
Network Working Group A. Faz-Hernandez
Internet-Draft Cloudflare
Intended status: Informational S. Scott
Expires: January 9, 2020 Cornell Tech
 N. Sullivan
 Cloudflare
 R. Wahby
 Stanford University
 C. Wood
 Apple Inc.
 July 08, 2019

Hashing to Elliptic Curves
draft-irtf-cfrg-hash-to-curve-04

Abstract

 This document specifies a number of algorithms that may be used to
 encode or hash an arbitrary string to a point on an elliptic curve.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Faz-Hernandez, et al. Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft hash-to-curve July 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements . 4

2. Background . 4
2.1. Elliptic curves . 4
2.2. Terminology . 5
2.2.1. Mappings . 5
2.2.2. Encodings . 6
2.2.3. Random oracle encodings 6
2.2.4. Serialization . 7
2.2.5. Domain separation 7

3. Roadmap . 8
3.1. Domain separation requirements 9

4. Utility Functions . 10
5. Hashing to a Finite Field 13
5.1. Security considerations 13
5.2. Performance considerations 14
5.3. Implementation . 15

6. Deterministic Mappings 16
6.1. Interface . 16
6.2. Notation . 16
6.3. Sign of the resulting point 16
6.4. Exceptional cases . 17
6.5. Mappings for Weierstrass curves 17
6.5.1. Icart Method . 17
6.5.2. Simplified Shallue-van de Woestijne-Ulas Method . . . 18

6.6. Mappings for Montgomery curves 20
6.6.1. Elligator 2 Method 21

6.7. Mappings for Twisted Edwards curves 23
 6.7.1. Rational maps from Montgomery to twisted Edwards
 curves . 23

6.7.2. Elligator 2 Method 25
6.8. Mappings for Supersingular curves 25
6.8.1. Boneh-Franklin Method 25
6.8.2. Elligator 2, A == 0 Method 26

6.9. Mappings for Pairing-Friendly curves 27
6.9.1. Shallue-van de Woestijne Method 27
6.9.2. Simplified SWU for Pairing-Friendly Curves 30

7. Clearing the cofactor . 31
8. Suites for Hashing . 32
8.1. Suites for NIST P-256 33
8.2. Suites for NIST P-384 34

Faz-Hernandez, et al. Expires January 9, 2020 [Page 2]

Internet-Draft hash-to-curve July 2019

8.3. Suites for NIST P-521 34
8.4. Suites for curve25519 and edwards25519 35
8.5. Suites for curve448 and edwards448 36
8.6. Suites for SECP256K1 37
8.7. Suites for BLS12-381 37

9. IANA Considerations . 39
10. Security Considerations 39
11. Acknowledgements . 39
12. Contributors . 39
13. References . 39
13.1. Normative References 40
13.2. Informative References 40

Appendix A. Related Work . 45
Appendix B. Rational maps from twisted Edwards to Weierstrass

 and Montgomery curves 47
Appendix C. Isogenous curves and corresponding maps for

 BLS12-381 . 48
C.1. 11-isogeny map for G1 48
C.2. 3-isogeny map for G2 52

Appendix D. Sample Code . 53
D.1. Interface and projective coordinate systems 53
D.2. P-256 (Simplified SWU) 54
D.3. curve25519 (Elligator 2) 56
D.4. edwards25519 (Elligator 2) 57
D.5. curve448 (Elligator 2) 57
D.6. edwards448 (Elligator 2) 58

 Authors' Addresses . 59

1. Introduction

 Many cryptographic protocols require a procedure that encodes an
 arbitrary input, e.g., a password, to a point on an elliptic curve.
 This procedure is known as hashing to an elliptic curve. Prominent
 examples of cryptosystems that hash to elliptic curves include Simple
 Password Exponential Key Exchange [J96], Password Authenticated Key
 Exchange [BMP00], Identity-Based Encryption [BF01] and Boneh-Lynn-
 Shacham signatures [BLS01].

 Unfortunately for implementors, the precise hash function that is
 suitable for a given scheme is not necessarily included in the
 description of the protocol. Compounding this problem is the need to
 pick a suitable curve for the specific protocol.

 This document aims to bridge this gap by providing a thorough set of
 recommended algorithms for a range of curve types. Each algorithm
 conforms to a common interface: it takes as input an arbitrary-length
 bit string and produces as output a point on an elliptic curve. We
 provide implementation details for each algorithm, describe the

Faz-Hernandez, et al. Expires January 9, 2020 [Page 3]

Internet-Draft hash-to-curve July 2019

 security rationale behind each recommendation, and give guidance for
 elliptic curves that are not explicitly covered.

1.1. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

2.1. Elliptic curves

 The following is a brief definition of elliptic curves, with an
 emphasis on important parameters and their relation to hashing to
 curves. For further reference on elliptic curves, consult
 [CFADLNV05] or [W08].

 Let F be the finite field GF(q) of prime characteristic p. In most
 cases F is a prime field, so q = p. Otherwise, F is a field
 extension, so q = p^m for an integer m > 1. This document assumes
 that elements of field extensions are written in a primitive element
 or polynomial basis, i.e., as of m elements of GF(p) written in
 ascending order by degree. For example, if q = p^2 and the primitive
 element basis is {1, i}, then the vector (a, b) corresponds to the
 element a + b * i.

 An elliptic curve E is specified by an equation in two variables and
 a finite field F. An elliptic curve equation takes one of several
 standard forms, including (but not limited to) Weierstrass,
 Montgomery, and Edwards.

 The curve E induces an algebraic group whose elements are those
 points with coordinates (x, y) satisfying the curve equation, and
 where x and y are elements of F. This group has order n, meaning
 that there are n distinct points. This document uses additive
 notation for the elliptic curve group operation.

 For security reasons, groups of prime order MUST be used. Elliptic
 curves induce subgroups of prime order. Let G be a subgroup of the
 curve of prime order r, where n = h * r. In this equation, h is an
 integer called the cofactor. An algorithm that takes as input an
 arbitrary point on the curve E and produces as output a point in the
 subgroup G of E is said to "clear the cofactor." Such algorithms are
 discussed in Section 7.

 Certain hash-to-curve algorithms restrict the form of the curve
 equation, the characteristic of the field, and/or the parameters of

https://datatracker.ietf.org/doc/html/rfc2119

Faz-Hernandez, et al. Expires January 9, 2020 [Page 4]

Internet-Draft hash-to-curve July 2019

 the curve. For each algorithm presented, this document lists the
 relevant restrictions.

 Summary of quantities:

 +--------+----------------------------+-----------------------------+
 | Symbol | Meaning | Relevance |
 +--------+----------------------------+-----------------------------+
F,q,p	Finite field F of	For prime fields, q = p;
	characteristic p and #F =	otherwise, q = p^m and m>1.
	q = p^m.	
E	Elliptic curve.	E is specified by an
		equation and a field F.
n	Number of points on the	n = h * r, for h and r
	elliptic curve E.	defined below.
G	A subgroup of the elliptic	Destination group to which
	curve.	bit strings are encoded.
r	Order of G.	This number MUST be prime.
h	Cofactor, h >= 1.	An integer satisfying n = h
		* r.
 +--------+----------------------------+-----------------------------+

2.2. Terminology

 In this section, we define important terms used in the rest of this
 document.

2.2.1. Mappings

 A mapping is a deterministic function from an element of the field F
 to a point on an elliptic curve E defined over F.

 In general, the set of all points that a mapping can produce over all
 possible inputs may be only a subset of the points on an elliptic
 curve (i.e., the mapping may not be surjective). In addition, a
 mapping may output the same point for two or more distinct inputs
 (i.e., the mapping may not be injective). For example, consider a
 mapping from F to an elliptic curve having n points: if the number of
 elements of F is not equal to n, then this mapping cannot be
 bijective (i.e., both injective and surjective) since it is defined
 to be deterministic.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 5]

Internet-Draft hash-to-curve July 2019

 Mappings may also be invertible, meaning that there is an efficient
 algorithm that, for any point P output by the mapping, outputs an x
 in F such that applying the mapping to x outputs P. Some of the
 mappings given in Section 6 are invertible, but this document does
 not discuss inversion algorithms.

2.2.2. Encodings

 Encodings are closely related to mappings. Like a mapping, an
 encoding is a function that outputs a point on an elliptic curve. In
 contrast to a mapping, however, the input to an encoding is an
 arbitrary bit string. Encodings can be deterministic or
 probabilistic. Deterministic encodings are preferred for security,
 because probabilistic ones can leak information through side
 channels.

 This document constructs deterministic encodings by composing a hash
 function H with a deterministic mapping. In particular, H takes as
 input an arbitrary bit string and outputs an element of F. The
 deterministic mapping takes that element as input and outputs a point
 on an elliptic curve E defined over F. Since the hash function H
 takes arbitrary bit strings as inputs, it cannot be injective: the
 set of inputs is larger than the set of outputs, so there must be
 distinct inputs that give the same output (i.e., there must be
 collisions). Thus, any encoding built from H is also not injective.

 Like mappings, encodings may be invertible, meaning that there is an
 efficient algorithm that, for any point P output by the encoding,
 outputs a bit string s such that applying the encoding to s outputs
 P. The hash function used by all encodings specified in this
 document (Section 5) is not invertible; thus, the encodings are also
 not invertible.

2.2.3. Random oracle encodings

 Two different types of encodings are possible: nonuniform encodings,
 whose output distribution is not uniformly random, and random oracle
 encodings, whose output distribution is indistinguishable from
 uniformly random. Some protocols require a random oracle for
 security, while others can be securely instantiated with a nonuniform
 encoding. When the required encoding is not clear, applications
 SHOULD use a random oracle.

 Care is required when constructing a random oracle from a mapping
 function. A simple but insecure approach is to use the output of a
 cryptographically secure hash function H as the input to the mapping.
 Because in general the mapping is not surjective, the output of this

Faz-Hernandez, et al. Expires January 9, 2020 [Page 6]

Internet-Draft hash-to-curve July 2019

 construction is distinguishable from uniformly random, i.e., it does
 not behave like a random oracle.

 Brier et al. [BCIMRT10] describe two generic constructions whose
 outputs are indistinguishable from a random oracle. Farashahi et al.
 [FFSTV13] and Tibouchi and Kim [TK17] refine the analysis of one of
 these constructions. That construction is described in Section 3.

2.2.4. Serialization

 A procedure related to encoding is the conversion of an elliptic
 curve point to a bit string. This is called serialization, and is
 typically used for compactly storing or transmitting points. For
 example, [SECG1] gives a standard method for serializing points. The
 reverse operation, deserialization, converts a bit string to an
 elliptic curve point.

 Deserialization is different from encoding in that only certain
 strings (namely, those output by the serialization procedure) can be
 deserialized. In contrast, this document is concerned with encodings
 from arbitrary bit strings to elliptic curve points. This document
 does not cover serialization or deserialization.

2.2.5. Domain separation

 Cryptographic protocols that use random oracles are often analyzed
 under the assumption that random oracles answer only queries
 generated by that protocol. In practice, this assumption does not
 hold if two protocols query the same random oracle. Concretely,
 consider protocols P1 and P2 that query random oracle R: if P1 and P2
 both query R on the same value x, the security analysis of one or
 both protocols may be invalidated.

 A common approach to addressing this issue is called domain
 separation, which allows a single random oracle to simulate multiple,
 independent oracles. This is effected by ensuring that each
 simulated oracle sees queries that are distinct from those seen by
 all other simulated oracles. For example, to simulate two oracles R1
 and R2 given a single oracle R, one might define

 R1(x) := R("R1" || x)
 R2(x) := R("R2" || x)

 In this example, "R1" and "R2" are called domain separation tags;
 they ensure that queries to R1 and R2 cannot result in identical
 queries to R. Thus, it is safe to treat R1 and R2 as independent
 oracles.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 7]

Internet-Draft hash-to-curve July 2019

3. Roadmap

 This section presents a general framework for encoding bit strings to
 points on an elliptic curve. To construct these encodings, we rely
 on three basic functions:

 o The function hash_to_base, {0, 1}^* x {0, 1, 2} -> F, hashes
 arbitrary-length bit strings to elements of a finite field; its
 implementation is defined in Section 5.

 o The function map_to_curve, F -> E, calculates a point on the
 elliptic curve E from an element of the finite field F over which
 E is defined. Section 6 describes mappings for a range of curve
 families.

 o The function clear_cofactor, E -> G, sends any point on the curve
 E to the subgroup G of E. Section 7 describes methods to perform
 this operation.

 We describe two high-level encoding functions (Section 2.2.2).
 Although these functions have the same interface, the distributions
 of their outputs are different.

 o Nonuniform encoding (encode_to_curve). This function encodes bit
 strings to points in G. The distribution of the output is not
 uniformly random in G.

 encode_to_curve(alpha)

 Input: alpha, an arbitrary-length bit string.
 Output: P, a point in G.

 Steps:
 1. u = hash_to_base(alpha, 2)
 2. Q = map_to_curve(u)
 3. P = clear_cofactor(Q)
 4. return P

 o Random oracle encoding (hash_to_curve). This function encodes bit
 strings to points in G. The distribution of the output is
 indistinguishable from uniformly random in G provided that
 map_to_curve is "well distributed" ([FFSTV13], Def. 1). All of
 the map_to_curve functions defined in Section 6 meet this
 requirement.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 8]

Internet-Draft hash-to-curve July 2019

 hash_to_curve(alpha)

 Input: alpha, an arbitrary-length bit string.
 Output: P, a point in G.

 Steps:
 1. u0 = hash_to_base(alpha, 0)
 2. u1 = hash_to_base(alpha, 1)
 3. Q0 = map_to_curve(u0)
 4. Q1 = map_to_curve(u1)
 5. R = Q0 + Q1 // point addition
 6. P = clear_cofactor(R)
 7. return P

 Instances of these functions are given in Section 8, which defines a
 list of suites that specify a full set of parameters matching
 elliptic curves and algorithms.

3.1. Domain separation requirements

 When invoking hash_to_curve from a higher-level protocol,
 implementors MUST use domain separation (Section 2.2.5) to avoid
 interfering with other protocols that also use the hash_to_curve
 functionality. Protocols that use encode_to_curve SHOULD use domain
 separation if possible, though it is not required in this case.

 Protocols that instantiate multiple, independent random oracles based
 on hash_to_curve MUST enforce domain separation between those
 oracles. This requirement applies both in the case of multiple
 oracles to the same curve and in the case of multiple oracles to
 different curves. This is because the hash_to_base primitive
 (Section 5) requires domain separation to guarantee independent
 outputs.

 Care is required when choosing a domain separation tag. Implementors
 SHOULD observe the following guidelines:

 1. Tags should be prepended to the value being hashed, as in the
 example in Section 2.2.5.

 2. Tags should have fixed length, or should be encoded in a way that
 makes the length of a given tag unambiguous. If a variable-
 length tag is used, it should be prefixed with a fixed-length
 field that encodes the length of the tag.

 3. Tags should begin with a fixed protocol identification string.
 Ideally, this identification string should be unique to the
 protocol.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 9]

Internet-Draft hash-to-curve July 2019

 4. Tags should include a protocol version number.

 5. For protocols that support multiple ciphersuites, tags should
 include a ciphersuite identifier.

 As an example, consider a fictional key exchange protocol named Quux.
 A reasonable choice of tag is "QUUX-V<xx>-CS<yy>", where <xx> and
 <yy> are two-digit numbers indicating the version and ciphersuite,
 respectively. Alternatively, if a variable-length ciphersuite string
 must be used, a reasonable choice of tag is "QUUX-V<xx>-
 L<zz>-<csid>", where <csid> is the ciphersuite string, and <xx> and
 <zz> are two-digit numbers indicating the version and the length of
 the ciphersuite string, respectively.

 As another example, consider a fictional protocol named Baz that
 requires two independent random oracles, where one oracle outputs
 points on the curve E1 and the other outputs points on the curve E2.
 To ensure that these two random oracles are independent, each one
 must be called with a distinct domain separation tag. Reasonable
 choices of tags for the E1 and E2 oracles are "BAZ-V<xx>-CS<yy>-E1"
 and "BAZ-V<xx>-CS<yy>-E2", respectively, where <xx> and <yy> are as
 defined above.

4. Utility Functions

 Algorithms in this document make use of utility functions described
 below.

 For security reasons, all field operations, comparisons, and
 assignments MUST be implemented in constant time (i.e., execution
 time MUST NOT depend on the values of the inputs), and without
 branching. Guidance on implementing these low-level operations in
 constant time is beyond the scope of this document.

 o CMOV(a, b, c): If c is False, CMOV returns a, otherwise it returns
 b. To prevent against timing attacks, this operation must run in
 constant time, without revealing the value of c. Commonly,
 implementations assume that the selector c is 1 for True or 0 for
 False. In this case, given a bit string C, the desired selector c
 can be computed by OR-ing all bits of C together. The resulting
 selector will be either 0 if all bits of C are zero, or 1 if at
 least one bit of C is 1.

 o is_square(x): This function returns True whenever the value x is a
 square in the field F. Due to Euler's criterion, this function
 can be calculated in constant time as

Faz-Hernandez, et al. Expires January 9, 2020 [Page 10]

Internet-Draft hash-to-curve July 2019

 is_square(x) := { True, if x^((q - 1) / 2) is 0 or 1 in F;
 { False, otherwise.

 o sqrt(x): The sqrt operation is a multi-valued function, i.e. there
 exist two roots of x in the field F whenever x is square. To
 maintain compatibility across implementations while allowing
 implementors leeway for optimizations, this document does not
 require sqrt() to return a particular value. Instead, as
 explained in Section 6.3, any higher-level function that computes
 square roots also specifies how to determine the sign of the
 result.

 The preferred way of computing square roots is to fix a
 deterministic algorithm particular to F. We give algorithms for
 the three most common cases immediately below; other cases are
 analogous.

 Note that Case 3 below applies to GF(p^2) when p = 3 mod 8.
 [AR13] and [S85] describe methods that work for other field
 extensions. Regardless of the method chosen, the sqrt function
 MUST be performed in constant time.

 s = sqrt(x)

 Parameters:
 - F, a finite field of characteristic p and order q = p^m, m >= 1.

 Input: x, an element of F.
 Output: s, an element of F such that (s^2) == x.

 ======

 Case 1: q = 3 (mod 4)

 Constants:
 1. c1 = (q + 1) / 4 // Integer arithmetic

 Procedure:
 1. return x^c1

 ======

 Case 2: q = 5 (mod 8)

 Constants:
 1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F
 2. c2 = (q + 3) / 8 // Integer arithmetic

Faz-Hernandez, et al. Expires January 9, 2020 [Page 11]

Internet-Draft hash-to-curve July 2019

 Procedure:
 1. t1 = x^c2
 2. e = (t1^2) == x
 3. s = CMOV(t1 * c1, t1, e)
 3. return s

 ======

 Case 3: q = 9 (mod 16)

 Constants:
 1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F
 2. c2 = sqrt(c1) in F, i.e., (c2^2) == c1 in F
 3. c3 = sqrt(-c1) in F, i.e., (c3^2) == -c1 in F
 4. c4 = (q + 7) / 16 // Integer arithmetic

 Procedure:
 1. t1 = x^c4
 2. t2 = c1 * t1
 3. t3 = c2 * t1
 4. t4 = c3 * t1
 5. e1 = (t2^2) == x
 6. e2 = (t3^2) == x
 7. t1 = CMOV(t1, t2, e1) // select t2 if (t2^2) == x
 8. t2 = CMOV(t4, t3, e2) // select t3 if (t3^2) == x
 9. e3 = (t2^2) == x
 10. s = CMOV(t1, t2, e3) // select the sqrt from t1 and t2
 11. return s

 o sgn0(x): This function returns either +1 or -1 indicating the
 "sign" of x, where sgn0(x) == -1 just when x is lexically greater
 than -x. Thus, this function considers 0 to be positive. The
 following procedure implements sgn0(x) in constant time. See

Section 2.1 for a discussion of representing x as a vector.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 12]

Internet-Draft hash-to-curve July 2019

 sgn0(x)

 Parameters:
 - F, a finite field of characteristic p and order q = p^m, m >= 1.

 Input: x, an element of F.
 Output: -1 or 1 (an integer).

 Notation: x_i is the i^th element of the vector representation of x.

 Steps:
 1. sign = 0
 2. for i in (m, m - 1, ..., 1):
 3. sign_i = CMOV(1, -1, x_i > ((p - 1) / 2))
 4. sign_i = CMOV(sign_i, 0, x_i == 0)
 5. sign = CMOV(sign, sign_i, sign == 0)
 6. return CMOV(sign, 1, sign == 0) // regard x == 0 as positive

 o abs(x): The absolute value of x is defined in terms of sgn0 in the
 natural way, namely, abs(x) := sgn0(x) * x.

 o inv0(x): This function returns the multiplicative inverse of x in
 F, extended to all of F by fixing inv0(0) == 0. To implement inv0
 in constant time, compute inv0(x) := x^(q - 2). Notice on input
 0, the output is 0 as required.

 o I2OSP and OS2IP: These functions are used to convert an octet
 string to and from a non-negative integer as described in
 [RFC8017].

 o a || b: denotes the concatenation of bit strings a and b.

5. Hashing to a Finite Field

 The hash_to_base function hashes a string msg of any length into an
 element of a field F. This function is parametrized by the field F
 (Section 2.1) and by H, a cryptographic hash function that outputs b
 bits.

5.1. Security considerations

 For security, hash_to_base should be collision resistant and its
 output distribution should be uniform over F. To this end,
 hash_to_base requires a cryptographic hash function H which satisfies
 the following properties:

 1. The number of bits output by H should be b >= 2 * k for
 sufficient collision resistance, where k is the target security

https://datatracker.ietf.org/doc/html/rfc8017

Faz-Hernandez, et al. Expires January 9, 2020 [Page 13]

Internet-Draft hash-to-curve July 2019

 level in bits. (This is needed for a birthday bound of
 approximately 2^(-k).)

 2. H is modeled as a random oracle, so its output must be
 indistinguishable from a uniformly random bit string.

 For example, for 128-bit security, b >= 256 bits; in this case,
 SHA256 would be an appropriate choice for H.

 Ensuring that the hash_to_base output is a uniform random element of
 F requires care, even when H outputs a uniformly random string. For
 example, if H is SHA256 and F is a field of characteristic p = 2^255
 - 19, then the result of reducing H(msg) (a 256-bit integer) modulo p
 is slightly more likely to be in [0, 38] than if the value were
 selected uniformly at random. In this example the bias is
 negligible, but in general it can be significant.

 To control bias, the input msg should be hashed to an integer
 comprising at least ceil(log2(p)) + k bits; reducing this integer
 modulo p gives bias at most 2^-k, which is a safe choice for a
 cryptosystem with k-bit security. To obtain such an integer, HKDF
 [RFC5869] is used to expand the input msg to a L-byte string, where L
 = ceil((ceil(log2(p)) + k) / 8); this string is then interpreted as
 an integer via OS2IP [RFC8017]. For example, for p a 255-bit prime
 and k = 128-bit security, L = ceil((255 + 128) / 8) = 48 bytes.

Section 3.1 discusses requirements for domain separation and
 recommendations for choosing domain separation tags. The
 hash_to_curve function takes such a tag as a parameter, DST; this is
 the recommended way of applying domain separation. As an
 alternative, implementations MAY instead prepend a domain separation
 tag to the input msg; in this case, DST SHOULD be the empty string.

Section 5.3 details the hash_to_base procedure.

 Note that implementors SHOULD NOT use rejection sampling to generate
 a uniformly random element of F. The reason is that these procedures
 are difficult to implement in constant time, and later well-meaning
 "optimizations" may silently render an implementation non-constant-
 time.

5.2. Performance considerations

 The hash_to_base function uses HKDF-Extract to combine the input msg
 and domain separation tag DST into a short digest, which is then
 passed to HKDF-Expand [RFC5869]. For short messages, this entails at
 most two extra invocations of H, which is a negligible overhead in
 the context of hashing to elliptic curves.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc5869

Faz-Hernandez, et al. Expires January 9, 2020 [Page 14]

Internet-Draft hash-to-curve July 2019

 A related issue is that the random oracle construction described in
Section 3 requires evaluating two independent hash functions H0 and

 H1 on msg. A standard way to instantiate independent hashes is to
 append a counter to the value being hashed, e.g., H(msg || 0) and
 H(msg || 1). If msg is long, however, this is either inefficient
 (because it entails hashing msg twice) or requires non-black-box use
 of H (e.g., partial evaluation).

 To sidestep both of these issues, hash_to_base takes a second
 argument, ctr, which it passes to HKDF-Expand. This means that two
 invocations of hash_to_base on the same msg with different ctr values
 both start with identical invocations of HKDF-Extract. This is an
 improvement because it allows sharing one evaluation of HKDF-Extract
 among multiple invocations of hash_to_base, i.e., by factoring out
 the common computation.

5.3. Implementation

 The following procedure implements hash_to_base.

 hash_to_base(msg, ctr)

 Parameters:
 - DST, a domain separation tag (see discussion above).
 - H, a cryptographic hash function.
 - F, a finite field of characteristic p and order q = p^m.
 - L = ceil((ceil(log2(p)) + k) / 8), where k is the security
 parameter of the cryptosystem (e.g., k = 128).
 - HKDF-Extract and HKDF-Expand are as defined in RFC5869,
 instantiated with the hash function H.

 Inputs:
 - msg is the message to hash.
 - ctr is 0, 1, or 2.
 This is used to efficiently create independent
 instances of hash_to_base (see discussion above).

 Output:
 - u, an element in F.

 Steps:
 1. m' = HKDF-Extract(DST, msg)
 2. for i in (1, ..., m):
 3. info = "H2C" || I2OSP(ctr, 1) || I2OSP(i, 1)
 4. t = HKDF-Expand(m', info, L)
 5. e_i = OS2IP(t) mod p
 6. return u = (e_1, ..., e_m)

https://datatracker.ietf.org/doc/html/rfc5869

Faz-Hernandez, et al. Expires January 9, 2020 [Page 15]

Internet-Draft hash-to-curve July 2019

6. Deterministic Mappings

 The mappings in this section are suitable for constructing either
 nonuniform or random oracle encodings using the constructions of

Section 3.

6.1. Interface

 The generic interface shared by all mappings in this section is as
 follows:

 (x, y) = map_to_curve(u)

 The input u and outputs x and y are elements of the field F. The
 coordinates (x, y) specify a point on an elliptic curve defined over
 F. Note that the point (x, y) is not a uniformly random point. If
 uniformity is required for security, the random oracle construction
 of Section 3 MUST be used instead.

6.2. Notation

 As a rough style guide the following convention is used:

 o All arithmetic operations are performed over a field F, unless
 explicitly stated otherwise.

 o u: the input to the mapping function. This is an element of F
 produced by the hash_to_base function.

 o (x, y): are the affine coordinates of the point output by the
 mapping. Indexed values are used when the algorithm calculates
 some candidate values.

 o t1, t2, ...: are reusable temporary variables. For notable
 variables, distinct names are used easing the debugging process
 when correlating with test vectors.

 o c1, c2, ...: are constant values, which can be computed in
 advance.

6.3. Sign of the resulting point

 In general, elliptic curves have equations of the form y^2 = g(x).
 Most of the mappings in this section first identify an x such that
 g(x) is square, then take a square root to find y. Since there are
 two square roots when g(x) != 0, this results in an ambiguity
 regarding the sign of y.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 16]

Internet-Draft hash-to-curve July 2019

 To resolve this ambiguity, the mappings in this section specify the
 sign of the y-coordinate in terms of the input to the mapping
 function. Two main reasons support this approach. First, this
 covers elliptic curves over any field in a uniform way, and second,
 it gives implementors leeway to optimize their square-root
 implementations.

6.4. Exceptional cases

 Mappings may have have exceptional cases, i.e., inputs u on which the
 mapping is undefined. These cases must be handled carefully,
 especially for constant-time implementations.

 For each mapping in this section, we discuss the exceptional cases
 and show how to handle them in constant time. Note that all
 implementations SHOULD use inv0 (Section 4) to compute multiplicative
 inverses, to avoid exceptional cases that result from attempting to
 compute the inverse of 0.

6.5. Mappings for Weierstrass curves

 The following mappings apply to elliptic curves defined by the
 equation E: y^2 = g(x) = x^3 + A * x + B, where 4 * A^3 + 27 * B^2 !=
 0.

6.5.1. Icart Method

 The function map_to_curve_icart(u) implements the Icart method from
 [Icart09].

 Preconditions: An elliptic curve over F, such that p > 3 and q = p^m
 = 2 (mod 3), or p = 2 (mod 3) and odd m.

 Constants: A and B, the parameters of the Weierstrass curve.

 Sign of y: this mapping does not compute a square root, so there is
 no ambiguity regarding the sign of y.

 Exceptions: The only exceptional case is u == 0. Implementations
 MUST detect this case by testing whether u == 0 and setting u = 1 if
 so.

 Operations:

Faz-Hernandez, et al. Expires January 9, 2020 [Page 17]

Internet-Draft hash-to-curve July 2019

 1. If u == 0, set u = 1
 2. v = (3 * A - u^4) / (6 * u)
 3. w = (2 * p - 1) / 3 // Integer arithmetic
 4. x = (v^2 - B - (u^6 / 27))^w + (u^2 / 3)
 5. y = u * x + v
 6. return (x, y)

6.5.1.1. Implementation

 The following procedure implements Icart's algorithm in a straight-
 line fashion.

 map_to_curve_icart(u)
 Input: u, an element of F.
 Output: (x, y), a point on E.

 Constants:
 1. c1 = (2 * p - 1) / 3 // Integer arithmetic
 2. c2 = 1 / 3
 3. c3 = c2^3
 4. c4 = 3 * A

 Steps:
 1. e = u == 0
 2. u = CMOV(u, 1, e) // handle exceptional case u == 0
 3. u2 = u^2 // u^2
 4. u4 = u2^2 // u^4
 5. v = c4 - u4 // 3 * A - u^4
 6. t1 = 6 * u // 6 * u
 7. t1 = inv0(t1) // 1 / (6 * u)
 8. v = v * t1 // v = (3 * A - u^4) / (6 * u)
 9. x = v^2 // v^2
 10. x = x - B // v^2 - B
 11. u6 = u4 * c3 // u^4 / 27
 12. u6 = u6 * u2 // u^6 / 27
 13. x = x - u6 // v^2 - B - u^6 / 27
 14. x = x^c1 // (v^2 - B - u^6 / 27)^(1 / 3)
 15. t1 = u2 * c2 // u^2 / 3
 16. x = x + t1 // x = (v^2 - B - u^6 / 27)^(1 / 3) + (u^2 / 3)
 17. y = u * x // u * x
 18. y = y + v // y = u * x + v
 19. return (x, y)

6.5.2. Simplified Shallue-van de Woestijne-Ulas Method

 The function map_to_curve_simple_swu(u) implements a simplification
 of the Shallue-van de Woestijne-Ulas mapping [U07] described by Brier
 et al. [BCIMRT10], which they call the "simplified SWU" map. Wahby

Faz-Hernandez, et al. Expires January 9, 2020 [Page 18]

Internet-Draft hash-to-curve July 2019

 and Boneh [WB19] generalize this mapping to curves over fields of odd
 characteristic p > 3.

 Preconditions: A Weierstrass curve over F such that A != 0 and B !=
 0.

 Constants:

 o A and B, the parameters of the Weierstrass curve.

 o Z, the unique element of F meeting all of the following criteria:

 1. Z is non-square in F,

 2. g(B / (Z * A)) is square in F,

 3. there is no other Z' meeting criteria (1) and (2) for which
 abs(Z') < abs(Z) (Section 4), and

 4. if Z and -Z both meet the above criteria, Z is the element
 such that sgn0(Z) == 1.

 Sign of y: Inputs u and -u give the same x-coordinate. Thus, we set
 sgn0(y) == sgn0(u).

 Exceptions: The exceptional cases are values of u such that Z^2 * u^4
 + Z * u^2 == 0. This includes u == 0, and may include other values
 depending on Z. Implementations must detect this case and set x1 = B
 / (Z * A), which guarantees that g(x1) is square by the condition on
 Z given above.

 Operations:

 1. t1 = inv0(Z^2 * u^4 + Z * u^2)
 2. x1 = (-B / A) * (1 + t1)
 3. If t1 == 0, set x1 = B / (Z * A)
 4. gx1 = x1^3 + A * x1 + B
 5. x2 = Z * u^2 * x1
 6. gx2 = x2^3 + A * x2 + B
 7. If is_square(gx1), set x = x1 and y = sqrt(gx1)
 8. Else set x = x2 and y = sqrt(gx2)
 9. If sgn0(u) != sgn0(y), set y = -y
 10. return (x, y)

Faz-Hernandez, et al. Expires January 9, 2020 [Page 19]

Internet-Draft hash-to-curve July 2019

6.5.2.1. Implementation

 The following procedure implements the simplified SWU mapping in a
 straight-line fashion. Appendix D gives an optimized straight-line
 procedure for P-256 [FIPS186-4]. For discussion of how to generalize
 to q = 1 (mod 4), see [WB19] (Section 4) or the example code found at
 [hash2curve-repo].

map_to_curve_simple_swu(u)
Input: u, an element of F.
Output: (x, y), a point on E.

Constants:
1. c1 = -B / A
2. c2 = -1 / Z

Steps:
1. t1 = Z * u^2
2. t2 = t1^2
3. x1 = t1 + t2
4. x1 = inv0(x1)
5. e1 = x1 == 0
6. x1 = x1 + 1
7. x1 = CMOV(x1, c2, e1) // if (t1 + t2) == 0, set x1 = -1 / Z
8. x1 = x1 * c1 // x1 = (-B / A) * (1 + (1 / (Z^2 * u^4 + Z * u^2)))
9. gx1 = x1^2
10. gx1 = gx1 + A
11. gx1 = gx1 * x1
12. gx1 = gx1 + B // gx1 = g(x1) = x1^3 + A * x1 + B
13. x2 = t1 * x1 // x2 = Z * u^2 * x1
14. t2 = t1 * t2
15. gx2 = gx1 * t2 // gx2 = (Z * u^2)^3 * gx1
16. e2 = is_square(gx1)
17. x = CMOV(x2, x1, e2) // If is_square(gx1), x = x1, else x = x2
18. y2 = CMOV(gx2, gx1, e2) // If is_square(gx1), y2 = gx1, else y2 = gx2
19. y = sqrt(y2)
20. e3 = sgn0(u) == sgn0(y) // fix sign of y
21. y = CMOV(-y, y, e3)
22. return (x, y)

6.6. Mappings for Montgomery curves

 The mapping defined in Section 6.6.1 implements Elligator 2 [BHKL13]
 for curves defined by the Weierstrass equation y^2 = x^3 + A * x^2 +
 B * x, where A * B * (A^2 - 4 * B) != 0 and A^2 - 4 * B is non-square
 in F.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 20]

Internet-Draft hash-to-curve July 2019

 Such a Weierstrass curve is related to the Montgomery curve B' * y'^2
 = x'^3 + A' * x'^2 + x' by the following change of variables:

 o A = A' / B'

 o B = 1 / B'^2

 o x = x' / B'

 o y = y' / B'

 The Elligator 2 mapping given below returns a point (x, y) on the
 Weierstrass curve defined above. This point can be converted to a
 point (x', y') on the original Montgomery curve by computing

 o x' = B' * x

 o y' = B' * y

 Note that when B and B' are equal to 1, the above two curve equations
 are identical and no conversion is necessary. This is the case, for
 example, for Curve25519 and Curve448 [RFC7748].

6.6.1. Elligator 2 Method

 Preconditions: A Weierstrass curve y^2 = x^3 + A * x^2 + B * x where
 A != 0, B != 0, and A^2 - 4 * B is non-zero and non-square in F.

 Constants:

 o A and B, the parameters of the elliptic curve.

 o Z, the unique element of F meeting all of the following criteria:

 1. Z is non-square in F,

 2. there is no other non-square Z' for which abs(Z') < abs(Z)
 (Section 4), and

 3. if Z and -Z both met the above criteria, Z is the element such
 that sgn0(Z) == 1.

 Sign of y: Inputs u and -u give the same x-coordinate. Thus, we set
 sgn0(y) == sgn0(u).

 Exceptions: The exceptional case is Z * u^2 == -1, i.e., 1 + Z * u^2
 == 0. Implementations must detect this case and set x1 = -A. Note
 that this can only happen when q = 3 (mod 4).

https://datatracker.ietf.org/doc/html/rfc7748

Faz-Hernandez, et al. Expires January 9, 2020 [Page 21]

Internet-Draft hash-to-curve July 2019

 Operations:

 1. x1 = -A * inv0(1 + Z * u^2)
 2. If x1 == 0, set x1 = -A.
 3. gx1 = x1^3 + A * x1^2 + B * x1
 4. x2 = -x1 - A
 5. gx2 = x2^3 + A * x2^2 + B * x2
 6. If is_square(gx1), set x = x1 and y = sqrt(gx1)
 7. Else if is_square(gx2), set x = x2 and y = sqrt(gx2)
 8. If sgn0(u) != sgn0(y), set y = -y
 9. return (x, y)

6.6.1.1. Implementation

 The following procedure implements Elligator 2 in a straight-line
 fashion. Appendix D gives optimized straight-line procedures for
 curve25519 and curve448 [RFC7748].

map_to_curve_elligator2(u)
Input: u, an element of F.
Output: (x, y), a point on E.

Steps:
1. t1 = u^2
2. t1 = Z * t1 // Z * u^2
3. x1 = t1 + 1
4. x1 = inv0(x1)
5. e1 = x1 == 0
6. x1 = CMOV(x1, 1, e1) // if x1 == 0, set x1 = 1
7. x1 = -A * x1 // x1 = -A / (1 + Z * u^2)
8. gx1 = x1 + A
9. gx1 = gx1 * x1
10. gx1 = gx1 + B
11. gx1 = gx1 * x1 // gx1 = x1^3 + A * x1^2 + B * x1
12. x2 = -x1 - A
13. gx2 = t1 * gx1
14. e2 = is_square(gx1)
15. x = CMOV(x2, x1, e2) // If is_square(gx1), x = x1, else x = x2
16. y2 = CMOV(gx2, gx1, e2) // If is_square(gx1), y2 = gx1, else y2 = gx2
17. y = sqrt(y2)
18. e3 = sgn0(u) == sgn0(y) // fix sign of y
19. y = CMOV(-y, y, e3)
20. return (x, y)

https://datatracker.ietf.org/doc/html/rfc7748

Faz-Hernandez, et al. Expires January 9, 2020 [Page 22]

Internet-Draft hash-to-curve July 2019

6.7. Mappings for Twisted Edwards curves

 Twisted Edwards curves (a class of curves that includes Edwards
 curves) are closely related to Montgomery curves (Section 6.6): every
 twisted Edwards curve is birationally equivalent to a Montgomery
 curve ([BBJLP08], Theorem 3.2). This equivalence yields an efficient
 way of hashing to a twisted Edwards curve: first, hash to the
 equivalent Montgomery curve, then transform the result into a point
 on the twisted Edwards curve via a rational map. This method of
 hashing to a twisted Edwards curve thus requires identifying a
 corresponding Montgomery curve and rational map. We describe how to
 identify such a curve and map immediately below.

6.7.1. Rational maps from Montgomery to twisted Edwards curves

 There are two ways to identify the correct Montgomery curve and
 rational map for use when hashing to a given twisted Edwards curve.

 When hashing to a standardized twisted Edwards curve for which a
 corresponding Montgomery form and rational map are also standardized,
 the standard Montgomery form and rational map MUST be used to ensure
 compatibility with existing software. Two such standardized curves
 are the edwards25519 and edwards448 curves, which correspond to the
 Montgomery curves curve25519 and curve448, respectively. For both of
 these curves, [RFC7748] lists both the Montgomery and twisted Edwards
 forms and gives the corresponding rational maps.

 The rational map for edwards25519 ([RFC7748], Section 4.1) uses the
 constant sqrt_neg_486664 = sqrt(-486664) mod 2^255 - 19. To ensure
 compatibility, this constant MUST be chosen such that
 sgn0(sqrt_neg_486664) == 1. Analogous ambiguities in other
 standardized rational maps MUST be resolved in the same way: for any
 constant k whose sign is ambiguous, k MUST be chosen such that
 sgn0(k) == 1.

 The 4-isogeny map from curve448 to edwards448 ([RFC7748],
 Section 4.2) is unambiguous with respect to sign.

 When defining new twisted Edwards curves, a Montgomery equivalent and
 rational map SHOULD be specified, and the sign of the rational map
 SHOULD be stated unambiguously.

 When hashing to a twisted Edwards curve that does not have a
 standardized Montgomery form or rational map, the following procedure
 MUST be used to derive them. For a twisted Edwards curve given by a
 * x^2 + y^2 = 1 + d * x^2 * y^2, first compute A and B, the
 parameters of the equivalent curve given by y'^2 = x'^3 + A * x'^2 +
 B * x', as follows:

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748#section-4.1
https://datatracker.ietf.org/doc/html/rfc7748#section-4.2
https://datatracker.ietf.org/doc/html/rfc7748#section-4.2

Faz-Hernandez, et al. Expires January 9, 2020 [Page 23]

Internet-Draft hash-to-curve July 2019

 o A = (a + d) / 2

 o B = (a - d)^2 / 16

 Note that the above curve is given in the Weierstrass form required
 by the Elligator 2 mapping of Section 6.6.1. The rational map from
 the point (x', y') on this Weierstrass curve to the point (x, y) on
 the twisted Edwards curve is given by

 o x = x' / y'

 o y = (B' * x' - 1) / (B' * x' + 1), where B' = 1 / sqrt(B) = 4 / (a
 - d)

 For completeness, we give the inverse map in Appendix B. Note that
 the inverse map is not used when hashing to a twisted Edwards curve.

 Rational maps may be undefined, for example, when the denominator of
 one of the rational functions is zero. For example, in the map
 described above, the exceptional cases are y' == 0 or B' * x' == -1.
 Implementations MUST detect exceptional cases and return the value
 (x, y) = (0, 1), which is a valid point on all twisted Edwards curves
 given by the equation above.

 The following straight-line implementation of the above rational map
 handles the exceptional cases. Implementations of other rational
 maps (e.g., the ones give in [RFC7748]) are analogous.

 rational_map(x', y')
 Input: (x', y'), a point on the curve y'^2 = x'^3 + A * x'^2 + B * x'.
 Output: (x, y), a point on the equivalent twisted Edwards curve.

 1. t1 = y' * B'
 2. t2 = x' + 1
 3. t3 = t1 * t2
 4. t3 = inv0(t3)
 5. x = t2 * t3
 6. x = x * x'
 7. y = x' - 1
 8. y = y * t3
 9. y = y * t1
 10. e = y == 0
 11. y = CMOV(y, 1, e)
 12. return (x, y)

https://datatracker.ietf.org/doc/html/rfc7748

Faz-Hernandez, et al. Expires January 9, 2020 [Page 24]

Internet-Draft hash-to-curve July 2019

6.7.2. Elligator 2 Method

 Preconditions: A twisted Edwards curve E and an equivalent curve M
 meeting the requirements in Section 6.7.1.

 Helper functions:

 o map_to_curve_elligator2 is the mapping of Section 6.6.1 to the
 curve M.

 o rational_map is a function that takes a point (x', y') on M and
 returns a point (x, y) on E, as defined in Section 6.7.1.

 Sign of y: for this map, the sign is determined by
 map_to_curve_elligator2. No further sign adjustments are required.

 Exceptions: The exceptions for the Elligator 2 mapping are as given
 in Section 6.6.1. The exceptions for the rational map are as given
 in Section 6.7.1. No other exceptions are possible.

 The following procedure implements the Elligator 2 mapping for a
 twisted Edwards curve.

 map_to_curve_elligator2_edwards(u)
 Input: u, an element of F.
 Output: (x, y), a point on E.

 1. (x', y') = map_to_curve_elligator2(u) // (x', y') is on M
 2. (x, y) = rational_map(x', y') // (x, y) is on E
 3. return (x, y)

6.8. Mappings for Supersingular curves

6.8.1. Boneh-Franklin Method

 The function map_to_curve_bf(u) implements the Boneh-Franklin method
 [BF01] which covers the supersingular curves defined by y^2 = x^3 + B
 over a field F such that q = 2 (mod 3).

 Preconditions: A supersingular curve over F such that q = 2 (mod 3).

 Constants: B, the parameter of the supersingular curve.

 Sign of y: determined by sign of u. No adjustments are necessary.

 Exceptions: none.

 Operations:

Faz-Hernandez, et al. Expires January 9, 2020 [Page 25]

Internet-Draft hash-to-curve July 2019

 1. w = (2 * q - 1) / 3 // Integer arithmetic
 2. x = (u^2 - B)^w
 3. y = u
 4. return (x, y)

6.8.1.1. Implementation

 The following procedure implements the Boneh-Franklin's algorithm in
 a straight-line fashion.

 map_to_curve_bf(u)
 Input: u, an element of F.
 Output: (x, y), a point on E.

 Constants:
 1. c1 = (2 * q - 1) / 3 // Integer arithmetic

 Steps:
 1. t1 = u^2
 2. t1 = t1 - B
 3. x = t1^c1 // x = (u^2 - B)^((2 * q - 1) / 3)
 4. y = u
 5. return (x, y)

6.8.2. Elligator 2, A == 0 Method

 The function map_to_curve_ell2A0(u) implements an adaptation of
 Elligator 2 [BLMP19] targeting curves given by y^2 = x^3 + B * x over
 F such that q = 3 (mod 4).

 Preconditions: An elliptic curve over F such that q = 3 (mod 4).

 Constants: B, the parameter of the elliptic curve.

 Sign of y: Inputs u and -u give the same x-coordinate. Thus, we set
 sgn0(y) == sgn0(u).

 Exceptions: none.

 Operations:

Faz-Hernandez, et al. Expires January 9, 2020 [Page 26]

Internet-Draft hash-to-curve July 2019

 1. x1 = u
 2. gx1 = x1^3 + B * x1
 3. x2 = -x1
 4. gx2 = -gx1
 5. If gx1 is square, x = x1 and y = sqrt(gx1)
 6. Else x = x2 and y = sqrt(gx2)
 7. If sgn0(u) != sgn0(y), set y = -y.
 8. return (x, y)

6.8.2.1. Implementation

 The following procedure implements the Elligator 2 mapping for
 supersingular curves in a straight-line fashion.

 map_to_curve_ell2A0(u)
 Input: u, an element of F.
 Output: (x, y), a point on E.

 Constants:
 1. c1 = (p + 1) / 4 // Integer arithmetic

 Steps:
 1. x1 = u
 2. x2 = -x1
 3. gx1 = x1^2
 4. gx1 = gx1 + B
 5. gx1 = gx1 * x1 // gx1 = x1^3 + B * x1
 6. y = gx1^c1 // this is either sqrt(gx1) or sqrt(gx2)
 7. e1 = (y^2) == gx1
 8. x = CMOV(x2, x1, e1)
 9. e2 = sgn0(u) == sgn0(y)
 10. y = CMOV(-y, y, e2)
 11. return (x, y)

6.9. Mappings for Pairing-Friendly curves

6.9.1. Shallue-van de Woestijne Method

 Shallue and van de Woestijne [SW06] describe a mapping that applies
 to essentially any elliptic curve. Fouque and Tibouchi [FT12] give a
 concrete set of parameters for this mapping geared toward Barreto-
 Naehrig pairing-friendly curves [BN05], i.e., curves y^2 = x^3 + B
 over fields of characteristic q = 1 (mod 3). Wahby and Boneh [WB19]
 suggest a small generalization of the Fouque-Tibouchi parameters that
 results in a uniform method for handling exceptional cases.

 The Shallue-van de Woestijne mapping method covers curves not handled
 by other methods, e.g., SECP256K1 [SEC2]. It also covers pairing-

Faz-Hernandez, et al. Expires January 9, 2020 [Page 27]

Internet-Draft hash-to-curve July 2019

 friendly curves in the BN [BN05], KSS [KSS08], and BLS [BLS03]
 families. (Note, however, that the mapping described in

Section 6.9.2 is faster, when it applies.)

 Preconditions: An elliptic curve y^2 = g(x) = x^3 + B over F such
 that q = 1 (mod 3) and B != 0.

 Constants:

 o B, the parameter of the Weierstrass curve.

 o Z, the unique element of F meeting all of the following criteria:

 1. g((sqrt(-3 * Z^2) - Z) / 2) is square in F,

 2. there is no other Z' meeting criterion (1) for which abs(Z') <
 abs(Z) (Section 4), and

 3. if Z and -Z both meet the above criteria, Z is the element
 such that sgn0(Z) == 1.

 Sign of y: Inputs u and -u give the same x-coordinate. Thus, we set
 sgn0(y) == sgn0(u).

 Exceptions: The exceptional cases for u occur when u^2 * (u^2 + g(Z))
 == 0. The restriction on Z given above ensures that implementations
 that use inv0 to invert this product are exception free.

 Operations:

 1. t1 = u^2 + g(Z)
 2. t2 = inv0(u^2 * t1)
 3. t3 = u^4 * t2 * sqrt(-3 * Z^2)
 4. x1 = ((sqrt(-3 * Z^2) - Z) / 2) - t3
 5. x2 = t3 - ((sqrt(-3 * Z^2) + Z) / 2)
 6. x3 = Z - (t1^3 * t2 / (3 * Z^2))
 7. If is_square(g(x1)), set x = x1 and y = sqrt(g(x1))
 8. Else If is_square(g(x2)), set x = x2 and y = sqrt(g(x2))
 9. Else set x = x3 and y = sqrt(g(x3))
 10. If sgn0(u) != sgn0(y), set y = -y
 11. return (x, y)

6.9.1.1. Implementation

 The following procedure implements the Shallue and van de Woestijne
 method in a straight-line fashion.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 28]

Internet-Draft hash-to-curve July 2019

 map_to_curve_svdw(u)
 Input: u, an element of F.
 Output: (x, y), a point on E.

 Constants:
 1. c1 = g(Z)
 2. c2 = sqrt(-3 * Z^2)
 3. c3 = (sqrt(-3 * Z^2) - Z) / 2
 4. c4 = (sqrt(-3 * Z^2) + Z) / 2
 5. c5 = 1 / (3 * Z^2)

 Steps:
 1. t1 = u^2
 2. t2 = t1 + c1 // t2 = u^2 + g(Z)
 3. t3 = t1 * t2
 4. t4 = inv0(t3) // t4 = 1 / (u^2 * (u^2 + g(Z)))
 5. t3 = t1^2
 6. t3 = t3 * t4
 7. t3 = t3 * c2 // t3 = u^2 * sqrt(-3 * Z^2) / (u^2 + g(Z))
 8. x1 = c3 - t3
 9. gx1 = x1^2
 10. gx1 = gx1 * x1
 11. gx1 = gx1 + B // gx1 = x1^3 + B
 12. e1 = is_square(gx1)
 13. x2 = t3 - c4
 14. gx2 = x2^2
 15. gx2 = gx2 * x2
 16. gx2 = gx2 + B // gx2 = x2^3 + B
 17. e2 = is_square(gx2)
 18. e3 = e1 OR e2 // logical OR
 19. x3 = t2^2
 20. x3 = x3 * t2
 21. x3 = x3 * t4
 22. x3 = x3 * c5
 23. x3 = Z - x3 // Z - (u^2 + g(Z))^2 / (3 Z^2 u^2)
 24. gx3 = x3^2
 25. gx3 = gx3 * x3
 26. gx3 = gx3 + B // gx3 = x3^3 + B
 27. x = CMOV(x2, x1, e1) // select x1 if gx1 is square
 28. gx = CMOV(gx2, gx1, e1)
 29. x = CMOV(x3, x, e3) // select x3 if gx1 and gx2 are not square
 30. gx = CMOV(gx3, gx, e3)
 31. y = sqrt(gx)
 32. e4 = sgn0(u) == sgn0(y)
 33. y = CMOV(-y, y, e4) // select correct sign of y
 34. return (x, y)

Faz-Hernandez, et al. Expires January 9, 2020 [Page 29]

Internet-Draft hash-to-curve July 2019

6.9.2. Simplified SWU for Pairing-Friendly Curves

 Wahby and Boneh [WB19] show how to adapt the simplified SWU mapping
 to certain Weierstrass curves having either A = 0 or B = 0, one of
 which is almost always true for pairing-friendly curves. Note that
 neither case is supported by the mapping of Section 6.5.2.

 This method requires finding another elliptic curve

 E': y^2 = g'(x) = x^3 + A' * x + B'

 that is isogenous to E and has A' != 0 and B' != 0. (One might do
 this, for example, using [SAGE]; details are beyond the scope of this
 document.) This isogeny defines a map iso_map(x', y') that takes as
 input a point on E' and produces as output a point on E.

 Once E' and iso_map are identified, this mapping works as follows: on
 input u, first apply the simplified SWU mapping to get a point on E',
 then apply the isogeny map to that point to get a point on E.

 Note that iso_map is a group homomorphism, meaning that point
 addition commutes with iso_map. Thus, when using this mapping in the
 hash_to_curve construction of Section 3, one can effect a small
 optimization by first mapping u0 and u1 to E', adding the resulting
 points on E', and then applying iso_map to the sum. This gives the
 same result while requiring only one evaluation of iso_map.

 Preconditions: An elliptic curve E' with A' != 0 and B' != 0 that is
 isogenous to the target curve E with isogeny map iso_map(x, y) from
 E' to E.

 Helper functions:

 o map_to_curve_simple_swu is the mapping of Section 6.5.2 to E'

 o iso_map is the isogeny map from E' to E

 Sign of y: for this map, the sign is determined by
 map_to_curve_elligator2. No further sign adjustments are necessary.

 Exceptions: map_to_curve_simple_swu handles its exceptional cases.
 Exceptional cases of iso_map should return the identity point on E.

 Operations:

 1. (x', y') = map_to_curve_simple_swu(u) // (x', y') is on E'
 2. (x, y) = iso_map(x', y') // (x, y) is on E
 3. return (x, y)

Faz-Hernandez, et al. Expires January 9, 2020 [Page 30]

Internet-Draft hash-to-curve July 2019

 We do not repeat the sample implementation of Section 6.5.2 here.
 See [hash2curve-repo] or [WB19] for details on implementing the
 isogeny map.

7. Clearing the cofactor

 The mappings of Section 6 always output a point on the elliptic
 curve, i.e., a point in a group of order h * r (Section 2.1).
 Obtaining a point in G may require a final operation commonly called
 "clearing the cofactor," which takes as input any point on the curve.

 The cofactor can always be cleared via scalar multiplication by h.
 For elliptic curves where h = 1, i.e., the curves with a prime number
 of points, no operation is required. This applies, for example, to
 the NIST curves P-256, P-384, and P-521 [FIPS186-4].

 In some cases, it is possible to clear the cofactor via a faster
 method than scalar multiplication by h. These methods are equivalent
 to (but usually faster than) multiplication by some scalar h_eff
 whose value is determined by the method and the curve. Examples of
 fast cofactor clearing methods include the following:

 o For certain pairing-friendly curves having subgroup G2 over an
 extension field, Scott et al. [SBCDBK09] describe a method for
 fast cofactor clearing that exploits an efficiently-computable
 endomorphism. Fuentes-Castaneda et al. [FKR11] propose an
 alternative method that is sometimes more efficient. Budroni and
 Pintore [BP18] give concrete instantiations of these methods for
 Barreto-Lynn-Scott pairing-friendly curves [BLS03].

 o Wahby and Boneh ([WB19], Section 5) describe a trick due to Scott
 for fast cofactor clearing on any elliptic curve for which the
 prime factorization of h and the structure of the elliptic curve
 group meet certain conditions.

 The clear_cofactor function is parameterized by a scalar h_eff.
 Specifically,

 clear_cofactor(P) := h_eff * P

 where * represents scalar multiplication. When a curve does not
 support a fast cofactor clearing method, h_eff = h and the cofactor
 MUST be cleared via scalar multiplication.

 When a curve admits a fast cofactor clearing method, clear_cofactor
 MAY be evaluated either via that method or via scalar multiplication
 by the equivalent h_eff; these two methods give the same result.
 Note that in this case scalar multiplication by the cofactor h does

Faz-Hernandez, et al. Expires January 9, 2020 [Page 31]

Internet-Draft hash-to-curve July 2019

 not generally give the same result as the fast method, and SHOULD NOT
 be used.

8. Suites for Hashing

 This section lists recommended suites for hashing to standard
 elliptic curves.

 A suite fully specifies the procedure for hashing bit strings to
 points on a specific elliptic curve group. Each suite comprises the
 following parameters:

 o Suite ID, a short name used to refer to a given suite.

 o E, the target elliptic curve over a field F.

 o p, the characteristic of the field F.

 o m, the extension degree of the field F.

 o H, the hash function used by hash_to_base (Section 5).

 o W, the number of evaluations of H in hash_to_base.

 o f, a mapping function from Section 6.

 o h_eff, the scalar parameter for clear_cofactor (Section 7).

 In addition to the above parameters, the mapping f may require
 additional parameters Z, M, rational_map, E', and/or iso_map. These
 are specified when applicable.

 Suites whose ID includes "-RO" use the hash_to_curve procedure of
Section 3; suites whose ID includes "-NU" use the encode_to_curve

 procedure from that section. Applications whose security requires a
 random oracle MUST use a "-RO" suite.

 When standardizing a new elliptic curve, corresponding hash-to-curve
 suites SHOULD be specified.

 The below table lists the curves for which suites are defined and the
 subsection that gives the corresponding parameters.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 32]

Internet-Draft hash-to-curve July 2019

 +---------------------------+-------------+
 | E | Section |
 +---------------------------+-------------+
 | NIST P-256 | Section 8.1 |
 | | |
 | NIST P-384 | Section 8.2 |
 | | |
 | NIST P-521 | Section 8.3 |
 | | |
 | curve25519 / edwards25519 | Section 8.4 |
 | | |
 | curve448 / edwards448 | Section 8.5 |
 | | |
 | SECP256k1 | Section 8.6 |
 | | |
 | BLS12-381 | Section 8.7 |
 +---------------------------+-------------+

8.1. Suites for NIST P-256

 The suites P256-SHA256-SSWU-RO and P256-SHA256-SSWU-NU are defined
 for the NIST P-256 elliptic curve [FIPS186-4]. These suites share
 the following parameters:

 o E: y^2 = x^3 + A * x + B, where

 * A = -3

 * B = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e2
 7d2604b

 o p: 2^256 - 2^224 + 2^192 + 2^96 - 1

 o m: 1

 o H: SHA-256

 o W: 2

 o f: Simplified SWU method, Section 6.5.2

 o Z: -2

 o h_eff: 1

Faz-Hernandez, et al. Expires January 9, 2020 [Page 33]

Internet-Draft hash-to-curve July 2019

8.2. Suites for NIST P-384

 The suites P384-SHA512-ICART-RO and P384-SHA512-ICART-NU are defined
 for the NIST P-384 elliptic curve [FIPS186-4]. These suites share
 the following parameters:

 o E: y^2 = x^3 + A * x + B, where

 * A = -3

 * B = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5
 013875ac656398d8a2ed19d2a85c8edd3ec2aef

 o p: 2^384 - 2^128 - 2^96 + 2^32 - 1

 o m: 1

 o H: SHA-512

 o W: 2

 o f: Icart's method, Section 6.5.1

 o h_eff: 1

8.3. Suites for NIST P-521

 The suites P521-SHA512-SSWU-RO and P521-SHA512-SSWU-NU are defined
 for the NIST P-384 elliptic curve [FIPS186-4]. These suites share
 the following parameters:

 o E: y^2 = x^3 + A * x + B, where

 * A = -3

 * B = 0x51953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b4899
 18ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451f
 d46b503f00

 o p: 2^521 - 1

 o m: 1

 o H: SHA-512

 o W: 2

 o f: Simplified SWU method, Section 6.5.2

Faz-Hernandez, et al. Expires January 9, 2020 [Page 34]

Internet-Draft hash-to-curve July 2019

 o Z: -2

 o h_eff: 1

 An optimized example implementation of the above mapping is given in
Appendix D.2.

8.4. Suites for curve25519 and edwards25519

 This section defines ciphersuites for curve25519 and edwards25519
 [RFC7748].

 The suites curve25519-SHA256-ELL2-RO and curve25519-SHA256-ELL2-NU
 share the following parameters, in addition to the common parameters
 below.

 o E: B * y^2 = x^3 + A * x^2 + x, where

 * A = 486662

 * B = 1

 o f: Elligator 2 method, Section 6.6.1

 The suites edwards25519-SHA256-EDELL2-RO and
 edwards25519-SHA256-EDELL2-NU share the following parameters, in
 addition to the common parameters below.

 o E: a * x^2 + y^2 = 1 + d * x^2 * y^2, where

 * a = -1

 * d = 0x52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca1
 35978a3

 o f: Twisted Edwards Elligator 2 method, Section 6.7.2

 o M: curve25519 defined in [RFC7748], Section 4.1

 o rational_map: the birational map defined in [RFC7748], Section 4.1

 The common parameters for all of the above suites are:

 o p: 2^255 - 19

 o m: 1

 o H: SHA-256

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748#section-4.1
https://datatracker.ietf.org/doc/html/rfc7748#section-4.1

Faz-Hernandez, et al. Expires January 9, 2020 [Page 35]

Internet-Draft hash-to-curve July 2019

 o W: 2

 o Z: 2

 o h_eff: 8

 Optimized example implementations of the above mappings are given in
Appendix D.3 and Appendix D.4.

8.5. Suites for curve448 and edwards448

 This section defines ciphersuites for curve448 and edwards448
 [RFC7748].

 The suites curve448-SHA512-ELL2-RO and curve448-SHA512-ELL2-NU share
 the following parameters, in addition to the common parameters below.

 o E: B * y^2 = x^3 + A * x^2 + x, where

 * A = 156326

 * B = 1

 o f: Elligator 2 method, Section 6.6.1

 The suites edwards448-SHA512-EDELL2-RO and
 edwards448-SHA512-EDELL2-NU share the following parameters, in
 addition to the common parameters below.

 o E: a * x^2 + y^2 = 1 + d * x^2 * y^2, where

 * a = 1

 * d = -39081

 o f: Twisted Edwards Elligator 2 method, Section 6.7.2

 o M: curve448, defined in [RFC7748], Section 4.2

 o rational_map: the 4-isogeny map defined in [RFC7748], Section 4.2

 The common parameters for all of the above suites are:

 o p: 2^448 - 2^224 - 1

 o m: 1

 o H: SHA-512

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748#section-4.2
https://datatracker.ietf.org/doc/html/rfc7748#section-4.2

Faz-Hernandez, et al. Expires January 9, 2020 [Page 36]

Internet-Draft hash-to-curve July 2019

 o W: 2

 o Z: -1

 o h_eff: 4

 Optimized example implementations of the above mappings are given in
Appendix D.5 and Appendix D.6.

8.6. Suites for SECP256K1

 The suites SECP256K1-SHA256-SVDW-RO and SECP256K1-SHA256-SVDW-NU are
 defined for the SECP256K1 elliptic curve [SEC2]. These suites share
 the following parameters:

 o E: y^2 = x^3 + 7

 o p: 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1

 o m: 1

 o H: SHA-256

 o W: 2

 o f: Shallue-van de Woestijne method, Section 6.9.1

 o Z: 1

 o h_eff: 1

8.7. Suites for BLS12-381

 This section defines ciphersuites for groups G1 and G2 of the
 BLS12-381 elliptic curve [draft-yonezawa-pfc-01].

 The suites BLS12381G1-SHA256-SSWU-RO and BLS12381G1-SHA256-SSWU-NU
 share the following parameters, in addition to the common parameters
 below.

 o E: y^2 = x^3 + 4

 o m: 1

 o Z: -1

 o E': y'^2 = x'^3 + A * x' + B, where

https://datatracker.ietf.org/doc/html/draft-yonezawa-pfc-01

Faz-Hernandez, et al. Expires January 9, 2020 [Page 37]

Internet-Draft hash-to-curve July 2019

 * A = 0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd
 881ac98936f8da0e0f97f5cf428082d584c1d

 * B = 0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fc
 ef35ef55a23215a316ceaa5d1cc48e98e172be0

 o iso_map: the 11-isogeny map from E' to E given in Appendix C.1

 o h_eff: 0xd201000000010001

 The suites BLS12381G2-SHA256-SSWU-RO and BLS12381G2-SHA256-SSWU-NU
 share the following parameters, in addition to the common parameters
 below.

 o F: GF(p^m), where

 * p: defined below

 * m: 2

 * (1, i) is the basis for F, where i^2 + 1 == 0 in F

 o E: y^2 = x^3 + 4 * (1 + i)

 o Z: 1 + i

 o E': y'^2 = x'^3 + A * x' + B, where

 * A = 240 * i

 * B = 1012 * (1 + i)

 o iso_map: the isogeny map from E' to E given in Appendix C.2

 o h_eff: 0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff0315
 08ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689
 f6a359894c0adebbf6b4e8020005aaa95551

 The common parameters for the above suites are:

 o p: 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f
 6241eabfffeb153ffffb9feffffffffaaab

 o H: SHA-256

 o W: 2

 o f: Simplified SWU for pairing-friendly curves, Section 6.9.2

Faz-Hernandez, et al. Expires January 9, 2020 [Page 38]

Internet-Draft hash-to-curve July 2019

 Note that the h_eff parameters for all of the above suites are chosen
 for compatibility with the fast cofactor clearing methods described
 by Scott for G1 ([WB19] Section 5) and by Budroni and Pintore for G2
 ([BP18], Section 4.1).

9. IANA Considerations

 This document has no IANA actions.

10. Security Considerations

 When constant-time implementations are required, all basic operations
 and utility functions must be implemented in constant time, as
 discussed in Section 4.

 Each encoding function accepts arbitrary input and maps it to a
 pseudorandom point on the curve. Directly evaluating the mappings of

Section 6 produces an output that is distinguishable from random.
Section 3 shows how to use these mappings to construct a function

 approximating a random oracle.

Section 3.1 describes considerations related to domain separation for
 random oracle encodings.

Section 5 describes considerations for uniformly hashing to field
 elements.

11. Acknowledgements

 The authors would like to thank Adam Langley for his detailed writeup
 up Elligator 2 with Curve25519 [L13]. We also thank Sean Devlin and
 Thomas Icart for feedback on earlier versions of this document.

12. Contributors

 o Sharon Goldberg
 Boston University
 goldbe@cs.bu.edu

 o Ela Lee
 Royal Holloway, University of London
 Ela.Lee.2010@live.rhul.ac.uk

13. References

Faz-Hernandez, et al. Expires January 9, 2020 [Page 39]

Internet-Draft hash-to-curve July 2019

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

13.2. Informative References

 [AFQTZ14] Aranha, D., Fouque, P., Qian, C., Tibouchi, M., and J.
 Zapalowicz, "Binary Elligator squared", In Selected Areas
 in Cryptography - SAC 2014, pages 20-37,
 DOI 10.1007/978-3-319-13051-4_2, 2014,
 <https://doi.org/10.1007/978-3-319-13051-4_2>.

 [AR13] Adj, G. and F. Rodriguez-Henriquez, "Square Root
 Computation over Even Extension Fields", In IEEE
 Transactions on Computers. vol 63 issue 11,
 pages 2829-2841, DOI 10.1109/TC.2013.145, November 2014,
 <https://doi.org/10.1109/TC.2013.145>.

 [BBJLP08] Bernstein, D., Birkner, P., Joye, M., Lange, T., and C.
 Peters, "Twisted Edwards curves", In AFRICACRYPT 2008,
 pages 389-405, DOI 10.1007/978-3-540-68164-9_26, 2008,
 <https://doi.org/10.1007/978-3-540-68164-9_26>.

 [BCIMRT10]
 Brier, E., Coron, J., Icart, T., Madore, D., Randriam, H.,
 and M. Tibouchi, "Efficient Indifferentiable Hashing into
 Ordinary Elliptic Curves", In Advances in Cryptology -
 CRYPTO 2010, pages 237-254,
 DOI 10.1007/978-3-642-14623-7_13, 2010,
 <https://doi.org/10.1007/978-3-642-14623-7_13>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://doi.org/10.1007/978-3-319-13051-4_2
https://doi.org/10.1109/TC.2013.145
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-642-14623-7_13

Faz-Hernandez, et al. Expires January 9, 2020 [Page 40]

Internet-Draft hash-to-curve July 2019

 [BF01] Boneh, D. and M. Franklin, "Identity-based encryption from
 the Weil pairing", In Advances in Cryptology - CRYPTO
 2001, pages 213-229, DOI 10.1007/3-540-44647-8_13, August
 2001, <https://doi.org/10.1007/3-540-44647-8_13>.

 [BHKL13] Bernstein, D., Hamburg, M., Krasnova, A., and T. Lange,
 "Elligator: elliptic-curve points indistinguishable from
 uniform random strings", In Proceedings of the 2013 ACM
 SIGSAC conference on computer and communications
 security., pages 967-980, DOI 10.1145/2508859.2516734,
 November 2013, <https://doi.org/10.1145/2508859.2516734>.

 [BLMP19] Bernstein, D., Lange, T., Martindale, C., and L. Panny,
 "Quantum circuits for the CSIDH: optimizing quantum
 evaluation of isogenies", In Advances in Cryptology -
 EUROCRYPT 2019, DOI 10.1007/978-3-030-17656-3, 2019,
 <https://doi.org/10.1007/978-3-030-17656-3>.

 [BLS01] Boneh, D., Lynn, B., and H. Shacham, "Short signatures
 from the Weil pairing", In Journal of Cryptology, vol 17,
 pages 297-319, DOI 10.1007/s00145-004-0314-9, July 2004,
 <https://doi.org/10.1007/s00145-004-0314-9>.

 [BLS03] Barreto, P., Lynn, B., and M. Scott, "Constructing
 Elliptic Curves with Prescribed Embedding Degrees",
 In Security in Communication Networks, pages 257-267,
 DOI 10.1007/3-540-36413-7_19, 2003,
 <https://doi.org/10.1007/3-540-36413-7_19>.

 [BMP00] Boyko, V., MacKenzie, P., and S. Patel, "Provably secure
 password-authenticated key exchange using Diffie-Hellman",
 In Advances in Cryptology - EUROCRYPT 2000, pages 156-171,
 DOI 10.1007/3-540-45539-6_12, May 2000,
 <https://doi.org/10.1007/3-540-45539-6_12>.

 [BN05] Barreto, P. and M. Naehrig, "Pairing-Friendly Elliptic
 Curves of Prime Order", In Selected Areas in Cryptography
 2005, pages 319-331, DOI 10.1007/11693383_22, 2006,
 <https://doi.org/10.1007/11693383_22>.

 [BP18] Budroni, A. and F. Pintore, "Hashing to G2 on BLS pairing-
 friendly curves", In ACM Communications in Computer
 Algebra, pages 63-66, DOI 10.1145/3313880.3313884,
 September 2018, <https://doi.org/10.1145/3313880.3313884>.

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/978-3-030-17656-3
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/3-540-36413-7_19
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/11693383_22
https://doi.org/10.1145/3313880.3313884

Faz-Hernandez, et al. Expires January 9, 2020 [Page 41]

Internet-Draft hash-to-curve July 2019

 [CFADLNV05]
 Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T.,
 Nguyen, K., and F. Vercauteren, "Handbook of Elliptic and
 Hyperelliptic Curve Cryptography", publisher Chapman and
 Hall / CRC, ISBN 9781584885184, 2005,
 <https://www.crcpress.com/9781584885184>.

 [CK11] Couveignes, J. and J. Kammerer, "The geometry of flex
 tangents to a cubic curve and its parameterizations",
 In Journal of Symbolic Computation, vol 47 issue 3,
 pages 266-281, DOI 10.1016/j.jsc.2011.11.003, 2012,
 <https://doi.org/10.1016/j.jsc.2011.11.003>.

 [draft-yonezawa-pfc-01]
 Yonezawa, S., Chikara, S., Kobayashi, T., and T. Saito,
 "Pairing-friendly Curves", March 2019,
 <https://datatracker.ietf.org/doc/

draft-yonezawa-pairing-friendly-curves/>.

 [F11] Farashahi, R., "Hashing into Hessian curves",
 In AFRICACRYPT 2011, pages 278-289,
 DOI 10.1007/978-3-642-21969-6_17, 2011,
 <https://doi.org/10.1007/978-3-642-21969-6_17>.

 [FFSTV13] Farashahi, R., Fouque, P., Shparlinski, I., Tibouch, M.,
 and J. Voloch, "Indifferentiable deterministic hashing to
 elliptic and hyperelliptic curves", In Math. Comp. vol 82,
 pages 491-512, DOI 10.1090/S0025-5718-2012-02606-8, 2013,
 <https://doi.org/10.1090/S0025-5718-2012-02606-8>.

 [FIPS186-4]
 National Institute of Standards and Technology (NIST),
 "FIPS Publication 186-4: Digital Signature Standard", July
 2013, <https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.186-4.pdf>.

 [FJT13] Fouque, P., Joux, A., and M. Tibouchi, "Injective
 encodings to elliptic curves", In ACISP 2013,
 pages 203-218, DOI 10.1007/978-3-642-39059-3_14, 2013,
 <https://doi.org/10.1007/978-3-642-39059-3_14>.

 [FKR11] Fuentes-Castaneda, L., Knapp, E., and F. Rodriguez-
 Henriquez, "Fast Hashing to G2 on Pairing-Friendly
 Curves", In Selected Areas in Cryptography, pages 412-430,
 DOI 10.1007/978-3-642-28496-0_25, 2011,
 <https://doi.org/10.1007/978-3-642-28496-0_25>.

https://www.crcpress.com/9781584885184
https://doi.org/10.1016/j.jsc.2011.11.003
https://datatracker.ietf.org/doc/html/draft-yonezawa-pfc-01
https://datatracker.ietf.org/doc/draft-yonezawa-pairing-friendly-curves/
https://datatracker.ietf.org/doc/draft-yonezawa-pairing-friendly-curves/
https://doi.org/10.1007/978-3-642-21969-6_17
https://doi.org/10.1090/S0025-5718-2012-02606-8
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://doi.org/10.1007/978-3-642-39059-3_14
https://doi.org/10.1007/978-3-642-28496-0_25

Faz-Hernandez, et al. Expires January 9, 2020 [Page 42]

Internet-Draft hash-to-curve July 2019

 [FSV09] Farashahi, R., Shparlinski, I., and J. Voloch, "On hashing
 into elliptic curves", In Journal of Mathematical
 Cryptology, vol 3 no 4, pages 353-360,
 DOI 10.1515/JMC.2009.022, 2009,
 <https://doi.org/10.1515/JMC.2009.022>.

 [FT10] Fouque, P. and M. Tibouchi, "Estimating the size of the
 image of deterministic hash functions to elliptic
 curves.", In Progress in Cryptology - LATINCRYPT 2010,
 pages 81-91, DOI 10.1007/978-3-642-14712-8_5, 2010,
 <https://doi.org/10.1007/978-3-642-14712-8_5>.

 [FT12] Fouque, P. and M. Tibouchi, "Indifferentiable Hashing to
 Barreto-Naehrig Curves", In Progress in Cryptology -
 LATINCRYPT 2012, pages 1-7,
 DOI 10.1007/978-3-642-33481-8_1, 2012,
 <https://doi.org/10.1007/978-3-642-33481-8_1>.

 [hash2curve-repo]
 "Hashing to Elliptic Curves - GitHub repository", 2019,
 <https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve>.

 [Icart09] Icart, T., "How to Hash into Elliptic Curves", In Advances
 in Cryptology - CRYPTO 2009, pages 303-316,
 DOI 10.1007/978-3-642-03356-8_18, 2009,
 <https://doi.org/10.1007/978-3-642-03356-8_18>.

 [J96] Jablon, D., "Strong password-only authenticated key
 exchange", In SIGCOMM Computer Communication Review, vol
 26 issue 5, pages 5-26, DOI 10.1145/242896.242897, 1996,
 <https://doi.org/10.1145/242896.242897>.

 [KLR10] Kammerer, J., Lercier, R., and G. Renault, "Encoding
 points on hyperelliptic curves over finite fields in
 deterministic polynomial time", In PAIRING 2010,
 pages 278-297, DOI 10.1007/978-3-642-17455-1_18, 2010,
 <https://doi.org/10.1007/978-3-642-17455-1_18>.

 [KSS08] Kachisa, E., Schaefer, E., and M. Scott, "Constructing
 Brezing-Weng Pairing-Friendly Elliptic Curves Using
 Elements in the Cyclotomic Field", In Pairing-Based
 Cryptography - Pairing 2008, pages 126-135,
 DOI 10.1007/978-3-540-85538-5_9, 2008,
 <https://doi.org/10.1007/978-3-540-85538-5_9>.

 [L13] Langley, A., "Implementing Elligator for Curve25519",
 2013, <https://www.imperialviolet.org/2013/12/25/

elligator.html>.

https://doi.org/10.1515/JMC.2009.022
https://doi.org/10.1007/978-3-642-14712-8_5
https://doi.org/10.1007/978-3-642-33481-8_1
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
https://doi.org/10.1007/978-3-642-03356-8_18
https://doi.org/10.1145/242896.242897
https://doi.org/10.1007/978-3-642-17455-1_18
https://doi.org/10.1007/978-3-540-85538-5_9
https://www.imperialviolet.org/2013/12/25/elligator.html
https://www.imperialviolet.org/2013/12/25/elligator.html

Faz-Hernandez, et al. Expires January 9, 2020 [Page 43]

Internet-Draft hash-to-curve July 2019

 [S05] Skalba, M., "Points on elliptic curves over finite
 fields", In Acta Arithmetica, vol 117 no 3, pages 293-301,
 DOI 10.4064/aa117-3-7, 2005,
 <https://doi.org/10.4064/aa117-3-7>.

 [S85] Schoof, R., "Elliptic Curves Over Finite Fields and the
 Computation of Square Roots mod p", In Mathematics of
 Computation vol 44 issue 170, pages 483-494,
 DOI 10.1090/S0025-5718-1985-0777280-6, April 1985,
 <https://doi.org/10.1090/S0025-5718-1985-0777280-6>.

 [SAGE] The Sage Developers, "SageMath, the Sage Mathematics
 Software System", 2019, <https://www.sagemath.org>.

 [SBCDBK09]
 Scott, M., Benger, N., Charlemagne, M., Dominguez Perez,
 L., Benger, N., and E. Kachisa, "Fast Hashing to G2 on
 Pairing-Friendly Curves", In Pairing-Based Cryptography -
 Pairing 2009, pages 102-113,
 DOI 10.1007/978-3-642-03298-1_8, 2009,
 <https://doi.org/10.1007/978-3-642-03298-1_8>.

 [SEC2] Standards for Efficient Cryptography Group (SECG), "SEC 2:
 Recommended Elliptic Curve Domain Parameters", January
 2010, <http://www.secg.org/sec2-v2.pdf>.

 [SECG1] Standards for Efficient Cryptography Group (SECG), "SEC 1:
 Elliptic Curve Cryptography", May 2009,
 <http://www.secg.org/sec1-v2.pdf>.

 [SS04] Schinzel, A. and M. Skalba, "On equations y^2 = x^n + k in
 a finite field.", In Bulletin Polish Acad. Sci. Math. vol
 52, no 3, pages 223-226, DOI 10.4064/ba52-3-1, 2004,
 <https://doi.org/10.4064/ba52-3-1>.

 [SW06] Shallue, A. and C. van de Woestijne, "Construction of
 rational points on elliptic curves over finite fields",
 In Algorithmic Number Theory. ANTS 2006., pages 510-524,
 DOI 10.1007/11792086_36, 2006,
 <https://doi.org/10.1007/11792086_36>.

 [T14] Tibouchi, M., "Elligator squared: Uniform points on
 elliptic curves of prime order as uniform random strings",
 In Financial Cryptography and Data Security - FC 2014,
 pages 139-156, DOI 10.1007/978-3-662-45472-5_10, 2014,
 <https://doi.org/10.1007/978-3-662-45472-5_10>.

https://doi.org/10.4064/aa117-3-7
https://doi.org/10.1090/S0025-5718-1985-0777280-6
https://www.sagemath.org
https://doi.org/10.1007/978-3-642-03298-1_8
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec1-v2.pdf
https://doi.org/10.4064/ba52-3-1
https://doi.org/10.1007/11792086_36
https://doi.org/10.1007/978-3-662-45472-5_10

Faz-Hernandez, et al. Expires January 9, 2020 [Page 44]

Internet-Draft hash-to-curve July 2019

 [TK17] Tibouchi, M. and T. Kim, "Improved elliptic curve hashing
 and point representation", In Designs, Codes, and
 Cryptography, vol 82, pages 161-177,
 DOI 10.1007/s10623-016-0288-2, 2017,
 <https://doi.org/10.1007/s10623-016-0288-2>.

 [U07] Ulas, M., "Rational points on certain hyperelliptic curves
 over finite fields", In Bulletin Polish Acad. Sci. Math.
 vol 55, no 2, pages 97-104, DOI 10.4064/ba55-2-1, 2007,
 <https://doi.org/10.4064/ba55-2-1>.

 [W08] Washington, L., "Elliptic curves: Number theory and
 cryptography", edition 2nd, publisher Chapman and Hall /
 CRC, ISBN 9781420071467, 2008,
 <https://www.crcpress.com/9781420071467>.

 [WB19] Wahby, R. and D. Boneh, "Fast and simple constant-time
 hashing to the BLS12-381 elliptic curve", Technical
 report ePrint 2019/403, 2019,
 <https://eprint.iacr.org/2019/403>.

Appendix A. Related Work

 The problem of mapping arbitrary bit strings to elliptic curve points
 has been the subject of both practical and theoretical research.
 This section briefly describes the background and research results
 that underly the recommendations in this document. This section is
 provided for informational purposes only.

 A naive but generally insecure method of mapping a string alpha to a
 point on an elliptic curve E having n points is to first fix a point
 P that generates the elliptic curve group, and a hash function Hn
 from bit strings to integers less than n; then compute Hn(alpha) * P,
 where the * operator represents scalar multiplication. The reason
 this approach is insecure is that the resulting point has a known
 discrete log relationship to P. Thus, except in cases where this
 method is specified by the protocol, it must not be used; doing so
 risks catastrophic security failures.

 Boneh et al. [BLS01] describe an encoding method they call
 MapToGroup, which works roughly as follows: first, use the input
 string to initialize a pseudorandom number generator, then use the
 generator to produce a pseudorandom value x in F. If x is the
 x-coordinate of a point on the elliptic curve, output that point.
 Otherwise, generate a new pseudorandom value x in F and try again.
 Since a random value x in F has probability about 1/2 of
 corresponding to a point on the curve, the expected number of tries
 is just two. However, the running time of this method depends on the

https://doi.org/10.1007/s10623-016-0288-2
https://doi.org/10.4064/ba55-2-1
https://www.crcpress.com/9781420071467
https://eprint.iacr.org/2019/403

Faz-Hernandez, et al. Expires January 9, 2020 [Page 45]

Internet-Draft hash-to-curve July 2019

 input string, which means that it is not safe to use in protocols
 sensitive to timing side channels.

 Schinzel and Skalba [SS04] introduce the first method of constructing
 elliptic curve points deterministically, for a restricted class of
 curves and a very small number of points. Skalba [S05] generalizes
 this construction to more curves and more points on those curves.
 Shallue and van de Woestijne [SW06] further generalize and simplify
 Skalba's construction, yielding concretely efficient maps to a
 constant fraction of the points on almost any curve. Ulas [U07]
 describes a simpler version of this map, and Brier et al. [BCIMRT10]
 give a further simplification, which the authors call the "simplified
 SWU" map. The simplified map applies only to fields of
 characteristic p = 3 mod 4; Wahby and Boneh [WB19] generalize to
 fields of any characteristic.

 Icart gives another deterministic algorithm which maps to any curve
 over a field of characteristic p = 2 mod 3 [Icart09]. Several
 extensions and generalizations follow this work, including [FSV09],
 [FT10], [KLR10], [F11], and [CK11].

 Following the work of Farashahi [F11], Fouque et al. [FJT13]
 describe a mapping to curves of characteristic p = 3 mod 4 having a
 number of points divisible by 4. Bernstein et al. [BHKL13] optimize
 this mapping and describe a related mapping that they call "Elligator
 2," which applies to any curve over a field of odd characteristic
 having a point of order 2. This includes Curve25519 and Curve448,
 both of which are CFRG-recommended curves [RFC7748].

 An important caveat regarding all of the above deterministic mapping
 functions is that none of them map to the entire curve, but rather to
 some fraction of the points. This means that they cannot be used
 directly to construct a random oracle that outputs points on the
 curve.

 Brier et al. [BCIMRT10] give two solutions to this problem. The
 first, which Brier et al. prove applies to Icart's method, computes
 f(H0(msg)) + f(H1(msg)) for two distinct hash functions H0 and H1
 from bit strings to F and a mapping f from F to the elliptic curve E.
 The second, which applies to essentially all deterministic mappings
 but is more costly, computes f(H0(msg)) + H2(msg) * P, for P a
 generator of the elliptic curve group and H2 a hash from bit strings
 to integers modulo n, the order of the elliptic curve group.
 Farashahi et al. [FFSTV13] improve the analysis of the first method,
 showing that it applies to essentially all deterministic mappings.
 Tibouchi and Kim [TK17] further refine the analysis and describe
 additional optimizations.

https://datatracker.ietf.org/doc/html/rfc7748

Faz-Hernandez, et al. Expires January 9, 2020 [Page 46]

Internet-Draft hash-to-curve July 2019

 Complementary to the problem of mapping from bit strings to elliptic
 curve points, Bernstein et al. [BHKL13] study the problem of mapping
 from elliptic curve points to uniformly random bit strings, giving
 solutions for a class of curves including Montgomery and twisted
 Edwards curves. Tibouchi [T14] and Aranha et al. [AFQTZ14]
 generalize these results. This document does not deal with this
 complementary problem.

Appendix B. Rational maps from twisted Edwards to Weierstrass and
 Montgomery curves

 The inverse of the rational map specified in Section 6.7.1, i.e., the
 map from the point (x', y') on the Weierstrass curve y'^2 = x'^3 + A
 * x'^2 + B * x' to the point (x, y) on the twisted Edwards curve a *
 x^2 + y^2 = 1 + d * x^2 * y^2 is given by:

 o x' = (1 + y) / (B' * (1 - y))

 o y' = (1 + y) / (B' * x * (1 - y))

 where

 o A = (a + d) / 2

 o B = (a - d)^2 / 16

 o B' = 1 / sqrt(B) = 4 / (a - d)

 This map is undefined when y == 1 or x == 0. In this case, return
 the point (0, 0).

 It may also be useful to map to a Montgomery curve of the form B' *
 y''^2 = x''^3 + A' * x''^2 + x''. This curve is equivalent to the
 twisted Edwards curve above via the following rational map
 ([BBJLP08], Theorem 3.2):

 o A' = 2 * (a + d) / (a - d)

 o B' = 4 / (a - d)

 o x'' = (1 + y) / (1 - y)

 o y'' = (1 + y) / (x * (1 - y))

Faz-Hernandez, et al. Expires January 9, 2020 [Page 47]

Internet-Draft hash-to-curve July 2019

Appendix C. Isogenous curves and corresponding maps for BLS12-381

 This section specifies the isogeny maps for the BLS12-381 suites
 listed in Section 8.7.

C.1. 11-isogeny map for G1

 The 11-isogeny map from E' to E is given by the following rational
 functions:

 o x = x_num / x_den, where

 * x_num = k_(1,11) * x'^11 + k_(1,10) * x'^10 + ... + k_(1,0)

 * x_den = x'^10 + k_(2,9) * x'^9 + ... + k_(2,0)

 o y = y' * y_num / y_den, where

 * y_num = k_(3,15) * x'^15 + k_(3,14) * x'^14 + ... + k_(3,0)

 * y_den = x'^15 + k_(4,14) * x'^14 + ... + k_(4,0)

 The constants used to compute x_num are as follows:

 o k_(1,0) = 0x11a05f2b1e833340b809101dd99815856b303e88a2d7005ff2627b
 56cdb4e2c85610c2d5f2e62d6eaeac1662734649b7

 o k_(1,1) = 0x17294ed3e943ab2f0588bab22147a81c7c17e75b2f6a8417f565e3
 3c70d1e86b4838f2a6f318c356e834eef1b3cb83bb

 o k_(1,2) = 0xd54005db97678ec1d1048c5d10a9a1bce032473295983e56878e50
 1ec68e25c958c3e3d2a09729fe0179f9dac9edcb0

 o k_(1,3) = 0x1778e7166fcc6db74e0609d307e55412d7f5e4656a8dbf25f1b332
 89f1b330835336e25ce3107193c5b388641d9b6861

 o k_(1,4) = 0xe99726a3199f4436642b4b3e4118e5499db995a1257fb3f086eeb6
 5982fac18985a286f301e77c451154ce9ac8895d9

 o k_(1,5) = 0x1630c3250d7313ff01d1201bf7a74ab5db3cb17dd952799b9ed3ab
 9097e68f90a0870d2dcae73d19cd13c1c66f652983

 o k_(1,6) = 0xd6ed6553fe44d296a3726c38ae652bfb11586264f0f8ce19008e21
 8f9c86b2a8da25128c1052ecaddd7f225a139ed84

 o k_(1,7) = 0x17b81e7701abdbe2e8743884d1117e53356de5ab275b4db1a682c6
 2ef0f2753339b7c8f8c8f475af9ccb5618e3f0c88e

Faz-Hernandez, et al. Expires January 9, 2020 [Page 48]

Internet-Draft hash-to-curve July 2019

 o k_(1,8) = 0x80d3cf1f9a78fc47b90b33563be990dc43b756ce79f5574a2c596c
 928c5d1de4fa295f296b74e956d71986a8497e317

 o k_(1,9) = 0x169b1f8e1bcfa7c42e0c37515d138f22dd2ecb803a0c5c99676314
 baf4bb1b7fa3190b2edc0327797f241067be390c9e

 o k_(1,10) = 0x10321da079ce07e272d8ec09d2565b0dfa7dccdde6787f96d50af
 36003b14866f69b771f8c285decca67df3f1605fb7b

 o k_(1,11) = 0x6e08c248e260e70bd1e962381edee3d31d79d7e22c837bc23c0bf
 1bc24c6b68c24b1b80b64d391fa9c8ba2e8ba2d229

 The constants used to compute x_den are as follows:

 o k_(2,0) = 0x8ca8d548cff19ae18b2e62f4bd3fa6f01d5ef4ba35b48ba9c95886
 17fc8ac62b558d681be343df8993cf9fa40d21b1c

 o k_(2,1) = 0x12561a5deb559c4348b4711298e536367041e8ca0cf0800c0126c2
 588c48bf5713daa8846cb026e9e5c8276ec82b3bff

 o k_(2,2) = 0xb2962fe57a3225e8137e629bff2991f6f89416f5a718cd1fca64e0
 0b11aceacd6a3d0967c94fedcfcc239ba5cb83e19

 o k_(2,3) = 0x3425581a58ae2fec83aafef7c40eb545b08243f16b1655154cca8a
 bc28d6fd04976d5243eecf5c4130de8938dc62cd8

 o k_(2,4) = 0x13a8e162022914a80a6f1d5f43e7a07dffdfc759a12062bb8d6b44
 e833b306da9bd29ba81f35781d539d395b3532a21e

 o k_(2,5) = 0xe7355f8e4e667b955390f7f0506c6e9395735e9ce9cad4d0a43bce
 f24b8982f7400d24bc4228f11c02df9a29f6304a5

 o k_(2,6) = 0x772caacf16936190f3e0c63e0596721570f5799af53a1894e2e073
 062aede9cea73b3538f0de06cec2574496ee84a3a

 o k_(2,7) = 0x14a7ac2a9d64a8b230b3f5b074cf01996e7f63c21bca68a81996e1
 cdf9822c580fa5b9489d11e2d311f7d99bbdcc5a5e

 o k_(2,8) = 0xa10ecf6ada54f825e920b3dafc7a3cce07f8d1d7161366b74100da
 67f39883503826692abba43704776ec3a79a1d641

 o k_(2,9) = 0x95fc13ab9e92ad4476d6e3eb3a56680f682b4ee96f7d03776df533
 978f31c1593174e4b4b7865002d6384d168ecdd0a

 The constants used to compute y_num are as follows:

 o k_(3,0) = 0x90d97c81ba24ee0259d1f094980dcfa11ad138e48a869522b52af6
 c956543d3cd0c7aee9b3ba3c2be9845719707bb33

Faz-Hernandez, et al. Expires January 9, 2020 [Page 49]

Internet-Draft hash-to-curve July 2019

 o k_(3,1) = 0x134996a104ee5811d51036d776fb46831223e96c254f383d0f9063
 43eb67ad34d6c56711962fa8bfe097e75a2e41c696

 o k_(3,2) = 0xcc786baa966e66f4a384c86a3b49942552e2d658a31ce2c344be4b
 91400da7d26d521628b00523b8dfe240c72de1f6

 o k_(3,3) = 0x1f86376e8981c217898751ad8746757d42aa7b90eeb791c09e4a3e
 c03251cf9de405aba9ec61deca6355c77b0e5f4cb

 o k_(3,4) = 0x8cc03fdefe0ff135caf4fe2a21529c4195536fbe3ce50b879833fd
 221351adc2ee7f8dc099040a841b6daecf2e8fedb

 o k_(3,5) = 0x16603fca40634b6a2211e11db8f0a6a074a7d0d4afadb7bd76505c
 3d3ad5544e203f6326c95a807299b23ab13633a5f0

 o k_(3,6) = 0x4ab0b9bcfac1bbcb2c977d027796b3ce75bb8ca2be184cb5231413
 c4d634f3747a87ac2460f415ec961f8855fe9d6f2

 o k_(3,7) = 0x987c8d5333ab86fde9926bd2ca6c674170a05bfe3bdd81ffd038da
 6c26c842642f64550fedfe935a15e4ca31870fb29

 o k_(3,8) = 0x9fc4018bd96684be88c9e221e4da1bb8f3abd16679dc26c1e8b6e6
 a1f20cabe69d65201c78607a360370e577bdba587

 o k_(3,9) = 0xe1bba7a1186bdb5223abde7ada14a23c42a0ca7915af6fe06985e7
 ed1e4d43b9b3f7055dd4eba6f2bafaaebca731c30

 o k_(3,10) = 0x19713e47937cd1be0dfd0b8f1d43fb93cd2fcbcb6caf493fd1183
 e416389e61031bf3a5cce3fbafce813711ad011c132

 o k_(3,11) = 0x18b46a908f36f6deb918c143fed2edcc523559b8aaf0c2462e6bf
 e7f911f643249d9cdf41b44d606ce07c8a4d0074d8e

 o k_(3,12) = 0xb182cac101b9399d155096004f53f447aa7b12a3426b08ec02710
 e807b4633f06c851c1919211f20d4c04f00b971ef8

 o k_(3,13) = 0x245a394ad1eca9b72fc00ae7be315dc757b3b080d4c158013e663
 2d3c40659cc6cf90ad1c232a6442d9d3f5db980133

 o k_(3,14) = 0x5c129645e44cf1102a159f748c4a3fc5e673d81d7e86568d9ab0f
 5d396a7ce46ba1049b6579afb7866b1e715475224b

 o k_(3,15) = 0x15e6be4e990f03ce4ea50b3b42df2eb5cb181d8f84965a3957add
 4fa95af01b2b665027efec01c7704b456be69c8b604

 The constants used to compute y_den are as follows:

Faz-Hernandez, et al. Expires January 9, 2020 [Page 50]

Internet-Draft hash-to-curve July 2019

 o k_(4,0) = 0x16112c4c3a9c98b252181140fad0eae9601a6de578980be6eec323
 2b5be72e7a07f3688ef60c206d01479253b03663c1

 o k_(4,1) = 0x1962d75c2381201e1a0cbd6c43c348b885c84ff731c4d59ca4a103
 56f453e01f78a4260763529e3532f6102c2e49a03d

 o k_(4,2) = 0x58df3306640da276faaae7d6e8eb15778c4855551ae7f310c35a5d
 d279cd2eca6757cd636f96f891e2538b53dbf67f2

 o k_(4,3) = 0x16b7d288798e5395f20d23bf89edb4d1d115c5dbddbcd30e123da4
 89e726af41727364f2c28297ada8d26d98445f5416

 o k_(4,4) = 0xbe0e079545f43e4b00cc912f8228ddcc6d19c9f0f69bbb0542eda0
 fc9dec916a20b15dc0fd2ededda39142311a5001d

 o k_(4,5) = 0x8d9e5297186db2d9fb266eaac783182b70152c65550d881c5ecd87
 b6f0f5a6449f38db9dfa9cce202c6477faaf9b7ac

 o k_(4,6) = 0x166007c08a99db2fc3ba8734ace9824b5eecfdfa8d0cf8ef5dd365
 bc400a0051d5fa9c01a58b1fb93d1a1399126a775c

 o k_(4,7) = 0x16a3ef08be3ea7ea03bcddfabba6ff6ee5a4375efa1f4fd7feb34f
 d206357132b920f5b00801dee460ee415a15812ed9

 o k_(4,8) = 0x1866c8ed336c61231a1be54fd1d74cc4f9fb0ce4c6af5920abc575
 0c4bf39b4852cfe2f7bb9248836b233d9d55535d4a

 o k_(4,9) = 0x167a55cda70a6e1cea820597d94a84903216f763e13d87bb530859
 2e7ea7d4fbc7385ea3d529b35e346ef48bb8913f55

 o k_(4,10) = 0x4d2f259eea405bd48f010a01ad2911d9c6dd039bb61a6290e591b
 36e636a5c871a5c29f4f83060400f8b49cba8f6aa8

 o k_(4,11) = 0xaccbb67481d033ff5852c1e48c50c477f94ff8aefce42d28c0f9a
 88cea7913516f968986f7ebbea9684b529e2561092

 o k_(4,12) = 0xad6b9514c767fe3c3613144b45f1496543346d98adf02267d5cee
 f9a00d9b8693000763e3b90ac11e99b138573345cc

 o k_(4,13) = 0x2660400eb2e4f3b628bdd0d53cd76f2bf565b94e72927c1cb748d
 f27942480e420517bd8714cc80d1fadc1326ed06f7

 o k_(4,14) = 0xe0fa1d816ddc03e6b24255e0d7819c171c40f65e273b853324efc
 d6356caa205ca2f570f13497804415473a1d634b8f

Faz-Hernandez, et al. Expires January 9, 2020 [Page 51]

Internet-Draft hash-to-curve July 2019

C.2. 3-isogeny map for G2

 The 3-isogeny map from E' to E is given by the following rational
 functions:

 o x = x_num / x_den, where

 * x_num = k_(1,3) * x'^3 + k_(1,2) * x'^2 + ... + k_(1,0)

 * x_den = x'^2 + k_(2,1) * x' + k_(2,0)

 o y = y' * y_num / y_den, where

 * y_num = k_(3,3) * x'^3 + k_(3,2) * x'^2 + ... + k_(3,0)

 * y_den = x'^3 + k_(4,2) * x'^2 + ... + k_(4,0)

 The constants used to compute x_num are as follows:

 o k_(1,0) = 0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b5842
 3c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6 + 0x5c759507e8e333ebb5b7
 a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaa
 aaaaa97d6 * i

 o k_(1,1) = 0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c
 6b4f20a4181472aaa9cb8d555526a9ffffffffc71a * i

 o k_(1,2) = 0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c
 6b4f20a4181472aaa9cb8d555526a9ffffffffc71e + 0x8ab05f8bdd54cde1909
 37e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ff
 ffffffe38d * i

 o k_(1,3) = 0x171d6541fa38ccfaed6dea691f5fb614cb14b4e7f4e810aa22d610
 8f142b85757098e38d0f671c7188e2aaaaaaaa5ed1

 The constants used to compute x_den are as follows:

 o k_(2,0) = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2
 a0f6b0f6241eabfffeb153ffffb9feffffffffaa63 * i

 o k_(2,1) = 0xc + 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf
 6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa9f * i

 The constants used to compute y_num are as follows:

 o k_(3,0) = 0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439
 d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706 + 0x1530477c7ab4113b59a

Faz-Hernandez, et al. Expires January 9, 2020 [Page 52]

Internet-Draft hash-to-curve July 2019

 4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc
 71c71c6d706 * i

 o k_(3,1) = 0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b5842
 3c50ae15d5c2638e343d9c71c6238aaaaaaaa97be * i

 o k_(3,2) = 0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c
 6b4f20a4181472aaa9cb8d555526a9ffffffffc71c + 0x8ab05f8bdd54cde1909
 37e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ff
 ffffffe38f * i

 o k_(3,3) = 0x124c9ad43b6cf79bfbf7043de3811ad0761b0f37a1e26286b0e977
 c69aa274524e79097a56dc4bd9e1b371c71c718b10

 The constants used to compute y_den are as follows:

 o k_(4,0) = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2
 a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb + 0x1a0111ea397fe69a4b1
 ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9fef
 fffffffa8fb * i

 o k_(4,1) = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2
 a0f6b0f6241eabfffeb153ffffb9feffffffffa9d3 * i

 o k_(4,2) = 0x12 + 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512b
 f6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa99 * i

Appendix D. Sample Code

 This section gives sample implementations optimized for some of the
 elliptic curves listed in Section 8. A future version of this
 document will include all listed curves, plus accompanying test
 vectors. Sample Sage [SAGE] code for each algorithm can also be
 found in the draft repository [hash2curve-repo].

D.1. Interface and projective coordinate systems

 The sample code in this section uses a different interface than the
 mappings of Section 6. Specifically, each mapping function in this
 section has the following signature:

 (xn, xd, yn, nd) = map_to_curve(u)

 The resulting point (x, y) is given by (xn / xd, yn / yd).

 The reason for this modified interface is that it enables further
 optimizations when working with points in a projective coordinate
 system. This is desirable, for example, when the resulting point

Faz-Hernandez, et al. Expires January 9, 2020 [Page 53]

Internet-Draft hash-to-curve July 2019

 will be immediately multiplied by a scalar, since most scalar
 multiplication algorithms operate on projective points.

 The following are two commonly used projective coordinate systems and
 the corresponding conversions:

 o A point (X, Y, Z) in homogeneous projective coordinates
 corresponds to the affine point (x, y) = (X / Z, Y / Z); the
 inverse conversion is given by (X, Y, Z) = (x, y, 1). To convert
 (xn, xd, yn, yd) to homogeneous projective coordinates, compute
 (X, Y, Z) = (xn * yd, yn * xd, xd * yd).

 o A point (X', Y', Z') in Jacobian projective coordinates
 corresponds to the affine point (x, y) = (X' / Z'^2, Y' / Z'^3);
 the inverse conversion is given by (X', Y', Z') = (x, y, 1). To
 convert (xn, xd, yn, yd) to Jacobian projective coordinates,
 compute (X', Y', Z') = (xn * xd * yd^2, yn * yd^2 * xd^3, xd *
 yd).

D.2. P-256 (Simplified SWU)

 The following is a straight-line implementation of the Simplified SWU
 mapping for P-256 [FIPS186-4] as specified in Section 8.1.

Faz-Hernandez, et al. Expires January 9, 2020 [Page 54]

Internet-Draft hash-to-curve July 2019

map_to_curve_simple_swu_p256(u)
Input: u, an element of F.
Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a
 point on P-256.

Constants:
1. B = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
2. c1 = B / 3
3. c2 = (p - 3) / 4 // Integer arithmetic
4. c3 = sqrt(8)

Steps:
1. t1 = u^2
2. t3 = -2 * t1
3. t2 = t3^2
4. xd = t2 + t3
5. x1n = xd + 1
6. x1n = x1n * B
7. xd = xd * 3
8. e1 = xd == 0
9. xd = CMOV(xd, 6, e1) // If xd == 0, set xd = Z * A == 6
10. t2 = xd^2
11. gxd = t2 * xd // gxd == xd^3
12. t2 = -3 * t2
13. gx1 = x1n^2
14. gx1 = gx1 + t2 // x1n^2 + A * xd^2
15. gx1 = gx1 * x1n // x1n^3 + A * x1n * xd^2
16. t2 = B * gxd
17. gx1 = gx1 + t2 // x1n^3 + A * x1n * xd^2 + B * xd^3
18. t4 = gxd^2
19. t2 = gx1 * gxd
20. t4 = t4 * t2 // gx1 * gxd^3
21. y1 = t4^c2 // (gx1 * gxd^3)^((p - 3) / 4)
22. y1 = y1 * t2 // gx1 * gxd * (gx1 * gxd^3)^((p - 3) / 4)
23. x2n = t3 * x1n // x2 = x2n / xd = -2 * u^2 * x1n / xd
24. y2 = y1 * c3
25. y2 = y2 * t1
26. y2 = y2 * u
27. t2 = y1^2
28. t2 = t2 * gxd
29. e2 = t2 == gx1
30. xn = CMOV(x2n, x1n, e2) // If e2, x = x1, else x = x2
31. y = CMOV(y2, y1, e2) // If e2, y = y1, else y = y2
32. e3 = sgn0(u) == sgn0(y) // fix sign of y
33. y = CMOV(-y, y, e3)
34. return (xn, xd, y, 1)

Faz-Hernandez, et al. Expires January 9, 2020 [Page 55]

Internet-Draft hash-to-curve July 2019

D.3. curve25519 (Elligator 2)

 The following is a straight-line implementation of Elligator 2 for
 curve25519 [RFC7748] as specified in Section 8.4.

map_to_curve_elligator2_curve25519(u)
Input: u, an element of F.
Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a
 point on curve25519.

Constants:
1. c1 = (p + 3) / 8 // Integer arithmetic
2. c2 = 2^c1
3. c3 = sqrt(-1)
4. c4 = (p - 5) / 8 // Integer arithmetic

Steps:
1. t1 = u^2
2. t1 = 2 * t1
3. xd = t1 + 1 // nonzero: -1 is square mod p, xd is not
4. x1n = -486662 // x1 = x1n / xd = -486662 / (1 + 2 * u^2)
5. t2 = xd^2
6. gxd = t2 * xd // gxd = xd^3
7. gx1 = 486662 * xd // 486662 * xd
8. gx1 = gx1 + x1n // x1n + 486662 * xd
9. gx1 = gx1 * x1n // x1n^2 + 486662 * x1n * xd
10. gx1 = gx1 + t2 // x1n^2 + 486662 * x1n * xd + xd^2
11. gx1 = gx1 * x1n // x1n^3 + 486662 * x1n^2 * xd + x1n * xd^2
12. t3 = gxd^2
13. t2 = t3^2 // gxd^4
14. t3 = t3 * gxd // gxd^3
15. t3 = t3 * gx1 // gx1 * gxd^3
16. t2 = t2 * t3 // gx1 * gxd^7
17. y11 = t2^c4 // (gx1 * gxd^7)^((p - 5) / 8)
18. y11 = y11 * t3 // gx1 * gxd^3 * (gx1 * gxd^7)^((p - 5) / 8)
19. y12 = y11 * c3
20. t2 = y11^2
21. t2 = t2 * gxd
22. e1 = t2 == gx1
23. y1 = CMOV(y12, y11, e1) // If g(x1) is square, this is its sqrt
24. x2n = x1n * t1 // x2 = x2n / xd = 2 * u^2 * x1n / xd
25. y21 = y11 * u
26. y21 = y21 * c2
27. y22 = y21 * c3
28. gx2 = gx1 * t1 // g(x2) = gx2 / gxd = 2 * u^2 * g(x1)
29. t2 = y21^2
30. t2 = t2 * gxd
31. e2 = t2 == gx2

https://datatracker.ietf.org/doc/html/rfc7748

Faz-Hernandez, et al. Expires January 9, 2020 [Page 56]

Internet-Draft hash-to-curve July 2019

32. y2 = CMOV(y22, y21, e2) // If g(x2) is square, this is its sqrt
33. t2 = y1^2
34. t2 = t2 * gxd
35. e3 = t2 == gx1
36. xn = CMOV(x2n, x1n, e3) // if e3, x = x1, else x = x2
37. y = CMOV(y2, y1, e3) // if e3, y = y1, else y = y2
38. e4 = sgn0(u) == sgn0(y) // fix sign of y
39. y = CMOV(-y, y, e4)
40. return (xn, xd, y, 1)

D.4. edwards25519 (Elligator 2)

 The following is a straight-line implementation of Elligator 2 for
 edwards25519 [RFC7748] as specified in Section 8.4. The subroutine
 map_to_curve_elligator2_curve25519 is defined in Appendix D.3.

map_to_curve_elligator2_edwards25519(u)
Input: u, an element of F.
Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a
 point on edwards25519.

Constants:
1. c1 = sqrt(-486664) // sign MUST be chosen such that sgn0(c1) == 1

Steps:
1. (xMn, xMd, yMn, yMd) = map_to_curve_elligator2_curve25519(u)
2. xn = xMn * yMd
3. xn = xn * c1
4. xd = xMd * yMn // xn / xd = c1 * xM / yM
5. yn = xMn - xMd
6. yd = xMn + xMd // (n / d - 1) / (n / d + 1) = (n - d) / (n + d)
7. return (xn, xd, yn, yd)

D.5. curve448 (Elligator 2)

 The following is a straight-line implementation of Elligator 2 for
 curve448 [RFC7748] as specified in Section 8.5.

https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc7748

Faz-Hernandez, et al. Expires January 9, 2020 [Page 57]

Internet-Draft hash-to-curve July 2019

map_to_curve_elligator2_curve448(u)
Input: u, an element of F.
Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a
 point on curve448.

Constants:
1. c1 = (p - 3) / 4 // Integer arithmetic

Steps:
1. t1 = u^2
2. xd = 1 - t1
3. e1 = xd == 0
4. xd = CMOV(xd, 1, e1) // If xd == 0, set xd = 1
5. x1n = CMOV(-156326, 1, e1) // If xd == 0, x1n = 1, else x1n = -A
6. t2 = xd^2
7. gxd = t2 * xd // gxd = xd^3
8. gx1 = 156326 * xd // 156326 * xd
9. gx1 = gx1 + x1n // x1n + 156326 * xd
10. gx1 = gx1 * x1n // x1n^2 + 156326 * x1n * xd
11. gx1 = gx1 + t2 // x1n^2 + 156326 * x1n * xd + xd^2
12. gx1 = gx1 * x1n // x1n^3 + 156326 * x1n^2 * xd + x1n * xd^2
13. t3 = gxd^2
14. t2 = gx1 * gxd // gx1 * gxd
15. t3 = t3 * t2 // gx1 * gxd^3
16. y1 = t3^c1 // (gx1 * gxd^3)^((p - 3) / 4)
17. y1 = y1 * t2 // gx1 * gxd * (gx1 * gxd^3)^((p - 3) / 4)
18. x2n = -t1 * x1n // x2 = x2n / xd = -1 * u^2 * x1n / xd
19. y2 = y1 * u
20. t2 = y1^2
21. t2 = t2 * gxd
22. e2 = t2 == gx1
23. xn = CMOV(x2n, x1n, e2) // If e2, x = x1, else x = x2
24. y = CMOV(y2, y1, e2) // If e2, y = y1, else y = y2
25. e3 = sgn0(u) == sgn0(y) // fix sign of y
26. y = CMOV(-y, y, e3)
27. return (xn, xd, y, 1)

D.6. edwards448 (Elligator 2)

 The following is a straight-line implementation of Elligator 2 for
 edwards448 [RFC7748] as specified in Section 8.5. The subroutine
 map_to_curve_elligator2_curve448 is defined in Appendix D.5.

https://datatracker.ietf.org/doc/html/rfc7748

Faz-Hernandez, et al. Expires January 9, 2020 [Page 58]

Internet-Draft hash-to-curve July 2019

 map_to_curve_elligator2_edwards448(u)
 Input: u, an element of F.
 Output: (xn, xd, yn, yd) such that (xn / xd, yn / yd) is a
 point on edwards448.

 Steps:
 1. (xn, xd, yn, yd) = map_to_curve_elligator2_curve448(u)
 2. xn2 = xn^2
 3. xd2 = xd^2
 4. xd4 = xd2^2
 5. yn2 = yn^2
 6. yd2 = yd^2
 7. xEn = xn2 - xd2
 8. t2 = xEn - xd2
 9. xEn = xEn * xd2
 10. xEn = xEn * yd
 11. xEn = xEn * yn
 12. xEn = xEn * 4
 13. t2 = t2 * xn2
 14. t2 = t2 * yd2
 15. t3 = 4 * yn2
 16. t1 = t3 + yd2
 17. t1 = t1 * xd4
 18. xEd = t1 + t2
 19. t2 = t2 * xn
 20. t4 = xn * xd4
 21. yEn = t3 - yd2
 22. yEn = yEn * t4
 23. yEn = yEn - t2
 24. t1 = xn2 + xd2
 25. t1 = t1 * xd2
 26. t1 = t1 * xd
 27. t1 = t1 * yn2
 28. t1 = -2 * t1
 29. yEd = t2 + t1
 30. t4 = t4 * yd2
 31. yEd = yEd + t4
 32. return (xEn, xEd, yEn, yEd)

Authors' Addresses

 Armando Faz-Hernandez
 Cloudflare
 101 Townsend St
 San Francisco
 United States of America

 Email: armfazh@cloudflare.com

Faz-Hernandez, et al. Expires January 9, 2020 [Page 59]

Internet-Draft hash-to-curve July 2019

 Sam Scott
 Cornell Tech
 2 West Loop Rd
 New York, New York 10044
 United States of America

 Email: sam.scott@cornell.edu

 Nick Sullivan
 Cloudflare
 101 Townsend St
 San Francisco
 United States of America

 Email: nick@cloudflare.com

 Riad S. Wahby
 Stanford University

 Email: rsw@cs.stanford.edu

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Faz-Hernandez, et al. Expires January 9, 2020 [Page 60]

