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Abstract

This document describes the OPAQUE protocol, a secure asymmetric

password-authenticated key exchange (aPAKE) that supports mutual

authentication in a client-server setting without reliance on PKI

and with security against pre-computation attacks upon server

compromise. In addition, the protocol provides forward secrecy and

the ability to hide the password from the server, even during

password registration. This document specifies the core OPAQUE

protocol, along with several instantiations in different

authenticated key exchange protocols.
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1. Introduction

Password authentication is the prevalent form of authentication in

the web and in many other applications. In the most common

implementation, a user authenticates to a server by sending its user

ID and password to the server over a TLS connection. This makes the

password vulnerable to server mishandling, including accidentally

logging the password or storing it in cleartext in a database.

Server compromise resulting in access to these plaintext passwords

is not an uncommon security incident, even among security-conscious

companies. Moreover, plaintext password authentication over TLS is

also vulnerable to TLS failures, including many forms of PKI

attacks, certificate mishandling, termination outside the security

perimeter, visibility to middle boxes, and more.

Asymmetric (or augmented) Password Authenticated Key Exchange

(aPAKE) protocols are designed to provide password authentication

and mutually authenticated key exchange in a client-server setting

without relying on PKI (except during user/password registration)

and without disclosing passwords to servers or other entities other

than the client machine. A secure aPAKE should provide the best

possible security for a password protocol. Namely, it should only be

open to inevitable attacks, such as online impersonation attempts

with guessed user passwords and offline dictionary attacks upon the

compromise of a server and leakage of its password file. In the

latter case, the attacker learns a mapping of a user's password

under a one-way function and uses such a mapping to validate

potential guesses for the password. Crucially important is for the

password protocol to use an unpredictable one-way mapping.

Otherwise, the attacker can pre-compute a deterministic list of

mapped passwords leading to almost instantaneous leakage of

passwords upon server compromise.

Despite the existence of multiple designs for (PKI-free) aPAKE

protocols, none of these protocols are secure against pre-

computation attacks. In particular, none of these protocols can use

the standard technique against pre-computation that combines secret

random values ("salt") into the one-way password mappings. Either

these protocols do not use salt at all or, if they do, they transmit

the salt from server to user in the clear, hence losing the secrecy

of the salt and its defense against pre-computation. Furthermore,

transmitting the salt may require additional protocol messages.

This document describes OPAQUE, a PKI-free secure aPAKE that is

secure against pre-computation attacks and capable of using a secret

salt. OPAQUE provides forward secrecy (essential for protecting past

communications in case of password leakage) and the ability to hide
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the password from the server - even during password registration.

Furthermore, OPAQUE enjoys good performance and an array of

additional features including the ability to increase the difficulty

of offline dictionary attacks via iterated hashing or other

hardening schemes, and offloading these operations to the client

(that also helps against online guessing attacks); extensibility of

the protocol to support storage and retrieval of user's secrets

solely based on a password; and being amenable to a multi-server

distributed implementation where offline dictionary attacks are not

possible without breaking into a threshold of servers (such a

distributed solution requires no change or awareness on the client

side relative to a single-server implementation).

OPAQUE is defined and proven as the composition of two

functionalities: an Oblivious PRF (OPRF) and an authenticated key-

exchange (AKE) protocol. It can be seen as a "compiler" for

transforming any suitable AKE protocol into a secure aPAKE protocol.

(See Section 6 for requirements of the OPRF and AKE protocols.) This

document specifies OPAQUE instantiations based on a variety of AKE

protocols, including HMQV [HMQV], 3DH [SIGNAL] and SIGMA [SIGMA]. In

general, the modularity of OPAQUE's design makes it easy to

integrate with additional AKE protocols, e.g., IKEv2, and with

future ones such as those based on post-quantum techniques.

Currently, the most widely deployed (PKI-free) aPAKE is SRP 

[RFC2945], which is vulnerable to pre-computation attacks, lacks a

proof of security, and is less efficient relative to OPAQUE.

Moreover, SRP requires a ring as it mixes addition and

multiplication operations, and thus does not work over plain

elliptic curves. OPAQUE is therefore a suitable replacement for

applications that use SRP.

This draft complies with the requirements for PAKE protocols set

forth in [RFC8125].

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Notation

The following terms are used throughout this document to describe

the operations, roles, and behaviors of OPAQUE:

Client (U): Entity which has knowledge of a password and wishes

to authenticate.
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Server (S): Entity which authenticates clients using passwords.

(skX, pkX): An AKE key pair used in role X; skX is the private

key and pkX is the public key. For example, (skU, pkU) refers to

U's private and public key.

kX: An OPRF private key used in role X. For example, kU refers to

U's private OPRF key.

I2OSP and OS2IP: Convert a byte string to and from a non-negative

integer as described in [RFC8017]. Note that these functions

operate on byte strings in big-endian byte order.

concat(x0, ..., xN): Concatenation of byte strings. concat(0x01,

0x0203, 0x040506) = 0x010203040506.

random(n): Generate a random byte string of length n bytes.

xor(a,b): XOR of byte strings; xor(0xF0F0, 0x1234) = 0xE2C4. It

is an error to call this function with two arguments of unequal

length.

ct_equal(a, b): Return true if a is equal to b, and false

otherwise. This function is constant-time in the length of a and 

b, which are assumed to be of equal length, irrespective of the

values a or b.

Except if said otherwise, random choices in this specification refer

to drawing with uniform distribution from a given set (i.e.,

"random" is short for "uniformly random"). Random choices can be

replaced with fresh outputs from a cryptographically strong

pseudorandom generator, according to the requirements in [RFC4086],

or pseudorandom function.

The name OPAQUE is a homonym of O-PAKE where O is for Oblivious (the

name OPAKE was taken).

2. Cryptographic Protocol and Algorithm Dependencies

OPAQUE relies on the following protocols and primitives:

Oblivious Pseudorandom Function (OPRF, [I-D.irtf-cfrg-voprf]):

Blind(x): Convert input x into an element of the OPRF group,

randomize it by some value r, producing M, and output (r, M).

Evaluate(k, M): Evaluate input M using private key k, yielding

output Z.

Unblind(r, Z): Remove randomizer r from Z, yielding output N.
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Finalize(x, N, info): Compute the OPRF output using input x, 

N, and domain separation tag info.

Serialize(x): Encode the OPRF group element x as a fixed-

length byte string enc. The size of enc is determined by the

underlying OPRF group.

Deserialize(enc): Decode a byte string enc into an OPRF group

element x, or produce an error if enc is an invalid encoding.

This is the inverse of Serialize, i.e., x =

Deserialize(Serialize(x)).

Cryptographic hash function:

Hash(m): Compute the cryptographic hash of input message "m".

Nh: The output size of the Hash function.

Memory Hard Function (MHF):

Harden(msg, params): Repeatedly apply a memory hard function

with parameters params to strengthen the input msg against

offline dictionary attacks. This function also needs to

satisfy collision resistance.

We also assume the existence of a function KeyGen from [I-D.irtf-

cfrg-voprf], which generates an OPRF private and public key. OPAQUE

only requires an OPRF private key. We write (kU, _) = KeyGen() to

denote use of this function for generating secret key kU (and

discarding the corresponding public key).

3. Core Protocol

OPAQUE consists of two stages: registration and authenticated key

exchange. In the first stage, a client registers its password with

the server and stores its encrypted credentials on the server. In

the second stage, a client obtains those credentials, unlocks them

using the user's password and subsequently uses them as input to an

authenticated key exchange (AKE) protocol.

Both registration and authenticated key exchange stages require

running an OPRF protocol. The latter stage additionally requires

running a mutually-authenticated key-exchange protocol (AKE) using

credentials recovered after the OPRF protocol completes. (The key-

exchange protocol MUST satisfy forward secrecy and the KCI

requirement discussed in Section 6.)

We first define the core OPAQUE protocol based on a generic OPRF,

hash, and MHF function. Section 4 describes specific instantiations

of OPAQUE using various AKE protocols, including: HMQV, 3DH, and
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SIGMA-I. [I-D.sullivan-tls-opaque] discusses integration with TLS

1.3 [RFC8446].

3.1. Protocol messages

The OPAQUE protocol runs the OPRF protocol in two stages:

registration and authenticated key exchange. A client and server

exchange protocol messages in executing these stages. This section

specifies the structure of these protocol messages using TLS

notation (see [RFC8446], Section 3).

OPAQUE makes use of an additional structure Credentials to store

user (client) credentials. A Credentials structure consists of

secret and cleartext CredentialExtension values. Each 

CredentialExtension indicates the type of extension and carries the

raw bytes. This specification includes extensions for OPAQUE,

including:

skU: The encoded user private key for the AKE protocol.

pkU: The encoded user public key for the AKE protocol.

pkS: The encoded server public key for the AKE protocol.

idU: The user identity. This is an application-specific value,

e.g., an e-mail address or normal account name.

idS: The server identity. This is typically a domain name, e.g.,

example.com. See Section 3.5 for information about this identity.

¶

¶

enum {

    registration_request(1),

    registration_response(2),

    registration_upload(3),

    credential_request(4),

    credential_response(5),

    (255)

} ProtocolMessageType;

struct {

    ProtocolMessageType msg_type;    /* protocol message type */

    uint24 length;                   /* remaining bytes in message */

    select (ProtocolMessage.msg_type) {

        case registration_request: RegistrationRequest;

        case registration_response: RegistrationResponse;

        case registration_upload: RegistrationUpload;

        case credential_request: CredentialRequest;

        case credential_response: CredentialResponse;

    };

} ProtocolMessage;

¶
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secret_credentials

cleartext_credentials

Each public and private key value is an opaque byte string, specific

to the AKE protocol in which OPAQUE is instantiated. For example, if

used as raw public keys for TLS 1.3 [RFC8446], they may be RSA or

ECDSA keys as per [RFC7250].

The full Credentials encoding is as follows.

OPAQUE credentials which require secrecy and

authentication.

OPAQUE credentials which require

authentication but not secrecy.

Applications MUST include skU in secret_credentials and pkS in

either cleartext_credentials or secret_credentials. All other

CredentialExtension values are optional. It is RECOMMENDED that

applications include pkS and idS in cleartext_credentials, as this

allows servers to not store redundant encryptions of these values

for each user in case the server uses the same values for multiple

users.

Additionally, we assume helper functions SerializeExtensions and 

DeserializeExtensions which translate a list of CredentialExtension

structures to and from a unique byte string encoding.

OPAQUE uses an Envelope structure to encapsulate an encrypted 

Credentials structure. It is encoded as follows.

¶

¶

enum {

  skU(1),

  pkU(2),

  pkS(3),

  idU(4),

  idS(5),

  (255)

} CredentialType;

struct {

  CredentialType type;

  CredentialData data<0..2^16-1>;

} CredentialExtension;

struct {

  CredentialExtension secret_credentials<1..2^16-1>;

  CredentialExtension cleartext_credentials<0..2^16-1>;

} Credentials;
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nonce

ct

auth_data

auth_tag

A unique 32-byte nonce used to protect this Envelope.

Encoding of encrypted and authenticated credential extensions

list.

Encoding of an authenticated credential extensions list.

Authentication tag protecting the contents of the

envelope.

3.2. Offline registration stage

Registration is executed between a user U (running on a client

machine) and a server S. It is assumed the server can identify the

user and the client can authenticate the server during this

registration phase. This is the only part in OPAQUE that requires an

authenticated channel, either physical, out-of-band, PKI-based, etc.

This section describes the registration flow, message encoding, and

helper functions. Moreover, U has a key pair (skU, pkU) for an AKE

protocol which is suitable for use with OPAQUE; See Section 3.3.

(skU, pkU) may be randomly generated for the account or provided by

the calling client. Clients MUST NOT use the same key pair (skU,

pkU) for two different accounts.

To begin, U chooses password pwdU, and S chooses its own pair of

private-public keys skS and pkS for use with the AKE. S can use the

same pair of keys with multiple users. These steps can happen

offline, i.e., before the registration phase. Once complete, the

registration process proceeds as follows:

struct {

  opaque nonce[32];

  opaque ct<1..2^16-1>;

  opaque auth_data<0..2^16-1>;

} InnerEnvelope;

struct {

  InnerEnvelope contents;

  opaque auth_tag[Nh];

} Envelope;
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id

data

data_blind

data

Both client and server MUST validate the other party's public key

before use. See Section 6.3 for more details.

3.2.1. Registration messages

An opaque string carrying the client account information, if

available.

An encoded element in the OPRF group. See [I-D.irtf-cfrg-

voprf] for a description of this encoding.

An encoded OPRF scalar element. See [I-D.irtf-cfrg-

voprf] for a description of this encoding.

 Client (idU, pwdU, skU, pkU)                 Server (skS, pkS)

  -----------------------------------------------------------------

   request, metadata = CreateRegistrationRequest(idU, pwdU)

                                   request

                              ----------------->

            (response, kU) = CreateRegistrationResponse(request, pkS)

                                   response

                              <-----------------

 record = FinalizeRequest(idU, pwdU, skU, metadata, request, response)

                                    record

                              ------------------>

                                             StoreUserRecord(record)

¶

¶

struct {

    opaque id<0..2^16-1>;

    opaque data<1..2^16-1>;

} RegistrationRequest;

¶

¶

¶

struct {

    opaque data_blind<1..2^16-1>;

} RequestMetadata;

¶

¶

struct {

    opaque data<0..2^16-1>;

    opaque pkS<0..2^16-1>;

    CredentialType secret_types<1..255>;

    CredentialType cleartext_types<0..255>;

} RegistrationResponse;

¶



pkS

envelope

pkU

An encoded element in the OPRF group. See [I-D.irtf-cfrg-voprf]

for a description of this encoding.

An encoded public key that will be used for the online

authenticated key exchange stage.

An authenticated encoding of a Credentials structure with

additional application-specific data.

An encoded public key, matching the public key contained within

the encrypted envelope.

3.2.2. Registration functions

3.2.2.1. CreateRegistrationRequest

¶

¶

struct {

    Envelope envelope;

    opaque pkU<0..2^16-1>;

} RegistrationUpload;

¶

¶

¶

CreateRegistrationRequest(idU, pwdU)

Input:

- idU, an opaque byte string containing the user's identity

- pwdU, an opaque byte string containing the user's password

Output:

- request, a RegistrationRequest structure

- metadata, a RequestMetadata structure

Steps:

1. (r, M) = Blind(pwdU)

2. data = Serialize(M)

3. Create RegistrationRequest request with (idU, data)

4. Create RequestMetadata metadata with Serialize(r)

5. Output (request, metadata)

¶



3.2.2.2. CreateRegistrationResponse

CreateRegistrationResponse(request, pkS)

Parameters:

- secret_credentials_list, a list of CredentialType values clients should include

 in the secret_credentials list of their Credentials structure

- cleartext_credentials_list, a list of CredentialType values clients should include

 in the cleartext_credentials list of their Credentials structure

Input:

- request, a RegistrationRequest structure

- pkS, the server's public key

Output:

- response, a RegistrationResponse structure

- kU, Per-user OPRF key

Steps:

1. (kU, _) = KeyGen()

2. M = Deserialize(request.data)

3. Z = Evaluate(kU, M)

4. data = Z.encode()

5. Create RegistrationResponse response with

     (data, pkS, secret_credentials_list, cleartext_credentials_list)

6. Output (response, kU)

¶



3.2.2.3. FinalizeRequest

[[RFC editor: please change "OPAQUE00" to the correct RFC identifier

before publication.]]

[[https://github.com/cfrg/draft-irtf-cfrg-opaque/issues/58: Should

the nonce size be a parameter?]]

The inputs to HKDF-Extract and HKDF-Expand are as specified in 

[RFC5869]. The underlying hash function is that which is associated

with the OPAQUE configuration (see Section 5).

FinalizeRequest(idU, pwdU, skU, metadata, request, response)

Parameters:

- params, the MHF parameters established out of band

Input:

- idU, an opaque byte string containing the user's identity

- pwdU, an opaque byte string containing the user's password

- skU, the user's private key

- metadata, a RequestMetadata structure

- request, a RegistrationRequest structure

- response, a RegistrationResponse structure

Output:

- upload, a RegistrationUpload structure

- export_key, an additional key

Steps:

1. Z = Deserialize(response.data)

2. N = Unblind(input.data_blind, Z)

3. y = Finalize(pwdU, N, "OPAQUE00")

4. rwdU = HKDF-Extract("rwdU", Harden(y, params))

5. Create secret_credentials with CredentialExtensions matching that

   contained in response.secret_credentials_list

6. Create cleartext_credentials with CredentialExtensions matching that

   contained in response.cleartext_credentials_list

7. pt = SerializeExtensions(secret_credentials)

8. nonce = random(32)

9. pseudorandom_pad = HKDF-Expand(rwdU, concat(nonce, "Pad"), len(pt))

10. auth_key = HKDF-Expand(rwdU, concat(nonce, "AuthKey"), Nh)

11. export_key = HKDF-Expand(rwdU, concat(nonce, "ExportKey"), Nh)

12. ct = xor(pt, pseudorandom_pad)

13. auth_data = SerializeExtensions(cleartext_credentials)

14. Create InnerEnvelope contents with (nonce, ct, auth_data)

15. t = HMAC(auth_key, contents)

16. Create Envelope envU with (contents, t)

17. Create RegistrationUpload upload with envelope value (envU, pkU)

18. Output (upload, export_key)

¶
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OPAQUE security requires authentication for all CredentialExtension

values, and secrecy for skU. If an application additionally requires

secrecy of pkS, this value SHOULD be included in the 

Credentials.secret_credentials list (step 5), and MUST NOT be

included in the Credentials.cleartext_credentials list. Applications

may optionally include pkU, idU, or idS in the 

Credentials.cleartext_credentials structure, or in 

Credentials.secret_credentials if secrecy of these values is

desired. Servers MUST specify how clients encode extensions in the 

Credentials structure as part of this registration phase.

The server identity idS comes from context. For example, if

registering with a server within the context of a TLS connection,

the identity might be the server domain name. See Section 3.5.

See Section 3.4 for details about the output export_key usage.

3.2.2.4. StoreUserRecord

The StoreUserRecord function stores the tuple (envU, pkS, skS, pkU,

kU), where envU and pkU are obtained from the input

RegistrationUpload message in a record associated with the user's

account idU. If skS and pkS are used for multiple users, the server

can store these values separately and omit them from the user's

record.

3.3. Online authenticated key exchange stage

After registration, the user (through a client machine) and server

run the authenticated key exchange stage of the OPAQUE protocol.

This stage is composed of a concurrent OPRF and key exchange flow.

The key exchange protocol is authenticated using the client and

server private keys established during the offline phase; see 

Section 3.2. The type of keys MUST be suitable for the key exchange

protocol. For example, if the key exchange protocol is 3DH, as

described in Section 4.2, then the private and public keys must be

Diffie-Hellman keys. At the end, the client proves the user's

knowledge of the password, and both client and server agree on a

mutually authenticated shared secret key.

This section describes the message flow, encoding, and helper

functions used in this stage.
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id

data

data

The protocol messages below do not include the AKE protocol.

Instead, OPAQUE assumes the client and server run the AKE using the

credentials recovered from the OPRF protocol.

Note also that the authenticated key exchange stage can run the OPRF

and AKE protocols concurrently with interleaved and combined

messages (while preserving the internal ordering of messages in each

protocol). In all cases, the client needs to obtain envU and rwdU

(i.e., complete the OPRF protocol) before it can use its own private

key skU and the server's public key pkS in the AKE. See Section 4

for examples of this integration.

3.3.1. Authenticated key exchange messages

An opaque string carrying the client account information, if

available. If absent, the server is assumed to have some way of

ascertaining the client account information out of band.

An encoded element in the OPRF group. See [I-D.irtf-cfrg-

voprf] for a description of this encoding.

 Client (idU, pwdU)                           Server (skS, pkS)

  -----------------------------------------------------------------

   request, metadata = CreateCredentialRequest(idU, pwdU)

                                   request

                              ----------------->

         (response, pkU) = CreateCredentialResponse(request, pkS)

                                   response

                              <-----------------

  creds, export_key = RecoverCredentials(pwdU, metadata, request, response)

                               (AKE with creds)

                              <================>

¶

¶

¶

struct {

    opaque id<0..2^16-1>;

    opaque data<1..2^16-1>;

} CredentialRequest;

¶

¶

¶

struct {

    opaque data<1..2^16-1>;

    opaque envelope<1..2^16-1>;

    opaque pkS<0..2^16-1>;

} CredentialResponse;

¶



envelope

pkS

An encoded element in the OPRF group. See [I-D.irtf-cfrg-voprf]

for a description of this encoding.

An authenticated encoding of a Credentials structure.

An encoded public key that will be used for the online

authenticated key exchange stage. This field is optional.

3.3.2. Authenticated key exchange functions

3.3.2.1. CreateCredentialRequest(idU, pwdU)

3.3.2.2. CreateCredentialResponse(request, pkS)

¶

¶

¶

CreateCredentialRequest(idU, pwdU)

Input:

- idU, an opaque byte string containing the user's identity

- pwdU, an opaque byte string containing the user's password

Output:

- request, an CredentialRequest structure

- metadata, a RequestMetadata structure

Steps:

1. (r, M) = Blind(pwdU)

2. data = Serialize(M)

3. Create CredentialRequest request with (idU, data)

4. Create RequestMetadata metadata with Serialize(r)

5. Output (request, metadata)

¶

CreateCredentialResponse(request, pkS)

Input:

- request, an CredentialRequest structure

- pkS, public key of the server

Output:

- response, a CredentialResponse structure

- pkU, public key of the user

Steps:

1. (kU, envU, pkU) = LookupUserRecord(request.id)

2. M = Deserialize(request.data)

3. Z = Evaluate(kU, M)

4. data = Z.encode()

5. Create CredentialResponse response with (data, envU, pkS)

6. Output (response, pkU)

¶



3.3.2.3. RecoverCredentials(pwdU, metadata, request, response)

[[RFC editor: please change "OPAQUE00" to the correct RFC identifier

before publication.]]

3.4. Export Key

In addition to Credentials, OPAQUE outputs an export_key that may be

used for additional application-specific purposes. For example, one

might expand the use of OPAQUE with a credential-retrieval

functionality that is separate from the contents of the Credentials

structure.

The exporter_key MUST NOT be used in any way before the HMAC value

in the envelope is validated.

RecoverCredentials(pwdU, metadata, request, response)

Parameters:

- params, the MHF parameters established out of band

Input:

- pwdU, an opaque byte string containing the user's password

- metadata, a RequestMetadata structure

- request, a RegistrationRequest structure

- response, a RegistrationResponse structure

Output:

- C, a Credentials structure

- export_key, an additional key

Steps:

1. Z = Deserialize(response.data)

2. N = Unblind(input.data_blind, Z)

3. y = Finalize(pwdU, N, "OPAQUE00")

4. contents = response.envelope.contents

5. nonce = contents.nonce

6. ct = contents.ct

7. rwdU = HKDF-Extract("rwdU", Harden(y, params))

8. pseudorandom_pad = HKDF-Expand(rwdU, concat(nonce, "Pad"), len(ct))

9. auth_key = HKDF-Expand(rwdU, concat(nonce, "AuthKey"), Nh)

10. export_key = HKDF-Expand(rwdU, concat(nonce, "ExportKey"), Nh)

11. expected_tag = HMAC(auth_key, contents)

12. If !ct_equal(response.envelope.auth_tag, expected_tag), raise DecryptionError

13. pt = xor(ct, pseudorandom_pad)

14. secret_credentials = DeserializeExtensions(pt)

15. cleartext_credentials = DeserializeExtensions(auth_data)

16. Create Credentials creds with (secret_credentials, cleartext_credentials)

17. Output creds, export_key

¶

¶

¶

¶



3.5. AKE Execution and Party Identities

The AKE protocol is run as part of the online authenticated key

exchange flow described above. The AKE MUST authenticate the OPAQUE

transcript, which consists of the encoded request and response

messages exchanged during the OPRF computation and credential fetch

flow.

Also, authenticated key-exchange protocols generate keys that need

to be uniquely and verifiably bound to a pair of identities. In the

case of OPAQUE, those identities correspond to idU and idS. Thus, it

is essential for the parties to agree on such identities, including

an agreed bit representation of these identities as needed.

Applications may have different policies about how and when

identities are determined. A natural approach is to tie idU to the

identity the server uses to fetch envU (hence determined during

password registration) and to tie idS to the server identity used by

the client to initiate an offline password registration or online

authenticated key exchange session. idS and idU can also be part of

envU or be tied to the parties' public keys. In principle, it is

possible that identities change across different sessions as long as

there is a policy that can establish if the identity is acceptable

or not to the peer. However, we note that the public keys of both

the server and the user must always be those defined at time of

password registration.

4. Authenticated Key Exchange Protocol Instantiations

This section describes several instantiations of OPAQUE using

different AKE protocols, all of which satisfy the forward secrecy

and KCI properties discussed in Section 6. For the sake of

concreteness it only includes AKE protocols consisting of three

messages, denoted KE1, KE2, KE3, where KE1 and KE2 include key

exchange shares (DH values) sent by client and server, respectively,

and KE3 provides explicit client authentication and full forward

security (without it, forward secrecy is only achieved against

eavesdroppers which is insufficient for OPAQUE security).

As shown in [OPAQUE], OPAQUE cannot use less than three messages so

the 3-message instantiations presented here are optimal in terms of

number of messages. On the other hand, there is no impediment of

using OPAQUE with protocols with more than 3 messages as in the case

of IKEv2 (or the underlying SIGMA-R protocol [SIGMA]).

The generic outline of OPAQUE with a 3-message AKE protocol is as

follows:

C to S: credential_request, KE1

¶
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¶
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S to C: credential_response, KE2

C to S: KE3

Key derivation and other details of the protocol are specified by

the KE scheme. We note that by the results in [OPAQUE], KE2 and KE3

should authenticate credential_request and credential_response,

respectively, for binding between the underlying OPRF protocol

messages and the KE session.

Next, we present three instantiations of OPAQUE - with HMQV, 3DH and

SIGMA-I. [I-D.sullivan-tls-opaque] discusses integration with TLS

1.3 [RFC8446]. Note that these instantiations transmit idU in

cleartext. Applications that require idU privacy should encrypt this

appropriately. Mechanisms for doing so are outside the scope of this

document, though may be addressed elsewhere, such as in [I-

D.sullivan-tls-opaque].

OPAQUE may be instantiated with any post-quantum (PQ) AKE protocol

that has the message flow above and security properties (KCI

resistance and forward secrecy) outlined in Section 6. This document

does not specify such an instantiation. Note that such an

instantiation is not quantum safe unless the OPRF and data

encryption schemes are quantum safe. However, an instantiation where

both AKE and data encryption are quantum safe, but the OPRF is not,

would still ensure data security against future quantum attacks

since breaking the OPRF does not retroactively affect the security

of data transferred over a quantum-safe secure channel.

4.1. Key Schedule Utility Functions

The key derivation procedures for HMQV, 3DH, and SIGMA-I

instantiations all make use of the functions below, re-purposed from

TLS 1.3 [RFC8446].

Where HkdfLabel is specified as:

* ¶

* ¶

¶

¶

¶

¶

HKDF-Expand-Label(Secret, Label, Context, Length) =

  HKDF-Expand(Secret, HkdfLabel, Length)

¶

¶

struct {

   uint16 length = Length;

   opaque label<8..255> = "OPAQUE " + Label;

   opaque context<0..255> = Context;

} HkdfLabel;

Derive-Secret(Secret, Label, Transcript) =

    HKDF-Expand-Label(Secret, Label, Hash(Transcript), Nh)

¶



HKDF uses Hash as its underlying hash function, which is the same as

that which is indicated by the OPAQUE instantiation.

4.2. Instantiation with HMQV and 3DH

The integration of OPAQUE with HMQV [HMQV] leads to the most

efficient instantiation of OPAQUE in terms of exponentiations count.

Performance is close to optimal due to the low cost of

authentication in HMQV: Just 1/6 of an exponentiation for each party

over the cost of a regular DH exchange. However, HMQV is encumbered

by an IBM patent, hence we also present OPAQUE with 3DH which only

differs in the key derivation function at the cost of two additional

exponentiations (and less resilience to the compromise of ephemeral

exponents). We note that 3DH serves as a basis for the key-exchange

protocol of [SIGNAL]. Importantly, many other protocols follow a

similar format with differences mainly in the key derivation

function. This includes the Noise family of protocols. Extensions

also apply to KEM-based AKE protocols as in many post-quantum

candidates.

4.2.1. HMQV and 3DH protocol messages

HMQV and 3DH are both implemented using a suitable cyclic group of

prime order p. All operations in the key derivation steps in Section

4.2.2.1 and Section 4.2.2.2 are performed in this group and

represented here using multiplicative notation.

OPAQUE with HMQV and OPAQUE with 3DH comprises:

KE1 = credential_request, nonceU, info1, idU, epkU

KE2 = credential_response, nonceS, info2, epkS, Einfo2, MAC(Km2;

transcript2),

KE3 = info3, Einfo3, MAC(Km3; transcript3)}

where:

'*' denotes optional elements;

The private and public keys of the parties in these examples are

Diffie-Hellman keys, namely, pkU=g^skU and pkS=g^skS.

credential_request and credential_response denote the online

OPAQUE protocol messages (defined in Section 3.3) which carry the

client and server OPRF values, respectively, as well as the

envelope.

nonceU, nonceS are fresh random nonces chosen by client and

server, respectively;

¶

¶

¶

¶
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info1, info2, info3 denote optional application-specific

information sent in the clear (e.g., they can include parameter

negotiation, parameters for a hardening function, etc.);

Einfo2, Einfo3 denotes optional application-specific information

sent encrypted under keys Ke2, Ke3 defined below;

idU is the user's identity used by the server to construct 

credential_response, which contains the server's OPRF response

and envU. idU can be omitted from message KE1 if the information

is available to the server in some other way;

idS, the server's identity, is not shown explicitly, it can be

part of an info field (encrypted or not), part of envU, or can be

known from other context (see Section 3.5); it is used crucially

for key derivation (see below);

epkU, epkS are Diffie-Hellman ephemeral public keys chosen by

user and server, respectively, which MUST be validated to be in

the correct group (see Section 6.3);

transcript2 includes the concatenation of the values

credential_request, nonceU, info1, idU, epkU,

credential_response, nonceS, info2, epkS, Einfo2;

transcript3 includes the concatenation of all elements in

transcript2 followed by info3, Einfo3;

Notes:

The explicit concatenation of elements under transcript2 and

transcript3 can be replaced with hashed values of these elements,

or their combinations, using a collision-resistant hash (e.g., as

in the transcript-hash of TLS 1.3 [RFC8446]).

The inclusion of the values credential_request and

credential_response under transcript2 is needed for binding the

underlying OPRF execution to that of the AKE session. On the

other hand, including envU in transcript2 is not mandatory for

security, though done as part of including credential_response.

4.2.2. HMQV and 3DH key derivation

The above protocol requires MAC keys Km2, Km3, and optional

encryption keys Ke2, Ke3, as well as generating a session key SK

which is the AKE output for protecting subsequent traffic (or for

generating further key material). Key derivation uses HKDF [RFC5869]

with a combination of the parties static and ephemeral private-

public key pairs and the parties' identities idU, idS. See Section

3.5 for more information about these identities.
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HMQV and 3DH use the following key schedule for computing Km2, Km3,

Ke2, Ke3, and SK:

From handshake_secret, Km2, Km3, Ke2, and Ke3 are computed as

follows:

key_length is the length of the key required for the AKE handshake

encryption algorithm.

Values IKM and info are defined for each instantiation in the

following sections.

4.2.2.1. HMQV key derivation

The HKDF input parameter info is computed as follows:

The input parameter IKM is Khmqv, where Khmqv is computed by the

client as follows:

Hash is the same hash function used in the main OPAQUE protocol for

key derivation. Its output length must be at least the length of the

group order p.

Likewise, servers compute Khmqv as follows:

In both cases, u is computed as follows:

¶

  HKDF-Extract(salt=0, IKM)

      |

      +--> Derive-Secret(., "handshake secret", info) = handshake_secret

      |

      +--> Derive-Secret(., "session secret", info) = SK

¶

¶

Km2 = HKDF-Expand-Label(handshake_secret, "client mac", "", Hash.length)

Km3 = HKDF-Expand-Label(handshake_secret, "server mac", "", Hash.length)

Ke2 = HKDF-Expand-Label(handshake_secret, "client enc", "", key_length)

Ke3 = HKDF-Expand-Label(handshake_secret, "server enc", "", key_length)

¶

¶

¶

¶

info = "HMQV keys" || I2OSP(len(nonceU), 2) || nonceU

                   || I2OSP(len(nonceS), 2) || nonceS

                   || I2OSP(len(idU), 2) || idU

                   || I2OSP(len(idS), 2) || idS

¶

¶

1. u' = (eskU + u\*skU) mod p

2. Khmqv = (epkS \* pkS^s)^u'

¶

¶

¶

1. s' = (eskS + s\*skS) mod p

2. Khmqv = (epkU \* pkU^u)^s'

¶

¶



Likewise, s is computed as follows:

4.2.2.2. 3DH key derivation

The HKDF input parameter info is computed as follows:

The input parameter IKM is K3dh, where K3dh is the concatenation of

three DH values computed by the client as follows:

Likewise, K3dh is computed by the server as follows:

4.3. Instantiation with SIGMA-I

We show the integration of OPAQUE with the 3-message SIGMA-I

protocol [SIGMA]. This is an example of a signature-based protocol

and also serves as a basis for integration of OPAQUE with TLS 1.3 as

specified in [I-D.sullivan-tls-opaque]. This specification can be

extended to the 4-message SIGMA-R protocol as used in IKEv2.

4.3.1. SIGMA protocol messages

OPAQUE with SIGMA-I comprises:

KE1 = credential_request, nonceU, info1, idU, epkU

KE2 = credential_response, nonceS, info2, epkS, Einfo2, Sign(skS;

transcript2-), MAC(Km2; idS),

KE3 = info3, Einfo3, Sign(skU; transcript3-), MAC(Km3; idU)}

hashInput = I2OSP(len(epkU), 2) || epkU ||

            I2OSP(len(info), 2) || info ||

            I2OSP(len("client"), 2) || "client"

u = Hash(hashInput) mod (len(p)-1)

¶

¶

hashInput = I2OSP(len(epkS), 2) || epkS ||

            I2OSP(len(info), 2) || info ||

            I2OSP(len("server"), 2) || "server"

s = Hash(hashInput) mod (len(p)-1)

¶

¶

info = "3DH keys" || I2OSP(len(nonceU), 2) || nonceU

                  || I2OSP(len(nonceS), 2) || nonceS

                  || I2OSP(len(idU), 2) || idU

                  || I2OSP(len(idS), 2) || idS

¶

¶

K3dh = epkS^eskU || pkS^eskU || epkS^skU¶

¶

K3dh = epkU^eskS || epkU^skS || pkU^eskS¶

¶

¶
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See explanation of fields in Section 4.2.1. In addition, for the

signed material, transcript2- is defined similarly to transcript2,

however if transcript2 includes information that identifies the

user, such information can be eliminated in transcript2- (this is

advised if signing user's identification information by the server

is deemed to have adverse privacy consequences). Similarly,

transcript3- is defined as transcript3 with server identification

information removed if so desired.

4.3.2. SIGMA key derivation

The key schedule for computing Km2, Km3, Ke2, Ke3, and SK is the

same as specified in Section 4.2.2. The HKDF input parameter info is

computed as follows:

The input parameter IKM is Ksigma, where Ksigma is computed by

clients as epkS^eskU and by servers as epkU^eskS.

5. Configurations

An OPAQUE configuration is a tuple (OPRF, Hash, MHF, AKE). The

OPAQUE OPRF protocol is drawn from [I-D.irtf-cfrg-voprf]. The

following OPRF ciphersuites supports are supported:

OPRF(curve25519, SHA-512)

OPRF(curve448, SHA-512)

OPRF(P-256, SHA-512)

OPRF(P-384, SHA-512)

OPRF(P-521, SHA-512)

The OPAQUE hash function is that which is associated with the OPRF

variant. For the variants specified here, only SHA-512 is supported.

[[https://github.com/cfrg/draft-irtf-cfrg-opaque/issues/59: Consider

SHA-256 for the Curve25519 OPRF suite - SHA-512 is excessive]]

The OPAQUE MHFs include Argon2 [I-D.irtf-cfrg-argon2], scrypt 

[RFC7914], and PBKDF2 [RFC2898] with suitable parameter choices.

These may be constant values or set at the time of password

registration and stored at the server. In the latter case, the

server communicates these parameters to the client during login.

¶

¶

info = "SIGMA-I keys" || I2OSP(len(nonceU), 2) || nonceU

                      || I2OSP(len(nonceS), 2) || nonceS

                      || I2OSP(len(idU), 2) || idU

                      || I2OSP(len(idS), 2) || idS

¶

¶

¶
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The OPAQUE AKE protocols are those which are specified in Section 4.

Future specifications (such as [I-D.sullivan-tls-opaque]) MAY

introduce other AKE instantiations.

[[https://github.com/cfrg/draft-irtf-cfrg-opaque/issues/60: Should

we have a registry for configurations?]]

6. Security Considerations

OPAQUE is defined and proven as the composition of two

functionalities: An Oblivious PRF (OPRF) and an authenticated key-

exchange (AKE) protocol. It can be seen as a "compiler" for

transforming any AKE protocol (with KCI security and forward secrecy

- see below) into a secure aPAKE protocol. In OPAQUE, the user

stores a secret private key at the server during password

registration and retrieves this key each time it needs to

authenticate to the server. The OPRF security properties ensure that

only the correct password can unlock the private key while at the

same time avoiding potential offline guessing attacks. This general

composability property provides great flexibility and enables a

variety of OPAQUE instantiations, from optimized performance to

integration with TLS. The latter aspect is of prime importance as

the use of OPAQUE with TLS constitutes a major security improvement

relative to the standard password-over-TLS practice. At the same

time, the combination with TLS builds OPAQUE as a fully functional

secure communications protocol and can help provide privacy to

account information sent by the user to the server prior to

authentication.

The KCI property required from AKE protocols for use with OPAQUE

states that knowledge of a party's private key does not allow an

attacker to impersonate others to that party. This is an important

security property achieved by most public-key based AKE protocols,

including protocols that use signatures or public key encryption for

authentication. It is also a property of many implicitly

authenticated protocols (e.g., HMQV) but not all of them. We also

note that key exchange protocols based on shared keys do not satisfy

the KCI requirement, hence they are not considered in the OPAQUE

setting. We note that KCI is needed to ensure a crucial property of

OPAQUE: even upon compromise of the server, the attacker cannot

impersonate the user to the server without first running an

exhaustive dictionary attack. Another essential requirement from AKE

protocols for use in OPAQUE is to provide forward secrecy (against

active attackers).

Jarecki et al. [OPAQUE] proved the security of OPAQUE in a strong

aPAKE model that ensures security against pre-computation attacks

and is formulated in the Universal Composability (UC) framework 

[Canetti01] under the random oracle model. This assumes security of

¶
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the OPRF function and of the underlying key-exchange protocol. In

turn, the security of the OPRF protocol from [I-D.irtf-cfrg-voprf]

is proven in the random oracle model under the One-More Diffie-

Hellman assumption [JKKX16].

Very few aPAKE protocols have been proven formally, and those proven

were analyzed in a weak security model that allows for pre-

computation attacks (e.g., [GMR06]). This is not just a formal

issue: these protocols are actually vulnerable to such attacks. This

includes protocols that have recent analyses in the UC model such as

AuCPace [AuCPace] and SPAKE2+ [SPAKE2plus]. We note that as shown

in [OPAQUE], these protocols, and any aPAKE in the model from 

[GMR06], can be converted into an aPAKE secure against pre-

computation attacks at the expense of an additional OPRF execution.

OPAQUE's design builds on a line of work initiated in the seminal

paper of Ford and Kaliski [FK00] and is based on the HPAKE protocol

of Xavier Boyen [Boyen09] and the (1,1)-PPSS protocol from Jarecki

et al. [JKKX16]. None of these papers considered security against

pre-computation attacks or presented a proof of aPAKE security (not

even in a weak model).

6.1. Configuration Choice

Best practices regarding implementation of cryptographic schemes

apply to OPAQUE. Particular care needs to be given to the

implementation of the OPRF regarding testing group membership and

avoiding timing and other side channel leakage in the hash-to-curve

mapping. Drafts [I-D.irtf-cfrg-hash-to-curve] and [I-D.irtf-cfrg-

voprf] have detailed instantiation and implementation guidance.

6.2. Static Diffie-Hellman Oracles

While one can expect the practical security of the OPRF function

(namely, the hardness of computing the function without knowing the

key) to be in the order of computing discrete logarithms or solving

Diffie-Hellman, Brown and Gallant [BG04] and Cheon [Cheon06] show an

attack that slightly improves on generic attacks. For the case that

q-1 or q+1, where q is the order of the group G, has a t-bit

divisor, they show an attack that calls the OPRF on 2^t chosen

inputs and reduces security by t/2 bits, i.e., it can find the OPRF

key in time 2^{q/2-t/2} and 2^{q/2-t/2} memory. For typical curves,

the attack requires an infeasible number of calls and/or results in

insignificant security loss (*). Moreover, in the OPAQUE

application, these attacks are completely impractical as the number

of calls to the function translates to an equal number of failed

authentication attempts by a single user. For example, one would

need a billion impersonation attempts to reduce security by 15 bits

and a trillion to reduce it by 20 bits - and most curves will not
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even allow for such attacks in the first place (note that this

theoretical loss of security is with respect to computing discrete

logarithms, not in reducing the password strength).

(*) Some examples (courtesy of Dan Brown): For P-384, 2^90 calls

reduce security from 192 to 147 bits; for NIST P-256 the options are

6-bit reduction with 2153 OPRF calls, about 14 bit reduction with

187 million calls and 20 bits with a trillion calls. For Curve25519,

attacks are completely infeasible (require over 2^100 calls) but its

twist form allows an attack with 25759 calls that reduces security

by 7 bits and one with 117223 calls that reduces security by 8.4

bits.

6.3. Input validation

Both client and server MUST validate the other party's public key(s)

used for the execution of OPAQUE. This includes the keys shared

during the offline registration phase, as well as any keys shared

during the online key agreement phase. The validation procedure

varies depending on the type of key. For example, for OPAQUE

instantiations using 3DH with P-256, P-384, or P-521 as the

underlying group, validation is as specified in Section 5.6.2.3.4 of

[keyagreement]. This includes checking that the coordinates are in

the correct range, that the point is on the curve, and that the

point is not the point at infinity. Additionally, validation MUST

ensure the Diffie-Hellman shared secret is not the point at

infinity. For X25519 and X448, validation is as described in 

[RFC7748]. In particular, where applicable, endpoints MUST check

whether the Diffie-Hellman shared secret is the all-zero value and

abort if so.

6.4. User authentication versus Authenticated Key Exchange

OPAQUE provides PAKE (password-based authenticated key exchange)

functionality in the client-server setting. While in the case of

user identification, wherein the focus is often on authentication,

we stress that the key exchange element is essential. Indeed, in

most cases, user authentication enforces some policy, and the key

exchange step is essential for binding this enforcement to the

authentication step. Skipping the key exchange part is analogous to

carefully checking a visitor's credential at the door and then

leaving the door open for others to enter freely.

6.5. OPRF Hardening

Hardening the output of the OPRF greatly increases the cost of an

offline attack upon the compromise of the password file at the

server. Applications SHOULD select parameters that balance cost and

complexity.
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6.6. User enumeration

User enumeration refers to attacks where the attacker tries to learn

whether a given user identity is registered with a server.

Preventing such attack requires the server to act with unknown user

identities in a way that is indistinguishable from its behavior with

existing users. Here we suggest a way to implement such defense,

namely, a way for simulating the values beta and envU for non-

existing users. Note that if the same pair of user identity idU and

value alpha is received twice by the server, the response needs to

be the same in both cases (since this would be the case for real

users). For protection against this attack, one would apply the

encryption function in the construction of envU to all the key

material in envU, namely, cleartext_credentials will be empty. The

server S will have two keys MK, MK' for a PRF f (this refers to a

regular PRF such as HMAC or CMAC). Upon receiving a pair of user

identity idU and value alpha for a non-existing user idU, S computes

kU=f(MK; idU) and kU'=f(MK'; idU) and responds with values

beta=alpha^kU and envU, where the latter is computed as follows.

rwdU is set to kU' and AEenv is set to the all-zero string (of the

length of a regular envU plaintext). Care needs to be taken to avoid

side channel leakage (e.g., timing) from helping differentiate these

operations from a regular server response. The above requires

changes to the server-side implementation but not to the protocol

itself or the client side.

There is one form of leakage that the above allows and whose

prevention would require a change in OPAQUE. Note that an attacker

that tests a idU (and same alpha) twice and receives different

responses can conclude that either the user registered with the

service between these two activations or that the user was

registered before but changed its password in between the

activations (assuming the server changes kU at the time of a

password change). In any case, this indicates that idU is a

registered user at the time of the second activation. To conceal

this information, S can implement the derivation of kU as kU=f(MK;

idU) also for registered users. Hiding changes in envU, however,

requires a change in the protocol. Instead of sending envU as is, S

would send an encryption of envU under a key that the user derives

from the OPRF result (similarly to rwdU) and that S stores during

password registration. During the authenticated key exchange stage,

the user will derive this key from the OPRF result, will use it to

decrypt envU, and continue with the regular protocol. If S uses a

randomized encryption, the encrypted envU will look each time as a

fresh random string, hence S can simulate the encrypted envU also

for non-existing users.

Note that the first case above does not change the protocol so its

implementation is a server's decision (the client side is not

¶
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changed). The second case, requires changes on the client side so it

changes OPAQUE itself.

[[https://github.com/cfrg/draft-irtf-cfrg-opaque/issues/22: Should

this variant be documented/standardized?]]

6.7. Password salt and storage implications

In OPAQUE, the OPRF key acts as the secret salt value that ensures

the infeasibility of pre-computation attacks. No extra salt value is

needed. Also, clients never disclose their password to the server,

even during registration. Note that a corrupted server can run an

exhaustive offline dictionary attack to validate guesses for the

user's password; this is inevitable in any aPAKE protocol. (OPAQUE

enables a defense against such offline dictionary attacks by

distributing the server so that an offline attack is only possible

if all - or a minimal number of - servers are compromised [OPAQUE].)

Some applications may require learning the user's password for

enforcing password rules. Doing so invalidates this important

security property of OPAQUE and is NOT RECOMMENDED. Applications

should move such checks to the client. Note that limited checks at

the server are possible to implement, e.g., detecting repeated

passwords.

7. Performance Considerations

The computational cost of OPAQUE is determined by the cost of the

OPRF, the cost of a regular Diffie-Hellman exchange, and the cost of

authenticating such exchange. In an elliptic-curve implementation of

the OPRF, the cost for the client is two exponentiations (one or two

of which can be fixed base) and one hashing-into-curve operation [I-

D.irtf-cfrg-hash-to-curve]; for the server, it is just one

exponentiation. The cost of a Diffie-Hellman exchange is as usual

two exponentiations per party (one of which is fixed-base). Finally,

the cost of authentication per party depends on the specific AKE

protocol: it is just 1/6 of an exponentiation with HMQV, two

exponentiations for 3DH, and it is one signature generation and

verification in the case of SIGMA and TLS 1.3. These instantiations

preserve the number of messages in the underlying AKE protocol

except in implementations such as [I-D.sullivan-tls-opaque] where an

additional round trip is required to provide privacy to account

information.

8. IANA Considerations

This document makes no IANA requests.
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