
Workgroup: Crypto Forum
Internet-Draft:
draft-irtf-cfrg-kangarootwelve-08
Published: 19 August 2022
Intended Status: Informational
Expires: 20 February 2023
A

u
t
h
o
r
s
:

B. Viguier
ABN AMRO Bank

D. Wong, Ed.
O(1) Labs

G. Van Assche, Ed.
STMicroelectronics

Q. Dang, Ed.
NIST

J. Daemen, Ed.
Radboud University

KangarooTwelve

Abstract

This document defines the KangarooTwelve eXtendable Output Function
(XOF), a hash function with output of arbitrary length. It provides
an efficient and secure hashing primitive, which is able to exploit
the parallelism of the implementation in a scalable way. It uses
tree hashing over a round-reduced version of SHAKE128 as underlying
primitive.

This document builds up on the definitions of the permutations and
of the sponge construction in [FIPS 202], and is meant to serve as a
stable reference and an implementation guide.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document. Code Components extracted from this
document must include Revised BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
1.1. Conventions

2. Specifications
2.1. Inner function F
2.2. Tree hashing over F
2.3. length_encode(x)

3. Test vectors
4. IANA Considerations
5. Security Considerations
6. References

6.1. Normative References
6.2. Informative References

Appendix A. Pseudocode
A.1. Keccak-p[1600,n_r=12]
A.2. KangarooTwelve

Authors' Addresses

1. Introduction

This document defines the KangarooTwelve eXtendable Output Function
(XOF) [K12], i.e. a generalization of a hash function that can
return an output of arbitrary length. KangarooTwelve is based on a
Keccak-p permutation specified in [FIPS202] and has a higher speed
than SHAKE and SHA-3.

The SHA-3 functions process data in a serial manner and are unable
to optimally exploit parallelism available in modern CPU
architectures. Similar to ParallelHash [SP800-185], KangarooTwelve
splits the input message into fragments to exploit available
parallelism. It then applies an inner hash function F on each of
them separately before applying F again on the concatenation of the
digests. It makes use of Sakura coding for ensuring soundness of the
tree hashing mode [SAKURA]. The inner hash function F is a sponge
function and uses a round-reduced version of the permutation Keccak-
f used in SHA-3, making it faster than ParallelHash. Its security
builds up on the scrutiny that Keccak has received since its
publication [KECCAK_CRYPTANALYSIS].

With respect to [FIPS202] and [SP800-185] functions, KangarooTwelve
features the following advantages:

Unlike SHA3-224, SHA3-256, SHA3-384, SHA3-512, KangarooTwelve has
an extendable output.

Unlike any [FIPS202] defined function, similarly to functions
defined in [SP800-185], KangarooTwelve allows the use of a
customization string.

¶

¶

¶

¶

*
¶

*

¶

`...`

|s|

`00`^b

`00`^0

a||b

s[n:m]

s[n:]

x^=y

x & y

x+=y

x-=y

x**y

Unlike any [FIPS202] and [SP800-185] functions but ParallelHash,
KangarooTwelve splits the input message into fragments to exploit
available parallelism.

Unlike ParallelHash, KangarooTwelve does not have overhead when
processing short messages.

The Keccak-f permutation in KangarooTwelve has half the number of
rounds of the one used in SHA3, making it faster than any
function defined in [FIPS202] and [SP800-185].

1.1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

The following notations are used throughout the document:

denotes a string of bytes given in hexadecimal. For example,
`0B 80`.

denotes the length of a byte string `s`. For example, |`FF FF`|
= 2.

denotes a byte string consisting of the concatenation of b
bytes `00`. For example, `00`^7 = `00 00 00 00 00 00 00`.

denotes the empty byte-string.

denotes the concatenation of two strings a and b. For example,
`10`||`F1` = `10 F1`

denotes the selection of bytes from n (inclusive) to m
(exclusive) of a string s. The indexing of a byte-string starts
at 0. For example, for s = `A5 C6 D7`, s[0:1] = `A5` and s[1:3] =
`C6 D7`.

denotes the selection of bytes from n to the end of a string
s. For example, for s = `A5 C6 D7`, s[0:] = `A5 C6 D7` and s[2:]
= `D7`.

In the following, x and y are byte strings of equal length:

denotes x takes the value x XOR y.

denotes x AND y.

In the following, x and y are integers:

denotes x takes the value x + y.

denotes x takes the value x - y.

denotes the exponentiation of x by y.

*

¶

*
¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

M

C

L

input

outputByteLen

2. Specifications

KangarooTwelve is an eXtendable Output Function (XOF). It takes as
input two byte-strings (M, C) and a positive integer L where

byte-string, is the Message and

byte-string, is an OPTIONAL Customization string and

positive integer, the requested number of output bytes.

The Customization string MAY serve as domain separation. It is
typically a short string such as a name or an identifier (e.g. URI,
ODI...)

By default, the Customization string is the empty string. For an API
that does not support a customization string input, C MUST be the
empty string.

2.1. Inner function F

The inner function F makes use of the permutation Keccak-
p[1600,n_r=12], i.e., a version of the permutation Keccak-f[1600]
used in SHAKE and SHA-3 instances reduced to its last n_r=12 rounds
and specified in FIPS 202, sections 3.3 and 3.4 [FIPS202]. KP
denotes this permutation.

F is a sponge function calling this permutation KP with a rate of
168 bytes or 1344 bits. It follows that F has a capacity of 1600 -
1344 = 256 bits or 32 bytes.

The sponge function F takes:

byte-string of positive length, the input bytes and

positive integer, the length of the output in bytes

First non-multiple of 168-bytes-length inputs are padded with zeroes
to the next multiple of 168 bytes while inputs multiple of 168 bytes
are kept as is. Then a byte `80` is XORed to the last byte of the
padded message and the resulting string is split into a sequence of
168-byte blocks.

Inputs of length 0 bytes do not happen as a result of the tree
hashing mode defined in section 2.2.

As defined by the sponge construction, the process operates on a
state and consists of two phases: the absorbing phase that processes
the input and the squeezing phase that produces the output.

In the absorbing phase the state is initialized to all-zero. The
message blocks are XORed into the first 168 bytes of the state. Each
block absorbed is followed with an application of KP to the state.

In the squeezing phase output is formed by taking the first 168
bytes of the state, repeated as many times as necessary until
outputByteLen bytes are obtained, interleaved with the application
of KP to the state.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The definition of the function F equivalently implements the pad10*1
rule. It assumes an at least one-byte-long input where the last byte
is in the `01`-`7F` range, and this is the case in KangarooTwelve.
This last byte serves as domain separation and integrates the first
bit of padding of the pad10*1 rule (hence it cannot be `00`).
Additionally, it must leave room for the second bit of padding
(hence it cannot have the MSB set to 1), should it be the last byte
of the block. For more details, refer to Section 6.1 of [K12].

A pseudocode version is available as follows:

2.2. Tree hashing over F

On top of the sponge function F, KangarooTwelve uses a Sakura-
compatible tree hash mode [SAKURA]. First, merge M and the OPTIONAL
C to a single input string S in a reversible way. length_encode(|C|
) gives the length in bytes of C as a byte-string. See Section 2.3.

Then, split S into n chunks of 8192 bytes.

From S_1 .. S_(n-1), compute the 32-byte Chaining Values CV_1 ..
CV_(n-1). In order to be optimally efficient, this computation
SHOULD exploit the parallelism available on the platform such as
SIMD instructions.

¶

¶

 F(input, outputByteLen):
 offset = 0
 state = `00`^200

 # === Absorb complete blocks ===
 while offset < |input| - 168
 state ^= input[offset : offset + 168] || `00`^32
 state = KP(state)
 offset += 168

 # === Absorb last block and treatment of padding ===
 LastBlockLength = |input| - offset
 state ^= input[offset:] || `00`^(200-LastBlockLength)
 state ^= `00`^167 || `80` || `00`^32
 state = KP(state)

 # === Squeeze ===
 output = `00`^0
 while outputByteLen > 168
 output = output || state[0:168]
 outputByteLen -= 168
 state = KP(state)

 output = output || state[0:outputByteLen]

 return output
 end

¶

¶

 S = M || C || length_encode(|C|)¶

¶

 S = S_0 || .. || S_(n-1)
 |S_0| = .. = |S_(n-2)| = 8192 bytes
 |S_(n-1)| <= 8192 bytes

¶

¶

Compute the final node: FinalNode.

If |S| <= 8192 bytes, FinalNode = S

Otherwise compute FinalNode as follows:

Finally, KangarooTwelve output is retrieved:

If |S| <= 8192 bytes, from F(FinalNode||`07`, L)

Otherwise from F(FinalNode||`06`, L)

The following figure illustrates the computation flow of
KangarooTwelve for |S| <= 8192 bytes:

The following figure illustrates the computation flow of
KangarooTwelve for |S| > 8192 bytes and where length_encode(x) is
abbreviated as l_e(x):

 CV_i = F(S_i||`0B`, 32)¶

¶

* ¶

* ¶

 FinalNode = S_0 || `03 00 00 00 00 00 00 00`
 FinalNode = FinalNode || CV_1
 ..
 FinalNode = FinalNode || CV_(n-1)
 FinalNode = FinalNode || length_encode(n-1)
 FinalNode = FinalNode || `FF FF`

¶

¶

* ¶

 KangarooTwelve(M, C, L) = F(FinalNode||`07`, L)¶

* ¶

 KangarooTwelve(M, C, L) = F(FinalNode||`06`, L)¶

¶

 +--------------+ F(..||`07`, L)
 | S |-----------------> output
 +--------------+

¶

¶

A pseudocode version is provided in Appendix A.2.

The table below gathers the values of the domain separation bytes
used by the tree hash mode:

2.3. length_encode(x)

The function length_encode takes as inputs a non negative integer x
< 256**255 and outputs a string of bytes x_(n-1) || .. || x_0 || n
where

and where n is the smallest non-negative integer such that x <
256**n. n is also the length of x_(n-1) || .. || x_0.

As example, length_encode(0) = `00`, length_encode(12) = `0C 01` and
length_encode(65538) = `01 00 02 03`

 +--------------+
 | S_0 |
 +--------------+
 ||
 +--------------+
 | `03`||`00`^7 |
 +--------------+
 ||
+---------+ F(..||`0B`,32) +--------------+
| S_1 |----------------->| CV_1 |
+---------+ +--------------+
 ||
+---------+ F(..||`0B`,32) +--------------+
| S_2 |----------------->| CV_2 |
+---------+ +--------------+
 ||

 ||
+---------+ F(..||`0B`,32) +--------------+
| S_(n-1) |----------------->| CV_(n-1) |
+---------+ +--------------+
 ||
 +--------------+
 | l_e(n-1) |
 +--------------+
 ||
 +--------------+ F(..||`06`, L)
 | `FF FF` |-----------------> output
 +--------------+

¶

¶

¶

 +--------------------+------------------+
 | Type | Byte |
 +--------------------+------------------+
 | SingleNode | `07` |
 | | |
 | IntermediateNode | `0B` |
 | | |
 | FinalNode | `06` |
 +--------------------+------------------+

¶

¶

 x = sum from i=0..n-1 of 256**i * x_i¶

¶

¶

A pseudocode version is as follows.

3. Test vectors

Test vectors are based on the repetition of the pattern `00 01 ..
FA` with a specific length. ptn(n) defines a string by repeating the
pattern `00 01 .. FA` as many times as necessary and truncated to n
bytes e.g.

¶

 length_encode(x):
 S = `00`^0

 while x > 0
 S = x mod 256 || S
 x = x / 256

 S = S || length(S)

 return S
 end

¶

¶

 Pattern for a length of 17 bytes:
 ptn(17) =
 `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10`

¶

 Pattern for a length of 17**2 bytes:
 ptn(17**2) =
 `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF
 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF
 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF
 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25`

¶

 KangarooTwelve(M=`00`^0, C=`00`^0, 32):
 `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
 3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5`

 KangarooTwelve(M=`00`^0, C=`00`^0, 64):
 `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51
 3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5
 42 69 C0 56 B8 C8 2E 48 27 60 38 B6 D2 92 96 6C
 C0 7A 3D 46 45 27 2E 31 FF 38 50 81 39 EB 0A 71`

 KangarooTwelve(M=`00`^0, C=`00`^0, 10032), last 32 bytes:
 `E8 DC 56 36 42 F7 22 8C 84 68 4C 89 84 05 D3 A8
 34 79 91 58 C0 79 B1 28 80 27 7A 1D 28 E2 FF 6D`

 KangarooTwelve(M=ptn(1 bytes), C=`00`^0, 32):
 `2B DA 92 45 0E 8B 14 7F 8A 7C B6 29 E7 84 A0 58
 EF CA 7C F7 D8 21 8E 02 D3 45 DF AA 65 24 4A 1F`

 KangarooTwelve(M=ptn(17 bytes), C=`00`^0, 32):
 `6B F7 5F A2 23 91 98 DB 47 72 E3 64 78 F8 E1 9B
 0F 37 12 05 F6 A9 A9 3A 27 3F 51 DF 37 12 28 88`

 KangarooTwelve(M=ptn(17**2 bytes), C=`00`^0, 32):
 `0C 31 5E BC DE DB F6 14 26 DE 7D CF 8F B7 25 D1
 E7 46 75 D7 F5 32 7A 50 67 F3 67 B1 08 EC B6 7C`

 KangarooTwelve(M=ptn(17**3 bytes), C=`00`^0, 32):
 `CB 55 2E 2E C7 7D 99 10 70 1D 57 8B 45 7D DF 77
 2C 12 E3 22 E4 EE 7F E4 17 F9 2C 75 8F 0D 59 D0`

 KangarooTwelve(M=ptn(17**4 bytes), C=`00`^0, 32):
 `87 01 04 5E 22 20 53 45 FF 4D DA 05 55 5C BB 5C
 3A F1 A7 71 C2 B8 9B AE F3 7D B4 3D 99 98 B9 FE`

 KangarooTwelve(M=ptn(17**5 bytes), C=`00`^0, 32):
 `84 4D 61 09 33 B1 B9 96 3C BD EB 5A E3 B6 B0 5C
 C7 CB D6 7C EE DF 88 3E B6 78 A0 A8 E0 37 16 82`

 KangarooTwelve(M=ptn(17**6 bytes), C=`00`^0, 32):
 `3C 39 07 82 A8 A4 E8 9F A6 36 7F 72 FE AA F1 32
 55 C8 D9 58 78 48 1D 3C D8 CE 85 F5 8E 88 0A F8`

 KangarooTwelve(M=`00`^0, C=ptn(1 bytes), 32):
 `FA B6 58 DB 63 E9 4A 24 61 88 BF 7A F6 9A 13 30
 45 F4 6E E9 84 C5 6E 3C 33 28 CA AF 1A A1 A5 83`

 KangarooTwelve(M=`FF`, C=ptn(41 bytes), 32):
 `D8 48 C5 06 8C ED 73 6F 44 62 15 9B 98 67 FD 4C
 20 B8 08 AC C3 D5 BC 48 E0 B0 6B A0 A3 76 2E C4`

 KangarooTwelve(M=`FF FF FF`, C=ptn(41**2), 32):
 `C3 89 E5 00 9A E5 71 20 85 4C 2E 8C 64 67 0A C0
 13 58 CF 4C 1B AF 89 44 7A 72 42 34 DC 7C ED 74`

 KangarooTwelve(M=`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 32):
 `75 D2 F8 6A 2E 64 45 66 72 6B 4F BC FC 56 57 B9
 DB CF 07 0C 7B 0D CA 06 45 0A B2 91 D7 44 3B CF`

¶

4. IANA Considerations

None.

5. Security Considerations

This document is meant to serve as a stable reference and an
implementation guide for the KangarooTwelve eXtendable Output
Function. It relies on the cryptanalysis of Keccak and provides with
the same security strength as SHAKE128, i.e., 128 bits of security
against all attacks.

To be more precise, KangarooTwelve is made of two layers:

The inner function F. This layer relies on cryptanalysis.
KangarooTwelve's F function is exactly Keccak[r=1344, c=256] (as
in SHAKE128) reduced to 12 rounds. Any reduced-round
cryptanalysis on Keccak is also a reduced-round cryptanalysis of
KangarooTwelve's F (provided the number of rounds attacked is not
higher than 12).

The tree hashing over F. This layer is a mode on top of F that
does not introduce any vulnerability thanks to the use of Sakura
coding proven secure in [SAKURA].

This reasoning is detailed and formalized in [K12].

To achieve 128-bit security strength, the output L must be chosen
long enough so that there are no generic attacks that violate 128-
bit security. So for 128-bit (second) preimage security the output
should be at least 128 bits, for 128-bit of security against multi-
target preimage attacks with T targets the output should be at least
128+log_2(T) bits and for 128-bit collision security the output
should be at least 256 bits.

Furthermore, when the output length is at least 256 bits,
KangarooTwelve achieves NIST's post-quantum security level 2
[NISTPQ].

Implementing a MAC with KangarooTwelve SHOULD use a HASH-then-MAC
construction. This document recommends a method called HopMAC,
defined as follows:

Similarly to HMAC, HopMAC consists of two calls: an inner call
compressing the message M and the optional customization string C to
a digest, and an outer call computing the tag from the key and the
digest.

Unlike HMAC, the inner call to KangarooTwelve in HopMAC is keyless
and does not require additional protection against side channel
attacks (SCA). Consequently, in an implementation that has to
protect the HopMAC key against SCA only the outer call does need
protection, and this amounts to a single execution of the underlying
permutation.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

 HopMAC(Key, M, C, L) = K12(Key, K12(M, C, 32), L)¶

¶

¶

[RFC2119]

[FIPS202]

[SP800-185]

[K12]

[SAKURA]

[KECCAK_CRYPTANALYSIS]

[XKCP]

[NISTPQ]

In any case, KangarooTwelve MAY be used to compute a MAC with the
key reversibly prepended or appended to the input. For instance, one
MAY compute a MAC on short messages simply calling KangarooTwelve
with the key as the customization string, i.e., MAC = K12(M, Key,
L).

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

National Institute of Standards and Technology, "FIPS PUB
202 - SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions", WWW http://dx.doi.org/
10.6028/NIST.FIPS.202, August 2015.

National Institute of Standards and Technology, "NIST
Special Publication 800-185 SHA-3 Derived Functions:
cSHAKE, KMAC, TupleHash and ParallelHash", WWW https://
doi.org/10.6028/NIST.SP.800-185, December 2016.

6.2. Informative References

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.,
and R. Van Keer, "KangarooTwelve: fast hashing based on
Keccak-p", WWW https://link.springer.com/chapter/
10.1007/978-3-319-93387-0_21, WWW http://eprint.iacr.org/
2016/770.pdf, July 2018.

Bertoni, G., Daemen, J., Peeters, M., and G. Van Assche,
"Sakura: a flexible coding for tree hashing", WWW
https://link.springer.com/chapter/
10.1007/978-3-319-07536-5_14, WWW http://eprint.iacr.org/
2013/231.pdf, June 2014.

Keccak Team, "Summary of Third-party
cryptanalysis of Keccak", WWW https://www.keccak.team/
third_party.html, 2017.

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.,
and R. Van Keer, "eXtended Keccak Code Package", WWW
https://github.com/XKCP/XKCP, September 2018.

National Institute of Standards and Technology,
"Submission Requirements and Evaluation Criteria for the
Post-Quantum Cryptography Standardization Process", WWW
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-
dec-2016.pdf, December 2016.

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

Appendix A. Pseudocode

The sub-sections of this appendix contain pseudocode definitions of
KangarooTwelve. A standalone Python version is also available in the
Keccak Code Package [XKCP] and in [K12]¶

A.1. Keccak-p[1600,n_r=12]

KP(state):
 RC[0] = `8B 80 00 80 00 00 00 00`
 RC[1] = `8B 00 00 00 00 00 00 80`
 RC[2] = `89 80 00 00 00 00 00 80`
 RC[3] = `03 80 00 00 00 00 00 80`
 RC[4] = `02 80 00 00 00 00 00 80`
 RC[5] = `80 00 00 00 00 00 00 80`
 RC[6] = `0A 80 00 00 00 00 00 00`
 RC[7] = `0A 00 00 80 00 00 00 80`
 RC[8] = `81 80 00 80 00 00 00 80`
 RC[9] = `80 80 00 00 00 00 00 80`
 RC[10] = `01 00 00 80 00 00 00 00`
 RC[11] = `08 80 00 80 00 00 00 80`

 for x from 0 to 4
 for y from 0 to 4
 lanes[x][y] = state[8*(x+5*y):8*(x+5*y)+8]

 for round from 0 to 11
 # theta
 for x from 0 to 4
 C[x] = lanes[x][0]
 C[x] ^= lanes[x][1]
 C[x] ^= lanes[x][2]
 C[x] ^= lanes[x][3]
 C[x] ^= lanes[x][4]
 for x from 0 to 4
 D[x] = C[(x+4) mod 5] ^ ROL64(C[(x+1) mod 5], 1)
 for y from 0 to 4
 for x from 0 to 4
 lanes[x][y] = lanes[x][y]^D[x]

 # rho and pi
 (x, y) = (1, 0)
 current = lanes[x][y]
 for t from 0 to 23
 (x, y) = (y, (2*x+3*y) mod 5)
 (current, lanes[x][y]) =
 (lanes[x][y], ROL64(current, (t+1)*(t+2)/2))

 # chi
 for y from 0 to 4
 for x from 0 to 4
 T[x] = lanes[x][y]
 for x from 0 to 4
 lanes[x][y] = T[x] ^((not T[(x+1) mod 5]) & T[(x+2) mod 5])

 # iota
 lanes[0][0] ^= RC[round]

 state = `00`^0
 for x from 0 to 4
 for y from 0 to 4
 state = state || lanes[x][y]

 return state
 end

¶

where ROL64(x, y) is a rotation of the 'x' 64-bit word toward the
bits with higher indexes by 'y' positions. The 8-bytes byte-string x
is interpreted as a 64-bit word in little-endian format.

A.2. KangarooTwelve

Authors' Addresses

Benoît Viguier
ABN AMRO Bank
Groenelaan 2
Amstelveen

Email: cs.ru.nl@viguier.nl

David Wong (editor)
O(1) Labs

Email: davidwong.crypto@gmail.com

Gilles Van Assche (editor)
STMicroelectronics

Email: gilles.vanassche@st.com

Quynh Dang (editor)
National Institute of Standards and Technology

Email: quynh.dang@nist.gov

Joan Daemen (editor)
Radboud University

¶

KangarooTwelve(inputMessage, customString, outputByteLen):
 S = inputMessage || customString
 S = S || length_encode(|customString|)

 if |S| <= 8192
 return F(S || `07`, outputByteLen)
 else
 # === Kangaroo hopping ===
 FinalNode = S[0:8192] || `03` || `00`^7
 offset = 8192
 numBlock = 0
 while offset < |S|
 blockSize = min(|S| - offset, 8192)
 CV = F(S[offset : offset + blockSize] || `0B`, 32)
 FinalNode = FinalNode || CV
 numBlock += 1
 offset += blockSize

 FinalNode = FinalNode || length_encode(numBlock) || `FF FF`

 return F(FinalNode || `06`, outputByteLen)
 end

¶

mailto:cs.ru.nl@viguier.nl
mailto:davidwong.crypto@gmail.com
mailto:gilles.vanassche@st.com
mailto:quynh.dang@nist.gov

Email: joan@cs.ru.nl

mailto:joan@cs.ru.nl

	KangarooTwelve
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions

	2. Specifications
	2.1. Inner function F
	2.2. Tree hashing over F
	2.3. length_encode(x)

	3. Test vectors
	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Pseudocode
	A.1. Keccak-p[1600,n_r=12]
	A.2. KangarooTwelve

	Authors' Addresses

