f945db22

9c335d258e9622ad99f3e758



// Round two parameters

participants: 1,2

// Signer round two outputs

S1 sig_share: 6a539c3a4ee281879a6fb350d20d53e17473f28cd3409ffc238dafe

8d9330605

S2 sig_share: 1d4e59636ee089bfaf548834b07658216649a37f87f0818d5190aa9

b90957505

sig: 7e92309bf40993141acd5f2c7680a302cc5aa5dd291a833906da8e35bc39b03e

87a1f59dbcc20b474ac43b858284ab02dbbc950c5b31218a751d5a846ac97b0a

¶



D.4. FROST(P-256, SHA-256)



// Configuration information

MAX_SIGNERS: 3

THRESHOLD_LIMIT: 2

NUM_SIGNERS: 2

// Group input parameters

group_secret_key: 6f090d1393ff53bbcbba036c00b8830ab4546c251dece199eb0

3a6a51a5a5928

group_public_key: 033a2a83f9c9fdfdab7d620f48238a5e6157a8eb1d6c382c7b0

ba95b7c9f69679c

message: 74657374

// Signer input parameters

S1 signer_share: 738552e18ea4f2090597aca6c23c1666845c21c676813f9e2678

6f1e410dcecd

S2 signer_share: 780198af894a90563f7555e183bfa9c25463d767cf159da261ed

379767c14472

S3 signer_share: 7c7dde7d83f02ea37952ff1c45433d1e246b8d0927a9fba69d62

00108e74ba17

// Round one parameters

participants: 1,2

group_binding_factor_input: 000102f34caab210d59324e12ba41f0802d9545f7

f702906930766b86c462bb8ff7f3402b724640ea9e262469f401c9006991ba3247c2c

91b97cdb1f0eeab1a777e24e1e0002037f8a998dfc2e60a7ad63bc987cb27b8abf78a

68bd924ec6adb9f251850cbe711024a4e90422a19dd8463214e997042206c39d3df56

168b458592462090c89dbcf84efca0c54f70a585d6aae28679482b4aed03ae5d38297

b9092ab3376d46fdf55

group_binding_factor: 9df349a9f34bf01627f6b4f8b376e8c8261d55508d1cac2

919cdaf7f9cb20e70

// Signer round one outputs

S1 hiding_nonce: 3da92a503cf7e3f72f62dabedbb3ffcc9f555f1c1e78527940fe

3fed6d45e56f

S1 binding_nonce: ec97c41fc77ae7e795067976b2edd8b679f792abb062e4d0c33

f0f37d2e363eb

S1 hiding_nonce_commitment: 02f34caab210d59324e12ba41f0802d9545f7f702

906930766b86c462bb8ff7f34

S1 binding_nonce_commitment: 02b724640ea9e262469f401c9006991ba3247c2c

91b97cdb1f0eeab1a777e24e1e

S2 hiding_nonce: 06cb4425031e695d1f8ac61320717d63918d3edc7a02fcd3f23a

de47532b1fd9

S2 binding_nonce: 2d965a4ea73115b8065c98c1d95c7085db247168012a834d828

5a7c02f11e3e0

S2 hiding_nonce_commitment: 037f8a998dfc2e60a7ad63bc987cb27b8abf78a68

bd924ec6adb9f251850cbe711

S2 binding_nonce_commitment: 024a4e90422a19dd8463214e997042206c39d3df

56168b458592462090c89dbcf8



// Round two parameters

participants: 1,2

// Signer round two outputs

S1 sig_share: 0a658fe198caddf5ddc407ad58c4615458f02a58d0c1f7a38e25692

98dc41df0

S2 sig_share: e84d948cfec74b5e7540ad09fd69dcd1570f708f2d8573dbbf08cb0

2bc872c75

sig: 035cfbd148da711bbc823455b682ed01a1be3c5415cf692f4a91b7fe22d1dec3

45f2b3246e979229545304b4b7562e3e25afff9ae7fe476b7f4d2e342c4a4b4a65

¶
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