
Network Working Group S. Scott
Internet-Draft Cornell Tech
Intended status: Informational N. Sullivan
Expires: January 3, 2019 Cloudflare
 C. Wood
 Apple Inc.
 July 02, 2018

Hashing to Elliptic Curves
draft-irtf-cfrg-hash-to-curve-01

Abstract

 This document specifies a number of algorithms that may be used to
 hash arbitrary strings to Elliptic Curves.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Scott, et al. Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft hash-to-curve July 2018

Table of Contents

1. Introduction . 2
1.1. Requirements . 3

2. Background . 3
2.1. Terminology . 4
2.1.1. Encoding . 5
2.1.2. Serialization . 5
2.1.3. Random Oracle . 5

3. Algorithm Recommendations 6
4. Utility Functions . 7
5. Deterministic Encodings 7
5.1. Interface . 7
5.2. Encoding Variants . 7
5.2.1. Icart Method . 7
5.2.2. Shallue-Woestijne-Ulas Method 9
5.2.3. Simplified SWU Method 10
5.2.4. Elligator2 Method 12

5.3. Cost Comparison . 13
6. Random Oracles . 14
6.1. Interface . 14
6.2. General Construction (FFSTV13) 14

7. Curve Transformations . 14
8. IANA Considerations . 15
9. Security Considerations 15
10. Acknowledgements . 15
11. Contributors . 15
12. Normative References . 15
Appendix A. Related Work . 17
A.1. Probabilistic Encoding 17
A.2. Naive Encoding . 17
A.3. Deterministic Encoding 18
A.4. Supersingular Curves 18
A.5. Twisted Variants . 18

Appendix B. Try-and-Increment Method 19
Appendix C. Sample Code . 19
C.1. Icart Method . 19
C.2. Shallue-Woestijne-Ulas Method 21
C.3. Simplified SWU Method 23
C.4. Elligator2 Method . 23

 Authors' Addresses . 24

1. Introduction

 Many cryptographic protocols require a procedure which maps arbitrary
 input, e.g., passwords, to points on an elliptic curve (EC).
 Prominent examples include Simple Password Exponential Key Exchange

Scott, et al. Expires January 3, 2019 [Page 2]

Internet-Draft hash-to-curve July 2018

 [Jablon96], Password Authenticated Key Exchange [BMP00], Identity-
 Based Encryption [BF01] and Boneh-Lynn-Shacham signatures [BLS01].

 Unfortunately for implementors, the precise mapping which is suitable
 for a given scheme is not necessarily included in the description of
 the protocol. Compounding this problem is the need to pick a
 suitable curve for the specific protocol.

 This document aims to address this lapse by providing a thorough set
 of recommendations across a range of implementations, and curve
 types. We provide implementation and performance details for each
 mechanism, along with references to the security rationale behind
 each recommendation and guidance for applications not yet covered.

 Each algorithm conforms to a common interface, i.e., it maps an
 element from a bitstring {0, 1}^* to a curve E. For each variant, we
 describe the requirements for E to make it work. Sample code for
 each variant is presented in the appendix. Unless otherwise stated,
 all elliptic curve points are assumed to be represented as affine
 coordinates, i.e., (x, y) points on a curve.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

 Here we give a brief definition of elliptic curves, with an emphasis
 on defining important parameters and their relation to encoding.

 Let F be the finite field GF(p^k). We say that F is a field of
 characteristic p. For most applications, F is a prime field, in
 which case k=1 and we will simply write GF(p).

 Elliptic curves come in many variants, including, but not limited to:
 Weierstrass, Montgomery, and Edwards. Each of these variants
 correspond to a different category of curve equation. For example,
 the short Weierstrauss equation is of the form "y^2 = x^3 + Ax + B".
 Certain encoding functions may have requirements on the curve form
 and the parameters, such as A and B in the previous example.

 An elliptic curve E is specified by the equation, and a finite field
 F. The curve E forms a group, whose elements correspond to those who
 satisfy the curve equation, with values taken from the field F. As a
 group, E has order n, which is the number of points on the curve.
 When n is not prime, we write n = qh + r, where q is prime, and h is

https://datatracker.ietf.org/doc/html/rfc2119

Scott, et al. Expires January 3, 2019 [Page 3]

Internet-Draft hash-to-curve July 2018

 said to be the cofactor. It is frequently a requirement that all
 cryptographic operations take place in a prime order group. In this
 case, we may wish an encoding to return elements of order q. For a
 mapping outputting elements on E, we can multiply by the cofactor h
 to obtain an element in the subgroup.

 In practice, the input of a given cryptographic algorithm will be a
 bitstring of arbitrary length, denoted {0, 1}^*. Hence, a concern for
 virtually all protocols involving elliptic curves is how to convert
 this input into a curve point.

 Note that the number of points on an elliptic curve E is within
 2*sqrt(p) of p by Hasse's Theorem. As a rule of thumb, for every x
 in GF(p), there is approximately a 1/2 chance that there exist a
 corresponding y value such that (x, y) is on the curve E. Since the
 point (x, -y) is also on the curve, then this sums to approximately p
 points.

 Ultimately, an encoding function takes a bitstring {0, 1}^* to an
 element of E, of order n (or q), and represented by variables in
 GF(p).

 Summary of quantities:

 +--------+-------------------+--------------------------------------+
 | Symbol | Meaning | Relevance |
 +--------+-------------------+--------------------------------------+
p	Order of finite	Curve points need to be represented
	field, F = GF(p)	in terms of p. For prime powers, we
		write F = GF(p^k).
n	Number of curve	For map to E, needs to produce n
	points, #E(F) = n	elements.
q	Order of prime	If n is not prime, may need mapping
	subgroup of E, n	to q.
	= qh + r	
h	Cofactor of prime	For mapping to subgroup, need to
	subgroup	multiply by cofactor.
 +--------+-------------------+--------------------------------------+

2.1. Terminology

 In the following, we categorize the terminology for mapping between
 bitstrings and elliptic curves.

Scott, et al. Expires January 3, 2019 [Page 4]

Internet-Draft hash-to-curve July 2018

2.1.1. Encoding

 The general term "encoding" is used to refer to the process of
 producing an elliptic curve point given as input a bitstring. In
 some protocols, the original message may also be recovered through a
 decoding procedure. An encoding may be deterministic or
 probabilistic, although the latter is problematic in potentially
 leaking plaintext information as a side-channel.

 In most cases, the curve E is over a finite field GF(p^k), with p >
 2. Suppose as the input to the encoding function we wish to use a
 fixed-length bitstring of length L. Comparing sizes of the sets, 2^L
 and n, an encoding function cannot be both deterministic and
 bijective.

 We can instead use an injective encoding from {0, 1}^L to E, with "L
 < log2(n)- 1", which is a bijection over a subset of points in E.
 This ensures that encoded plaintext messages can be recovered.

2.1.2. Serialization

 A related issue is the conversion of an elliptic curve point to a
 bitstring. We refer to this process as "serialization", since it is
 typically used for compactly storing and transporting points, or for
 producing canonicalized outputs. Since a deserialization algorithm
 can often be used as a type of encoding algorithm, we also briefly
 document properties of these functions.

 A naive serialization algorithm maps a point (x, y) on E to a
 bitstring of length 2*log(p), given that x, y are both elements in
 GF(p). However, since there are only n points in E (with n
 approximately equal to p), it is possible to serialize to a bitstring
 of length log(n). For example, one common method is to store the
 x-coordinate and a single bit to determine whether the point is (x,
 y) or (x, -y), thus requiring log(p)+1 bits. Thus exchanging
 computation (recovering the y coordinate) for storage.

2.1.3. Random Oracle

 It is often the case that the output of the encoding function
Section 2.1.1 should be distributed uniformly at random on the

 elliptic curve. That is, there is no discernible relation existing
 between outputs that can be computed based on the inputs. In
 practice, this requirement stems from needing a random oracle which
 outputs elliptic curve points: one way to construct this is by first
 taking a regular random oracle, operating entirely on bitstrings, and
 applying a suitable encoding function to the output.

Scott, et al. Expires January 3, 2019 [Page 5]

Internet-Draft hash-to-curve July 2018

 This motivates the term "hashing to the curve", since cryptographic
 hash functions are typically modeled as random oracles. However,
 this still leaves open the question of what constitutes a suitable
 encoding method, which is a primary concern of this document.

 A random oracle onto an elliptic curve can also be instantiated using
 direct constructions, however these tend to rely on many group
 operations and are less efficient than hash and encode methods.

3. Algorithm Recommendations

 The following table lists algorithms recommended by use-case:

 +----------------+-----------------+--------------------------------+
 | Application | Requirement | Additional Details |
 +----------------+-----------------+--------------------------------+
SPEKE	Naive	H(x)*G
[Jablon96]		
PAKE [BMP00]	Random Oracle	-
BLS [BLS01]	Random Oracle	-
IBE [BF01]	Random Oracle	Supersingular, pairing-
		friendly curve
PRF	Injective	F(k, m) = k*H(m)
	encoding	
 +----------------+-----------------+--------------------------------+

 To find the suitable algorithm, lookup the requirement from above,
 with the chosen curve in the below:

 +------------+--------------------------+---------------+
 | Curve | Inj. Encoding | Random Oracle |
 +------------+--------------------------+---------------+
 | P-256 | Simple SWU Section 5.2.3 | FFSTV(SWU) |
 | | | |
 | P-384 | Icart Section 5.2.1 | FFSTV(Icart) |
 | | | |
 | Curve25519 | Elligator2 Section 5.2.4 | ... |
 | | | |
 | Curve448 | Elligator2 Section 5.2.4 | ... |
 +------------+--------------------------+---------------+

Scott, et al. Expires January 3, 2019 [Page 6]

Internet-Draft hash-to-curve July 2018

4. Utility Functions

 Algorithms in this document make use of utility functions described
 below.

 o HashToBase(x): H(x)[0:log2(p) + 1], i.e., hash-truncate-reduce,
 where H is a cryptographic hash function, such as SHA256, and p is
 the prime order of base field Fp.

 o CMOV(a, b, c): If c = 1, return a, else return b.

 Note: We assume that HashToBase maps its input to the base field
 uniformly. In practice, there may be inherent biases in p, e.g., p =
 2^k - 1 will have non-negligible bias in higher bits.

5. Deterministic Encodings

5.1. Interface

 The generic interface for deterministic encoding functions to
 elliptic curves is as follows:

 map2curve(alpha)

 where alpha is a message to encode on a curve.

5.2. Encoding Variants

5.2.1. Icart Method

 The following map2curve_icart(alpha) implements the Icart method from
 [Icart09]. This algorithm works for any curve over F_{p^n}, where
 p^n = 2 mod 3 (or p = 2 mod 3 and for odd n), including:

 o P384

 o Curve1174

 o Curve448

 Unsupported curves include: P224, P256, P521, and Curve25519 since,
 for each, p = 1 mod 3.

 Mathematically, given input alpha, and A and B from E, the Icart
 method works as follows:

Scott, et al. Expires January 3, 2019 [Page 7]

Internet-Draft hash-to-curve July 2018

 u = HashToBase(alpha)
 x = (v^2 - b - (u^6 / 27))^(1/3) + (u^2 / 3)
 y = ux + v

 where v = ((3A - u^4) / 6u).

 The following procedure implements this algorithm in a straight-line
 fashion. It requires knowledge of A and B, the constants from the
 curve Weierstrass form. It outputs a point with affine coordinates.

 map2curve_icart(alpha)

 Input:

 alpha - value to be hashed, an octet string

 Output:

 (x, y) - a point in E

 Steps:

 1. u = HashToBase(alpha) // {0,1}^* -> Fp
 2. u2 = u^2 (mod p) // u^2
 3. t2 = u2^2 (mod p) // u^4
 4. v1 = 3 * A (mod p) // 3A
 5. v1 = v1 - t2 (mod p) // 3A - u^4
 6. t1 = 6 * u (mod p) // 6u
 7. t3 = t1 ^ (-1) (mod p) // modular inverse
 8. v = v1 * t3 (mod p) // (3A - u^4)/(6u)
 9. x = v^2 (mod p) // v^2
 10. x = x - B (mod p) // v^2 - b
 11. t1 = 27 ^ (-1) (mod p) // 1/27
 12. t1 = t1 * u2 (mod p) // u^4 / 27
 13. t1 = t1 * t2 (mod p) // u^6 / 27
 14. x = x - t1 (mod p) // v^2 - b - u^6/27
 15. t1 = (2 * p) - 1 (mod p) // 2p - 1
 16. t1 = t1 / 3 (mod p) // (2p - 1)/3
 17. x = x^t1 (mod p) // (v^2 - b - u^6/27) ^ (1/3)
 18. t2 = u2 / 3 (mod p) // u^2 / 3
 19. x = x + t2 (mod p) // (v^2 - b - u^6/27) ^ (1/3) + (u^2 / 3)
 20. y = u * x (mod p) // ux
 21. y = y + v (mod p) // ux + v
 22. Output (x, y)

Scott, et al. Expires January 3, 2019 [Page 8]

Internet-Draft hash-to-curve July 2018

5.2.2. Shallue-Woestijne-Ulas Method

 The Shallue-Woestijne-Ulas (SWU) method, originated in part by
 Shallue and Woestijne [SW06] and later simplified and extended by
 Ulas [SWU07], deterministically encodes an artbirary string to a
 point on a curve. This algorithm works for any curve over F_{p^n}.
 Given curve equation g(x) = x^3 + Ax + B, two separate HashToBase
 implementations, H0 and H1, this algorithm works as follows:

 1. t = H0(alpha)
 2. u = H1(alpha)
 3. X1 = u
 4. X2 = (-B / A)(1 + 1 / (t^4 * g(u)^2 + t^2 * g(u)))
 5. X3 = t^3 * g(u)^2 * g(X2)
 6. If g(X1) is square, output (X1, sqrt(g(X1)))
 7. If g(X2) is square, output (X2, sqrt(g(X2)))
 8. Output (X3(t, u), sqrt(g(X3)))

 The algorithm relies on the following equality:

 t^3 * g(u)^2 * g(X2(t, u)) = g(X1(t, u)) * g(X2(t, u)) * g(X3(t, u))

 The algorithm computes three candidate points, constructed such that
 at least one of them lies on the curve.

 The following procedure implements this algorithm. It outputs a
 point with affine coordinates. It requires knowledge of A and B, the
 constants from the curve Weierstrass form.

 map2curve_squ(alpha)

 Input:

 alpha - value to be hashed, an octet string
 H0 - HashToBase implementation
 H1 - HashToBase implementation

 Output:

 (x, y) - a point in E

 Steps:

 1. t = H0(alpha) // {0,1}^* -> Fp
 2. u = H1(alpha) // {0,1}^* -> Fp
 3. t2 = t^2
 4. t4 = t2^2
 5. gu = u^3

Scott, et al. Expires January 3, 2019 [Page 9]

Internet-Draft hash-to-curve July 2018

 6. gu = gu + (A * u)
 7. gu = gu + B // gu = g(u)
 8. x1 = u // x1 = X1(t, u) = u
 9. x2 = B * -1
 10. x2 = x2 / A
 11. gx1 = x1^3
 12. gx1 = gx1 + (A * x1)
 13. gx1 = gx1 + B // gx1 = g(X1(t, u))
 14. d1 = gu^2
 15. d1 = d1 * t4
 16. d2 = t2 * gu
 17. d3 = d1 + d2
 18. d3 = d3^(-1)
 19. n1 = 1 + d3
 20. x2 = x2 * n1 // x2 = X2(t, u)
 21. gx2 = x2^3
 22. gx2 = gx2 + (A * x2)
 23. gx2 = gx2 + B // gx2 = g(X2(t, u))
 24. x3 = t2 * gu
 25. x3 = x3 * x2 // x3 = X3(t, u)
 26. gx3 = x3^3
 27. gx3 = gx3 + (A * x3)
 28. gx3 = gx3 + B // gx3 = g(X3(t, u))
 29. l1 = gx1^((p - 1) / 2)
 30. l2 = gx2^((p - 1) / 2)
 31. s1 = gx1^(1/2)
 32. s2 = gx2^(1/2)
 33. s3 = gx3^(1/2)
 34. if l1 == 1:
 35. Output (x1, s1)
 36. if l2 == 1:
 37. Output (x2, s2)
 38. Output (x3, s3)

5.2.3. Simplified SWU Method

 The following map2curve_simple_swu(alpha) implements the simplfied
 Shallue-Woestijne-Ulas algorithm from [SimpleSWU]. This algorithm
 works for any curve over F_{p^n}, where p = 3 mod 4, including:

 o P256

 o ...

 Given curve equation g(x) = x^3 + Ax + B, this algorithm works as
 follows:

Scott, et al. Expires January 3, 2019 [Page 10]

Internet-Draft hash-to-curve July 2018

 1. t = HashToBase(alpha)
 2. alpha = (-b / a) * (1 + (1 / (t^4 + t^2)))
 3. beta = -t^2 * alpha
 4. If g(alpha) is square, output (alpha, sqrt(g(alpha)))
 5. Output (beta, sqrt(g(beta)))

 The following procedure implements this algorithm. It outputs a
 point with affine coordinates. It requires knowledge of A and B, the
 constants from the curve Weierstrass form.

 map2curve_simple_swu(alpha)

 Input:

 alpha - value to be encoded, an octet string

 Output:

 (x, y) - a point in E

 Steps:

 1. t = HashToBase(alpha)
 2. alpha = t^2 (mod p)
 3. alpha = alpha * -1 (mod p)
 4. right = alpha^2 + alpha (mod p)
 5. right = right^(-1) (mod p)
 6. right = right + 1 (mod p)
 7. left = B * -1 (mod p)
 8. left = left / A (mod p)
 9. x2 = left * right (mod p)
 10. x3 = alpha * x2 (mod p)
 11. h2 = x2 ^ 3 (mod p)
 12. i2 = x2 * A (mod p)
 13. i2 = i2 + B (mod p)
 14. h2 = h2 + i2 (mod p)
 15. h3 = x3 ^ 3 (mod p)
 16. i3 = x3 * A (mod p)
 17. i3 = i3 + B (mod p)
 18. h3 = h3 + i3 (mod p)
 19. y1 = h2 ^ ((p + 1) // 4) (mod p)
 20. y2 = h3 ^ ((p + 1) // 4) (mod p)
 21. e = (y1 ^ 2 == h2)
 22. x = CMOV(x2, x3, e) // If e = 1, choose x2, else choose x3
 23. y = CMOV(y1, y2, e) // If e = 1, choose y1, else choose y2
 24. Output (x, y)

Scott, et al. Expires January 3, 2019 [Page 11]

Internet-Draft hash-to-curve July 2018

5.2.4. Elligator2 Method

 The following map2curve_elligator2(alpha) implements the Elligator2
 method from [Elligator2]. This algorithm works for any curve with a
 point of order 2 and j-invariant != 1728. Given curve equation f(x)
 = y^2 = x(x^2 + Ax + B), i.e., a Montgomery form with the point of
 order 2 at (0,0), this algorithm works as shown below. (Note that
 any curve with a point of order 2 is isomorphic to this
 representation.)

 1. r = HashToBase(alpha)
 2. If f(-A/(1+ur^2)) is square, then output f(-A/(1+ur^2))^(1/2)
 3. Else, output f(-Aur^2/(1+ur^2))^(1/2)

 Another way to express this algorithm is as follows:

 1. r = HashToBase(alpha)
 2. d = -A / (1 + ur^2)
 3. e = f(d)^((p-1)/2)
 4. u = ed - (1 - e)A/u

 Here, e is the Legendre symbol of y = (d^3 + Ad^2 + d), which will be
 1 if y is a quadratic residue (square) mod p, and -1 otherwise.
 (Note that raising y to ((p -1) / 2) is a common way to compute the
 Legendre symbol.)

 The following procedure implements this algorithm.

Scott, et al. Expires January 3, 2019 [Page 12]

Internet-Draft hash-to-curve July 2018

 map2curve_elligator2(alpha)

 Input:

 alpha - value to be encoded, an octet string

 u - fixed non-square value in Fp.
 f() - Curve function

 Output:

 (x, y) - a point in E

 Steps:

 1. r = HashToBase(alpha)
 2. r = r^2 (mod p)
 3. nu = r * u (mod p)
 4. r = nu
 5. r = r + 1 (mod p)
 6. r = r^(-1) (mod p)
 7. v = A * r (mod p)
 8. v = v * -1 (mod p) // -A / (1 + ur^2)
 9. v2 = v^2 (mod p)
 10. v3 = v * v2 (mod p)
 11. e = v3 * v (mod p)
 12. v2 = v2 * A (mod p)
 13. e = v2 * e (mod p)
 14. e = e^((p - 1) / 2) // Legendre symbol
 15. nv = v * -1 (mod p)
 16. v = CMOV(v, nv, e) // If e = 1, choose v, else choose nv
 17. v2 = CMOV(0, A, e) // If e = 1, choose 0, else choose A
 18. u = v - v2 (mod p)
 19. Output (u, f(u))

 Elligator2 can be simplified with projective coordinates.

 ((TODO: write this variant))

5.3. Cost Comparison

 The following table summarizes the cost of each map2curve variant.
 We express this cost in terms of additions (A), multiplications (M),
 squares (SQ), and square roots (SR).

 ((TODO: finish this section))

Scott, et al. Expires January 3, 2019 [Page 13]

Internet-Draft hash-to-curve July 2018

 +----------------------+-------------------+
 | Algorithm | Cost (Operations) |
 +----------------------+-------------------+
 | map2curve_icart | TODO |
 | | |
 | map2curve_swu | TODO |
 | | |
 | map2curve_simple_swu | TODO |
 | | |
 | map2curve_elligator2 | TODO |
 +----------------------+-------------------+

6. Random Oracles

6.1. Interface

 The generic interface for deterministic encoding functions to
 elliptic curves is as follows:

 hash2curve(alpha)

 where alpha is a message to encode on a curve.

6.2. General Construction (FFSTV13)

 When applications need a Random Oracle (RO), they can be constructed
 from deterministic encoding functions. In particular, let F :
 {0,1}^* -> E be a deterministic encoding function onto curve E, and
 let H0 and H1 be two hash functions modeled as random oracles that
 map input messages to the base field of E, i.e., Z_q. Farashahi et
 al. [FFSTV13] showed that the following mapping is indistinguishable
 from a RO:

 hash2curve(alpha) = F(H0(alpha)) + F(H1(alpha))

 This construction works for the Icart, SWU, and Simplfied SWU
 encodings.

 Here, H0 and H1 could be constructed as follows:

 H0(alpha) = HashToBase(0 || alpha)
 H1(alpha) = HashToBase(1 || alpha)

7. Curve Transformations

 ((TODO: write this section))

Scott, et al. Expires January 3, 2019 [Page 14]

Internet-Draft hash-to-curve July 2018

8. IANA Considerations

 This document has no IANA actions.

9. Security Considerations

 Each encoding function variant accepts arbitrary input and maps it to
 a pseudorandom point on the curve. Points are close to
 indistinguishable from randomly chosen elements on the curve. Not
 all encoding functions are full-domain hashes. Elligator2, for
 example, only maps strings to "about half of all curve points,"
 whereas Icart's method only covers about 5/8 of the points.

10. Acknowledgements

 The authors would like to thank Adam Langley for this detailed
 writeup up Elligator2 with Curve25519 [ElligatorAGL]. We also thank
 Sean Devlin and Thomas Icart for feedback on earlier versions of this
 document.

11. Contributors

 o Sharon Goldberg
 Boston University
 goldbe@cs.bu.edu

12. Normative References

 [BF01] "Identity-based encryption from the Weil pairing", n.d..

 [BLS01] "Short signatures from the Weil pairing", n.d.,
 <https://iacr.org/archive/asiacrypt2001/22480516.pdf>.

 [BMP00] "Provably secure password-authenticated key exchange using
 diffie-hellman", n.d..

 [ECOPRF] "EC-OPRF - Oblivious Pseudorandom Functions using Elliptic
 Curves", n.d..

 [Elligator2]
 "Elligator -- Elliptic-curve points indistinguishable from
 uniform random strings", n.d., <https://dl.acm.org/

ft_gateway.cfm?id=2516734&type=pdf>.

 [ElligatorAGL]
 "Implementing Elligator for Curve25519", n.d.,
 <https://www.imperialviolet.org/2013/12/25/

elligator.html>.

https://iacr.org/archive/asiacrypt2001/22480516.pdf
https://dl.acm.org/ft_gateway.cfm?id=2516734&type=pdf
https://dl.acm.org/ft_gateway.cfm?id=2516734&type=pdf
https://www.imperialviolet.org/2013/12/25/elligator.html
https://www.imperialviolet.org/2013/12/25/elligator.html

Scott, et al. Expires January 3, 2019 [Page 15]

Internet-Draft hash-to-curve July 2018

 [FFSTV13] "Indifferentiable deterministic hashing to elliptic and
 hyperelliptic curves", n.d..

 [hacspec] "hacspec", n.d., <https://github.com/HACS-workshop/
hacspec>.

 [Icart09] "How to Hash into Elliptic Curves", n.d.,
 <https://eprint.iacr.org/2009/226.pdf>.

 [Jablon96]
 "Strong password-only authenticated key exchange", n.d..

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017, <https://www.rfc-

editor.org/info/rfc8032>.

 [SECG1] "SEC 1 -- Elliptic Curve Cryptography", n.d.,
 <http://www.secg.org/sec1-v2.pdf>.

 [SimpleSWU]
 "Efficient Indifferentiable Hashing into Ordinary Elliptic
 Curves", n.d..

 [SW06] "Construction of rational points on elliptic curves over
 finite fields", n.d..

 [SWU07] "Rational points on certain hyperelliptic curves over
 finite fields", n.d., <https://arxiv.org/pdf/0706.1448>.

https://github.com/HACS-workshop/hacspec
https://github.com/HACS-workshop/hacspec
https://eprint.iacr.org/2009/226.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
http://www.secg.org/sec1-v2.pdf
https://arxiv.org/pdf/0706.1448

Scott, et al. Expires January 3, 2019 [Page 16]

Internet-Draft hash-to-curve July 2018

Appendix A. Related Work

 In this chapter, we give a background to some common methods to
 encode or hash to the curve, motivated by the similar exposition in
 [Icart09]. Understanding of this material is not required in order
 to choose a suitable encoding function - we defer this to Section 3 -
 the background covered here can work as a template for analyzing
 encoding functions not found in this document, and as a guide for
 further research into the topics covered.

A.1. Probabilistic Encoding

 As mentioned in Section 2, as a rule of thumb, for every x in GF(p),
 there is approximately a 1/2 chance that there exist a corresponding
 y value such that (x, y) is on the curve E.

 This motivates the construction of the MapToGroup method described by
 Boneh et al. [BLS01]. For an input message m, a counter i, and a
 standard hash function H : {0, 1}^* -> GF(p) x {0, 1}, one computes
 (x, b) = H(i || m), where i || m denotes concatenation of the two
 values. Next, test to see whether there exists a corresponding y
 value such that (x, y) is on the curve, returning (x, y) if
 successful, where b determines whether to take +/- y. If there does
 not exist such a y, then increment i and repeat. A maximum counter
 value is set to I, and since each iteration succeeds with probability
 approximately 1/2, this process fails with probability 2^-I. (See

Appendix B for a more detailed description of this algorithm.)

 Although MapToGroup describes a method to hash to the curve, it can
 also be adapted to a simple encoding mechanism. For a bitstring of
 length strictly less than log2(p), one can make use of the spare bits
 in order to encode the counter value. Allocating more space for the
 counter increases the expansion, but reduces the failure probability.

 Since the running time of the MapToGroup algorithm depends on m, this
 algorithm is NOT safe for cases sensitive to timing side channel
 attacks. Deterministic algorithms are needed in such cases where
 failures are undesirable.

A.2. Naive Encoding

 A naive solution includes computing H(m)*G as map2curve(m), where H
 is a standard hash function H : {0, 1}^* -> GF(p), and G is a
 generator of the curve. Although efficient, this solution is
 unsuitable for constructing a random oracle onto E, since the
 discrete logarithm with respect to G is known. For example, given y1
 = map2curve(m1) and y2 = map2curve(m2) for any m1 and m2, it must be
 true that y2 = H(m2) / H(m1) * map2curve(m1). This relationship

Scott, et al. Expires January 3, 2019 [Page 17]

Internet-Draft hash-to-curve July 2018

 would not hold (with overwhelming probability) for truly random
 values y1 and y2. This causes catastrophic failure in many cases.
 However, one exception is found in SPEKE [Jablon96], which constructs
 a base for a Diffie-Hellman key exchange by hashing the password to a
 curve point. Notably the use of a hash function is purely for
 encoding an arbitrary length string to a curve point, and does not
 need to be a random oracle.

A.3. Deterministic Encoding

 Shallue, Woestijne, and Ulas [SW06] first introduced a deterministic
 algorithm that maps elements in F_{q} to a curve in time O(log^4 q),
 where q = p^n for some prime p, and time O(log^3 q) when q = 3 mod 4.
 Icart introduced yet another deterministic algorithm which maps F_{q}
 to any EC where q = 2 mod 3 in time O(log^3 q) [Icart09]. Elligator
 (2) [Elligator2] is yet another deterministic algorithm for any odd-
 characteristic EC that has a point of order 2. Elligator2 can be
 applied to Curve25519 and Curve448, which are both CFRG-recommended
 curves [RFC7748].

 However, an important caveat to all of the above deterministic
 encoding functions, is that none of them map injectively to the
 entire curve, but rather some fraction of the points. This makes
 them unable to use to directly construct a random oracle on the
 curve.

 Brier et al. [SimpleSWU] proposed a couple of solutions to this
 problem, The first applies solely to Icart's method described above,
 by computing F(H1(m)) + F(H2(m)) for two distinct hash functions H1,
 H2. The second uses a generator G, and computes F(H1(m)) + H2(m)*G.
 Later, Farashahi et al. [FFSTV13] showed the generality of the
 F(H1(m)) + F(H2(m)) method, as well as the applicability to
 hyperelliptic curves (not covered here).

A.4. Supersingular Curves

 For supersingular curves, for every y in GF(p) (with p>3), there
 exists a value x such that (x, y) is on the curve E. Hence we can
 construct a bijection F : GF(p) -> E (ignoring the point at
 infinity). This is the case for [BF01], but is not common.

A.5. Twisted Variants

 We can also consider curves which have twisted variants, E^d. For
 such curves, for any x in GF(p), there exists y in GF(p) such that
 (x, y) is either a point on E or E^d. Hence one can construct a
 bijection F : GF(p) x {0,1} -> E ∪ E^d, where the extra bit is
 needed to choose the sign of the point. This can be particularly

https://datatracker.ietf.org/doc/html/rfc7748

Scott, et al. Expires January 3, 2019 [Page 18]

Internet-Draft hash-to-curve July 2018

 useful for constructions which only need the x-coordinate of the
 point. For example, x-only scalar multiplication can be computed on
 Montgomery curves. In this case, there is no need for an encoding
 function, since the output of F in GF(p) is sufficient to define a
 point on one of E or E^d.

Appendix B. Try-and-Increment Method

 In cases where constant time execution is not required, the so-called
 try-and-increment method may be appropriate. As discussion in
 Section Section 1, this variant works by hashing input m using a
 standard hash function ("Hash"), e.g., SHA256, and then checking to
 see if the resulting point E(m, f(m)), for curve function f, belongs
 on E. This is detailed below.

 1. ctr = 0
 3. h = "INVALID"
 4. While h is "INVALID" or h is EC point at infinity:
 A. CTR = I2OSP(ctr, 4)
 B. ctr = ctr + 1
 C. attempted_hash = Hash(m || CTR)
 D. h = RS2ECP(attempted_hash)
 E. If h is not "INVALID" and cofactor > 1, set h = h^cofactor
 5. Output h

 I2OSP is a function that converts a nonnegative integer to octet
 string as defined in Section 4.1 of [RFC8017], and RS2ECP is a
 function that converts of a random 2n-octet string to an EC point as
 specified in Section 5.1.3 of [RFC8032].

Appendix C. Sample Code

 This section contains reference implementations for each map2curve
 variant built using [hacspec].

C.1. Icart Method

 The following hacspec program implements map2curve_icart(alpha) for
 P-384.

from hacspec.speclib import *

prime = 2**384 - 2**128 - 2**96 + 2**32 - 1

felem_t = refine(nat, lambda x: x < prime)
affine_t = tuple2(felem_t, felem_t)

@typechecked

https://datatracker.ietf.org/doc/html/rfc8017#section-4.1
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3

Scott, et al. Expires January 3, 2019 [Page 19]

Internet-Draft hash-to-curve July 2018

def to_felem(x: nat_t) -> felem_t:
 return felem_t(nat(x % prime))

@typechecked
def fadd(x: felem_t, y: felem_t) -> felem_t:
 return to_felem(x + y)

@typechecked
def fsub(x: felem_t, y: felem_t) -> felem_t:
 return to_felem(x - y)

@typechecked
def fmul(x: felem_t, y: felem_t) -> felem_t:
 return to_felem(x * y)

@typechecked
def fsqr(x: felem_t) -> felem_t:
 return to_felem(x * x)

@typechecked
def fexp(x: felem_t, n: nat_t) -> felem_t:
 return to_felem(pow(x, n, prime))

@typechecked
def finv(x: felem_t) -> felem_t:
 return to_felem(pow(x, prime-2, prime))

a384 = to_felem(prime - 3)
b384 =
to_felem(27580193559959705877849011840389048093056905856361568521428707301988689241309860865136260764883745107765439761230575)

@typechecked
def map2p384(u:felem_t) -> affine_t:
 v = fmul(fsub(fmul(to_felem(3), a384), fexp(u, 4)), finv(fmul(to_felem(6),
u)))
 u2 = fmul(fexp(u, 6), finv(to_felem(27)))
 x = fsub(fsqr(v), b384)
 x = fsub(x, u2)
 x = fexp(x, (2 * prime - 1) // 3)
 x = fadd(x, fmul(fsqr(u), finv(to_felem(3))))
 y = fadd(fmul(u, x), v)
 return (x, y)

Scott, et al. Expires January 3, 2019 [Page 20]

Internet-Draft hash-to-curve July 2018

C.2. Shallue-Woestijne-Ulas Method

 The following hacspec program implements map2curve_swu(alpha) for
 P-256.

Scott, et al. Expires January 3, 2019 [Page 21]

Internet-Draft hash-to-curve July 2018

from p256 import *
from hacspec.speclib import *

a256 = to_felem(prime - 3)
b256 =
to_felem(41058363725152142129326129780047268409114441015993725554835256314039467401291)

@typechecked
def f_p256(x:felem_t) -> felem_t:
 return fadd(fexp(x, 3), fadd(fmul(to_felem(a256), x), to_felem(b256)))

@typechecked
def x1(t:felem_t, u:felem_t) -> felem_t:
 return u

@typechecked
def x2(t:felem_t, u:felem_t) -> felem_t:
 coefficient = fmul(to_felem(-b256), finv(to_felem(a256)))
 t2 = fsqr(t)
 t4 = fsqr(t2)
 gu = f_p256(u)
 gu2 = fsqr(gu)
 denom = fadd(fmul(t4, gu2), fmul(t2, gu))
 return fmul(coefficient, fadd(to_felem(1), finv(denom)))

@typechecked
def x3(t:felem_t, u:felem_t) -> felem_t:
 return fmul(fsqr(t), fmul(f_p256(u), x2(t, u)))

@typechecked
def map2p256(t:felem_t) -> felem_t:
 u = fadd(t, to_felem(1))
 x1v = x1(t, u)
 x2v = x2(t, u)
 x3v = x3(t, u)

 exp = to_felem((prime - 1) // 2)
 e1 = fexp(f_p256(x1v), exp)
 e2 = fexp(f_p256(x2v), exp)

 if e1 == 1:
 return x1v
 elif e2 == 1:
 return x2v
 else:
 return x3v

Scott, et al. Expires January 3, 2019 [Page 22]

Internet-Draft hash-to-curve July 2018

C.3. Simplified SWU Method

 The following hacspec program implements map2curve_simple_swu(alpha)
 for P-256.

from p256 import *
from hacspec.speclib import *

a256 = to_felem(prime - 3)
b256 =
to_felem(41058363725152142129326129780047268409114441015993725554835256314039467401291)

def f_p256(x:felem_t) -> felem_t:
 return fadd(fexp(x, 3), fadd(fmul(to_felem(a256), x), to_felem(b256)))

def map2p256(t:felem_t) -> affine_t:
 alpha = to_felem(-(fsqr(t)))
 frac = finv((fadd(fsqr(alpha), alpha)))
 coefficient = fmul(to_felem(-b256), finv(to_felem(a256)))
 x2 = fmul(coefficient, fadd(to_felem(1), frac))

 x3 = fmul(alpha, x2)
 h2 = fadd(fexp(x2, 3), fadd(fmul(a256, x2), b256))
 h3 = fadd(fexp(x3, 3), fadd(fmul(a256, x3), b256))

 exp = fmul(fadd(to_felem(prime), to_felem(-1)), finv(to_felem(2)))
 e = fexp(h2, exp)

 exp = to_felem((prime + 1) // 4)
 if e == 1:
 return (x2, fexp(f_p256(x2), exp))
 else:
 return (x3, fexp(f_p256(x3), exp))

C.4. Elligator2 Method

 The following hacspec program implements map2curve_elligator2(alpha)
 for Curve25519.

Scott, et al. Expires January 3, 2019 [Page 23]

Internet-Draft hash-to-curve July 2018

from curve25519 import *
from hacspec.speclib import *

a25519 = to_felem(486662)
b25519 = to_felem(1)
u25519 = to_felem(2)

@typechecked
def f_25519(x:felem_t) -> felem_t:
 return fadd(fmul(x, fsqr(x)), fadd(fmul(a25519, fsqr(x)), x))

@typechecked
def map2curve25519(r:felem_t) -> felem_t:
 d = fsub(to_felem(p25519), fmul(a25519, finv(fadd(to_felem(1), fmul(u25519,
fsqr(r))))))
 power = nat((p25519 - 1) // 2)
 e = fexp(f_25519(d), power)
 x = 0
 if e != 1:
 x = fsub(to_felem(-d), to_felem(a25519))
 else:
 x = d

 return x

Authors' Addresses

 Sam Scott
 Cornell Tech
 2 West Loop Rd
 New York, New York 10044
 United States of America

 Email: sam.scott@cornell.edu

 Nick Sullivan
 Cloudflare
 101 Townsend St
 San Francisco
 United States of America

 Email: nick@cloudflare.com

Scott, et al. Expires January 3, 2019 [Page 24]

Internet-Draft hash-to-curve July 2018

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Scott, et al. Expires January 3, 2019 [Page 25]

