
Workgroup: Crypto Forum

Internet-Draft:

draft-irtf-cfrg-kangarootwelve-08

Published: 19 August 2022

Intended Status: Informational

Expires: 20 February 2023

Authors: B. Viguier

ABN AMRO Bank

D. Wong, Ed.

O(1) Labs

G. Van Assche, Ed.

STMicroelectronics

Q. Dang, Ed.

NIST

J. Daemen, Ed.

Radboud University

KangarooTwelve

Abstract

This document defines the KangarooTwelve eXtendable Output Function

(XOF), a hash function with output of arbitrary length. It provides

an efficient and secure hashing primitive, which is able to exploit

the parallelism of the implementation in a scalable way. It uses

tree hashing over a round-reduced version of SHAKE128 as underlying

primitive.

This document builds up on the definitions of the permutations and

of the sponge construction in [FIPS 202], and is meant to serve as a

stable reference and an implementation guide.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 February 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/


(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

1.1.  Conventions

2.  Specifications

2.1.  Inner function F

2.2.  Tree hashing over F

2.3.  length_encode( x )

3.  Test vectors

4.  IANA Considerations

5.  Security Considerations

6.  References

6.1.  Normative References

6.2.  Informative References

Appendix A.  Pseudocode

A.1.  Keccak-p[1600,n_r=12]

A.2.  KangarooTwelve

Authors' Addresses

1. Introduction

This document defines the KangarooTwelve eXtendable Output Function

(XOF) [K12], i.e. a generalization of a hash function that can

return an output of arbitrary length. KangarooTwelve is based on a

Keccak-p permutation specified in [FIPS202] and has a higher speed

than SHAKE and SHA-3.

The SHA-3 functions process data in a serial manner and are unable

to optimally exploit parallelism available in modern CPU

architectures. Similar to ParallelHash [SP800-185], KangarooTwelve

splits the input message into fragments to exploit available

parallelism. It then applies an inner hash function F on each of

them separately before applying F again on the concatenation of the

digests. It makes use of Sakura coding for ensuring soundness of the

tree hashing mode [SAKURA]. The inner hash function F is a sponge

function and uses a round-reduced version of the permutation Keccak-

f used in SHA-3, making it faster than ParallelHash. Its security

builds up on the scrutiny that Keccak has received since its

publication [KECCAK_CRYPTANALYSIS].

¶

¶

¶

https://trustee.ietf.org/license-info


`...`

|s|

`00`^b

`00`^0

a||b

s[n:m]

With respect to [FIPS202] and [SP800-185] functions, KangarooTwelve

features the following advantages:

Unlike SHA3-224, SHA3-256, SHA3-384, SHA3-512, KangarooTwelve has

an extendable output.

Unlike any [FIPS202] defined function, similarly to functions

defined in [SP800-185], KangarooTwelve allows the use of a

customization string.

Unlike any [FIPS202] and [SP800-185] functions but ParallelHash,

KangarooTwelve splits the input message into fragments to exploit

available parallelism.

Unlike ParallelHash, KangarooTwelve does not have overhead when

processing short messages.

The Keccak-f permutation in KangarooTwelve has half the number of

rounds of the one used in SHA3, making it faster than any

function defined in [FIPS202] and [SP800-185].

1.1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

The following notations are used throughout the document:

denotes a string of bytes given in hexadecimal. For example,

`0B 80`.

denotes the length of a byte string `s`. For example, |`FF FF`|

= 2.

denotes a byte string consisting of the concatenation of b

bytes `00`. For example, `00`^7 = `00 00 00 00 00 00 00`.

denotes the empty byte-string.

denotes the concatenation of two strings a and b. For example,

`10`||`F1` = `10 F1`

denotes the selection of bytes from n (inclusive) to m

(exclusive) of a string s. The indexing of a byte-string starts

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶



s[n:]

x^=y

x & y

x+=y

x-=y

x**y

M

C

L

at 0. For example, for s = `A5 C6 D7`, s[0:1] = `A5` and s[1:3] =

`C6 D7`.

denotes the selection of bytes from n to the end of a string

s. For example, for s = `A5 C6 D7`, s[0:] = `A5 C6 D7` and s[2:]

= `D7`.

In the following, x and y are byte strings of equal length:

denotes x takes the value x XOR y.

denotes x AND y.

In the following, x and y are integers:

denotes x takes the value x + y.

denotes x takes the value x - y.

denotes the exponentiation of x by y.

2. Specifications

KangarooTwelve is an eXtendable Output Function (XOF). It takes as

input two byte-strings (M, C) and a positive integer L where

byte-string, is the Message and

byte-string, is an OPTIONAL Customization string and

positive integer, the requested number of output bytes.

The Customization string MAY serve as domain separation. It is

typically a short string such as a name or an identifier (e.g. URI,

ODI...)

By default, the Customization string is the empty string. For an API

that does not support a customization string input, C MUST be the

empty string.

2.1. Inner function F

The inner function F makes use of the permutation Keccak-

p[1600,n_r=12], i.e., a version of the permutation Keccak-f[1600]

used in SHAKE and SHA-3 instances reduced to its last n_r=12 rounds

and specified in FIPS 202, sections 3.3 and 3.4 [FIPS202]. KP

denotes this permutation.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



input

outputByteLen

F is a sponge function calling this permutation KP with a rate of

168 bytes or 1344 bits. It follows that F has a capacity of 1600 -

1344 = 256 bits or 32 bytes.

The sponge function F takes:

byte-string of positive length, the input bytes and

positive integer, the length of the output in bytes

First non-multiple of 168-bytes-length inputs are padded with zeroes

to the next multiple of 168 bytes while inputs multiple of 168 bytes

are kept as is. Then a byte `80` is XORed to the last byte of the

padded message and the resulting string is split into a sequence of

168-byte blocks.

Inputs of length 0 bytes do not happen as a result of the tree

hashing mode defined in section 2.2.

As defined by the sponge construction, the process operates on a

state and consists of two phases: the absorbing phase that processes

the input and the squeezing phase that produces the output.

In the absorbing phase the state is initialized to all-zero. The

message blocks are XORed into the first 168 bytes of the state. Each

block absorbed is followed with an application of KP to the state.

In the squeezing phase output is formed by taking the first 168

bytes of the state, repeated as many times as necessary until

outputByteLen bytes are obtained, interleaved with the application

of KP to the state.

The definition of the function F equivalently implements the pad10*1

rule. It assumes an at least one-byte-long input where the last byte

is in the `01`-`7F` range, and this is the case in KangarooTwelve.

This last byte serves as domain separation and integrates the first

bit of padding of the pad10*1 rule (hence it cannot be `00`).

Additionally, it must leave room for the second bit of padding

(hence it cannot have the MSB set to 1), should it be the last byte

of the block. For more details, refer to Section 6.1 of [K12].

A pseudocode version is available as follows:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



2.2. Tree hashing over F

On top of the sponge function F, KangarooTwelve uses a Sakura-

compatible tree hash mode [SAKURA]. First, merge M and the OPTIONAL

C to a single input string S in a reversible way. length_encode( |C|

) gives the length in bytes of C as a byte-string. See Section 2.3.

Then, split S into n chunks of 8192 bytes.

From S_1 .. S_(n-1), compute the 32-byte Chaining Values CV_1 ..

CV_(n-1). In order to be optimally efficient, this computation

SHOULD exploit the parallelism available on the platform such as

SIMD instructions.

  F(input, outputByteLen):

    offset = 0

    state = `00`^200

    # === Absorb complete blocks ===

    while offset < |input| - 168

        state ^= input[offset : offset + 168] || `00`^32

        state = KP(state)

        offset += 168

    # === Absorb last block and treatment of padding ===

    LastBlockLength = |input| - offset

    state ^= input[offset:] || `00`^(200-LastBlockLength)

    state ^= `00`^167 || `80` || `00`^32

    state = KP(state)

    # === Squeeze ===

    output = `00`^0

    while outputByteLen > 168

        output = output || state[0:168]

        outputByteLen -= 168

        state = KP(state)

    output = output || state[0:outputByteLen]

    return output

    end

¶

¶

          S = M || C || length_encode( |C| )¶

¶

          S = S_0 || .. || S_(n-1)

            |S_0| = .. = |S_(n-2)| = 8192 bytes

            |S_(n-1)| <= 8192 bytes

¶

¶

             CV_i    = F( S_i||`0B`, 32 )¶



Compute the final node: FinalNode.

If |S| <= 8192 bytes, FinalNode = S

Otherwise compute FinalNode as follows:

Finally, KangarooTwelve output is retrieved:

If |S| <= 8192 bytes, from F( FinalNode||`07`, L )

Otherwise from F( FinalNode||`06`, L )

The following figure illustrates the computation flow of

KangarooTwelve for |S| <= 8192 bytes:

The following figure illustrates the computation flow of

KangarooTwelve for |S| > 8192 bytes and where length_encode( x ) is

abbreviated as l_e( x ):

¶

* ¶

* ¶

          FinalNode = S_0 || `03 00 00 00 00 00 00 00`

          FinalNode = FinalNode || CV_1

                ..

          FinalNode = FinalNode || CV_(n-1)

          FinalNode = FinalNode || length_encode(n-1)

          FinalNode = FinalNode || `FF FF`

¶

¶

* ¶

      KangarooTwelve( M, C, L ) = F( FinalNode||`07`, L )¶

* ¶

      KangarooTwelve( M, C, L ) = F( FinalNode||`06`, L )¶

¶

          +--------------+  F(..||`07`, L)

          |      S       |----------------->  output

          +--------------+

¶

¶



A pseudocode version is provided in Appendix A.2.

The table below gathers the values of the domain separation bytes

used by the tree hash mode:

                             +--------------+

                             |     S_0      |

                             +--------------+

                                   ||

                             +--------------+

                             | `03`||`00`^7 |

                             +--------------+

                                   ||

+---------+  F(..||`0B`,32)  +--------------+

|   S_1   |----------------->|     CV_1     |

+---------+                  +--------------+

                                   ||

+---------+  F(..||`0B`,32)  +--------------+

|   S_2   |----------------->|     CV_2     |

+---------+                  +--------------+

                                   ||

          ...                      ...

                                   ||

+---------+  F(..||`0B`,32)  +--------------+

| S_(n-1) |----------------->|   CV_(n-1)   |

+---------+                  +--------------+

                                   ||

                             +--------------+

                             |  l_e( n-1 )  |

                             +--------------+

                                   ||

                             +--------------+  F(..||`06`, L)

                             |   `FF FF`    |----------------->  output

                             +--------------+

¶

¶

¶

        +--------------------+------------------+

        |   Type             |       Byte       |

        +--------------------+------------------+

        |  SingleNode        |       `07`       |

        |                    |                  |

        |  IntermediateNode  |       `0B`       |

        |                    |                  |

        |  FinalNode         |       `06`       |

        +--------------------+------------------+

¶



2.3. length_encode( x )

The function length_encode takes as inputs a non negative integer x

< 256**255 and outputs a string of bytes x_(n-1) || .. || x_0 || n

where

and where n is the smallest non-negative integer such that x <

256**n. n is also the length of x_(n-1) || .. || x_0.

As example, length_encode(0) = `00`, length_encode(12) = `0C 01` and

length_encode(65538) = `01 00 02 03`

A pseudocode version is as follows.

3. Test vectors

Test vectors are based on the repetition of the pattern `00 01 ..

FA` with a specific length. ptn(n) defines a string by repeating the

pattern `00 01 .. FA` as many times as necessary and truncated to n

bytes e.g.

¶

             x = sum from i=0..n-1 of 256**i * x_i¶

¶

¶

¶

  length_encode(x):

    S = `00`^0

    while x > 0

        S = x mod 256 || S

        x = x / 256

    S = S || length(S)

    return S

    end

¶

¶

    Pattern for a length of 17 bytes:

    ptn(17) =

      `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10`

¶



    Pattern for a length of 17**2 bytes:

    ptn(17**2) =

      `00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

       10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

       20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

       30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

       40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

       50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

       60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

       70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

       80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

       90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

       A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

       B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

       C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF

       D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

       E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF

       F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA

       00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

       10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

       20 21 22 23 24 25`

¶



  KangarooTwelve(M=`00`^0, C=`00`^0, 32):

    `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51

     3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5`

  KangarooTwelve(M=`00`^0, C=`00`^0, 64):

    `1A C2 D4 50 FC 3B 42 05 D1 9D A7 BF CA 1B 37 51

     3C 08 03 57 7A C7 16 7F 06 FE 2C E1 F0 EF 39 E5

     42 69 C0 56 B8 C8 2E 48 27 60 38 B6 D2 92 96 6C

     C0 7A 3D 46 45 27 2E 31 FF 38 50 81 39 EB 0A 71`

  KangarooTwelve(M=`00`^0, C=`00`^0, 10032), last 32 bytes:

    `E8 DC 56 36 42 F7 22 8C 84 68 4C 89 84 05 D3 A8

     34 79 91 58 C0 79 B1 28 80 27 7A 1D 28 E2 FF 6D`

  KangarooTwelve(M=ptn(1 bytes), C=`00`^0, 32):

    `2B DA 92 45 0E 8B 14 7F 8A 7C B6 29 E7 84 A0 58

     EF CA 7C F7 D8 21 8E 02 D3 45 DF AA 65 24 4A 1F`

  KangarooTwelve(M=ptn(17 bytes), C=`00`^0, 32):

    `6B F7 5F A2 23 91 98 DB 47 72 E3 64 78 F8 E1 9B

     0F 37 12 05 F6 A9 A9 3A 27 3F 51 DF 37 12 28 88`

  KangarooTwelve(M=ptn(17**2 bytes), C=`00`^0, 32):

    `0C 31 5E BC DE DB F6 14 26 DE 7D CF 8F B7 25 D1

     E7 46 75 D7 F5 32 7A 50 67 F3 67 B1 08 EC B6 7C`

  KangarooTwelve(M=ptn(17**3 bytes), C=`00`^0, 32):

    `CB 55 2E 2E C7 7D 99 10 70 1D 57 8B 45 7D DF 77

     2C 12 E3 22 E4 EE 7F E4 17 F9 2C 75 8F 0D 59 D0`

  KangarooTwelve(M=ptn(17**4 bytes), C=`00`^0, 32):

    `87 01 04 5E 22 20 53 45 FF 4D DA 05 55 5C BB 5C

     3A F1 A7 71 C2 B8 9B AE F3 7D B4 3D 99 98 B9 FE`

  KangarooTwelve(M=ptn(17**5 bytes), C=`00`^0, 32):

    `84 4D 61 09 33 B1 B9 96 3C BD EB 5A E3 B6 B0 5C

     C7 CB D6 7C EE DF 88 3E B6 78 A0 A8 E0 37 16 82`

  KangarooTwelve(M=ptn(17**6 bytes), C=`00`^0, 32):

    `3C 39 07 82 A8 A4 E8 9F A6 36 7F 72 FE AA F1 32

     55 C8 D9 58 78 48 1D 3C D8 CE 85 F5 8E 88 0A F8`

  KangarooTwelve(M=`00`^0, C=ptn(1 bytes), 32):

    `FA B6 58 DB 63 E9 4A 24 61 88 BF 7A F6 9A 13 30

     45 F4 6E E9 84 C5 6E 3C 33 28 CA AF 1A A1 A5 83`

  KangarooTwelve(M=`FF`, C=ptn(41 bytes), 32):

    `D8 48 C5 06 8C ED 73 6F 44 62 15 9B 98 67 FD 4C

     20 B8 08 AC C3 D5 BC 48 E0 B0 6B A0 A3 76 2E C4`



  KangarooTwelve(M=`FF FF FF`, C=ptn(41**2), 32):

    `C3 89 E5 00 9A E5 71 20 85 4C 2E 8C 64 67 0A C0

     13 58 CF 4C 1B AF 89 44 7A 72 42 34 DC 7C ED 74`

  KangarooTwelve(M=`FF FF FF FF FF FF FF`, C=ptn(41**3 bytes), 32):

    `75 D2 F8 6A 2E 64 45 66 72 6B 4F BC FC 56 57 B9

     DB CF 07 0C 7B 0D CA 06 45 0A B2 91 D7 44 3B CF`

¶



4. IANA Considerations

None.

5. Security Considerations

This document is meant to serve as a stable reference and an

implementation guide for the KangarooTwelve eXtendable Output

Function. It relies on the cryptanalysis of Keccak and provides with

the same security strength as SHAKE128, i.e., 128 bits of security

against all attacks.

To be more precise, KangarooTwelve is made of two layers:

The inner function F. This layer relies on cryptanalysis.

KangarooTwelve's F function is exactly Keccak[r=1344, c=256] (as

in SHAKE128) reduced to 12 rounds. Any reduced-round

cryptanalysis on Keccak is also a reduced-round cryptanalysis of

KangarooTwelve's F (provided the number of rounds attacked is not

higher than 12).

The tree hashing over F. This layer is a mode on top of F that

does not introduce any vulnerability thanks to the use of Sakura

coding proven secure in [SAKURA].

This reasoning is detailed and formalized in [K12].

To achieve 128-bit security strength, the output L must be chosen

long enough so that there are no generic attacks that violate 128-

bit security. So for 128-bit (second) preimage security the output

should be at least 128 bits, for 128-bit of security against multi-

target preimage attacks with T targets the output should be at least

128+log_2(T) bits and for 128-bit collision security the output

should be at least 256 bits.

Furthermore, when the output length is at least 256 bits,

KangarooTwelve achieves NIST's post-quantum security level 2 

[NISTPQ].

Implementing a MAC with KangarooTwelve SHOULD use a HASH-then-MAC

construction. This document recommends a method called HopMAC,

defined as follows:

Similarly to HMAC, HopMAC consists of two calls: an inner call

compressing the message M and the optional customization string C to

a digest, and an outer call computing the tag from the key and the

digest.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

   HopMAC(Key, M, C, L) = K12(Key, K12(M, C, 32), L)¶

¶



[RFC2119]

[FIPS202]

[SP800-185]

[K12]

[SAKURA]

[KECCAK_CRYPTANALYSIS]

Unlike HMAC, the inner call to KangarooTwelve in HopMAC is keyless

and does not require additional protection against side channel

attacks (SCA). Consequently, in an implementation that has to

protect the HopMAC key against SCA only the outer call does need

protection, and this amounts to a single execution of the underlying

permutation.

In any case, KangarooTwelve MAY be used to compute a MAC with the

key reversibly prepended or appended to the input. For instance, one

MAY compute a MAC on short messages simply calling KangarooTwelve

with the key as the customization string, i.e., MAC = K12(M, Key,

L).

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

National Institute of Standards and Technology, "FIPS PUB

202 - SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions", WWW http://dx.doi.org/

10.6028/NIST.FIPS.202, August 2015. 

National Institute of Standards and Technology, "NIST

Special Publication 800-185 SHA-3 Derived Functions:

cSHAKE, KMAC, TupleHash and ParallelHash", WWW https://

doi.org/10.6028/NIST.SP.800-185, December 2016. 

6.2. Informative References

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.,

and R. Van Keer, "KangarooTwelve: fast hashing based on

Keccak-p", WWW https://link.springer.com/chapter/

10.1007/978-3-319-93387-0_21, WWW http://eprint.iacr.org/

2016/770.pdf, July 2018. 

Bertoni, G., Daemen, J., Peeters, M., and G. Van Assche, 

"Sakura: a flexible coding for tree hashing", WWW

https://link.springer.com/chapter/

10.1007/978-3-319-07536-5_14, WWW http://eprint.iacr.org/

2013/231.pdf, June 2014. 

Keccak Team, "Summary of Third-party

cryptanalysis of Keccak", WWW https://www.keccak.team/

third_party.html, 2017. 

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119


[XKCP]

[NISTPQ]

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.,

and R. Van Keer, "eXtended Keccak Code Package", WWW

https://github.com/XKCP/XKCP, September 2018. 

National Institute of Standards and Technology, 

"Submission Requirements and Evaluation Criteria for the

Post-Quantum Cryptography Standardization Process", WWW

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-

Cryptography/documents/call-for-proposals-final-

dec-2016.pdf, December 2016. 

Appendix A. Pseudocode

The sub-sections of this appendix contain pseudocode definitions of

KangarooTwelve. A standalone Python version is also available in the

Keccak Code Package [XKCP] and in [K12]¶



A.1. Keccak-p[1600,n_r=12]



KP(state):

  RC[0]  = `8B 80 00 80 00 00 00 00`

  RC[1]  = `8B 00 00 00 00 00 00 80`

  RC[2]  = `89 80 00 00 00 00 00 80`

  RC[3]  = `03 80 00 00 00 00 00 80`

  RC[4]  = `02 80 00 00 00 00 00 80`

  RC[5]  = `80 00 00 00 00 00 00 80`

  RC[6]  = `0A 80 00 00 00 00 00 00`

  RC[7]  = `0A 00 00 80 00 00 00 80`

  RC[8]  = `81 80 00 80 00 00 00 80`

  RC[9]  = `80 80 00 00 00 00 00 80`

  RC[10] = `01 00 00 80 00 00 00 00`

  RC[11] = `08 80 00 80 00 00 00 80`

  for x from 0 to 4

    for y from 0 to 4

      lanes[x][y] = state[8*(x+5*y):8*(x+5*y)+8]

  for round from 0 to 11

    # theta

    for x from 0 to 4

      C[x] = lanes[x][0]

      C[x] ^= lanes[x][1]

      C[x] ^= lanes[x][2]

      C[x] ^= lanes[x][3]

      C[x] ^= lanes[x][4]

    for x from 0 to 4

      D[x] = C[(x+4) mod 5] ^ ROL64(C[(x+1) mod 5], 1)

    for y from 0 to 4

      for x from 0 to 4

        lanes[x][y] = lanes[x][y]^D[x]

    # rho and pi

    (x, y) = (1, 0)

    current = lanes[x][y]

    for t from 0 to 23

      (x, y) = (y, (2*x+3*y) mod 5)

      (current, lanes[x][y]) =

          (lanes[x][y], ROL64(current, (t+1)*(t+2)/2))

    # chi

    for y from 0 to 4

      for x from 0 to 4

        T[x] = lanes[x][y]

      for x from 0 to 4

        lanes[x][y] = T[x] ^((not T[(x+1) mod 5]) & T[(x+2) mod 5])

    # iota

    lanes[0][0] ^= RC[round]



  state = `00`^0

  for x from 0 to 4

    for y from 0 to 4

      state = state || lanes[x][y]

  return state

  end

¶



where ROL64(x, y) is a rotation of the 'x' 64-bit word toward the

bits with higher indexes by 'y' positions. The 8-bytes byte-string x

is interpreted as a 64-bit word in little-endian format.

A.2. KangarooTwelve

Authors' Addresses

Benoît Viguier

ABN AMRO Bank

Groenelaan 2

Amstelveen

Email: cs.ru.nl@viguier.nl

David Wong (editor)

O(1) Labs

Email: davidwong.crypto@gmail.com

Gilles Van Assche (editor)

STMicroelectronics

Email: gilles.vanassche@st.com

Quynh Dang (editor)

National Institute of Standards and Technology

¶

KangarooTwelve(inputMessage, customString, outputByteLen):

  S = inputMessage || customString

  S = S || length_encode( |customString| )

  if |S| <= 8192

      return F(S || `07`, outputByteLen)

  else

      # === Kangaroo hopping ===

      FinalNode = S[0:8192] || `03` || `00`^7

      offset = 8192

      numBlock = 0

      while offset < |S|

          blockSize = min( |S| - offset, 8192)

          CV = F(S[offset : offset + blockSize] || `0B`, 32)

          FinalNode = FinalNode || CV

          numBlock += 1

          offset   += blockSize

      FinalNode = FinalNode || length_encode( numBlock ) || `FF FF`

      return F(FinalNode || `06`, outputByteLen)

  end

¶

mailto:cs.ru.nl@viguier.nl
mailto:davidwong.crypto@gmail.com
mailto:gilles.vanassche@st.com


Email: quynh.dang@nist.gov

Joan Daemen (editor)

Radboud University

Email: joan@cs.ru.nl

mailto:quynh.dang@nist.gov
mailto:joan@cs.ru.nl

	KangarooTwelve
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions

	2. Specifications
	2.1. Inner function F
	2.2. Tree hashing over F
	2.3. length_encode( x )

	3. Test vectors
	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Pseudocode
	A.1. Keccak-p[1600,n_r=12]
	A.2. KangarooTwelve

	Authors' Addresses


